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Abstract. Age-related Macular Degeneration (AMD) is the most com-
mon cause of adult blindness in the developed world. This paper describes
a new image mining technique to perform automated detection of AMD
from colour fundus photographs. The technique comprises a novel hi-
erarchical image decomposition mechanism founded on a circular and
angular partitioning. The resulting decomposition is then stored in a
tree structure to which a weighted frequent sub-tree mining algorithm
is applied. The identified sub-graphs are then incorporated into a fea-
ture vector representation (one vector per image) to which classification
techniques can be applied. The results show that the proposed approach
performs both efficiently and accurately.
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1 Introduction

Vision loss and blindness may be caused by various factors; Age-related Macular
Degeneration (AMD) [17] is the leading cause of adult blindness in the developed
world [21]. AMD is currently incurable and causes total blindness. There are new
treatments that can stem the onset of AMD if detected at a sufficiently early
stage. Drusen, sub-retinal deposits formed by retinal waste, are the first clinical
indicator of AMD. The presence of drusen can be detected by inspection of
retina images. Substantial work has been directed at applying image processing
and content-based image retrieval techniques to support the diagnosis of AMD;
however current performance of these techniques is still not sufficient for wide-
scale clinical application, largely because of the limitations of the segmentation
techniques adopted.
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This paper describes an image mining approach to AMD screening where the
objective is to classify images as being either AMD or non-AMD. A first attempt
at data mining supported AMD screening, that employed a histogram based
representation, is described in [14, 13]. The objective was to avoid the segmen-
tation difficulties encountered by previous techniques. The technique produced
reasonable results. The technique described in this paper is founded on a novel
interleaved angular and circular hierarchical decomposition of the image space,
the aim being to isolate instances of drusen. The decomposition is stored in a
tree data structure to which a weighted frequent sub-tree mining algorithm is
applied. The identified frequent sub-trees are then used to define a feature space
which can be used to encode an appropriately labelled training set into a set
of feature vectors (one per image) to which established classification techniques
can be applied. The proposed technique has been evaluated using a sample set of
coloured retinal fundus images featuring both AMD images and a control group.

The main contributions of this paper are:

– The proposed circular and angular based hierarchical decomposition.
– The mechanism for generating feature vectors using weighted frequent sub-

tree mining.
– The application of the above techniques to AMD screening.

The rest of this paper is organised as follows: some previous works with
respect to image decomposition approaches and weighted frequent sub-graph
mining is described in Section 2. Section 3 provides a description of the AMD
application domain, followed by details of the proposed image classification ap-
proach in Section 4. The performance of the proposed approach is extensively
evaluated in Section 5 and some conclusions are presented in Section 6.

2 Previous Work

Hierarchical data structures have been widely applied in various domains, such
as image segmentation [25], image coding [12] and image classification [9]. The
main advantage of this type of data structure is that it provides an effective
representation of the problem domain that can be readily processed [23]. The
most common hierarchical decomposition technique is founded on quadtrees,
where the search space is repeatedly quartered until uniform “tiles” are arrived
at or a maximum decomposition is reached. In the work described in this paper
a new image decomposition technique more suited to retinal images, that uses
an alternating angular and circular partitioning, is presented.

Graph mining techniques can be categorised as being either transaction based
or single graph based [18]. Transaction graph mining aims to discover frequently
occurring sub-graphs in a given graph data set. Weighted frequent sub-graph
mining is founded on the idea that in some cases certain vertices and/or edges
in the input graph set can be deemed to be more significant than others. The
weighted frequent sub-graph mining has demonstrated its advantages over fre-
quent sub-graph mining in a number of studies [9, 18], the main advantage is
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that the former spends significantly less run time identifying far fewer patterns
(i.e. frequent sub-graphs) than the latter. A variation of a weighted frequent
sub-graph mining algorithm [18], founded on the well-known gSpan algorithm
[27], is used with respect to the work described in this paper and is described in
detail in Subsection 4.2.

