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Abstract 

All methods of association rule mining require the frequent sets of 
items, that occur together sufficiently often to be the basis of 
potentially interesting rules, to be first computed. The cost of this 
increases in proportion to the database size, and also with its density. 
Densely-populated databases can give rise to very large numbers of 
candidates that must be counted. Both these factors cause 
performance problems, especially when the data structures involved 
become too large for primary memory. In this paper we describe a 
method of partitioning that organises the data into tree structures that 
can be processed independently. We present experimental results that 
show the method scales well for increasing dimensions of data, and 
performs significantly better than alternatives, especially when 
dealing with dense data and low support thresholds. 

1      Introduction 
The most computationally demanding aspect of Association Rule Mining is 
identifying the frequent sets of attribute-values, or items, whose support 
(occurrence in the data) exceeds some threshold. The problem arises because the 
number of possible sets is exponential in the number of items. For this reason, 
almost all methods attempt to count the support only of candidate itemsets that are 
identified as possible frequent sets. It is, of course, not possible to completely 
determine the candidate itemsets in advance, so it will be necessary to consider 
many itemsets that are not in fact frequent. Most algorithms involve several passes 
of the source data, in each of which the support for some set of candidate itemsets 
is counted. The performance of these methods, clearly, depends both on the size of 
the original database and on the number of candidates being considered. The 
number of possible candidates increases with increasing density of data (greater 
number of items present in a record) and with decreasing support thresholds. In 
applications such as medical epidemiology, where we may be searching for rules 
that associate rather rare items within quite densely-populated data, the low 
support-thresholds required may lead to very large candidate sets. These factors 
motivate a continuing search for efficient algorithms.  

Performance will be affected, especially, if the magnitudes involved make 
it impossible for the algorithm to proceed entirely within primary memory. In these 
cases, some strategy for partitioning the data may be required to enable 



algorithmic stages to be carried out on primary -memory-resident data. In this paper 
we examine methods of partitioning to limit the total primary memory requirement, 
including that required both for the source data and for the candidate sets. We 
describe a new method of partitioning that exploits tree structures we have 
previously developed for Association Rule Mining. Experimental results are 
presented that show this method offers significant performance advantages.                 

2      Background 
Most methods for finding frequent sets are based to a greater or lesser extent on the 
“Apriori” algorithm [2]. Apriori performs repeated passes of the database, 
successively computing support-counts for sets of single items, pairs, triplets, and 
so on. At the end of each pass, sets that fail to reach the required support threshold 
are eliminated, and candidates  for the next pass are constructed as supersets of the 
remaining (frequent) sets. Since no set can be frequent which has an infrequent 
subset, this procedure guarantees that all frequent sets will be found.  

A problem of Apriori is that it requires the source data to be scanned 
repeatedly, which is especially costly if this cannot be contained in primary 
memory. Attempts to reduce this cost include the “Partition” algorithm [12], which 
partitions the data into a number of equal-sized segments of manageable size, and 
the strategy introduced by Toivonen [13], which first processes a small random 
sample of the data to identify candidates for counting across the full database. The 
drawback of both these approaches highlights the second weakness of Apriori: that 
the number of candidates whose support must be counted may become very large. 
Both methods increase the size of the candidate set, and also require all candidates 
to be retained in primary memory (for efficient processing) during the final 
database pass. Other methods [3] [4] [1] [14] aim to identify maximal frequent sets 
without first examining all their subsets. These algorithms may cope better with 
densely-populated databases and long patterns than the others described, but again 
usually involve multiple database passes. The DepthProject [1] algorithm bypasses 
the problem by explicitly targeting memory-resident data. The method of Zaki et. 
al. [14] partitions candidate sets into clusters which can be processed 
independently. The problem with the method is that, especially when dealing with 
dense data and low support thresholds, expensive pre-processing is required before 
effective clustering can be identified. The partitioning by equivalence class, 
however, is relevant to the methods we will describe. 

