
1

Setting Attribute Weights for k-NN Based Binary

Classification via Quadratic Programming

Lu Zhang*, Frans Coenen and Paul Leng

Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

E-mails: {lzhang,frans,phl}@csc.liv.ac.uk

Tel: 44-151-7943792

Fax: 44-151-7943715

*The corresponding author is Lu Zhang

Abstract. The k-Nearest Neighbour (k-NN) method is a typical lazy learning

paradigm for solving classification problems. Although this method was originally

proposed as a non-parameterised method, attribute weight setting has been commonly

adopted to deal with irrelevant attributes. In this paper, we propose a new attribute

weight setting method for k-NN based classifiers using quadratic programming, which

is particularly suitable for binary classification problems. Our method formalises the

attribute weight setting problem as a quadratic programming problem and exploits

commercial software to calculate attribute weights. To evaluate our method, we

carried out a series of experiments on six established data sets. Experiments show that

our method is quite practical for various problems and can achieve a stable increase in

accuracy over the standard k-NN method as well as a competitive performance.

Another merit of the method is that it can use small training sets.

Keywords : classification, machine learning, k-Nearest Neighbour, attribute weight,

quadratic programming

2

1. INTRODUCTION

Classification is a typical problem in machine learning and knowledge discovery

that has been studied by many researchers. Up to now, there have been various

approaches reported in the literature. Typical techniques include decision trees [7],

neural networks [5], Bayesian estimation [3], linear discriminant functions [17], and

lazy learning [2] etc.

The k-Nearest Neighbour (k-NN) algorithm [13] is a basic algorithm for lazy

classification. When classifying an instance, k-NN selects k most similar instances in

the training set of instances, and uses the k similar instances to determine the class of

the instance under classification via some voting mechanism. Usually, each instance is

described as a sequence of attributes, i.e. {A1,A2,…Aq} (where q is the number of

attributes), and the similarity between instance X={X1,X2,..Xq} and instance

Y={Y1,Y2,…Yq} can be calculated through formula (1), in which, Simi(X,Y) is the

similarity between instance X and instance Y, and Simi(Xi,Yi) is the similarity of the ith

attribute between X and Y.

∑
=

=
q

i
ii YXSimiYXSimi

1

),(),((1)

In formula (1), all the attributes for describing instances are equally treated.

However, for a real world problem some attributes may be less important than others,

and some attributes may even be irrelevant. Therefore, many k-NN based classifiers

parameterise the similarity function (or the distance function) to deal with irrelevant

attributes (see e.g. VDM [36], CCF [11], MVDM [10], MI [12], Relief-F [21], and k-

NNVSM [38] etc.). Intuitively, more important attributes will be assigned higher

weights, and less important attributes will be assigned lower weights. In reality, an

attribute weight setting algorithm is needed for a weighted k-NN based classifier. In

[39], a survey and empirical analysis of such algorithms is provided. For an attribute-

3

weighted k-NN classifier, similarity between instances can be calculated through

formula (2), in which Wi is the weight on the ith attribute.

∑
=

=
q

i
iii YXSimiWYXSimi

1

),(*),((2)

In this paper, we propose a novel attribute weight setting method using quadratic

programming, which is particularly suitable for binary classification problems.

Compared with previously proposed methods, our method has the following

advantages. First, our method has a sound theoretical foundation, while most other

methods are empirical. Secondly, from our experiments, the performance of our

method improves previously proposed attribute weight setting methods. Thirdly, our

method can use a small-size training set, and still get a good performance. Some

preliminary results for this method have been reported in [40].

2. RELATED WORK

2.1 Attribute Weight Setting Problem

The attribute weight setting problem in a weighted k-NN classifier can be

described as follows. There are n training instances in the training set, each having a

value in each of q attributes and being assigned to a class. These training instances

will be used to calculate a set of attribute weights with the aim of making the

classifier achieve a high performance when using the weights and the training

instances to classify new instances. The set of attribute weights obtained will be used

in formula (2) to calculate the similarity between two instances.

The optimal set of attribute weights is a set of weights that, when used to classify

new instances, minimises the number of misclassified instances. Obviously, the

optimal attribute weight setting is related to both the training instances and the

instances under classification. Therefore, the optimal attribute weights cannot be

4

calculated by only using the training set. However, if we can assume that the training

instances can fully represent the instances under classification, it might be possible to

get the set of optimal attribute weights that can achieve the smallest prediction error

only using the training set itself. This is the attribute weight setting problem we will

discuss in this paper.

2.2 Previous Methods

There have been numerous attribute weight setting methods for k-NN proposed in

the literature. A thorough classification and survey of these can be found in [39]. We

here summarise some frequently referenced methods.

In [30], an attribute weight setting method named EACH is proposed. The idea of

EACH is to change the attribute weights of previous training instances after

classifying a new training instance. The weights of all the matched attributes for

correct classifications are increased by a fixed amount F, and the weights of all the

matched attributes for incorrect classifications are decreased by F. On the other hand,

the weights of all the mismatched attributes for correct classifications are decreased

by F, and the weights of all the mismatched attributes for incorrect classifications are

increased by F. Similar to EACH, IB4 [1] uses another more sophisticated formula to

calculate the new attribute weights of previous training instances, and Relief-F [21]

uses different amounts for different instances. A common property of the above

approaches is to continuously adjust the weights when processing a new training

instance.

In [20] and [34], two approaches using genetic algorithms to learn attribute

weights are reported to have higher accuracies than standard k-NN on some data sets.

In [25], the variable kernel similarity metric (VSM) is reported to use conjugate

gradient to minimise summed leave-one-out classification error (LOOCE) for the

5

training instances. In [38], a simplification of VSM with the name k-NNVSM is

reported to have similar performance to VSM for a variety of data sets. These

approaches try to optimise the weights by processing all the training instances

together to get the weights.

