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Overview

Classification Rule Mining (CRM) is a well-known Data Mining technique
for the extraction of hidden Classification Rules (CRs) from a given database
that is coupled with a set of pre-defined classes, the objective being to build
a classifier to classify “unseen” data-records. One recent approach to CRM is
to employ Association Rule Mining (ARM) techniques to identify the desired
CRs, i.e. Classification Association Rule Mining (CARM). Although the ad-
vantages of accuracy and efficiency offered by CARM have been established
in many papers, one major drawback is the large number of Classification
Association Rules (CARs) that may be generated — up to a maximum of
“2™ —n—1” in the worst case, where n represents the number of data-attributes
in a database. However, there are only a limited number, say at most k in
each class, of CARs that are required to distinguish between classes. The prob-
lem addressed in this chapter is how to efficiently identify the k such CARs.
Having a CAR list that is generated from a given database, based on the
well-established “Support-Confidence” framework, a rule weighting scheme is
proposed in this chapter, which assigns a score to a CAR that evaluates how
significantly this CAR contributes to a single pre-defined class. Consequtently
arule mining approach is presented, that addresses the above, that operates in
time O(k%*n?) in its deterministic fashion, and O(kn) in its randomised fash-
ion, where k represents the number of CARs in each class that are potentially
significant to distinguish between classes and &k > l%; as opposed to exponen-
tial time O(2") — the time required in score computation to mine all k CARs
in a “one-by-one” manner. The experimental results show good performance
regarding the accuracy of classification when using the proposed rule weight-
ing scheme with a suggested rule ordering mechanism, and evidence that the
proposed rule mining approach performs well with respect to the efficiency of
computation.
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1 Introduction

Data Mining [29, 30] is a promising area of current research and development
in Computer Science, which is attracting more and more attention from a wide
range of different groups of people. Data Mining aims to extract various types
of hidden and interesting knowledge (i.e., rules, patterns, regularities, customs,
trends, etc.) from databases, where the volume of a collected database can
be very large. In Data Mining, common types of mined knowledge include:
Association Rules (ARs) [1], Classification Rules (CRs) [45], Classification
Association Rules (CARs) [3], Prediction Rules (PRs) [28], Clustering Rules
(CTRs) [42], Sequential Patterns (SPs) [52], Emerging Patterns (EPs) [21],
etc.

An AR describes a co-occurring relationship between binary-valued data-
attributes, expressed in the form of an “antecedent = consequent” rule. Asso-
ciation Rule Mining (ARM) [2], with its wide range of applications, has been
well-established in Data Mining in the past decade. It aims to identify all ARs
in a given transaction-database D7. One application of ARM is to define CRs,
from a training-dataset Dp that is coupled with a set of pre-defined classes
C = {c1,¢2,...,¢ic|-1,¢|c|}, which can be used to classify the data-records
in a test-dataset Dg. This kind of AR based CR is referred to as CAR. In
general the process to build a classifier using identified CRs is called Classi-
fication Rule Mining (CRM) [45], which is another well-known Data Mining
technique paralleling ARM. In CRM, a class-database D¢ is given as Dr U
Dpg, where D and Dg share the same data-attributes but the class-attribute
(the last data-attribute in Dpg) is “unseen” in Dp.

Classification Association Rule Mining (CARM) [3] is a recent CRM ap-
proach that builds an ARM based classifier using CARs, where these CARs
are generated from a given transaction-training-dataset Drr C Dpc, and
Dr¢ is a D¢ in a “transactional” manner. In [18], Coenen et al. suggest that
results presented in [36] and [38] show that CARM seems to offer greater ac-
curacy, in many cases, than other methods such as C4.5 [45]. However, one
major drawback of this approach is the large number of CARs that might
be generated — up to a maximum of “2™ — n — 1” in the worst case, where n
represents the number of data-attributes in Dr¢. In [53], Yin and Han belive
that there are only a limited number, say at most k in each class, of CARs
that are required to distinguish between classes and should be thus used to
make up a classifer. They suggest a value of 5 as an appropriate value for k,
and employ the Laplace expected error estimate [10] to estimate the acuracy
of CARs. In [15] Coenen and Leng evaluated a number of alternative rule or-
dering and case satisfaction strategies, and conclude that for lower confidence
thresholds (i.e., 50% to 75%) CSA (Confidence-Support-size _of Antecedent)
and Laplace ordering coupled with a “best first” case satisfaction mechanism
can achieve better accuracy than comparable alternatives.
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1.1 Contribution

Given a CAR list R = {R1, Ra, ..., Ry_1, Ry} that is generated from a given
Drr based on the well-established “Support-Confidence” framework, where R
is presented using CSA ordering, and N represents the size of R that can be
as large as “2"™ — n — 17, a rule weighting scheme is proposed in this chapter,
which assigns a score to a CAR R; € R that represents how significantly R;
contributes to a single class ¢; € C. An alternative rule ordering mechanism
is consequently introduced, based on the proposed rule weighting scheme,
that aims to improve the performance of the well-established CSA ordering
regarding the accuracy of classification. In [19] a general framework for se-
lectors, namely (k, m,n)-selectors, was proposed with applications in optimal
group testing. In this chapter, a similar concept of selectors is further con-
sidered in a randomised setting. This randomised selector can be proved to
exist with a high probability. With regards to the concept of selectors, a novel
rule mining approach is presented that addresses the problem of mining the
k “significant rules” (see Definition 9 in section 3.2) in R. The rule mining
approach operates in time O(k?n?) in its deterministic fashion, and O(kn)
in its randomised fashion, where k represents the number of CARs in each
class that can potentially be used to distinguish between classes and k > l%; as
opposed to exponential time O(2") — the time required in score computation
to find all k significant (the “best £”) rules in R in a “one-by-one” manner. The
experimental results show that the proposed rule weighting and rule ordering
approaches perform well regarding the accuracy of classification, and evidence
the fast computational efficiency of running the randomised rule mining ap-
proach. Note that the deterministic rule mining approach is theoretical only.