Our methods begin by performing a single pass of the database to perform 
a partial summation of the support totals. These partial counts are stored in a tree 
structure that we call the P-tree [9], which enumerates itemsets counted in 
lexicographic order. The P-tree contains all the sets of items present as distinct 
records in the database, plus some additional sets that are leading subsets of these. 
To illustrate, consider a database with items {a,b,c,d,e}, and a set of 20 records: 
{abcde,abce,abd,abde,abe,acde,ace,ade,b,bcde,bce,bd,bde,be,cd,cde,ce,d,de,e}. 
(Not necessarily in this order). For convenience, we will use the notation abd, for 
example, to denote the set of items {a,b,d}. Figure 1 shows the P-tree that would 
be constructed. The counts stored at each node are incomplete support-totals, 
representing support derived from the set and its succeeding supersets in the tree. 
For example, suppose the record cde is the last to be added. The tree-construction 



algorithm will traverse the nodes c and cd that are subsets of cde, incrementing the 
count for each, before appending cde as a child of cd.  

We apply to this structure an algorithm, Apriori-TFP, which completes 
the summation of support counts, storing the results in a second set-enumeration 
tree (the T-tree), which finally contains all frequent sets with their complete 
support-counts. The algorithm used, essentially a form of Apriori that makes use of 
the partial counting that has already been done, is described in [6], where we 
explain the rationale of the approach, and present experimental results that 
demonstrate performance gains in comparison both with Apriori, and also the FP-
growth [10] algorithm, which has some similar properties. The FP-tree used in [10] 
is a more pointer-rich structure than the P-tree, leading to greater difficulties in 
dealing with non-memory-resident data, although strategies for this have been 
proposed, which will be discussed further below. The CATS tree, an extension of 
the FP-tree proposed in [5], also assumes no limitation on main memory capacity. 
In this paper we consider implementations of Apriori-TFP when we cannot contain 
all the data required in main memory, requiring some strategy for partitioning this. 

Figure 1: Example of a P-tree 

3  Strategies for Partitioning 
The natural implementation of Apriori, when source data cannot be contained in 
primary memory, requires all the data to be read from secondary memory in each 
pass. The equivalent for Apriori-TFP, because the first stage of the method 
involves the construction of a P-tree, requires a partitioning of the data into 
segments of manageable size. We will refer to this form of partitioning, in which 
each segment contains a number of complete database records, as ‘horizontal’ 
partitioning (HP), or segmentation. We first take each segment of data separately 



and create for it a P-tree that is then stored in secondary memory. Each pass of 
Apriori-TFP then requires each of the P-trees to be read in turn from secondary 
memory. The method creates a single final T-tree in primary memory, which 
contains all the frequent sets and their support-counts. 

The drawback of this simple approach is that it replicates the two 
weaknesses of the Apriori methodology: all the data (now in the form of P-trees) 
must be re-read from secondary memory in each pass, and the entire T-tree, which 
contains candidates and, finally, all the frequent sets, must be kept in primary 
memory while counting proceeds. As we have noted, this tree may be very large. 
Even when it can be held in primary memory, a large set of candidates leads to 
slower counting, in Apriori-TFP just as for Apriori. The P-tree structure offers 
another possible form of partitioning, into subtrees that represent equivalence 
classes of the items represented. However, it is not possible to compute the support 
for a set by considering only the subtree in which it is located. Although 
succeeding supersets of a set S in the P-tree are located in the subtree rooted at S, 
predecessor supersets are scattered throughout the preceding part of the P-tree. For 
example, consider the support for the set bd in the data used for Figure 1. In the 
subtree rooted at b, we find a partial support total for bd, which includes the total 
for its superset bde. To complete the support count for bd, however, we must add 
in the counts recorded for its preceding supersets bcde, abd (incorporating abde) 
and abcde, the latter two of which are in the subtree headed by a. 