Image processing approaches have been widely used in the detection of drusen
for AMD diagnosis. The earliest work [24] used a morphological mechanism to lo-
calise drusen. Other image processing techniques that have been applied include:
(i) histogram-based adaptive local thresholding [22] , (ii) region growing [19, 20];
(iii) wavelet based feature identification coupled with multilevel classification
[3]; (iv) anomaly detection based approaches, that employ Support Vector Data
Description (SVDD), to segment anomalous pixels [11]; and (v) signal based
approaches, namely amplitude-modulation frequency-modulation (AM-FM), to
generate multi-scale features for drusen classification [1, 2]. Content-Based Im-
age Retrieval (CBIR) techniques have also been applied. For example, Chaum
et al. [6] have applied CBIR to get a probability of the presence of a particular
pathology (a confidence threshold is then applied on the generated probabilities
to predict the retinal images class).

Most of the existing work on AMD diagnosis is founded on drusen detection
and segmentation. The authors are aware of only three reports of extending
drusen detection to AMD screening [2, 3, 6]. One issue is the difficulties and
challenges in not only identifying the drusen, but also other retinal structures,
in particular the optic disc and the macula. The challenge is exacerbated by
the natural variation of the appearance of the retina, the image quality and
patient factors (e.g. compliance during image acquisition and media clarity of the
eye) [6, 15]. Alternative techniques, not founded on segmentation, therefore seem
desirable. An early attempt in this direction has been proposed in [13] whereby a
histogram based representation was used to which Case-Based Reasoning (CBR)
was applied to facilitate the classification of “new” cases. Another approach that
was built based on work in [13] that uses two “case bases” has been proposed in
[15]. Good results were produced, however observations indicated that relying
on the retinal image colour distribution alone was not sufficient. Thus, in [14]
a spatial histogram technique, that include colour and spatial information, was
proposed. The technique gave the best results so far with respect to the test
image dataset. The work described in this paper is directed at improving on
these results.

3 Age-related Macular Degeneration

Some exemplar retinal images are presented in Figure 1. The central region of
the human retina is called the Macula, which is centered at the fovea; this is
the place where acute and central vision is made possible. Figure 1(a) shows
the fovea (indicated by an arrow) and macula (circled). Damage to the macula
causes distortion and loss of the central vision required for (say) reading and
writing. There are various reasons why this might happen, one of which is Age-
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related Macular Degeneration (AMD) where the delicate cells of the macula
becomes damaged and stops functioning at the later stages of life [17]. AMD can
be categorised into early, intermediate and advanced. Advanced AMD, which can
be further divided into non-neovascular and neovascular, is when severe vision
loss or even total blindness occurs [17]. Although AMD is incurable, the early
detection of AMD is desirable as there are new emerging treatments that can
be given to patients with AMD to slow down or even halt the progress of the
condition.

As noted above, early stage AMD can be diagnosed by the existence of drusen
[8, 17], yellowish-white deposits with sizes ranging from less than 63 µm (�small
drusen) to greater than 124 µm (large drusen) in diameter [17]. These can be
detected through manual inspection, by trained clinicians, of the retinal images
collected within screening programmes. This task is however labour intensive
given the increasing incidence of AMD. Thus, the automation or semi automation
of the process is deemed desirable. Figure 1(b) shows a case of intermediate
AMD where the presence of drusen (surrounded by circle) is widespread but the
fovea is still visible (dark area pointed by arrow). Figure 1(c) gives an example of
advanced neovascular AMD where the fovea is totally obscured resulting in total
loss of central vision. Drusen can also be categorised into hard or soft drusen.
Hard drusen is more easy to identify because it has well defined borders, while
soft drusen has indistinct edges that blend into the retinal background.