There are also some earlier approaches using statistical properties of the training

instances to calculate attribute weights. In [36], the value-difference metric (VDM) for

discrete attributes is introduced. The basic idea of VDM is to assign higher weights to

attributes whose distribution across different classes is more skewed. In [10], a

modified version of VDM named MVDM is reported to have similar performance to

VDM. In [11], two attribute weight setting methods based on VDM are reported,

which are the CCF method and the PCF method. The CCF method assigns higher

weights to attributes that occur in fewer classes. The PCF method modifies CCF to

assign the same attribute different weights in different classes. In [28], it is reported

that CCF outperforms PCF on most tested data sets. In [12], a method based on the

mutual information (MI) theory (see e.g. [33]) is reported. The basic idea of this

approach is to calculate the contribution of individual attributes to the class of each

training instance. An attribute with a larger contribution will be assigned a higher

weight.

Besides the above, other methods can be found in [31] and [23] etc.

3. QUADRATIC PROGRAMING

A quadratic programming (QP) problem is a particular case of an optimisation

problem, which is to calculate the maximum or minimum value of an objective

function of a set of variables subject to a set of constraints on the variables. For a

quadratic programming problem, each of the constraints is a linear equation or a linear

6

inequality, and the objective function is at most quadratic [15]. Therefore, a QP

problem can be represented in the following form:

1,2,...n)j(0

or ,

or ,

:forms three theof one of is Constraint

)1,2,...mi(Constraint subject to

 minimiseor maximise

1

1

1

11

=≥

≤

=

≥

=

+

∑

∑

∑

∑∑∑

=

=

=

= ==

j

i

n

j
jij

i

n

j
jij

i

n

j
jij

i

i

n

j

n

jk
kjjk

n

j
jj

x

bxa

bxa

bxa

xxCxc

 (3)

In (3), x1, x2, … xn are the variables; ∑∑∑
= ==

+
n

j

n

jk
kjjk

n

j
jj xxCxc

11

is the objective function; n

is the number of variables; and m is the number of constraints.

Quadratic programming is a well-studied area in optimisation. Many methods for

solving linear programming problems (see [4] for linear programming) can be

extended to quadratic programming problems. There have already been commercial

software packages (such as IBM OSL [19]) to solve quadratic programming

problems. Although there is lack of theoretical analysis of the computational

complexity of methods for quadratic programming, it is shown in [27] that current

quadratic programming software is able to solve problems with several thousand

variables and several thousand constraints.

4. SETTING ATTRIBUTE WEIGHTS VIA QUADRATIC PROGRAMMING

In this paper, our focus is on a particular subset of classification problems – binary

classification. In a binary classification problem, each instance will be classified

between two classes. In this section, we will demonstrate how the attribute weight

7

setting problem in k-NN based binary classification can be reduced to a quadratic

programming problem.

4.1 Assumption

When using a k-NN based classifier to classify instances, the classifier will

classify an instance to the class of a similar instance. However, if there are many

irrelevant attributes and/or different attributes have different importance, the

calculated similarities may not reflect the real similarities. It is the responsibility of an

attribute weight setting method to acquire the set of weights that can make the

similarities calculated from formula (2) approximate to the real similarities. The

weight of each attribute then reflects the importance of that attribute.

For the binary classification problem, we assume that the real similarity between

instances in the same class is 1, and the real similarity between instances in different

classes is 0. Thus, the objective of the training process is to seek a set of weights,

which, when applied to instances in the training set through formula (2), will lead to

similarities that approximate to the real similarities.

4.2 Formalisation

Based on the above assumption, the attribute weight setting problem in k-NN

based binary classification can be viewed as an optimisation problem whose aim is to

minimise the differences between the similarities calculated from formula (2) and the

real similarities obtained by comparing the classes. However, as there is only one

objective function in an optimisation problem, all the differences between

corresponding pairs of similarities should be summed into the objective function. As

the aim of the optimisation problem is to minimise all the individual differences, we

use the sum of the squares of the differences, instead of the arithmetic sum of the

8

differences. Therefore, the optimisation problem can be summarised as the following

quadratic programming problem.

Supposing there are n training instances in the training set, each having q

attributes; the constraints in the problem can be represented as equation (4). In (4), Sijk

is the similarity on the kth attribute between instance i and instance j. ∑
=

q

k
kijk WS

1

is then

the similarity between instance i and instance j calculated using formula (2). Lij is the

value by which the calculated similarity is less than the real similarity, Mij is the value

by which the calculated similarity is greater than the real similarity, and then Rij is the

real similarity between instance i and instance j. We will call the Lij and Mij as the

difference variables.

),...1,(
1

jinjiRMLWS ijijij

q

k
kijk <==−+∑

=

 (4)

Usually we also require the sum of the weights to be 1. So, there is also another

constraint:

1
1

=∑
=

q

k
kW (5)

As analysed above, the objective function in this problem is to minimise the sum

of the squares of Lij and Mij. In fact, our aim is to minimise each Lij and Mij, but as we

have to express our aim in one objective function, we choose the sum of the squares

of Lij and Mij as a device to prevent any of them from being too large. Therefore, the

objective function can be represented as (6).

)(minimise
1

2

1

2∑ ∑
= +=

+
n

i
ij

n

ij
ij ML (6)

9

4.3 Complexity analysis

We provide here a brief analysis of the size of this quadratic programming

problem. As there is still no comprehensive analysis of the complexity of quadratic

programming problems, this analysis can only indicate how large this quadratic

programming problem can be, but not the actual complexity of the problem.

