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Abstract. The k-Nearest Neighbour (k-NN) method is a typicd lazy learning
paradigm for solving dassfication problems. Although this method was origindly
proposed as a non-parameterised method, attribute weight setting has been commonly
adopted to ded with irrdlevant atributes. In this paper, we propose a new attribute
weight setting method for k-NN based classfiers usng quadratic programming, which
is paticulaly suitable for binary classfication problems. Our method formaises the
atribute weight setting problem as a quadratic programming problem and exploits
commercia software to cdculate atribute weights. To evauate our method, we
caried out a series of experiments on Sx established data sets. Experiments show that
our method is quite practical for various problems and can achieve a stable increase in
accuracy over the standard k-NN method as well as a competitive performance.
Another merit of the method is that it can use small training sets.
Keywords: dassficaion, machine learning, k-Nearest Neighbour, attribute weight,
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1. INTRODUCTION

Classfication is a typicd problem in machine learning and knowledge discovery
that has been dudied by many researchers. Up to now, there have been various
goproaches reported in the literature. Typica techniques include decison trees [7],
neurd networks [5], Bayedan esimation [3], linear discriminant functions [17], and
lazy learning [2] etc.

The k-Nearest Neighbour (k-NN) dgorithm [13] is a badc dgorithm for lazy
classfication. When dassfying an ingance, k-NN sdlects k mogt amilar indances in
the training st of ingances, and uses the k damilar instances to determine the class of
the indance under classfication via some voting mechanism. Usudly, each ingance is
described as a sequence of ettributes, i.e. {A1,As,...Aq} (where q is the number of
atributes), and the gmilaity between ingance X={X1,X,.X;} and indance
Y={Y1,Y2,...Yq} can be cdculated through formula (1), in which, Smi(X)Y) is the
amilarity between ingance X and ingance Y, and Smi(X,Y;) is the amilarity of the ith

attribute between X and Y.

Smi(X,Y) = 5 Smi(X,.Y) )

In formula (1), dl the attributes for describing instances are equdly trested.
However, for a red world problem some attributes may be less important than others,
and some attributes may even be irrdlevant. Therefore, many k-NN based classfiers
parameterise the smilarity function (or the disance function) to ded with irrdevant
attributes (see eg. VDM [36], CCF [11], MVDM [10], MI [12], Relief-F [21], and k-
NNvsv [38] etc.). Intuitively, more important attributes will be assgned higher
weights, and less important atributes will be assgned lower weghts. In redity, an
atribute weight setting agorithm is needed for a weighted k-NN based classfier. In

[39], a survey and empirica analyss of such dgorithms is provided. For an attribute-



weighted k-NN classfier, amilarity between ingtances can be caculated through

formula(2), inwhich Wi isthe weight on the ith attribute.

Smi(X,Y) = & W* Simi(X,.Y) ()

=1

In this paper, we propose a nove atribute weight setting method using quadratic
progranming, which is paticulaly suitable for binary cdlassfication problems.
Compared with previoudy proposed methods, our method has the following
advantages. Firg, our method has a sound theoretica foundation, while most other
methods are empirica. Secondly, from our experiments, the performance of our
method improves previoudy proposed dtribute weight setting methods. Thirdly, our
method can use a smdl-gze traning s, and ill get a good performance. Some

preliminary results for this method have been reported in [40].

2. RELATED WORK

2.1 Attribute Weight Setting Problem

The dtribute weght setting problem in a weighted k-NN classfier can be
described as follows. There are n training ingtances in the training s, each having a
vadue in each of q atributes and being assgned to a class. These training ingtances
will be used to cdculae a st of atribute weights with the am of making the
classfier achieve a high peformance when usng the weghts and the training
ingances to classfy new ingances. The st of attribute weights obtained will be used
in formula (2) to calculate the smilarity between two instances.

The optimd set of atribute weights is a set of weights that, when used to classfy
new ingances, minimises the number of misclassfied ingances Obvioudy, the
optimal attribute weight setting is related to both the training ingtances and the

indances under classfication. Therefore, the optima attribute weights cannot be



cdculated by only using the training set. However, if we can assume tha the training
indances can fully represent the indances under classfication, it might be possble to
get the set of optimd attribute weights that can achieve the smalest prediction error
only usng the training set itsdf. This is the aitribute weight setting problem we will

discussin this paper.