(a) (b) (c) 

Fig. 1. Grayscaled retinal fundus images: (a) normal, (b) intermediate, and (c) ad-
vanced neovascular

4 AMD Classifier Generation

An overview of the proposed hierarchical decomposition based approach to the
generation of AMD classifiers is presented in Figure 2. The approach commences
with retinal image cleaning. The quality of the retinal fundus images is often af-
fected by various factors that hinder image classification, such as colour variation
and nonuniform illumination. Some image cleaning is therefore required. In the
context of the work described in this paper, an approach used in [14] is reused
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to enhanced the images and to identify blood vessel pixels (which we wish to re-
move from the image data so as to “clean” the data). The process then proceeds
with the decomposition of the image, this is described in detail in Subsection
4.1 below; the result is a collection of tree represented images (one per image).
Next the weighted frequent sub-graph (sub-tree) mining approach is applied to
the data (the algorithm is detailed in Subsection 4.2). The identified frequent
sub-trees then define the elements of a feature space that is used to encode the
individual input images in the form of feature vectors itemising the frequent
sub-graphs that occur in each image. The feature selection process is described
in Subsection 4.3. Once the feature vector representation has been generated we
can apply established classification techniques (see Subsection 4.4).

 

Retinal fundus 

images 

Image decomposition 
Trees 

Graph mining 

Feature vectors: 

Frequent sub-trees 

Feature selection Reduced feature 

vectors 

Classification 
Classifier 

Data cleaning Cleaned 

images 

Fig. 2. Block diagram of the proposed classifier generation approach

4.1 Image Decomposition

The proposed image decomposition method is described in this sub-section. As
noted above hierarchical image decomposition is a well established technique [12,
23, 25]. The distinguishing and novel feature of the proposed approach is that
the partitioning is conducted in an interleaving angular and circular manner.
During angular partitioning the decomposition is defined by two radii describing
a minor arc on the circumference of the image “disc”. Circular decomposition
is defined by a pair of arcs radiating out from the center of the retina disc.
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Individual regions identified during the decomposition are thus delimited by a
pair of radii and a pair of arcs. Figure 3(a) shows an example of a partitioning
that might be applied to an image; Figure 3(b) presents the associated Tree
storage structure. Note that a numbering convention is used to label individual
regions described by nodes in the tree structure.

ROI 

0 1 2 3 

10 11 20 21 30 31 

100 101 110 111 310 311 

1000 1001 1100 1101 

(a) (b) 

0 

20 
21 

101 

111 1000 
1001 

1100 
1101 

30 

310 

311 

Fig. 3. An example of: (a) circular and angular image decomposition, and (b) the
associate tree data structure.

Algorithm 1 shows how the interleaved circular and angular partitioning is
performed. Given a coloured retinal fundus image, I with a size of X pixels.
The RGB (red, green and blue) colour model is used to extract the pixels inten-
sity values, which means each pixel will have three intensity values (red, green,
blue) associated with it, hence initially three trees are generated which are then
merged. The GetCentroids method in line 4 uses a retinal image mask, M , to
identify the centroid of the retina disc. The GetImageBackground method in
line 5 generates a binary format background image, imbg, to be used to distin-
guish the background (areas outside of the field of view of the fundus) pixels and
the blood vessel pixels, V , from the retinal pixels. imbg is defined as:

imbg = M ∩RV (1)

M(x) =

{
1, if x is a retina pixel
0, otherwise

(2)

RV (x) =

{
0, if x is a blood vessels pixel,
1, otherwise

(3)

where x ∈ X, and M and RV are both of size of X pixels. The image ROI was
then identified using the GetROI method.
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As noted above the proposed hierarchical image partitioning commences with
AngularPartitioning (line 13 of Algorithm 1). On the next iteration CircularPar-
titioning will be applied. Both AngularPartitioning and CircularPartitioning will
then be called alternately until the Dmax tree level is reached or only regions of
uniform intensity are left. Throughout the process the tree data structure is con-
tinuously appended to. The algorithm ends with the merging of the three trees
in T using the MergeTrees method to form a single tree. The merging is done by
calculating the Average Intensity Values (AIV ) for the nodes in T , defined as:

AIVy =
1

n

3∑
k=1

(Tky
) (4)

Tky
=

1

z

z∑
i=1

(kyi
) (5)

where T comprises the red, green and blue colour trees, y is a unique node
identifier in Tfinal, z is number of pixels in node y, and n is number of occurrences
of node y (whenever Tky is not null) in the set of trees T .