1.2 Chapter Organisation

The following section describes some Data Mining work that relate to CARM.
In section 3 we first introduce the rule weighting scheme together with a
rule ordering mechanism based on the rule weighting scheme; and sketch the
concept of deterministic selectors and give an introduction to the concept
of randomised selectors. In section 4 we propose a rule mining approach to
efficiently mine the “best k” CARs in R. In section 5 we present experimental
results obtained using the TFPC (Total From Partial Classification) CARM
algorithm [15, 18] coupled with a “best first” case satisfaction approach. Finally
we discuss our conclusions in section 6, and a number of open issues for further
research.
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2 Related Work

2.1 Association Rule Mining

ARM extracts a set of ARs from Dy, first introduced in [1]. Let I =
{a1,a2,...,an_1,a,} be a set of items (data-attributes), and 7 = {1y, T5, ...,
Tm-1,Tm} be a set of transactions (data-records), Dr is described by 7,
where each T; € 7 contains a set of items I’ C I. In ARM, two threshold
values are usually used to determine the significance of an AR:

e Support: The frequency that the items occur or co-occur in 7. A support
threshold o, defined by the user, is used to distinguish frequent items from
the infrequent ones. A set of items S is called an itemset, where S C I,
and Va; € S co-occur in 7. If the occurrences of some S in 7 exceeds o,
we say that S is a Frequent Itemset (FI).

e Confidence: Represents how “strongly” an itemset X implies another
itemset Y, where X, Y C T and X NY = {©}. A confidence threshold «,
supplied by the user, is used to distinguish high confiderence ARs from
low confidence ARs.

An AR X =Y is valid when the support for the co-occurrence of X and
Y exceeds o, and the confidence of this AR exceeds . The computation of
support is X #IY, where |7 is the size function of the set 7. The computation

of confidence is M Informally, X = Y can be interpreted as “if
upport(X) ’

X exists, it is likely that Y also exists”. With regards to the history of ARM
investigation, three major categories of serial (non-parallel) ARM algorithms
can be identified: (1) mining ARs from all possible FIs, (2) mining ARs from
Maximal Frequent Itemsets (MFIs), and (3) mining ARs from Frequent Closed
Itemsets (FCIs).

2.1.1 Mining ARs From FIs

In the past decade, many algorithms have been introduced that mine ARs
from identified FIs. These algorithms can be further grouped into different
“families”, such as Pure-apriori like, Semi-apriori like, Set Enumeration Tree
like, etc.

e Pure-apriori like where Fls are generated based on the generate-prune
level by level iteration that was first promulgated in the Apriori algo-
rithm [2]. In this “family” archetypal algorithms include: Apriori, Aprior-
iTid and AprioriHyprid [2], Partition [49], DHP [43], Sampling [50], DIC
[7], CARMA [31], etc.

e Semi-apriori like where FIs are generated by enumerating candidate
itemsets but do not apply the Apriori generate-prune iterative approach
founded on (1) the join procedure, and (2) the prune procedure that em-
ploys the closure property of itemsets — if an itemset is frequent then all
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its subsets will also be frequent; if an itemset is infrequent then all its su-
persets will also be infrequent. In this “family” typical algorithms include:
AIS [1], SETM [33], OCD [40], etc.

e Set Enumeration Tree like where FIs are generated through construct-
ing a set enumeration tree structure [48] from Dy, which avoids the need to
enumerate a large number of candidate itemsets. In this “family” a number
of approaches can be further divided into two main streams: (1) Apriori-
TFP! based (i.e., [11], [12], [13], [16], [17], etc.), and (2) FP-tree based
(i-e., [9], [24], [27], [39], etc.).

2.1.2 Mining ARs From MFIs

It is apparent that the size of a complete set of FIs can be very large. The
concept of MFI [47] was proposed to find several “long” (super) FIs in Dy,
which avoids the redundant work required to identify “short” FI. The con-
cept of vertical mining has also been effectively promoted in this category
[54]. Vertical mining, first mentioned in [32], deals with a vertical transaction
database DY, where each data-record represents an item that is associated
with a list of its relative transactions (the transactions in which it is present).
Typical MFT algorithms include: MaxEclat / Eclat [54], MaxClique / Clique
[54], Max-Miner [47], Pincer-Search [37], MAFIA [8], GenMax [26], etc.

2.1.3 Mining ARs From FCIs

Algorithms belonging to this category extract ARs through generating a set
of FCIs from Dp. In fact the support of some sub-itemsets of an MFI might
be hard to identified resulting in a further difficulty in the computation of
confidence. The concept of FCI [44] is proposed to improve this property of
MFTI, which avoids the difficulty of identifying the support of any sub-itemsets
of a relatively “long” FI. A FCI f is an itemset S € Dp, where f is frequent and
—3 itemset f’ D f and f’ shares a common support with f. The relationship
between FI, MFI and FCI is that MFI C FCI C FI [8]. In this category typical
algorithms include: CLOSET [44], CLOSET+ [51], CHARM [55], MAFIA [8],
etc.

2.2 Classification Rule Mining

CRM deals with D¢, where D¢ is founded as Dr U Dg. It discovers a set of
CRs in Dp from which to build a classifier to classify “unseen” data records in
Dg. A Dpg consists of n data-attributes and m data records. By convention the
last data-attribute in each data-record usually indicates its pre-defined class,
noted as the class attribute. CRM can thus be described as the process of

! Apriori-TFP  and its related softwares may be obtained from
http://www.cscliv.ac.uk/” frans/KDD/Software.
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assigning a Boolean value to each pair (dj, ¢;) € Dg x C, where each d; € Dg,
is an “unseen” data-record, C' as declared in section 1 is a set of pre-defined
classes, and (dj,¢;) is a data-record in Dy to be labeled.