2.2 Previous M ethods

There have been numerous dtribute weight setting methods for k-NN proposed in
the literature. A thorough classification and survey of these can be found in [39]. We
here summarise some frequently referenced methods.

In [30], an atribute weight setting method named EACH is proposed. The idea of
EACH is to change the atribute weights of previous traning instances dfter
classfying a new traning ingance. The weghts of dl the matched attributes for
correct classfications are increased by a fixed amount F, and the weights of dl the
matched attributes for incorrect classfications are decreased by F. On the other hand,
the weights of al the mismatched attributes for correct classfications are decreased
by F, and the weghts of dl the mismatched atributes for incorrect classfications are
increased by F. Smilar to EACH, 1B4 [1] uses another more sophidticated formula to
cdculate the new attribute weights of previous training indances, and Relief-F [21]
uses different amounts for different ingances. A common property of the above
goproaches is to continuoudy adjust the weights when processing a new traning
instance.

In [20] and [34], two approaches usng genetic agorithms to learn atribute
weights are reported to have higher accuracies than sandard k-NN on some data sets.
In [25], the varidble kernd smilarity metric (VSM) is reported to use conjugate

gradient to minimise summed leave-one-out classfication error (LOOCE) for the



traning indances. In [38], a smplification of VSM with the name k-NNygy is
reported to have smilar performance to VSM for a variety of data sets. These
approaches try to optimise the weghts by processng dl the traning ingances
together to get the weights.

There are aso some earlier approaches using Setistical properties of the training
ingtances to caculate atribute weights. In [36], the value-difference metric (VDM) for
discrete attributes is introduced. The basic idea of VDM is to assgn higher weights to
atributes whose digtribution across different classes is more skewed. In [10], a
modified verson of VDM named MVDM s reported to have smilar performance to
VDM. In [11], two attribute weight setting methods based on VDM are reported,
which are the CCF method and the PCF method. The CCF method assigns higher
weights to attributes that occur in fewer classes. The PCF method modifies CCF to
assgn the same attribute different weights in different classes. In [28], it is reported
that CCF outperforms PCF on mogst tested data sets. In [12], a method based on the
mutual information (MI) theory (see eg. [33]) is reported. The basic idea of this
approach is to cdculate the contribution of individua etributes to the class of each
traning indance. An dtribute with a larger contribution will be assgned a higher
weight.

Besides the above, other methods can be found in [31] and [23] etc.

3. QUADRATIC PROGRAMING
A quadratic programming (QP) problem is a particular case of an optimisation
problem, which is to cdculae the maximum or minimum vadue of an objective

function of a set of variables subject to a set of condraints on the variables. For a

quadratic programming problem, each of the condraints is a linear equation or a linear



inequdity, and the objective function is & most quadratic [15]. Therefore, a QP

problem can be represented in the following form:
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In (3), X1, Xz, ... Xn are the variables; § o, 48 C,x x, 1S the objective function; n

isthe number of variables; and m isthe number of constraints

Quadratic programming is a well-sudied area in optimisation. Many methods for
solving linear programming problems (see [4] for liner programming) can be
extended to quadratic programming problems. There have dready been commercia
software packages (such as IBM OSL [19]) to solve quadratic programming
problems. Although there is lack of theoreticd andyss of the computationa
complexity of methods for quedratic programming, it is shown in [27] that current
quadratic programming software is able to solve problems with severd thousand

variables and severd thousand congtraints.

4. SETTING ATTRIBUTE WEIGHTSVIA QUADRATIC PROGRAMMING
In this paper, our focus is on a particular subset of classfication problems — binary
classfication. In a binary classfication problem, esch indance will be dassfied

between two classes. In this section, we will demongtrate how the attribute weight



setting problem in k-NN based binary classfication can be reduced to a quadratic

programming problem.

4.1 Assumption

When udng a k-NN based dassfier to dassfy ingances, the classfier will
dassfy an indance to the class of a gmilar ingance. However, if there are many
irrdevant atributes and/or different attributes have different importance, the
cdculated dmilarities may not reflect the red amilarities. It is the respongbility of an
atribute weight setting method to acquire the set of weights that can make the
amilaiities cdculated from formula (2) approximate to the red dgmilaities The
weight of each attribute then reflects the importance of that attribute.