Algorithm 1: ImageDecomposition

Data: Coloured retinal fundus image I, retinal image mask M , retinal blood
vessels binary image RV and Dmax

Result: Image decomposition tree Tfinal

1 c count← 1;
2 a count← 1;
3 T ← {null, null, null};
4 centroid← GetCentroid(M);
5 imbg ← GetImageBackground(M,RV );
6 roi← GetROI(imbg, centroid);
7 for k ← 0 to 2 do // Generate trees for each colour channel

8 for i← 1 to maxDepth do // Generate trees for each tree level

9 if mod(i/2) = 0 then
10 t← CircularPartitioning(roi, imbg, c count, centroid);
11 c count← c count+ 1;

12 else
13 t← AngularPartitioning(roi, imbg, a count, centroid);
14 a count← a count+ 1;

15 end
16 tree← UpdateTree(tree, t);

17 end
18 Tk ← tree;

19 end
20 Tfinal ←MergeTrees(T0, T1, T2);

Algorithm 2 describes the CircularPartitioning method. The algorithm re-
turns a set of new nodes B to be added to the tree structure. The input is



8 Hijazi et al.

the ROI image roi, the mask imbg, the level count for the circular partitioning
(c count) and the centroid of the ROI (retina disk). We first identify how many
circles, m are required for the current iteration (line 1). Then we calculate a set
of new radii to be included in the partitioning; R = {ρ0, ρ1, . . . , ρm} describes a
sequence of concentric circles. We then (line 3) generate the necessary additional
nodes for the tree. Each level c count region is considered in turn and, where
appropriate, c count+ 1 regions are constructed.

Algorithm 2: CircularPartitioning

Data: Retinal image roi, image background imbg, c count and centroid
Result: An array of circular partitioned image regions B

1 m← 2c count ; // To calculate number of circles

2 R← GetRadius(imbg, centroid,m) ; // To calculate radii values

3 B ← SplitImage(roi, imbg,R, centroid);
4 return B

The AngularPartitioning method, as described in Algorithm 3, begins by
identifying the number of radii (m) that are required (line 1). The radii de-
fine the angular partitions which are defined in terms of a set of arcs A =
{α0, α1, . . . , αm}. Each arc α is defined by θ = 2π/m, used in the GetTheta
method (line 2). As in the case of the CircularPartitioning algorithm, the SplitIm-
age method is then called to decompose the image, as indicated, to produce an
appropriate set of nodes B.

Algorithm 3: AngularPartitioning

Data: Retinal image roi, image background imbg, a count and centroid
Result: An array of angular partitioned image regions B

1 m← 2× 2a count ; // To calculate number of angular lines

2 θ ← GetTheta(m) ; // To calculate the angle between angular lines

3 B ← SplitImage(roi, imbg,m, θ, centroid);
4 return B

As noted above, an important feature of the hierarchical image decomposition
is the selection of a termination criterion, ω, which defines the homogeneity of a
particular region in an image and is used to determine if further region splitting
is required. A common definition for ω is in terms of the distance between the
highest and lowest intensity values of the pixels in a region i. If ω is less than
a predefined homogeneity threshold, τ , no further decomposition of the region i
will be undertaken.