From the above formalisation, there are q weight variables and n*(n-1) difference

variables. The number of the constraints in (4) and (5) is n*(n-1)+1. Therefore, the

above quadratic programming problem is a quadratic programming problem with

n*(n-1) +q variables and n*(n-1)+1 constraints.

4.4 Simplification

As the above complexity analysis shows, the size of the formalised quadratic

programming problem is not linear to the number of training instances. Therefore,

with the increase of the number of the training instances, the formalised quadratic

programming problem may become unmanageable. In such a case, some

simplification mechanism may help to reduce the size of the quadratic programming

problem, which may also reduce the performance of the classifier in some extent.

In the above formalisation, each instance is compared with all the other instances.

If we only compare each instance with a subset of other instances, we can reduce the

size of the formalised quadratic programming problem. If an instance is only

compared with another p (p=n-1) instances, we will have q weight variables and n*p

difference variables, and the number of constraints will be n*p+1. In this case it

becomes a quadratic programming problem with n*p+q variables and n*p+1

constraints.

10

4.5 An Illustrative Example

To understand the above formalisation, let us consider the following example.

There are four training instances in the example, which are listed in Table 1. Each

instance has a value in each of the three attributes, and each instance is classified as A

or B.

Table 1. Training instances of the example

Instance

Number

Attribute 1 Attribute 2 Attribute 3 Class

1 1 1 0 A

2 1 0 1 A

3 0 0 0 B

4 0 1 1 B

Using the above method, we can get the following QP problem. The constraints of

the formalised QP problem are listed in (7).

1
1

0
0
0
0

1

321

34341

24243

23232

14142

13133

12121

=++
=+

=+
=+
=+
=+

=+

WWW
-?LW

-?LW
-?LW
-?LW
-?LW

-?LW

 (7)

The objective function is to minimise the sum in (8).

2
34

2
34

2
24

2
24

2
23

2
23

2
14

2
14

2
13

2
13

2
12

2
12 MLMLMLMLMLML +++++++++++ (8)

Obviously, if we set W1 to 1, and set W2, W3, and all the Lij and Mij to 0, all the

constraints in (7) can be satisfied, and the sum in (8) can reach 0 - the minimum. This

weight setting represents the classification using only the first attribute, and it can

correctly classify all the four training instances.

11

5. EXPERIMENTAL RESULTS

5.1 Experimental Method

To test the performance of our method, we applied it to six binary classification

data sets, acquired from the UCI Machine Learning Repository [6]. We randomly

selected a fixed number of instances from each data set as training instances. Some

initial experiments indicated that about 100 training instances was sufficient for our

method to achieve a good and stable performance. We therefore selected 100 as the

size of all the training sets for the six data sets. The advantage of this is that, as 100

training instances are quite manageable for our training process, it is not necessary to

use any simplification of the type discussed in section 4.4. We view the latter only as

a possible strategy for managing large training sets with some sacrifice of accuracy.

Our results suggest, however, that our method produces good results even when this

small training set is used, an advantage which we discuss later.

For the Thyroid Disease data set, we randomly chose 50 positive instances and 50

negative instances in the data set as the training data, as there were very few positive

instances in the data set. For each other data set, we randomly chose 100 instances in

the data set as the training data. Based on the 100 instances, we calculated the

attribute weight setting using our method. Then, the calculated weights were used to

classify the remaining instances in the data set. The accuracy of classifying the

remaining instances was recorded, and for comparison, the accuracy of standard k-NN

classification without using any attribute weights was also recorded. To calculate the

attribute weight setting, we generated the corresponding quadratic programming

problem in MPS format [29], and used IBM OSL [19] to solve the problem and get

the weight setting. To avoid occasional results, we performed the experiment ten

times for each data set. All the experiments were performed on a Pentium III 500MHz

12

PC with 128M RAM running Windows NT 4.0. The CPU time of each weight setting

calculation was also recorded as the training time to indicate the manageability of

each formalised quadratic programming problem.

In a k-NN based classifier, the value of k will also affect the accuracy of

classification. As usually the value of k is a small odd number, we tested our method

when k is odd and 1=k=19. For each k, the average accuracy and the standard

deviation for both our method and the standard k-NN method were recorded. To test

the significance of the difference in accuracy between our method and the standard k-

NN, we used Yates’ ?2 (chi-square) test, whose meaning is interpreted in [22] as

follows: When the ?2 value is less than 3.84, the difference is not significant; when the

?2 value is no less than 3.84 but less than 6.63, the difference is probably significant;

and when the ?2 value is no less than 6.63, the difference is significant.

5.2 Descriptions of the Tested Data Sets

The six data sets used were the Mushroom data set, the Congressional Voting data

set, the Thyroid Disease data set, the Breast Cancer data set, the Pima Indians

Diabetes data set, and the Credit Screening data set. The sets were chosen to provide a

range of cases of binary classification. They included three cases of noise-free, and

three of noisy data, and cases for which the attributes are all discrete, all continuous,

and a mixture. We also chose data which has been the subject of published

experiments for other methods, to enable us to make comparisons with these.

In the Mushroom data set, an instance represents one type of mushroom. Each

instance is characterised by 22 discrete attributes, and each instance is classified as

either edible or poisonous. There are 8124 instances in the data set in total.

13

In the Congressional Voting data set, an instance represents one vote. Each

instance is characterised by 16 discrete attributes, and each instance is classified as

either for democrats or for republicans. There are 435 instances in the data set in total.

In the Thyroid Disease data set, an instance represents one case of the thyroid

disease. Each instance is characterised by 7 continuous attributes and 18 discrete

attributes, and each instance is classified as either hypothyroid or negative. There are

3163 instances in the data set in total.