For the binary cdassfication problem, we assume that the red smilarity between
ingances in the same dass is 1, and the red dmilarity between ingtances in different
classes is 0. Thus, the objective of the training process is to seek a set of weights,
which, when applied to ingdances in the training st through formula (2), will lead to

gmilarities that gpproximate to the red smilarities.

4.2 Formalisation

Based on the above assumption, the aitribute weight setting problem in k-NN
based binary classfication can be viewed as an optimisation problem whose am is to
minimise the differences between the smilarities cdculaied from formula (2) and the
red dmilarities obtained by comparing the classes However, as there is only one
objective function in an optimisstion problem, dl the differences between
corresponding pairs of amilarities should be summed into the objective function. As
the am of the optimisation problem is to minimise dl the individud differences we

use the sum of the squares of the differences, ingead of the arithmetic sum of the



differences. Therefore, the optimisation problem can be summarised as the following
quadratic programming problem.
Supposing there are n traning indances in the traning s, each having

atributes, the congtraints in the problem can be represented as equation (4). In (4), Sjk

is the amilarity on the kth atribute between ingtance i and instance |. éq SiW, isthen
k=1

the smilarity between ingance i and indtance j calculated usng formula (2). Ljj is the
vaue by which the caculated smilarity is less than the red dmilaity, M is the vaue
by which the cdculated smilarity is greater than the red smilaity, and then R; is the
red smilarity between indance i and ingtance j. We will cdl the Ljj and M;; as the

difference variables.

q
a SW, +L, - M, =R (i,j=1.n,i<j) (4)

k=

U

Usualy we adso require the sum of the weights to be 1. So, there is dso another

condtraint;

W, =1 ®)

os

=
1

1

As andysed above, the objective function in this problem is to minimise the sum
of the squares of Lj; and M;;. In fact, our am is to minimise eech L;; and M;;, but as we
have to express our am in one objective function, we choose the sum of the squares
of Lj and M;; as a device to prevent any of them from being too large. Therefore, the

objective function can be represented as (6).

minmise & 4 (L2 +M?) (6)
izl j=i+l



4.3 Complexity analysis

We provide here a brief andyds of the dze of this quadratic programming
problem. As there is dill no comprehensve andyss of the complexity of quadratic
progranming problems, this andyds can only indicate how large this quadratic
programming problem can be, but not the actua complexity of the problem.

From the above formdisation, there are q weight variadbles and n*(n-1) difference
variables. The number of the condraints in (4) and (5) is n*(n-1)+1. Therefore, the
above quadratic programming problem is a quadraic programming problem with

n*(n-1) +q variablesand n*(n-1)+ 1 congraints.

4.4 Simplification

As the above complexity anadysis shows, the size of the formaised quadratic
programming problem is not linear to the number of training ingtances. Therefore,
with the increase of the number of the training ingances, the formdised quadratic
programming problem may become unmanagesble In such a case, some
amplification mechanism may help to reduce the dze of the quadratic programming
problem, which may aso reduce the performance of the classifier in some extent.

In the above formdisation, each ingtance is compared with dl the other instances.
If we only compare each ingance with a subset of other instances, we can reduce the
gze of the formdised quadratic programming problem. If an ingance is only
compared with another p (p=n-1) indances, we will have q weght variables and n*p
difference varidbles, and the number of congraints will be n*p+1. In this case it
becomes a quadratic programming problem with n*p+q vaiables and n*p+1

congrants.



4.5 An lllustrative Example

To undergand the above formdisation, let us condgder the following example.

There are four traning indances in the example, which are liged in Table 1. Each

ingtance has a vdue in each of the three atributes, and each ingance is classfied as A

or B.
Table 1. Training instances of the example
Instance Attribute 1 Attribute 2 Attribute 3 Class
Number
1 1 1 0 A
2 1 0 1 A
3 0 0 0 B
4 0 1 1 B

Using the above method, we can get the following QP problem. The congraints of

the formalised QP problem are listed in (7).

W +L,-?7 5, =1
W, + L7 13=0
Wz + L14'? 14 = 0
W, +L,57 =0 (7)
W, +L,-7 5, =0
W, + L34'? u=1
W +W, +W, =1

The objective function is to minimise the sum in (8).