2.2.1 The Cover Algorithm

In CRM a number of approaches have been proposed to generate a classifier
from a set of training data-records. For example the Cover Algorithm [41]
takes Dp as its input and aims to generate a complete set of minimal non-
redundant CRs. We define the Cover algorithm in fig. 1. as follows.

Algorithm COVER;

input: Dg (a training-dataset);

output: the set Scr (the complete set of minimal non-redundant CRs);
(1)begin

(2)  Ser:= {0}

(3) while Dr # {@} do

(4) find a CR cr from Dpg heuristically;

(5) remove all records identified by cr from Dg;
(6) Ser «— Ser U cry

(7)  end while

(8) return (Scr);

(9)end

Fig. 1. The Cover Algorithm

2.2.2 Existing CRM Approaches

With regards to the history of CRM investigation, various mechanisms on
which CRM algorithms have been based include: Decision Trees [45], Bayesian
Approach [20], K-Nearest Neighbour [34], Support Vector Machine [6], Asso-
ciation Rules [38], Emerging Patterns [22], Genetic Algorithm [25], Neural
Networks [28], Case-based Reasoning [28], Rough Set [28], Fuzzy Set [28],
Simple Approach [23], etc. In this section, we briefly describe four of the most
well-known mechanisms used in CR generation as follows.

e Decision Trees: Where CRs are mined based on a greedy algorithm. The
approach can be separated into two stages where a flow chart like tree
structure is constructed from Dy, first (stage 1) followed by a tree pruning
phase; the pruned tree is then used in CR generation (stage 2). C4.5 [45]
is the most famous Decision Tree based CRM method and operates by
recursively splitting Dy on the attribute that produces the maximum gain
to generate the decission tree. This tree is then pruned according to an
error estimate. The result is used to classify “unseen” data.
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Bayesian Approach: The typical mechanism found in Byesian CRM ap-
proaches is naive bayes, which has been widely applied in Machine Learn-
ing. The general idea of naive bayes is to make use of knowledge of the
joint probabilities that exist between attributes in training-dataset so as to
produce a model of some machine learning application that can be applied
to “unseen” data. The term naive is used to refer to the assumption that
the conditional probability between data-attributes is independent of the
conditional probability between other data-attributes. A naive bayes clas-
sifier is built using Dg, which comprises a set of conditional probabilities
for each data-attribute aj, € I (the set of attributes in D) and each class
¢; € C, so that there are |Ir| x |C| probabilities. This set of conditional
probabilities is then used to classify “unseen” data-records in Dg.
K-Nearest Neighbour: K-Nearest Neighbour (K-NN) is a well-known
statistical approach used in CRM, which classifies an “unseen” data-
record dg; € Dg, by summarising a common pre-defined class from its
K most similar instances, identified in Dg. To identify the K most sim-
ilar training-instances for dg;, calculating the Euclidean distance value
between each training data-record dr; € Dr and dg; has been commonly
used: Distance(dr;,dgi) = \/(Z?ﬂ(dm_i —dgi;)?), where dg;; and dg;;
are the values of the jth data-attribue in D¢ for dg; and dg;.

Support Vector Machine: The objective of using Support Vector Ma-
chine (SVM) [6] is to find a hypothesis h which minimises the true error
defined as the probability that h produces an erroneous result. SVM make
use of linear functions of the form: f(x) = w Tx + b, where w is the weight
vector, x is the input vector, and w Tz is the inner product between w
and x. The main concept of SVM is to select a hyperplane that separates
the positive and negative examples while maximising the smallest margin.
Standard SVM techniques produce binary classifiers. Two common ap-
proaches to support the application of SVM techniques to the multi-class
problem are One Against All (OAA) and One Against One (OAO).

2.3 Classification Association Rule Mining

An overlap between ARM and CRM is CARM, which strategically solves

the traditional CRM problem by applying ARM techniques. It mines a set of

CARs from Drgr. A CAR is an AR of the form X =- ¢;, where X is an FI mined

from Drpg, and c¢; is a pre-defined class in C' to which data-records can be

assigned. The idea of CARM was first presented in [3]. Subsequently a number

of alternative approaches have been described. Broadly CARM algorithms

can be categorised into two groups according to the way that the CRs are

generated:

Two stage algorithms where a set of CARs are produced first (stage
1), which are then pruned and placed into a classifier (stage 2). Examples
of this approach include CBA [38] and CMAR [36]. CBA (Classification
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Based on Associations), developed by Liu et al. in 1998, is an Apriori
[2] based CARM algorithm, which (1) applies its CBA-GR, procedure for
CAR generation; and (2) applies its CBA-CB procedure to build a classifier
based on the generated CARs. CMAR (Classification based on Multiple
Association Rules), introduced by Han and Jan in 2001, is similar to CBA
but generates CARs through a FP-tree [27] based approach.

Integrated algorithms where the classifier is produced in a single pro-
cessing step. Examples of this approach include TFPC? [15, 18], and in-
duction systems such as FOIL [46], PRM and CPAR [53]. TFPC (To-
tal From Partial Classification), proposed by Coenen et al. in 2004, is a
Apriori-TFP [16] based CARM algorithm, which generates CARs through
efficiently constructing both P-tree and T-tree set enumeration tree struc-
tures. FOIL (First Order Inductive Learner) is an inductive learning al-
gorithm for generating CARs developed by Quinlan and Cameron-Jones
in 1993. This algorithm was later developed by Yin and Han to produce
the PRM (Predictive Rule Mining) CAR generation algorithm. PRM was
then further developed, by Yin and Han in 2003 to produce CPAR (Clas-
sification based on Predictive Association Rules).