In the Breast Cancer data set, an instance represents one case of the breast cancer

disease. Each instance is characterised by 4 continuous attributes and 5 discrete

attributes, and each instance is classified as either recurrent or not recurrent. There are

286 instances in the data set in total.

In the Pima Indians Diabetes data set, an instance represents one report of the

diabetes test. Each instance is characterised by 8 continuous attributes, and each

instance is classified as either positive or negative. There are 768 instances in the data

set in total.

In the Credit Screening data set, an instance represents one credit card application.

Each instance is characterised by 6 continuous attributes and 9 discrete attributes, and

each instance is classified as either plus (+) or minus (-). There are 690 instances in

the data set in total.

The features of the six data sets are summarised in table 2.

Table 2. Features of the six tested data sets

Data Set Number of Instances Number Attributes

Mushroom 8124 22

Congressional Voting 435 16

Thyroid Disease 3163 25

14

Breast Cancer 286 9

Pima Indians Diabetes 768 8

Credit Screening 690 15

5.3 Results on Less Noisy Data Sets

For the Mushroom data set, the Congressional Voting data set, and the Thyroid

Disease data set, there is not much noise in the data sets. Therefore, there have been

highly accurate methods reported in the literature, and the standard k-NN classifier

can also solve the problems with high accuracy. Previous results for the Mushroom

data set can be found in [32], [18] and [14]. Previous results for the Congressional

Voting data set can be found in [32], [39] and [14]. Previous results for the Thyroid

Disease data set can be found in [14].

Our results for the Mushroom data set are summarised in Table 3. The average

training time for the quadratic programming approach was 1940 seconds with a

standard deviation of 343 seconds. The results tabulated show the average accuracy of

classification by our method in comparison with that of standard k-NN.

Table 3. Results on the Mushroom data set

k Quadratic

Programming

(%)

Standard k-

NN (%)

Difference Significant

(Yates’ ?2)

1 98.67±0.90 98.13±0.87 +0.54 Yes (73.97)

3 97.64±1.61 96.59±1.56 +1.05 Yes (157.50)

5 96.13±1.90 95.26±1.46 +0.87 Yes (73.50)

7 95.16±1.75 93.16±2.09 +2.00 Yes (291.47)

9 95.41±1.32 91.90±1.64 +3.51 Yes (831.20)

15

11 94.82±0.67 90.58±1.31 +4.24 Yes (1065.21)

13 95.02±0.79 89.84±0.83 +5.18 Yes (1537.81)

15 94.99±0.73 89.47±0.47 +5.52 Yes (1705.09)

17 94.96±0.67 89.21±0.26 +5.75 Yes (1819.15)

19 95.08±0.63 89.21±0.23 +5.87 Yes (1909.13)

Table 3 shows that our method improves on the standard k-NN for this data set.

Our method demonstrates significant improvements for all the values of k, although

some of the increases are small.

The results for the Congressional Voting data set are summarised in Table 4. The

average training time for the quadratic programming approach was 1159 seconds with

a standard deviation of 206 seconds.

Table 4. Results on the Congressional Voting data set

k Quadratic

Programming

(%)

Standard k-

NN (%)

Difference Significant

(Yates’ ?2)

1 94.63±1.03 91.11±1.74 +3.52 Yes (30.81)

3 94.99±1.40 91.67±1.59 +3.32 Yes (29.13)

5 95.52±0.63 90.98±1.67 +4.54 Yes (54.13)

7 95.58±0.58 90.78±1.62 +4.80 Yes (59.98)

9 95.67±0.64 90.63±1.71 +5.04 Yes (65.89)

11 95.64±0.66 90.39±1.68 +5.25 Yes (70.25)

13 95.67±0.57 90.09±1.81 +5.58 Yes (78.02)

15 95.70±0.63 89.55±1.68 +6.15 Yes (91.84)

17 95.64±0.59 89.61±1.77 +6.03 Yes (88.28)

16

19 95.67±0.64 89.31±1.57 +6.36 Yes (96.63)

Again, Table 4, shows our method to improve on the standard k-NN for this data

set. For all the values of k, our method achieves significant increases in accuracy. In

contrast with the Mushroom data set, for which the best results were obtained with k

= 1, this data illustrates a case where improved performance is obtained from a larger

value of k. The figures suggest our method exploits this more effectively than k-NN,

which shows no improvement for k > 3.

The results for the Thyroid Disease data set are summarised in Table 5. The

average training time for the quadratic programming approach was 2008 seconds with

a standard deviation of 363 seconds.

Table 5. Results on the Thyroid Disease data set

k Quadratic

Programming

(%)

Standard k-

NN (%)

Difference Significant

(Yates’ ?2)

1 86.41±3.55 83.83±3.99 +2.58 Yes (80.28)

3 89.14±2.02 85.54±3.48 +3.60 Yes (179.18)

5 91.33±2.18 87.30±4.28 +4.03 Yes (260.21)

7 91.86±2.05 88.36±5.10 +3.50 Yes (210.12)

9 90.56±2.17 85.93±8.59 +4.63 Yes (316.05)

11 90.38±2.47 83.72±9.82 +6.66 Yes (602.01)

13 90.02±2.72 82.74±11.81 +7.28 Yes (689.29)

15 89.94±3.20 81.32±14.45 +8.62 Yes (924.10)

17 89.39±3.31 78.69±14.40 +10.70 Yes (1306.47)

19 89.01±3.85 74.61±15.70 +14.40 Yes (2133.07)

17

This case also shows that our method improves on the standard k-NN for this data

set. For all the values of k, our method achieves significant increases, many of which

are quite large. As with the previous cases, the accuracy of the method seems to

become relatively stable once a sufficient threshold value of k is reached. This

contrasts with standard k-NN, for which accuracy declines significantly for values of k

that are too large.