L+ M+ L+ MG+ L + MG+ Lo+ Mg + L+ Mg + L5+ MG, (8)

Obvioudy, if we st Wy to 1, and set Wh, W, and dl the Lj; and M;; to O, dl the
congraints in (7) can be satisfied, and the sum in (8) can reach O - the minimum. This

weight setting represents the classfication usng only the firg atribute, and it can

correctly dassfy dl the four training instances.
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5. EXPERIMENTAL RESULTS

5.1 Experimental Method

To test the performance of our method, we applied it to dx binary classfication
data sats, acquired from the UCI Machine Learning Repostory [6]. We randomly
sected a fixed number of ingtances from each data st as training instances. Some
initid experiments indicated that about 100 training indances was sufficient for our
method to achieve a good and stable performance. We therefore selected 100 as the
gze of dl the traning sets for the gx dita sets. The advantage of this is that, as 100
traning ingances are quite managesble for our training process, it is not necessary to
use any amplification of the type discussed in section 4.4. We view the latter only as
a posshle drategy for managing large training sets with some sacrifice of accuracy.
Our results suggest, however, that our method produces good results even when this
smdl training st is used, an advantage which we discuss later.

For the Thyroid Disease data set, we randomly chose 50 postive instances and 50
negetive ingtances in the data set as the training data, as there were very few pogtive
ingtances in the data set. For each other data set, we randomly chose 100 ingtances in
the data set as the training data Based on the 100 indances, we cdculated the
atribute weight setting usng our method. Then, the cdculated weights were used to
cdassfy the remaning indances in the daa se&t. The accuracy of dassfying the
remaining instances was recorded, and for comparison, the accuracy of standard k-NN
classfication without usng any dtribute weights was aso recorded. To cdculate the
atribute weight setting, we generated the corresponding quadratic  programming
problem in MPS format [29], and used IBM OSL [19] to solve the problem and get
the weight seting. To avoid occasond results, we peformed the experiment ten

times for each data set. All the experiments were performed on a Pentium 111 500MHz

1



PC with 128M RAM running Windows NT 4.0. The CPU time of each weight setting
caculation was adso recorded as the training time to indicate the managesbility of
each formalised quadratic programming problem.

In a k-NN based classfier, the vdue of k will dso affect the accuracy of
classfication. As usudly the vdue of k is a svdl odd number, we tested our method
when k is odd and 1=k=19. For each k, the average accuracy and the standard
deviation for both our method and the standard k-NN method were recorded. To test
the dgnificance of the difference in accuracy between our method and the standard k-
NN, we used Yates 7 (chi-square) test, whose meaning is interpreted in [22] as
follows When the ? vaue is less than 3.84, the difference is not significant; when the
7 vaue is no less than 3.84 but less than 6.63, the difference is probably significant;

and when the 7 value s no less than 6.63, the difference is significant.

5.2 Descriptions of the Tested Data Sets

The sx data sets used were the Mushroom data set, the Congressond Voting data
s, the Thyroid Disease data set, the Breast Cancer data set, the Pima Indians
Diabetes data set, and the Credit Screening data set. The sets were chosen to provide a
range of cases of binary classfication. They included three cases of noise-free, and
three of noisy data, and cases for which the attributes are al discrete, dl continuous,
and a mixture. We dso chose data which has been the subject of published

experiments for other methods, to enable us to make comparisons with these.

In the Mushroom data set, an instance represents one type of mushroom. Each
ingtance is characterised by 22 discrete attributes, and each instance is classfied as

either edible or poisonous. There are 8124 ingtancesin the data set in totd.



In the Congressond Voting data set, an indance represents one vote. Each
instance is characterised by 16 discrete atributes, and each instance is classfied as
either for democrats or for republicans. There are 435 instances in the data set in total.

In the Thyroid Disease data set, an indtance represents one case of the thyroid
disease. Each indance is characterised by 7 continuous attributes and 18 discrete
attributes, and each indance is classfied as ether hypothyroid or negative. There are
3163 ingtances in the data set in total .

In the Breast Cancer data set, an instance represents one case of the breast cancer
diseese. Each ingance is characterised by 4 continuous attributes and 5 discrete
attributes, and each ingtance is classfied as ather recurrent or not recurrent. There are
286 ingances in the data set in totdl.

In the Pima Indians Diabetes data set, an instance represents one report of the
diabetes test. Each ingance is characterised by 8 continuous attributes, and each
ingance is classfied as either pogtive or negative. There are 768 instances in the data
St intotdl.