2.3.1 Case Satisfaction Approaches

Regardless of which particular methodlogy is used to build it, a classifier
is ususally presented as an ordered CAR list R. In [15] Coenen and Leng
summarised three case satisfaction approaches that have been employed in
different CARM algorithms for utilising the resulting classifier to classify “un-
seen” data. These three case satisfaction approaches are itemised as follows
(given a particular case):

Best First Rule: Select the first “best” rule that satisfies the given
case according to some ordering imposed on R. The ordering can be de-
fined according to many different ordering schemes, including: (1) CSA
(Confidence-Support-size_of Antecedent) — combinations of confidence,
support and size of antecedent, with confidence being the most siginificant
factor (used in CBA, TFPC and the early stages of processing of CMAR);
(2) WRA (Weighted Relative Accuracy) — which reflects a number of rule
“interestingness” measures as proposed in [35]; (3) Laplace Accuracy — as
used in PRM and CPAR; (4) x? Testing — x? values as used, in part, in
CMAR; (5) ACS (size_of Antecedent-Confidence-Support) — an alterna-
tive to CSA that considers the size of the rule antecedent as the most
significant factor; etc.

Best K Rules: Select the first “best £’ rules (in this chapter we denote
K by k as mentioned above) that satisfy the given case and then select a
rule according to some averaging process as used for example, in CPAR.

2 TFPC may be obtained from http://www.csc.liv.ac.uk/” frans/KDD/Software.
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The term “best” in this case is defined according to an imposed ordering
of the form described in Best First Rule.

e All Rules: Collect all rules in the classifier that satisfy the given case and
then evaluate this collection to identify a class. One well-known evaluation
method in this category is WCS (Weighted x?) testing as used in CMAR.

2.3.2 Rule Ordering Approaches

As noted in the previous section five existing rule ordering mechanisms are
identified to support the “best first rule” case satisfaction strategy. Each can
be further separated into two stages: (1) a rule weighting stage where each
R; € R is labeled with a weighting score that represents the significance of
R; indicates a single class ¢;; and (2) a rule re-ordering stage, which sorts the
original R in a descending manner, based on the score assigned in stage (1), of
each R;. With regards to both stages of rule weighting and rule re-ordering,
each rule ordering mechanism can be described in more detail as follows:

e CSA: The CSA rule ordering mechanism is based on the well-established
“Support-Confidence” framework (see section 2.1). It does not assign an
additional weighting score to each R; € R in its rule weighting stage, but
simply gathers the values of confidence and support, and the size of the
rule antecedent to “express” a weighting score for each R; € R. In the
rule re-ordering stage, CSA generally sorts the original R in a descending
order based on the value of confidence of each R;. For these rules in R
that share a common value of confidence, CSA sorts them in a descending
order based on their support value. Furthermore for these rules in R that
share common values for both confidence and support, CSA sorts them in
an ascending order based on their size of the rule antecedent.

e WRA: The use of WRA can be found in [35], where this technique is
used to determine an expected accuracy for each generated CR. In its
rule weighting stage, WRA assigns a weighting score to each R; € R.
The calculation of the value of R;, confirmed in [15], is: wra(R;) =
support(R;.antecedent) x (confidence(R;) - support(R;.consequent). In
the rule re-ordering stage the origninal R is simply sorted in a descending
order based on the assigned wra value of each R;.

e Laplace Accuracy: The use of the Laplace expected error estimate [10]
can be found in [53]. The principle of applying this rule ordering mech-
anism is similar to WRA. The calculation of the Laplace value of R; is:

\ __ support(Rj.antecedent U Rj.consequent) + 1 .
La’p]a’ce(RJ) - support(R;.antecedent + |C]) ’ where |C| is the

size function of the set C.

e \? Testing: x? Testing is a well known technique in statistics, which
can be used to determine whether two variables are independent of one
another. In x? Testing a set of observed values (O) is compared against a
set of expected values (E) — values that would be estimated if there were no
associative relationship between the variables. The value of x? is calculated




10 Yanbo J. Wang, Qin Xin, and Frans Coenen

as: y o W, where n is the number of observed/expected values,
which is always 4 in CARM. If the x? value between two variables (the
antecedent and consequent of R; € R) above a given threshold value (for
CMAR the chosen threshold is 3.8415), thus it can be concluded that there
is a relation between the rule antecedent and consequent, otherwise there
is not a relation. After assigning a x? value to each R; € R, it can be used
to re-order the R in a descending basis.

e ACS: The ACS rule ordering mechanism is a variation of CSA. It takes the
size of the rule antecedent as its major factor (using a descending order)
followed by the rule confidence and support values respectively. This rule
ordering mechanism ensures that “specific rules have a higher precedence
than more general rules” [15].

3 Preliminaries

As noted in section 1.1, R = {Ry, Ry, -, Ran_p_2, Ron_,,_1} represents a
complete set of possible CARs that are generated from D7 g, and R; represents
a rule in set R with label j.

3.1 Proposed Rule Weighting Scheme
3.1.1 Item Weighting Score

There are n items involved in Dr . For a particular pre-defined class A (as ¢; €
(), a score is assigned to each item in Drp that distingushes the significant
items for class A from the insignificant ones.

Definition 1. Let g:A(Itemh) denote the contribution of each item; € Drp
for class A, which represents how significantly itemy, determines A, where 0 <
¢ (Itemy,) < |C|, and |C| is the size function of the set C.

The calculation of ¢*(Itemy,) is given as follows:

¢ (Itemy,) = (TransFreq(Itemy, A)) x (1 — TransFreq(Itemy, A))
c

€|
x ClassCount(Itemy, C) ?

where
(1) The TransFreq(Itemy, A or A) function computes how frequently that

Itemy, appears in class A or the group of classes A (the complement of A). The
number of transactions with Item; in the class(es) .
number of transactions in the class(es) ’

calculation of this function is:

(2) The ClassCount(Itemp, C) function simply counts the number of classes
in C' which contain Itemy,.
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The rationale of this item weighting score is demonstrated as follows:

1. The weighting score of Item;, for class A tends to be high if Item, is
frequent in A;

2. The weighting score of Itemy for class A tends to be high if Item,, is
infrequent in A;

3. The weighting score of Item;, for any class tends to be high if Itemy, is
involved in a small number of classes in C. In [5], a similar idea can be
found in feature selection for text categorisation.