5.4 Results on Noisy Data Sets

There is much noise in the Breast Cancer data set, the Pima Indians Diabetes data

set and the Credit Screening data set. Therefore, there has been no very accurate

method reported in the literature and the standard k-NN classifier can only solve the

problems with low accuracy. Previous results for the Breast Cancer data set can be

found in [26], [8], [9], [37] and [14]. Previous results for the Pima Indians Diabetes

data set can be found in [35] and [14]. Previous results for the Credit Screening data

set can be found in [14].

The results for the Breast Cancer data set are summarised in Table 6. The average

training time for the quadratic programming approach was 523 seconds with a

standard deviation of 91 seconds.

Table 6. Results on the Breast Cancer data set

k Quadratic

Programming

(%)

Standard k-NN

(%)

Difference Significant

(Yates’ ?2)

1 66.93±3.86 67.37±3.56 -0.44 No (0.0629)

3 69.30±2.51 69.52±2.78 -0.22 No (0.0121)

5 71.29±3.78 72.20±2.07 -0.91 No (0.336)

18

7 71.45±3.02 72.74±1.78 -1.29 No (0.706)

9 72.74±2.33 71.88±2.42 +0.86 No (0.302)

11 72.37±2.15 72.47±2.63 -0.10 No (0.000995)

13 73.28±2.20 72.31±2.75 +0.97 No (0.394)

15 73.50±2.52 72.42±2.62 +1.08 No (0.496)

17 73.55±2.55 71.83±2.14 +1.72 No (1.30)

19 73.01±2.41 71.72±2.27 +1.29 No (0.711)

From Table 6, it appears that the two methods are about the same for this data set.

Each method has five increases and five decreases, and none of the differences are

significant or probably significant. However, weight-setting again appears to enable

better exploitation of a larger value of k. For all k > 11, the method gives better results

than any of the cases of k-NN.

The results for the Pima Indians Diabetes data set are summarised in Table 7. The

average training time for the quadratic programming approach was 394 seconds with

a standard deviation of 27 seconds.

Table 7. Results on the Pima Indians Diabetes data set

k Quadratic

Programming

(%)

Standard k-NN

(%)

Difference Significant

(Yates’ ?2)

1 67.46±1.88 68.24±2.13 -0.78 No (0.896)

3 70.94±2.09 70.31±1.51 +0.63 No (0.609)

5 72.01±0.88 71.12±1.60 +0.89 No (1.26)

7 72.63±1.39 71.45±1.45 +1.18 No (2.25)

9 72.52±1.28 71.93±1.76 +0.59 No (0.551)

19

11 73.47±1.11 71.54±2.14 +1.93 Probably

(6.14)

13 73.61±1.30 71.57±1.56 +2.04 Yes (6.88)

15 73.40±1.61 71.30±1.88 +2.10 Yes (7.26)

17 72.98±1.79 71.36±2.37 +1.62 Probably

(4.28)

19 72.86±1.83 70.76±1.93 +2.10 Yes (7.17)

In this case, our method is slightly better than the standard k-NN for this data set.

For all values of k > 1, our method demonstrates increases, many of which are

significant or probably significant.

The results for the Credit Screening data set are summarised in Table 8. The

average training time for the quadratic programming approach was 1022 seconds with

a standard deviation of 400 seconds.

Table 8. Results on the Credit Screening data set

k Quadratic

Programming

Standard k-NN Difference Significant

(Yates’ ?2)

1 79.29±3.08 77.19±3.80 +2.10 Yes (7.52)

3 83.22±1.57 81.81±2.33 +1.41 Probably

(3.96)

5 83.97±2.40 83.44±1.66 +0.53 No (0.569)

7 84.54±1.33 83.80±1.08 +0.74 No (1.16)

9 84.92±0.96 83.76±1.58 +1.16 No (2.92)

11 85.17±0.71 83.97±1.61 +1.20 No (3.16)

13 85.25±0.52 83.80±1.68 +1.45 Probably

(4.63)

20

15 85.12±0.70 83.80±1.99 +1.32 No (3.82)

17 85.10±1.04 83.95±2.24 +1.15 No (2.90)

19 85.02±0.90 83.47±2.29 +1.55 Probably

(5.22)

Again, our method appears slightly better than the standard k-NN for this data set,

with improved results for all the values of k.

5.5 Analysis of the Experimental Results

Based on the above experimental results, we can find the following properties of

our method.

5.5.1 Stable increase in accuracy

For an attribute setting method for k-NN, the basic evaluation is the increase in

accuracy over the standard k-NN. In our experiments, we tested ten values of k for

each data set. For the three less noisy data sets, our method achieves increases in

accuracy for all the different values of k unanimously. For the three noisy data sets,

our method achieves increases in accuracy for 24 values of k, and some decrease for

the other 6 values of k. However, if k is tuned into the optimal values for our method,

there is always an increase for each data set, and the accuracy achieved in this case is

always greater than for any case of standard k-NN tested. For the three less noisy data

sets, all the increases are significant. Moreover, whereas the accuracy of standard k-

NN sometimes reduces significantly if too large a value of k is chosen, the weighted

classification appears to be relatively stable once a sufficiently high value of k is

reached. For the three noisy data sets, nine increases are significant or probably

significant, but no decreases are significant or probably significant. In general,

although our method may not guarantee a better performance over the standard k-NN,

21

our method is not likely to be much worse. The increases and decreases of our method

are summarised in Table 9.