In this paper, a similar termination criterion to that described in [12] is
adopted. The ω value is defined according to how well a parent region represents
its two child regions’ intensity values. If the value (derived from the average
intensity values of all pixels in a particular region) of a parent region is similar (<
τ) to that of its two child regions, the parent region is deemed to be homogeneous
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and left unsplit. Otherwise, the parent region will be further partitioned. Thus
ω can be formalised as:

ω =
1

s

s∑
i=1

√
(µp − µi)2 (6)

where s is the number of sub-regions, µp is the average intensity value for the
parent region and µi is the average intensity value for sub-region i. Each iden-
tified sub-region is represented as a “node” in a tree data structure where the
relationship between sub-regions and their parent form the tree “edges”.

4.2 Weighted Frequent Sub-Tree (wFST) Mining

After the image decomposition step introduced in the above subsection, images
were modelled as a collection of trees. According to [18], each tree is defined as
follows: T = {V,E, LV , LE , φ}, where LV and LE are labels for nodes and edges
in T respectively, and φ defines a label mapping function.

In [18] it was suggested that for many applications, such as image mining,
some tree nodes have more significance associated with them than other nodes.
In the case of the hierarchical decomposition described in this paper, nodes that
feature a significant difference in colour intensity when compared to their par-
ent node are deemed to be more significant (than the parent). The underpinning
philosophy here is that normal retinal background pixels have a similar colour in-
tensity, while a significant difference in intensity is likely to indicate the presence
of drusen. A weighting scheme was therefore applied to the tree representation
so as to enhance the quality of the information contained within it. Thus, in
the tree representation, the strength of each node v ∈ V was weighted by the
average colour intensity value of the region represented by that node v, and the
strength of each edge e ∈ E, ew, is weighted by:

ew =
√

(Ipar − Iv)2 (7)

where Iv is the average colour intensity value for node v and Ipar is the average
colour intensity value for v’s parent.

By adding node and edge weights into the tree representation, the weighted
tree representation was able to capture more image information than the un-
weighted one. A weighted Frequent Sub-Tree (wFST) mining algorithm, an ex-
tension of the well-known gSpan algorithm [27], was then applied to the tree data
so as to identify frequently occurring trees within the dataset. The wFST algo-
rithm operated in a similar manner to that described in [18], but utilised both
node and edge weightings. In the context of wFST mining, a sub-graph pattern
g is considered to be “interesting”, if it satisfies the following two conditions:

(C1)Nwr × sup(g) ≥ σ, (C2)Ewr ≥ λ (8)

Where: Nwr denotes the node weighting, sup(g) denotes the support (i.e. fre-
quency) of g, and σ denotes a minimum support threshold, Ewr denotes the edge
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weighting, and λ denotes a minimum weight threshold. Both the Nwr and Ewr

are computed using a similar scheme to that described in [18].

The number of patterns discovered by the wFST mining algorithm is thus de-
termined by both the σ and λ values. According to initial experiments conducted
by the authors, relatively low σ and λ values are required, in order to extract
a sufficient number of image features (frequent sub-trees). However, setting low
threshold values results in a substantial number of patterns, of which many are
redundant in terms of the desired classification. Therefore, feature selection was
applied to the discovered patterns, this is discussed in the following subsection.

4.3 Feature Selection

For the AMD application the number of identified wFSTs was substantial, us-
ing low threshold values tens of thousands of wFSTs were identified. To reduce
the number of wFSTs to a manageable number a feature selection strategy was
applied so as to identify those wFSTs that displayed a strong discriminatory
power, which would consequently be able to produce good classification results.
A feature ranking mechansim was therefore used, with respect to the AMD appli-
cation, that used linear Support Vector Machine (SVM) weights to rank features
as proposed in [5]. The main advantage of this approach is its implementation
simplicity and effectiveness in determining relevant features. The identified wF-
STs were ranked by first calculating their weights using the L2-regularized L2-
loss SVM model, and then sorting them in descending order according to their
absolute value [10, 16]. The selection of only the top K wFSTs for classification
then concluded the feature selection process.