3.1.2 Rule Weighting Score

Based on the item weighting score, a weighting score is assigned to the rule
antecedent of each R; € R.

Definition 2. Let ¢*(R;) denote the contribution of each CAR R; € R for
class A, which represents how significantly R; determines A.

The calculation of ¢*(R;) is given as follows:
M (Ry) = L)) ¢ (Ttem, € R;) -

3.2 Some Definitions

Definition 3. If ¢*(Item;) < e, we recognise Item; € Drgr as a light-
weighted item for class A, where € is a very small user-defined constant and
0 <e< 1. Weuse I'(A) = {Itemy, Itemy, - -, Item|;, 4y _y, Item|p, 4y} to
denote the sufficient set of light-weighted items for A, identified in Drg.

Definition 4. If a CAR R; € R significantly satisfies the following inequality,
¢A(Rj) > E‘}{;(IA)‘ ¢ (Itemy, € I'(A)), where the contribution of R; for class
A is significantly greater than the sum of the contributions of all light-weighted
items for class A, we recognise R; as a heavy-weighted rule for A. We use
R'(A) = {R}, Ry, ---,R,_, R} to denote the set of selected heavy-weighted
rules for A, identified in R. In R, we always select the top-t heavy-weighted
rules to construct R'(A), where integer t is a user-defined small constant.

Definition 5. We recognise an item Itemy € Drgr as a heavy-weighted rule-
item for class A if Item), € (3R € R'(A)). We use I"(A) = {Item, Itemy,
e ,Itemi’l,,(A)‘fl, Item”l,,(A)l} to denote the sufficient set of heavy-weighted
rule-items for A, z'dentz'j%ed in Drg.

Definition 6. If a CAR R; € R does not contain any item Item) € I"(A),
we recognise R; as a noisy rule for class A. We use R"(A) = {R{,RY,---,
Ry, _,,Rj.} to denote the sufficient set of noisy rules for A, identified in R,
where integer k' represents the size of R (A).
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Definition 7. We recognise an item Itemy € Drgr as a noisy rule-item for
class A if Itemy, € (IR € R"(A)). We use I"'(A) = {Item?’, Itemy’,---,
Itemi'l’/,,(A)lfl, Item?’l’,,,(A)‘} to denote the sufficient set of noisy rule-items for

A, identified in Drg.

Definition 8. If a CAR (R; € R) ¢ R"(A), we recognise R; as a potential
significant rule for class A. We use R"'(A) = {R!",RY,---, R} {,R}'} to
denote the sufficient set of potential significant rules for class A, identified in
R as R —R"(A), where k >t (See Definition 4).

Definition 9. If a CAR (R; € R) € R"'(A) satisfies the following inequality,
¢A(Rj) > Z‘}]Z;{A)l ¢A(Item)’ € I'(A)), where the contribution of R; to class
A 15 greater than the sum of the contributions of all noisy rule-items for class
A, we recognise R; as a significant rule for A. We say there are at most k
significant rules in R, where integer k is a small user-defined constant < k.

3.3 Proposed Rule Ordering Mechanism

In section 2.3.2 five existing rule ordering strategies were presented. Each
is separated into both rule weighting and rule re-ordering stages. From the
previous section, a list of CARs R® C R has been generated that only consists
of the “best k7 rules for each class ¢; € C, identified in R. A rule re-ordering
strategy is then required in the process of rule ordering. The rule re-ordering
mechanism proposed herein contains three steps as follows:

1. R? is ordered using the well-established CSA ordering strategy;
2. The original R is linked at back of R°, as R® + R;
3. Reassign: R « (R° + R).

3.4 Deterministic Selectors

We say that a set P hits a set @ on element ¢, if PN Q = {q}, and a family
F of sets hits a set @ on element g, if PN Q = {q} for at least one P € F.
De Bonis et al. [19] introduced a definition of a family of subsets of set [N] =
{0,1,---, N — 2, N — 1} which hits each subset of [N] of size at most k on at
least m distinct elements, where N, k and m are parameters, N > k > m > 1.
They proved the existence of such a family of size O((k?/(k —m + 1)) log N).
For convenience of our presentation, we prefer the following slight modification
of this definition, obtained by using the parameter » = k — m instead of the
parameter m. For integers N and k, and a real number r such that N > k >
r > 0, a family F of subsets of [N] is a (N, k,r)-selector, if for any subset
@ C [N] of size at most k, the number of all elements ¢ of @ such that F does
not hit @ on ¢ is at most r. That is,

HeeQ:VPe F,PNQ#{q}}| <r.
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In terms of this definition, De Bonis et al. [19] showed the existence of a
(N, k,r)-selector of size T(N, k,r) = O((k?/(r+1))log N). In particular, there
exists a (IV, k, 0)-selector of size O(k? log V) such a “strong” selector hits each
set @ C [N] of size at most k on each of its elements.

3.5 Proposed Randomised Selectors

A randomised k-selector F is a family of subsets of set [N] = {0,1,---, N — 2,
N — 1} which hits each element ¢ of the subset @ C [N] of size at most k with
high probability.

Theorem 1. There exists a randomised k-selector F of size O(k) such that F
hits each set QQ C [N] of size at most k on each of its elements with constant
probability p > 1/8.