Table 9. Summary of increases

Data Set Number of

increases

(significant)

Number of

decreases

(significant)

Maximum

increase

Minimum

increase

Increase

for

optimal k

Mushroom 10 (10) 0 (0) 5.87 (k=19) 0.54 (k=1) 0.54

(k=1)

Congressional

Voting

10 (10) 0 (0) 6.36 (k=19) 3.32 (k=3) 6.15

(k=15)

Thyroid

Disease

10 (10) 0 (0) 14.40

(k=19)

2.58 (k=1) 3.50

(k=7)

Breast Cancer 5 (0) 5 (0) 1.72 (k=17) -1.29

(k=7)

1.72

(k=17)

Pima Indians

Diabetes

9 (3) 1 (0) 2.10 (k=15,

19)

-0.78

(k=1)

2.04

(k=13)

Credit

Screening

10 (1) 0 (0) 2.10 (k=1) 0.53 (k=5) 1.45

(k=13)

In [39], six classification methods were evaluated using six data sets with no

irrelevant attributes. All of the previous weighted approaches analysed in that paper

demonstrated decreases in accuracy for some data sets. In contrast, our method seems

more stable in achieving increases in accuracy for different data sets. It should be

noted that, in the absence of irrelevant attributes, it is natural that our method does not

achieve dramatic increases in accuracy.

22

A summary of the results reported [39] is shown in Table 10, in which the

increase is achieved when k is tuned to the values that let the corresponding weighting

method achieve the highest accuracy.

Table 10. Previous results on data sets without irrelevant attributes

Data Set Relief-F k-NNVSM CCF VDM MVDM MI

LED-7 -1.0 0.0 -1.5 -1.4 -1.3 -1.2

Waveform-21 0.3 -0.5 -6.1 -3.7 -3.9 0.5

Cleveland -0.5 0.0 -1.3 0.2 0.7 -0.6

Congressional

Voting

2.9 2.5 1.0 2.1 2.1 2.0

Isolet 0.4 1.9 -1.1 -3.9 1.6 1.6

NETtalk 9.2 6.6 7.7 10.0 12.1 9.7

The average increases in accuracy in percentage points for the six data sets are

respectively 1.88 (Relief-F [21]), 1.75 (k-NNVSM [38]), -0.22 (CCF [11]), 0.55 (VDM

[36]), 1.88 (MVDM [10]), and 2.00 (MI [12]). Our method achieves an average

increase of 2.57 percentage points on the tested six data sets when k is tuned to the

optimal values. Please note that this is not a justified comparison of accuracy

increases as many data sets used in Table 10 are not binary classification data sets and

are not used in our experiments. This review does suggest, however, that weighted k-

NN methods typically show only small increases in accuracy compared with the

standard non-weighted k-NN when the tested data sets have no irrelevant attributes.

5.5.2 Bearable training time

The idea of using optimisation for machine learning has already been proposed in

the literature (see e.g. [24] and [16]). The main drawback of these approaches is that

they usually need much computation, which may mean a long training time. However,

23

with the increase of the capacity of computation, it seems that we can already often

overcome this drawback. In our experiments, the average training times for the six

data sets were respectively 32.33±5.72 minutes (Mushroom), 19.32±3.43 minutes

(Congressional Voting), 33.47±6.05 minutes (Thyroid Disease), 8.72±1,52 minutes

(Breast Cancer), 6.57±0.45 minutes (Pima Indians Diabetes), and 17.03±6.67 minutes

(Credit Screening). Any of the above training times is bearable, and it can be

predicted that the training time of our method for larger training sets and/or data sets

with more attributes should also be bearable.

5.5.3 Competitive performance

As previously mentioned, the data sets chosen for our experiments have been the

subject of experiments published for many other methods, with which we are able to

make comparisons. The results of these are summarised in table 11. This shows that,

compared with previous results, if k is tuned to the optimal values for our method, the

overall accuracies for our method are competitive.

 In [14], the RISE method was evaluated using all the data sets we have used. In 4

of the 6 cases, we have been able to show improved accuracy. The STAGGER

method [32] was applied to both the Mushroom data set and to the Congressional

Voting data set, and the Mushroom data set was used in the method described in [18]

also. In [39], six weighted k-NN approaches were tested on the Congressional Voting

data set and the accuracies achieved were respectively 95.5% (Relief-F [21]), 95.1%

(k-NNVSM [38]), 93.6% (CCF [11]), 94.7% (VDM [36]), 94.7% (MVDM [10]) and

94.6% (MI [12]). In all these cases a greater accuracy was achieved by our method.

The Breast Cancer data set has been used to evaluate methods described in [26], [8],

[9] and [37], as well as [14]. Only one of these, [8] demonstrates higher accuracy than

that of our method. This is also the case for the Pima Indians Diabetes data set in [35],

24

although on this data our method improves on RISE. Overall, our method performs

better than most or all other methods on every data set except the Thyroid Disease

data, for which the only comparison, RISE, is superior.

Table 11. Comparison of average performance

Method Ours [14] [32] [18] [39] [26] [8] [9] [37] [35]
Mushroom 98.67% 100% 95% 95% - - - - - -

Congressional
Voting

95.70% 95.2% 90%-
95%

- 93.6%-
95.5%

- - - - -

Thyroid
Disease

91.86% 97.5% - - - - - - - -

Breast
Cancer

73.55% 67.7% - - - 66%-
72%

78% 65%-
72%

68%-
73.5%

-

Pima Indians
Diabetes

73.61% 70.4% - - - - - - - 76%

Credit
Screening

85.25% 83.3% - - - - - - - -

5.5.4 Small training sets

Intuitively, our method can take all the comparisons between any two training

instances into consideration in the training process, and therefore, our method may

acquire enough knowledge from fewer training instances to get a good performance.

The experimental results also support this.