In the Credit Screening data set, an instance represents one credit card application.
Each ingtance is characterised by 6 continuous attributes and 9 discrete attributes, and
each ingance is clasdfied as either plus (+) or minus (-). There are 690 ingtances in
the dataset in totdl.

The features of the Sx data sets are summarised in table 2.

Table 2. Features of the six tested data sets

Data Set Number of Instances Number Attributes
Mushroom 8124 22
Congressond Voting 435 16
Thyroid Disease 3163 25
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Breast Cancer 286 9

Pima Indians Diabetes 768 8

Credit Screening 690 15

5.3 Resultson Less Noisy Data Sets

For the Mushroom data set, the Congressond Voting data set, and the Thyroid
Disease data set, there is not much noise in the data sets. Therefore, there have been
higny accurate methods reported in the literature, and the standard k-NN classfier
can dso solve the problems with high accuracy. Previous results for the Mushroom
data set can be found in [32], [18] and [14]. Previous results for the Congressiona
Vating data set can be found in [32], [39] and [14]. Previous results for the Thyroid
Disease data set can be found in[14].

Our results for the Mushroom data set are summarised in Table 3. The average
traning time for the quadratic programming approach was 1940 seconds with a
gtandard deviation of 343 seconds. The results tabulated show the average accuracy of
classfication by our method in comparison with that of standard k-NN.

Table 3. Results on the M ushroom data set

Kk Quadratic Standard k- | Difference Significant

Programming NN (%) (Yates %)
(%)

1 98.67+0.90 98.13+0.87 +0.54 Yes (73.97)

3 97.64+1.61 96.59+1.56 +1.05 Yes (157.50)

5 96.13+1.90 95.26+1.46 +0.87 Yes (73.50)

7 95.16+1.75 93.16+2.09 +2.00 Yes (291.47)

9 95.41+1.32 91.90+1.64 +3.51 Yes (831.20)
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11 94.82+0.67 90.58+1.31 +424 | Yes(1065.21)
13 95.02£0.79 89.84+0.83 +518 | Yes(1537.81)
15 94.99+0.73 89.47+0.47 +552 | Yes(1705.09)
17 94.96£0.67 89.21+0.26 +5.75 | Yes(1819.15)
19 95.08£0.63 89.21+0.23 +5.87 | Yes(1909.13)

Table 3 shows that our nmethod improves on the standard k-NN for this data set.
Our method demondrates dgnificant improvements for dl the vadues of k, dthough
some of theincreases are smdll.

The reaults for the Congressond Voting data set are summarised in Table 4. The
average training time for the quadratic programming approach was 1159 seconds with
astandard deviation of 206 seconds.

Table 4. Resultson the Congressional Voting data set

k Quadratic Standard k- Difference Significant
Programming NN (%) (Yates ?)
(%)

1 94.63+1.03 91.11+1.74 +3.52 Yes(30.81)

3 94.99+1.40 91.67+1.59 +3.32 Yes (29.13)

5 95.52+0.63 90.98+1.67 +4.54 Yes (54.13)

7 95.58+0.58 90.78+1.62 +4.80 Y es (59.98)

9 95.67+0.64 90.63+1.71 +5.04 Yes (65.89)

11 95.64+0.66 90.39+1.68 +5.25 Yes (70.25)
13 95.67+0.57 90.09+1.81 +5.58 Yes(78.02)
15 95.70+0.63 89.55+1.68 +6.15 Yes (91.84)
17 95.64+0.59 89.61+1.77 +6.03 Yes (88.28)




19 95.67+0.64 89.31+1.57 +6.36 Yes (96.63)

Again, Table 4, shows our method to improve on the standard k-NN for this data
set. For dl the values of k, our method achieves sgnificant increases in accuracy. In
contrast with the Mushroom data set, for which the best results were obtained with  k
= 1, this data illustrates a case where improved performance is obtained from a larger
vadue of k. The figures suggest our method exploits this more effectively than k-NN,
which shows no improvement for k > 3.

The results for the Thyroid Disease data st are summarised in Table 5. The
average traning time for the quadratic programming approach was 2008 seconds with
astandard deviation of 363 seconds.