Proof. Let each element v € [N] with uniformed probability 1/k to be the
part of the element of 7. Let H denote the number of different elements in
Q@ C [N] that have been hit by F after repeating the same procedure k times.
The probability p that F hits each set @ of size at most k on each of its
elements could be bounded by

p = E(H)/E(k)
= {zf (k= i+ 1) /K] x k x (1/k) x (1 — 1/k)*1}/k
= zl Al =i+ 1)k x (1= 1/k)F1)
> zl Al =i+ 1)k x (1= 1/k)F}
> yF 1{[<k—z+1>/k2] x (1/4)} (%)
= (1/4) x [(1 + k) x (k/2)/k?]
= (1/4) x [(1 + k)/(2k)]
> (1/4) x [k/(2k)]
> 1/8,

where inequality (x) follows from the fact that the sequence (1 — 1/k)*
monotonely increasing.

4 Proposed Rule Mining Approach

4.1 The Strategy of the Deterministic Approach

To identify the significant CARs in R, we provide a deterministic approach
that employs a single application of a “strong” (2", k,0)-selector. This ap-
proach ensures that every potential significant rule in R will be hit at least
once. To apply a family F of subsets of [2"] means first to arrange the sets of
F into a sequence Fy, Iy, - - -, F|7|. Then in the ith step, only CARs in R with



14 Yanbo J. Wang, Qin Xin, and Frans Coenen

labels in F; will be involved in the procedure SIGNIFICANCE-TEST, while
other CARs can be ignored. Thus, we have an O(k? log 2")-complexity to hit
each of the k potential significant rules independently at least once, due to
the property of the “strong” selector. If the current test for F; contributes to
class A significantly, then we call the function LOG-TEST, which is based on
a binary search and finally finds one particular potential significant rule from
R with labels in F;. With a “smaller” list of rules (potential significant rules
and some relevant potential significant rules), we then compute the weighting
score of each rule, and finally catch the “best &” (top-k score) rules.

4.2 The Strategy of the Randomised Approach

In this section, we use the randomised k-selector to substitute the “strong”
selector in section 4.1. This randomised approach ensures that every potential
significant rule in R will be hit at least once with high probability. To apply a
family F of subsets of [2"] means first to arrange the sets of F into a sequence
Fy,Fy,---, F7. In the ith step, each element of [2"] will be contained in F;
with probability 1/k and only CARs in R with labels in F; will be involved
in the procedure SIGNIFICANCE-TEST, while other CARs can be ignored.
Thus, we have an O(k)-complexity to hit each of the k potential significant
rules independently once with high probability, due to the property of the
randomised k-selector (see Theorem 1). With a list of the extracted k potential
significant rules, the weighting score of each rule is computed. The “best &”
(top-k score) rules are the significant rules identified in R.

4.3 Rule Mining Algorithm
The following function (Fig. 2.) identifies a potential significant rule in R.

Lemma 1. If there exists only one potential significant rule R; in the current
test F; and R; is also a significant rule, then Function LOG-TEST will figure
out R;.

Proof. According to Definition 9, we know that ¢*(R;) > Z‘}Z;(A)I ¢ (Item))!
€ I'""(A)). Thus, the subset of R which contains R; is always chosen for further
binary test if R; is the only potential significant rule including in the current
test F;.

The following procedure (Fig. 3.) identifies all k significant rules in R.
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Function LOG-TEST(F;, R);

input: F; (the ith element in F) and set R;
output: Rw (a potential significant rule in R);
(1)begin

(2) Rw:=null;

(3) Temp:= Fy

(4)  while |Temp| > 1 do

(5) choose an arbitrary subset T'empo with half CARs in Temp to test;
(6) if Zvltemh €T empg QA (Itemh) 2 ZVIt&mh/ €Temp—Tempg QA (Itemhl)
(7) then Temp «— Tempo;

(8) else Temp «— Temp — Tempo;

(9) end while

(10) Rw « Temp;

(11) return (Rw);

(12)end

Fig. 2. The LOG-TEST Function

Procedure SIGNIFICANCE-TEST; A
input: F ((2", k, 0)-selector / randomised k-selector for [2"]), set R, and integer k;
output: the set SR (the set of significant rules);

(1)begin

(2) SR:={o}k

(3) PSR:={0};

(4) fori=1to |F| do

(5) if the label of a CAR R; in F;

(6) then R; will be involved in current test;
(7) else R; will be ignored in current test;
(8) PSR — PSR U {LOG-TEST(F;, R)};

(9) end for

(10) SR «— catch the top-k rules R; € PSR (according to ¢”(R;));
(11) return (SR);

(12)end

Fig. 3. The SIGNIFICANCE-TEST Procedure

Theorem 2. The Procedure SIGNIFICANCE-TEST will catch all k signif-
icant rules.

Proof. According to the properties of the “selectors” (both deterministic and
randomised selectors), we know that the selector F hits all k potential sig-
nificant rules at least once. Note that a significant rule is also a potential
significant rule. Lemma 1 states that if current test F; hits only one signifi-
cant rule R;, then Function LOG-TEST will figure out R;, which completes
the proof of the theorem.

Lemma 2. 4 (27, k,0)-selector has size at most O(k?n).

Proof. Tt directly comes from the property of the selectors.
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Theorem 3. The problem of mining k significant rules in R can be solved in
time O(k?n?) in a deterministic manner, where k is the number of potential
significant rules in R.

Proof. Function LOG-TEST takes at most log2™ time to find a pontential
significant rule from a subset of R. From Lemma 2, we know that a (2", k, 0)-
selector has the size at most O(k?n). Consequently, the amount of time spent
to figure out at most k potential significant rules can be bounded by O(k?n?).
Finding the top-k significant rules in at most O(k?n) rules can be solved in
time O(k2nlog(k®n) + k), which is O(k?*n?) due to k < k < n.

Theorem 4. The problem of mining k potential significant rules in R can
be solved in time O(kn) in a randomised manner, with constant probability
p > 1/8, where k is the number of potential significant rules in R.