In our experiments, our method uses 100 training instances. Conversely, the

experiments reported for RISE [14], STAGGER [32], and for the method used in [35]

and the various methods reported in [39] all use larger training sets, in some cases

much larger. Despite this, our method achieves higher accuracy in almost all cases.

The only exceptions are for the Mushroom data set and Thyroid Disease data set, for

which RISE obtains greater accuracy using 5416 training cases and 2108 training

cases respectively, and for the method described in [35], which obtains greater

accuracy on the Pima Indians Diabetes set using 576 training cases. Overall, it

appears that other methods only perform better than ours, if at all, in cases where very

much larger training sets are used. These results are summarised in Table 12.

Table 12. Comparison of training set sizes

25

Previous Methods Our Method Data Set

Training Set

Size

Average

Accuracy

Training Set

Size

Average

Accuracy

1000 ([32]) 95% Mushroom

5416 ([14]) 100%

100 98.67%

305 ([39]) 93.6%-95.5% Congressional

Voting 290 ([14]) 95.2%

100 95.70%

Thyroid

Disease

2108 ([14]) 97.5% 100 91.86%

Breast Cancer 190 ([14]) 67.7% 100 73.55%

576 ([35]) 76% Pima Indians

Diabetes 512 ([14]) 70.4%

100 73.61%

Credit

Screening

460 ([14]) 83.3% 100 85.25%

6. FUTURE WORK

An interesting and useful study might be a study of the learning curve of our

method. This can be done by repeating the experiments in this paper for various

different sizes of the training sets. It may also be worthwhile to investigate to what

extent the simplification strategy suggested in section 4.4 will work. We would expect

a slightly better performance for our method when the size of the training set is tuned

to the optimal value with some light simplification.

A limitation of our method may be the assumption that the real similarity between

instances in the same class is 1 and the real similarity between instances in different

classes is 0. Although this seems natural for many problems, it is not always the case.

26

For example, when classifying instances as normal or abnormal, those normal

instances should be similar in nature, but those abnormal instances may not be similar

at all. Furthermore, instances in different classes may not be totally dissimilar to each

other. This is more the case when the problem is not a binary classification problem. It

is always in nature that some classes are somewhat similar to each other while other

classes are dissimilar to each other.

For this reason, we think this method can achieve good performance only on

binary classification problems, and will require some adaptation before it can be

applied to other classification problems.

In the future, we plan to identify some mechanisms to acquire the real similarities

between classes rather than using the assumed similarities. One possible approach

may be to use statistical information for setting the similarities. Another possible

approach may be to recursively apply our method and gradually adjust the real

similarities accordingly. We think if we can acquire the genuine real similarities, it

will be possible to extend our method to general classification problems and/or further

improve the performance of our method.

7. CONCLUSION

There have been quite a few attribute weight setting algorithms for k-NN reported

in the literature. In this paper, we proposed a new attribute weight setting method for

k-NN based binary classification using quadratic programming. We also performed a

series of experiments on six previously known binary classification data sets. For the

three less noisy data sets, our method achieved significant increases for all the tested

values of k over the standard k-NN. For the three noisy data sets, our method also

achieved significant or probably significant increases and no significant or probably

significant decreases over the standard k-NN in most cases.

27

In conclusion, our experimental results suggest that our method may have the

following properties: a stable increase in accuracy over standard k-NN, bearable

training time, a good performance compared with other methods, and the ability to

achieve this performance using small training sets.

ACKNOWLEDGEMENTS

The work in this paper was supported by the UK DTI under the Foresight ‘LINK’

programme (FLA009). Our thanks are due to Colin Johnson and John Hucksteppe of

Stoves PLC, Mike Delves of NA Software Ltd., and Stan Price for their assistance

with the project.

REFERENCES

[1] D. W. Aha, “Tolerating Noise, Irrelevant, and Novel Attributes in Instance-Based

Learning Algorithms,” International Journal of Man-Machine Studies, vol. 36,

pp. 267-287, 1992.

[2] D. W. Aha, Lazy Learning, Kluwer, Boston, MA, 1997.

[3] J. M. Bernardo and A. F. Smith, Bayesian Theory, Wiley, New York, 1996.

[4] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena

Scientific, Belmont, Massachusetts, 1997.

[5] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,

Oxford, UK, 1995.

[6] C. L. Blake and C. J Merz, UCI Repository of Machine Learning Databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of

California, Department of Information and Computer Science, 1998.

[7] C. E. Brodley and P. E. Utgoff, “Multivariate Decision Trees,” Machine Learning

19 (1): 45-77, 1995.

28

[8] G. Cestnik, I. Konenenko, and I. Bratko, “Assistant-86: A Knowledge-Elicitation

Tool for Sophisticated Users,” In Proceedings of the 2nd European Working

Session on Learning. I. Bratko & N. Lavrac (Eds.) Progress in Machine Learning,

31-45, Sigma Press, 1987.

[9] P. Clark, and T. Niblett, “Induction in Noisy Domains,” In Proceedings of the 2nd

European Working Session on Learning. I. Bratko & N. Lavrac (Eds.) Progress in

Machine Learning, 11-30, Bled, Yugoslavia: Sigma Press, 1987.

[10] S. Cost, and S. Salzberg, “A Weighted Nearest Neighbor Algorithm for

Learning with Symbolic Features,” Machine Learning, 10, 57-78, 1993.

[11] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz, “Trading Mips and

Memory for Knowledge Engineering,” Communications of the ACM, vol. 35, pp.

48-64, 1992.

[12] W. Daelemans, S. Gills, and G. Durieux, Learnability and Markedness in

Data-Driven Acquisition of Stress (Technical Report 43). Tilburg, Netherlands:

Tilburg University, Institute for Language Technology and Artificial Intelligence,

1993.