The problem can be overcome by a different partitioning of the P-tree 
structure. Our Tree Partitioning (TP) method begins by dividing the ordered set of 
items into subsequences. For example, for the data used in Figure 1, we might 
define 3 sequences of items, {a,b}, {c,d} and {e}, labelled 1,2,3 respectively. For 
each sequence we define a Partition-P-tree (PP-tree), labelled PP1, PP2 and PP3. 
The construction of these is a slight modification of the original method. The first, 
PP1, is a proper P-tree that counts the partial support for the power set of {a,b}. 
PP2, however, counts all those sets that include a member of {c,d} in a tree that 
includes just these items and their predecessors. The third tree, PP3, will count all 
sets that include any member of {e}. The three trees obtained, from our example, 
are illustrated in Figure 2. The PP-trees are, in effect, overlapping partitions of the 
P-tree of Figure 1, with some restructuring resulting from the omission of nodes 
when they are not needed. 

The effect of this is that the total support for any set S can now be 
obtained from the PP-tree corresponding to the last item within S; for example, we 
now find all the counts contributing to the support of bd are included in PP2.  The 
drawback is that the later trees in the sequence are of increasing size; in particular, 
PP3 in our example is almost as large as the original P-tree. We can overcome this 
by a suitable reordering of the items. In descending order of their frequency in the 
data, the items of our example are e,d,b,c,a. Using the same data as for Figures 1 
and 2, we will construct PP-trees using this ordering, for the sets of items {e,d}, 
{b,c} and {a} respectively.  

The results are shown in Figure 3. Now, because the less frequent items 
appear later in the sequence, the trees become successively more sparse, so that 
PP3 now has only 13 nodes, compared with the 23 of PP3 in Figure 2. Our 
previous work has shown  [7] that ordering items in this way leads to a smaller P-
tree and faster operation of Apriori-TFP. The additional advantage for partitioning 
is that the PP-trees become more compact and more equal in size. The total 



support-count for bd (now ordered as db) is again to be found within PP2, but now 
requires the addition of only 2 counts (db+edb). 
 

 
Figure 2: Partition-P-trees from figure 1 

 
  This form of partitioning offers us a way of dividing the source data into a 
number of PP-trees each of which may then be processed independently. The 
partitioning, as illustrated in Figure 3, is essentially similar to that obtained by the 
construction of conditional databases described in [10] and [11], and the COFI-
trees proposed in [8]. The latter method also creates subtrees that can be processed 
independently, but requires an initial construction of an FP-tree that must be 
retained in primary memory for efficient processing. The partitioning strategy 
proposed in [11] for dealing with an FP-tree too large for primary storage, would 
first construct the a-conditional database corresponding to PP3, and after building 
the FP-tree for this, would copy relevant transactions (e.g. edbca), into the next (c-
conditional) database, as edbc. The method we describe avoids this multiple 
copying by constructing all the trees in memory in a single pass, during which we 
also partially count support. With a sufficiently large data set, it will of course still 
not be possible to construct the PP-trees within primary memory. We can, 
however, combine this approach with a (horizontal) segmentation of the original 
data into segments small enough to allow the corresponding PP-trees to be 
contained in primary store. This approach is possible in our case because the P-tree 
structure is simpler and less pointer-rich than the corresponding FP-tree. Our 
method also allows us to define PP-trees which are, in effect, the union of a 
sequence of conditional databases, allowing more flexibility of partitioning. 



 
Figure 3: PP-trees after reordering of items  

The overall method is as follows: 
1. Obtain an (at least approximate) ordering of the frequency of items, and 

using this ordering, choose an appropriate partitioning of the items into n 
sequences 1, 2, 3,..etc. 

2. Divide the source data into m segments. 
3. For each segment of data, construct  n PP-trees in primary memory, 

storing finally to disk. This involves just one pass of the source data. 
4. For partition 1, read the PP1 trees for all segments into memory, and 

apply the Apriori-TFP algorithm to build a T-tree that finds the final 
frequent sets in the partition. This stage requires the PP1 trees for each 
segment of data to be read once only. The T-tree remains in memory 
throughout, finally being stored to disk. 