Proof. Function LOG-TEST takes at most log 2™ time to find a potential sig-
nificant rule from a subset of R. From Theorem 1, we know that a randomised
k-selector has the size O(k) with high probability to succeed. Consequently,
the amount of time spent to figure out at most k potential significant rules can
be bounded by O(kn) with constant probability p > 1/8. Finding the top-k
significant rules in at most O(k) rules can be solved in time O(k log(k) + k),
which is O(kn) due to k < k < n.

5 Experimental Results

In this section, we aim to evaluate: (1) the proposed rule weighting and rule
ordering strategies with respect to the accuracy of classification, where sig-
nificant rules are mined in both (i) “one-by-one” or deterministic manner and
(if) randomised manner; and (2) the proposed rule mining approach (in its
randomised fashion) with respect to the efficiency of computation by compar-
ing it with the “one-by-one” mining approach. All evaluations were obtained
using the TFPC CARM algorithm coupled with the “best first” case satisfac-
tion strategy, although any other CARM classifier generator, founded on the
“best first” strategy, could equally well be used. Experiments were run on a
1.20 GHz Intel Celeron CPU with 256 Mbyte of RAM runing under Windows
Command Processor.

The experiments were conducted using a range of datasets taken from
the LUCS-KDD discretised /normalised ARM and CARM Data Library [14].
The chosen datasets are originally taken from the UCI Machine Learning
Repository [4]. These datasets have been discrelised and normalised using
the LUCS-KDD DN software®, so that data are then presented in a binary
format uitable for use with CARM applications. It should be noted that the

3 The LUCS-KDD DN is available at http://www.csc.liv.ac.uk/” frans/KDD/
Software/LUCS-KDD-DN/.
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datasets were rearranged so that occurences of classes were distributed evenly
throughout the datasets. This then allowed the datasets to be divided in half
with the first half used as the training-dataset and the second half as the
test-dataset. Although a “better” accuracy figure might have been obtained
using Ten-Cross Validation [25], it is the relative accuracy that is of interest
here and not the absolute accuracy.

The first set of evaluations undertaken used a confidence threshold value of
50% and a support threshold value of 1% (as used in the published evaluations
of CMAR |[28], CPAR [53], TFPC [15, 18]). The results are presented in Table 1
where 120 classification accuracy values are listed based on 24 chosen datasets.
The row labels describe the key characteristics of each dataset: for example,
the label adult.D97.N48842.C2 denotes the “adult” dataset, which includes
48,842 records in 2 pre-defined classes, with attributes that for the experiments
described here have been discretised and normalised into 97 binary categories.

Datasets CSA |One-by-one Approach|Randomised Selector
k=1 k=10 k=1 k=10
k=5 k =50
adult.D97.N48842.C2 80.83 83.87 76.88 81.95 81.85
anneal.D73.N898.C6 91.09 89.31 91.09 90.20 91.31
auto.D137.N205.C7 61.76 64.71 59.80 64.71 58.82
breast.D20.N699.C2 89.11 87.68 89.11 90.83 92.55
connect4.D129.N67557.C3 65.83 66.78 65.87 66.34 66.05
cylBands.D124.N540.C2 65.93 69.63 63.70 67.41 67.78
flare.D39.N1389.C9 84.44 84.01 84.29 84.44 84.29
glass.D48.N214.C7 58.88 64.49 52.34 64.49 64.49
heart.D52.N303.C5 58.28 58.28 56.29 60.26 59.60
hepatitis.D56.N155.C2 68.83 68.83 66.23 75.32 72.72
horseColic.D85.N368.C2 72.83 77.72 80.43 80.43 81.52
ionosphere.D157.N351.C2 85.14 84.00 90.29 88.57 93.14
iris.D19.N150.C3 97.33 97.33 97.33 97.33 97.33
led7.D24.N3200.C10 68.38 62.94 68.38 68.89 69.94
letRecog.D106.N20000.C26 30.29 29.41 31.19 29.36 30.92
mushroom.D90.N8124.C2 99.21 98.45 98.82 99.21 98.45
nursery.D32.N12960.C5 80.35 76.85 76.17 80.20 81.11
pageBlocks.D46.N5473.C5 90.97 91.74 90.97 91.74 90.97
pima.D38.N768.C2 73.18 73.18 73.18 73.44 73.44
soybean-large.D118.N683.C19| 85.92 81.23 86.51 84.46 84.75
ticTacToe.D29.N958.C2 71.61 68.48 72.03 71.19 73.28
waveform.D101.N5000.C3 61.60 58.92 55.96 59.52 57.20
wine.D68.N178.C3 53.93 83.15 71.91 83.15 85.39
200.D42.N101.C7 76.00 86.00 78.00 90.00 86.00
Average 73.82 75.29 74.03 76.81 76.79

Table 1 Classification accuracy (o« = 50%, 0 = 1%)

From Table 1 it can be seen that with a 50% confidence threshold and an
1% support threshold the proposed rule weighting and rule ordering mecha-
nisms worked reasonably well. When choosing a value of 1 as the value for
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k (only the most significantly CAR for each class is mined) and applying
the “one-by-one” rule mining approach, the average accuracy of classification
throughout the 24 datasets is 75.29%. When substituting the value of 1 by
a value of 10 (the best 10 significant CARs for each class are identified), the
average accuracy, using the “one-by-one” rule mining approach, is 74.03%.
Note that the average accuracies are higher than the average accuracy of clas-
sification obtained by the well-established CSA ordering appraoch, which is
73.82%. Furthermore when dealing with the randomised selector based rule
mining approach, and choosing a value of 1 as the value for k and a value of
5 as the value for k (only the most significantly CAR, for each class is mined,
based on the existance of 5 potential significant CARs for each class in R),
the average accuracy throughout the 24 datasets can be obtained as 76.81%.
Note that in the randomised experiment process, we always run several tests
(i.e., 8-10 tests) for each dataset, and catch the best result. When substitut-
ing the value of 1 by a value of 10, and the value of 5 by a value of 50 (the
best 10 significant CARs for each class are mined, based on the existance of
50 potential significant CARs for each class in R), the average accuracy was
found as 76.79%.