[13] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification

Techniques. Los Alamitos, CA: IEEE Computer Society Press, 1991.

[14] P. Domingos, “Unifying Instance-Based and Rule-Based Induction,” Machine

Learning, 24(2), pages 141-168, 1996.

[15] R. Fourer, Nonlinear Programming Frequently Asked Questions, [http://www-

unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html], 2001.

[16] A. J. Grove, N. Littlestone, and D. Schuurmans, “General Convergence

Results for Linear Discriminant Updates,” In Proceedings of the COLT 97, pp.

171-183, ACM Press, 1997.

29

[17] I. Guyon and D. G. Stork, “Linear Discriminant and Support Vector

Classifiers,” In Alex Smola, Peter Bartlett, Bernhard Scholkopf, and Dale

Schuurmans (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge,

MA, 1999.

[18] W. Iba, J. Wogulis, and P. Langley, “Trading off Simplicity and Coverage in

Incremental Concept Learning,” In Proceedings of the 5th International

Conference on Machine Learning, 73-79. Ann Arbor, Michigan: Morgan

Kaufmann, 1988.

[19] IBM, Optimization Solutions and Library (Version 3), [http://www-

3.ibm.com/software/data/bi/osl/index.html], 2001.

[20] J. D. Kelly, and L. Davis, “A hybrid genetic algorithm for classification,” In

Proceedings of the Twelfth International Joint Conference on Artificial

Intelligence (pp. 645-650). Sydney, Australia: Morgan Kaufmann, 1991.

[21] I. Kononenko, “Estimating Attributes: Analysis and Extensions of RELIE-F,”

In Proceedings of the 1994 European Conference on Machine Learning, pp. 171-

182, Catania, Italy: Springer Verlag, 1994.

[22] R. Langley, Practical Statistics Simply Explained, pp. 285-291, Dover

Publications, New York, 1971.

[23] C. X. Ling and H. Wang, “Computing Optimal Attribute Weight Settings for

Nearest Neighbor Algorithms,” Artificial Intelligence Review, vol. 11, pp. 255-

272, 1997.

[24] N. Littlestone, “Learning Quickly When Irrelevant Attributes Abound: A New

Linear-Threshold Algorithm,” Machine Learning, vol. 2, no. 4, pp. 285-318, 1988.

[25] D. Lowe, “Similarity metric learning for a variable-kernel classifier,” Neural

Computation, 7, 72-85, 1995.

30

[26] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The Multi-Purpose

Incremental Learning System AQ15 and its Testing Application to Three Medical

Domains,” In Proceedings of the Fifth National Conference on Artificial

Intelligence, pp. 1041-1045, Philadelphia, PA: Morgan Kaufmann, 1986.

[27] H. D. Mittelmann, “Benchmarking Interior Point LP/QP Solvers,”

Optimization Methods and Software 12, 655-670, 1999.

[28] M. Mohri and H. Tanaka, “An Optimal Weighting Criterion of Case Indexing

for Both Numeric and Symbolic Attributes,” In D. Aha (ed.) Case-Based

Reasoning: Papers from the 1994 Workshop, Menlo Park, CA: AAAI Press, 1994.

[29] B. Murtagh, Advanced Linear Programming: Computation and Practice.

McGraw-Hill, 1981.

[30] S. L. Salzberg, “A Nearest Hyperrectangle Learning Method,” Machine

Learning, vol. 6, pp. 251-276, 1991.

[31] K. Satoh and S. Okamoto, “Toward PAC-Learning Of Weights from

Qualitative Distance Information,” In D. Aha (ed.) Case-Based Reasoning: Papers

from the 1994 Workshop, Menlo Park, CA: AAAI Press, 1994.

[32] J. S. Schlimmer, Concept Acquisition Through Representational Adjustment

(Technical Report 87-19). Doctoral dissertation, Department of Information and

Computer Science, University of California, Irvine. 1987.

[33] C. E. Shannon, “A mathematical theory of communication,” Bell Systems

Technology Journal, 27, 379-423, 1948.

[34] D. Skalak, “Prototype and feature selection by sampling and random mutation

hill climbing algorithms,” In Proceedings of the Eleventh International Machine

Learning Conference (pp. 293-301). New Brunswick, NJ: Morgan Kaufmann,

1994.

31

[35] J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and R.S. Johannes,

“Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes

Mellitus,” In Proceedings of the Symposium on Computer Applications and

Medical Care, pp. 261--265. IEEE Computer Society Press, 1988.

[36] C. Stanfill and D. Waltz, “Toward Memory-Based Reasoning,”

Communications of the ACM, vol. 29, pp. 1213-1228, 1986.

[37] M. Tan, and L. Eshelman, “Using Weighted Networks to Represent

Classification Knowledge in Noisy Domains,” In Proceedings of the Fifth

International Conference on Machine Learning, pp. 121-134, Ann Arbor, MI,

1988.

[38] D. Wettschereck, A Description of the Mutual Information Approach and the

Variable Similarity Metric (Technical Report 944). Sankt Augustin, Germany,

German National Research Center for Computer Science, Artificial Intelligence

Research Division. 1995.

[39] D. Wettschereck, D. W. Aha, and T. Mohri, “A Review and Empirical

Evaluation of Feature Weighting Methods for a Class of Lazy Learning

Algorithms,” Artificial Intelligence Review, vol. 11, pp. 273-314, 1997.

[40] L. Zhang, F. Coenen, and P. Leng, “An Attribute Weight Setting Method for

k-NN Based Binary Classification using Quadratic Programming,” In Proceedings

of 15th European Conference on Artificial Intelligence (ECAI), 21-26 July 2002,

pp. 325-329.