4.4 Classification Technique

The final stage of the proposed retinal image classification process was the clas-
sification stage. The identified top K wFSTs were used to define a feature space.
Each image was then defined, in terms of this feature space, using a feature
vector representation. Any appropriate classification technique could then be
applied. In the reported experiments (Section 5), two different classifier genera-
tion techniques were used, Näıve Bayes [26] and Support Vector Machine (SVM)
[7]. Näıve Bayes was selected because: (i) it works very well when tested on data
with independent attributes [26], and (ii) it does not require user defined param-
eters. SVM on the other hand was chosen because it is frequently acknowledged
to be one of the most effective classification method in machine learning. In this
paper, the Näıve Bayes classifier available in Weka [26] was used. The second
classifier was built using LibSVM [4] with a radial basis function kernel.
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5 Evaluation

The proposed AMD screening approach was applied to two retinal fundus images
datasets, ARIA1 and STARE2. The ARIA dataset comprises 161 images, of
which 101 were AMD and 60 were normal images. The STARE dataset comprised
97 images, of which 59 were AMD and 38 were normal images. The datasets were
merged to create an image set comprising 258 images, of which 160 featured AMD
and 98 were normal. Sensitivity, specificity and accuracy were used to measure
the classification performance.

In the experiments three values for Dmax were used: 5, 6 and 7. The threshold
for node splitting, τ , was set to 2.5%. To train the LibLINEAR (for feature
selection task) and LibSVM classifiers, the default values for the user defined
parameters used in Weka were applied, except for the soft margin parameter C
and gamma parameter γ which were determined using the parameter selection
tool provided with LibLINEAR and LibSVM [4]. The aim of the experiments was
to evaluate: (i) the effect of the value of Dmax on the classification results, (ii)
how feature selection improved the classification performance, and (iii) how well
the proposed approach’s performance compared with other AMD classification
techniques. Most of the reported experiments were conducted using Ten-fold
Cross Validation (TCV).

5.1 Performances Using Different Levels of Decomposition

Tables 1 and 2 shows the performances of the proposed approach when using
the three different levels of decomposition (values for Dmax) and using Näıve
Bayes and LibSVM respectively. Feature selection was not applied in these ex-
periments. Minimum support, σ was used to prune the candidate sub-trees, while
the minimum weight, λ was used to further reduce the number of identified fre-
quent sub-trees according to their edge weights. F denotes the size of the feature
space in terms of the number of identified frequent sub-trees, while Sens, Spec
and Acc refers to sensitivity, specificity and accuracy. Each σ value was tested
against a range of λ values (20, 40, 60 and 80), however in the table (because of
space limitations) only the best performing λ value associated with each σ value
is recorded.

Inspect of Tables 1 and 2 indicates that the best accuracy was achieved
using Dmax = 5 (63% and 70%). The best sensitivity and specificity were 86%
and 60% (Näıve Bayes) and 100% and 43% (LibSVM) respectively. The best
sensitivity and specificity for both classifiers occurred using different σ and λ
values (but again with Dmax = 5). Experiments were also conducted using an
unweighted FST mining algorithm (gSpan), however these indicated that the
memory requirements and runtime deemed to be unacceptable.

1 http://www.eyecharity.com/aria online/
2 http://www.ces.clemson.edu/∼ahoover/stare
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Table 1. TCV Classification results obtained using different levels of decomposition
and Näıve Bayes

σ 5 6 7
(%) λ F Sens Spec Acc λ F Sens Spec Acc λ F Sens Spec Acc

10 40 764 65 60 63 20 7125 64 53 60 80 3433 66 42 57

20 60 291 68 51 62 80 498 70 42 59 80 3433 66 42 57

30 60 291 68 51 62 20 1746 66 49 60 80 3433 66 42 57

40 20 248 66 48 59 80 498 70 42 59 80 3433 66 42 57

50 20 181 69 45 60 80 498 70 42 59 80 3433 66 42 57

60 20 130 67 46 59 20 559 69 45 60 20 3893 66 42 57

70 20 99 69 33 55 20 404 68 34 55 20 2623 69 41 58

80 20 71 80 13 55 20 283 72 27 55 20 1706 70 36 57

90 20 55 86 16 60 20 180 79 22 58 20 955 72 28 55

Table 2. TCV Classification results obtained using different levels of decomposition
and LibSVM