Dataset One-by-one Approach Randomised Selector
letRecog k=1 k=1,k=050
D106. | Rule Rule Time |Accuracy| Rule Rule Time |Accuracy
N20000. Number|Number Number|Number
C26 |(before)| (after) |(seconds)| (%) |(before)| (after) |(seconds)| (%)
1 149 167 0.080 29.41 149 166 0.160 29.60

0.75 194 212 0.110 29.94 194 211 0.160 29.92
0.50 391 415 0.200 35.67 391 411 0.251 35.78
0.25 1118 1143 1.052 40.36 1118 1139 0.641 41.26
0.10 2992 3018 4.186 44.95 2992 3016 0.722 45.18
0.09 3258 3284 4.617 45.21 3258 3282 1.913 45.42
0.08 3630 3656 6.330 45.88 3630 3655 2.183 45.43
0.07 3630 3656 6.360 45.88 3630 3656 2.163 46.02
0.06 4366 4392 5.669 46.70 4366 4391 2.754 46.45
0.05 4897 4923 7.461 47.28 4897 4922 3.235 47.65
0.04 5516 5542 9.745 47.67 5516 5542 3.526 47.53
0.03 6341 6367 12.339 48.22 6341 6365 4.296 48.79

Table 2 Computational efficiency € Classification accuracy (o = 50%)

The second set of evaluations undertaken used a confidence threshold
value of 50%, a set of decreasing support threshold values from 1% to 0.03%,
and the letter recognition dataset. The “large” letter recognition dataset (le-
tRecog.D106.N20000.C26), comprises 20,000 records & 26 pre-defined classes.
For the experiment the dataset has been discretised and normalised into 106
binary categories. From the experiment it can be seen that a relationship ex-
ists between: the selected value of support threshold (o or min.support), the
number of generated CARs (|R]|), the accuracy of classification (Accy), and
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the time in seconds spent on mining significant rules (Time). Clearly, | o =
TR = (T Accy A T Time).

Table 2 demonstrate that with a 50% confidence threshold and a value
of 1 as the value for k (only the most significantly CAR for each class is
mined in |R]), the proposed rule mining approach (its randomised fashion)
performs well with respect to both accuracy of classification and efficiency
of computation. When applying the “one-by-one” rule mining approach, as
o decreasing from 1% to 0.03%, |R| (before mining the “best k” rules) is
increased from 149 to 6,341; and |R/| (after mining the “best &” rules and re-
ordering all rules) is increased from 167 to 6,367. Consequently accuracy has
been increased from 29.41% to 48.22%, and Time (the time spent in mining
the k significant rules) has been increased from 0.08 seconds to 12.339 seconds.
In comparison when applying the proposed randomised rule mining approach
with a value of 50 as the value for k (there exist 50 potential significant rules
for each class in |R|), as o decreasing from 1% to 0.03%, |R| (before mining the
“best k” rules) is increased from 149 to 6,341; and |R| (after mining the “best
k” rules and re-ordering all rules) is increased from 166 to 6,365. Consequently
accuracy has been increased from 29.60% to 48.79%, and T'ime (the time spent

in mining the k significant rules) has been increased from 0.16 seconds to 4.296
seconds.

Randomised Selector vs. One-by-one Approach (Accuracy)
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Fig. 4. Randomised Selector vs. One-by-one Approach (Accuracy)
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Randomised Selector vs. One-by-one Approach (Efficiency)
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Fig. 5. Randomised Selector vs. One-by-one Approach (Efficiency)

Fig. 4. & Fig. 5. demonstrate (respectively) that there is no significant
difference between accuracies of classification obtained by the “one-by-one”
rule mining approach and the randomised selector based rule mining approach,
whereas a significant difference in times spent on mining significant rules can
be seen.

6 Conclusion

This chapter is concerned with an investigation of CARM. A overview of ex-
isting CARM algorithms was provided in section 2 where five existing rule
weighting schemes used in CARM algorithms were reviewed. A rule weighting
scheme was proposed in section 3 that ws used to distinguish the signifi-
cant CARs from the insignificant ones. Consequently a rule ordering strategy
was proposed, based on the “best first” case satisfaction approach, which can
be applied when classifying “unseen” data. The concept of selectors [19] was
summarised in section 3 together with some discussion of the randomised se-
lectors. A novel rule mining approach was presented in section 4 based on
the concepts of selectors (both determinstic and randomised). In theory, the
proposed rule mining approach identifies significant CARs in time O(k*n?) in
its deterministic fashion, and O(kn) in its randomised fashion. This mining
approach avoids finding significant CARs on a “one-by-one” basis, which will
require an exponential time O(2"). In section 5, two sets of evaluations were
presented that evidence:
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1. The proposed rule weighting and rule ordering approach’s perform well
with respect to the accuracy of classification; and

2. The proposed randomised rule mining approach is comparable to the “one-
by-one” rule mining approach in significant CAR identification with re-
spect to both the accuracy of classification and the efficiency of computa-
tion.

From the experimental results, it can be seen that the accuracy of clas-
sification obtained by the proposed randomised rule mining approach can be
better than the accuracy obtained by the “one-by-one” approach. Further re-
search is suggested to identify improved rule weighting scheme to find more
significant rules in R. Other obvious dirction for further research include: find-
ing other rule ordering mechanisms that give a better classification accuracy;
investigating other techniques to replace the proposed deterministic and/or
randomised selectors to give a better performance; etc.
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