5. Repeat step 4 for partitions 2, 3, ..n. 
 
The method offers two advantages. First, we have now effectively reduced the 
number of disk passes to 2: one (step 3) to construct the PP-trees, and a second 
pass (of the stored trees) to complete the counting (steps 4 and 5). The second 
advantage is that we are now, at each stage, dealing with smaller tree structures, 
leading to faster traversal and counting.  

4      Results 
To investigate the performance of the method, we used synthetic data sets 
constructed using the QUEST generator described in [2]. The programs were 



written in standard C++ and run on a 1.3 GHz machine with 256 Kb of cache, and 
512 Mb of RAM. The data was stored on an NFS server (1Gb filestore). 
 We first establish that the method scales acceptably; i.e. the partitioning 
strategy successfully constrains the maximum requirement for primary memory, 
without leading to unacceptable execution times. For this purpose we generated 
data sets with parameters T10.I5.N500, i.e an average record size of 10 items. We 
divided the data into segments of 50,000 records, and within each segment 
generated 500 partitions, i.e. a PP-tree for each item. In all our experiments, the 
tree partitioning is naïve: after ordering the items, we partition into sequences of 
equal length (in this case, 1). In fact, our experiments seem to show that increasing 
the degree of partitioning always reduces the primary memory requirement (as 
would be expected), and also almost always reduces execution time. The latter, less 
obvious result arises because the increased time taken to construct a greater 
number of PP-trees (step 3 above) is usually more than compensated by the faster 
processing of smaller T-trees (steps 4 and 5). 
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Figure 4: Execution times for T10.I5.N500 (0.01% support) 

Figure 4 shows the overall time to generate frequent sets, with a support 
threshold of 0.01%, for datasets of increasing size, i.e. 1,2,3,4 and 5 segments. The 
figure compares the performance of the Tree-partitioning method (TP) with the 
simple method involving horizontal partitioning (segmentation) only (HP). The 
times illustrated include both the time to construct the trees and to execute the 
Apriori-TFP algorithm.  As can be seen, TP offers substantially better performance 
than HP, and its performance scales linearly with the size of the dataset.  
 Importantly, this performance is achieved within conservative memory 
requirements.  In steps 4 and 5 of the TP method it is necessary to contain in 
memory all the PP-trees for one partition, and the corresponding T-tree for that 
partition. In the experiment of Figure 4, this led to a maximum memory 
requirement for the TP method that varied from 1.38Mb (1 segment) to 1.6Mb (5 
segments). In general, larger data sets, requiring greater horizontal segmentation, 
lead to some increase in the combined size of the PP-trees, but this is relatively 
slight. By contrast, the HP method requires the P-tree for one data segment and the 
whole of the T-tree to be contained in primary store, leading to a maximum 
memory requirement of between 116 and 128 Mb in the case illustrated. 



The combined sizes of the PP-trees for any one segment are, of course, 
greater than the size of a corresponding P-tree, which could be a constraint during 
the construction of the PP-trees. If so, the problem can be overcome by imposing a 
greater degree of horizontal segmentation. We found that the total memory 
requirement to contain all the PP-trees for any one segment decreases from 7.8 
Mb, when no segmentation is applied, to a maximum of 0.22 Mb when there are 50 
segments, with almost no overall increase in execution time. The method scales 
well with increasing number of items, also. We found execution time increased 
slowly and linearly as the number of items increased from 500 to 2500, with no 
general upward trend in memory requirement. This is because the P-tree is a 
conservative structure, which stores (in general) only those itemsets that are 
actually needed, so increasing the number of items with no increase in density has 
little effect. Conversely, the simple HP method has a rapidly increasing memory 
requirement in this case because of the greater size of the unpartitioned T-tree. 
 The performance of the method when dealing with more dense datasets is 
shown in figures 5 and 6. In these experiments, we generated databases with 
D=50000, N=500, varying the T and I parameters, and divided into 5 segments, 
with 10 items/partition. The small database size was chosen for convenience, but 
we imposed a requirement that only one partition can be retained in memory.  We 
compared the TP method both with HP and with a method based on the “Negative 
Border” approach of [13] (labelled NB in the figures). In the latter, P-trees are first 
constructed for all segments, as for the HP method. Then, all the proportionately-
frequent sets in the first segment of data are found, using a support threshold 
reduced to 2/3 of the original, and also retaining the negative border of the sets 
found, i.e. those sets which, although not themselves frequent, have no infrequent 
subsets. The frequent sets, with their negative border, are stored in a T-tree which 
is kept in store to complete the counts for these sets for the remaining segments. 
The reduced support threshold, and the inclusion of the negative border, make it 
very likely that all the finally frequent sets will be included in this tree, in which 
case the method requires the disk-stored P-trees to be read once only. 
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Figure 5: Execution times for various database characteristics 