σ 5 6 7
(%) λ F Sens Spec Acc λ F Sens Spec Acc λ F Sens Spec Acc

10 40 764 86 43 70 20 7125 87 39 69 60 11461 96 15 66

20 20 594 89 37 69 20 3103 91 30 68 60 11461 96 15 66

30 20 365 95 16 65 60 1358 89 33 68 60 11461 96 15 66

40 80 118 100 0 62 20 1135 92 30 68 20 9043 97 8 63

50 80 118 100 0 62 20 779 94 11 62 80 3433 96 8 63

60 20 130 83 30 63 20 559 99 1 62 20 3893 96 11 64

70 20 99 99 4 63 20 404 98 0 60 20 2623 99 4 63

80 20 71 100 0 62 20 283 100 1 62 20 1706 97 8 63

90 20 55 99 3 63 20 180 100 0 62 20 955 96 10 63

5.2 Performances of AMD Classification According to the Size of
the Identified Feature Space

Tables 3 and 4 shows the performances of the proposed approach with respect to
different values of K, using Näıve Bayes and LibSVM respectively. Recall that
the size of the feature space was determined by selecting only the top K features
defined as a percentage (P ) of |F | where F is the set of features. Experiments
using five different P values were conducted: 0.05, 0.1, 0.2, 0.4 and 0.6. However,
only the results using a Dmax = 7 and P values of 0.05, 0.1 and 0.4 are presented
in the tables because these produced the best classification performances with
respect to both classifiers. Inspection of the tables indicates how the performance
changes as the size of the feature space is reduced.

Tables 3 and 4 demonstrate that the best results were obtained using lower
numbers of features, where P = 0.05 and K = 3671. The best accuracy for
Näıve Bayes was 95% while LibSVM recorded a full 100% accuracy. The highest
sensitivity and specificity was 100% (LibSVM). High sensitivity and specificity
were also achieved using the Näıve Bayes classifier with a corresponding accuracy
of 94% and 96% respectively. All of the best results were generated using σ = 10%
and λ = 20% were applied. The accuracy increased as the σ value decreased
for all K values. The results produced show that the larger the feature space
the better the classification performance. It should be noted that the results



Image Classification for AMD Screening 13

Table 3. TCV Classification results using feature selection, a decomposition level
(Dmax) of 7, and Näıve Bayes

σ P0.05 P0.1 P0.4

(%) λ K Sens Spec Acc λ K Sens Spec Acc λ K Sens Spec Acc

10 20 3671 94 96 95 20 7342 92 92 92 40 16278 73 67 71

20 20 1407 91 93 91 20 2814 88 82 85 20 11257 71 65 68

30 20 748 88 82 85 20 1496 86 78 83 20 5983 71 61 67

40 20 452 85 80 83 20 904 84 72 79 20 3618 71 56 65

50 20 291 85 72 80 80 343 86 64 78 20 2330 73 52 65

60 20 195 84 68 78 20 389 86 67 78 20 1558 76 51 66

70 20 131 83 63 75 20 262 83 56 72 20 1050 74 47 64

80 20 85 82 45 68 20 171 81 50 69 20 683 74 45 63

90 20 48 83 37 65 20 96 84 41 67 20 382 78 37 62

reported in Subsection 5.1, where feature selection was not applied are not as
good as those reported here. Feature selection clearly improves the classification
performance.