The figures show results for a support threshold of 0.1%, at which level 
(higher than in the previous experiments) there is little difference in the total 
execution times for the T10.I5 data. In this case, the faster computation of the 
frequent sets by the TP method is offset by the longer time taken to construct the 
PP-trees. With more dense data, however, the latter factor becomes decreasingly 
significant, and the advantage of the TP method becomes increasingly apparent. 
This is principally because of the much smaller candidate sets that are involved. 
This is apparent from the comparison of maximal memory requirements, shown in 
Figure 6. This reflects the growing size of the candidate sets (and hence the T-tree) 
as the data density increases, leading both to larger memory requirements and to 
longer times to find candidates. The problem is particularly acute with the 
‘Negative Border’ method. This works well with relatively sparse data, but at high 
density the reduced support threshold and the inclusion of the negative border lead 
to very large candidate sets. A similar pattern was observed in experiments varying 
the support threshold (for the T10.I5 set). At a threshold of 1.0, the overhead of 
constructing the multiple PP-trees for the TP method leads to relatively poor 
execution times, and in this case, the NB method is fastest. As the support 
threshold is reduced, however, the increasing cost of servicing a growing candidate 
set leads to rapidly increasing memory requirements and execution times for the 
alternative methods, whereas the TP method scales much better, becoming faster 
than either at a threshold of 0.05, and twice as fast at threshold 0.01.  
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Figure 6: Memory requirements for various data 

5     Conclusions  
In this paper we have examined ways of partitioning data for Association Rule 
Mining. Our aim has been to identify methods that will enable efficient counting of 
frequent sets in cases where the data is much too large to be contained in primary 
memory, and also where the density of the data means that the number of 
candidates to be considered becomes very large. Our starting point was a method 
which makes use of an initial preprocessing of the data into a tree structure (the P-
tree) which incorporates a partial counting of support totals. In previous work we 
have shown this method to offer significant performance advantages. Here, we 
have investigated ways of applying the approach in cases that require the data to be 
partitioned for primary memory use. We have, in particular, described a method 



that involves a partitioning of the tree structures involved to enable separate 
subtrees to be processed independently. The advantage of this approach is that it 
allows both the original data to be partitioned into more manageable subsets, and 
also partitions the candidate sets to be counted. The latter results in both lower 
memory requirements and also faster counting.  

The experimental results we have reported here show that the Tree 
Partitioning method described is extremely effective in limiting the maximal 
memory requirements of the algorithm, while its execution time scales only slowly 
and linearly with increasing data dimensions. Its overall performance, both in 
execution time and especially in memory requirements, is significantly better than 
that obtained from either simple data segmentation or a method that aims to 
complete counting in only two passes of the data. The advantage increases with 
increasing density of data and with reduced thresholds of support – i.e. for the 
cases that are in general most challenging for association rule mining. Furthermore, 
a relatively high proportion of the time required by the method is taken up in the 
preprocessing stage during which the PP-trees are constructed. Because this stage 
is independent of the later stages, in many applications it could be accepted as a 
one-off data preparation cost. In this case, the gain over other methods becomes 
even more marked.  
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