Table 4. TCV Classification results using feature selection, a decomposition level
(Dmax) of 7, and LibSVM

σ P0.05 P0.1 P0.4

(%) λ K Sens Spec Acc λ K Sens Spec Acc λ K Sens Spec Acc

10 20 3671 100 100 100 20 7342 100 100 100 40 16278 99 81 92

20 80 172 100 0 62 80 343 100 0 62 60 4585 99 8 65

30 20 748 99 80 92 20 1496 99 94 97 20 5983 98 70 87

40 80 172 100 0 62 80 172 100 0 62 80 1374 99 5 64

50 20 291 97 54 81 20 583 96 84 91 20 2330 95 56 80

60 80 172 100 0 62 80 172 100 0 62 80 1374 99 5 64

70 20 131 100 0 62 20 262 100 0 62 20 1050 100 2 63

80 20 85 100 0 62 20 171 100 1 62 20 683 99 6 64

90 20 48 100 0 62 20 96 100 1 62 20 382 98 10 65

5.3 Performance Comparison of AMD Classification using Various
Classification Techniques

Table 5 compares the classification results obtained using the spatial histogram
based approach [14] referred to earlier in Section 2 and the AMD screening ap-
proach proposed in this paper using the LibSVM classifier. Both approaches were
applied to the ARIA dataset. The parameters were set to: σ = 30%, λ = 20%
and Dmax = 7. These values were chosen as they produced the best classification
results through series of experiments conducted. The results clearly indicate the
superiority of the proposed approach.

Table 6 compares the performance of the proposed approach with other re-
ported approaches: Barriga et al. [2], Chaum et al. [6] and Brandon and Hoover
[3]. For comparison we also used the leave-one-out testing method used by them.
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Table 5. Comparison of proposed AMD screening approach with alternative histogram
based approach

Approach Features Sensitivity Specificity Accuracy

Histogram based [14] 640 86 56 74

Proposed approach 1354 100 100 100

The reported results in [2] were generated using the drusen classification tech-
nique described in [1]. For this experiment, the proposed approach utilised the
Näıve Bayes classifier with σ = 10% and λ = 20% (K = 3671). A decomposition
level of Dmax = 7 was used.

Table 6. Comparison of proposed AMD screening approach with alternative ap-
proaches

Approach Dataset size Sensitivity Specificity Accuracy

Barriga et al. [2] 100 75 50 -

Brandon and Hoover [3] 97 - - 87

Chaum et al. [6] 395 - - 88

Proposed approach 258 89 99 93

Table 6 includes some missing values because these were not reported in
the literature and could not be derived by the authors. The result obtained by
Barriga et al. [2] only reported sensitivity and specificity. On the other hand,
the work of Brandon and Hoover [3] only reported accuracy1, no sensitivity and
specificity values were reported. It should also be noted that the approach of
Chaum et al. [6] was actually applied in a multi-class setting, of which 12 of
the AMD images were classified as “unknown” and excluded from the accuracy
calculation (if included this would give an accuracy of 75%). Overall, the results
demonstrate that the proposed AMD screening approach outperforms the other
approaches by 14% (sensitivity), 49%(specificity) and 5% (accuracy).

6 Conclusions

An AMD screening approach founded on a hierarchical circular and angular im-
age decomposition technique has been described. The decomposition results in
a tree data structure to which a weighted tree mining technique was applied
so as to identify frequent occurring sub-trees. The generated weighted frequent
sub-trees were then used to recast the input data (the training set) into a fea-
ture vector representation. AMD classifiers were then built using the feature
vector representation as the input data. For evaluation purpose the proposed

1 http://www.parl.clemson.edu/stare/drusen/
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approach was applied to retinal fundus images data from two publically available
databases. A 100% accuracy was produced using the LibSVM classifier. A more
straightforward and parameter-free classification technique, Näıve Bayes, was
also experimented with and also generated good results (95% accuracy). Further
experiments demonstrated the superiority of the proposed approach compared
to some other reported techniques for AMD detection. Our current work is di-
rected at extending the proposed approach to address multi-class problems. The
authors are also interested in grading the severity of AMD, as well as using the
approach for the screening of other retinal diseases, such as diabetic retinopathy.
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