Table 5. Results on the Thyroid Disease data set

k Quadratic Standard k- Difference Significant
Programming NN (%) (Yates ?)
(%)
1 86.41+3.55 83.83+3.99 +2.58 Yes (80.28)
3 89.14+2.02 85.54+3.48 +3.60 Yes(179.18)
5 91.33+2.18 87.30+4.28 +4.03 Yes(260.21)
7 91.86+2.05 88.36+5.10 +3.50 Yes(210.12)
9 90.56+2.17 85.93+8.59 +4.63 Y es (316.05)
11 90.38+2.47 83.72+9.82 +6.66 Yes (602.01)
13 90.02+2.72 82.74+11.81 +7.28 Y es (689.29)
15 89.94+3.20 81.32+14.45 +8.62 Yes (924.10)
17 89.39+3.31 78.69+14.40 +10.70 Y es (1306.47)
19 89.01+3.85 74.61+15.70 +14.40 Yes (2133.07)
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This case dso shows that our method improves on the standard k-NN for this data
st For dl the values of k, our method achieves Sgnificant increases, many of which
ae quite large. As with the previous cases, the accuracy of the method seems to
become rdativey dable once a aufficent threshold vaue of k is reached. This
contrasts with standard k-NN, for which accuracy declines sgnificantly for vaues of k

that aretoo large.

5.4 Results on Noisy Data Sets

There is much noise in the Breast Cancer data s&t, the Pima Indians Diabetes data
st and the Credit Screening data set. Therefore, there has been no very accurate
method reported in the literature and the standard k-NN classfier can only solve the
problems with low accuracy. Previous results for the Bresst Cancer data set can be
found in [26], [8], [9], [37] and [14]. Previous results for the Pima Indians Diabetes
data set can be found in [35] and [14]. Previous results for the Credit Screening data
set can befound in [14].

The results for the Breast Cancer data set are summarised in Table 6. The average
traning time for the quadratic programming approach was 523 seconds with a
standard deviation of 91 seconds.

Table 6. Resultson the Breast Cancer data set

k Quadratic Standard k-NN | Difference Significant
Programming (%) (Yates %)

(%)
1 66.93+£3.86 67.37£3.56 -0.44 No (0.0629)
3 69.30£2.51 69.52+2.78 -0.22 No (0.0121)
5 71.29+3.78 72.20£2.07 001 No (0.336)
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7 71.45£3.02 72.74£1.78 “1.29 No (0.706)
9 72.74+2.33 71.88£2.42 +0.86 No (0.302)
11 72.372.15 72.47£2.63 010 | No (0.000995)
13 73.28£2.20 72.31£2.75 +0.97 No (0.394)
15 7350£2.52 72.4242.62 +1.08 No (0.496)
17 73.55£2.55 71.83:2.14 +1.72 No (1.30)
19 73.01£2.41 71.722.27 +1.29 No (0.711)

From Table 6, it appears that the two methods are about the same for this data set.

Each method has five increases and five decreases, and none of the differences are

dggnificant or probably sgnificant. However, weight-setting again gppears to enable

better exploitation of a larger vaue of k. For dl k > 11, the method gives better results

than any of the cases of k-NN.

The results for the Pima Indians Diabetes data set are summarised in Table 7. The

average training time for the quadratic programming approach was 394 seconds with

astandard deviation of 27 seconds.

Table 7. Results on the Pima Indians Diabetes data set

k Quadratic Standard k-NN Difference Significant

Programming (%) (Yates %)

(%)

1 67.46+£1.88 68.24+2.13 -0.78 No (0.896)
3 70.94+2.09 70.31£1.51 +0.63 No (0.609)
5 72.01+0.88 71.12+1.60 +0.89 No (1.26)
7 72.63+1.39 71.45+1.45 +1.18 No (2.25)
9 72.52+1.28 71.93+£1.76 +0.59 No (0.551)
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11 7347111 7154+2.14 +1.93 Probably
(6.14)
13 73.611.30 7157+1.56 +2.04 Yes (6.88)
15 73.40£1.61 71.30£1.88 +2.10 Yes (7.26)
17 72.98£1.79 71.36£2.37 +1.62 Probably
(4.28)
19 72.86£1.83 70.76£1.93 +2.10 Yes(7.17)

In this case, our method is dightly better than the standard k-NN for this data set.

For dl vdues of k > 1, our method demondrates increases, many of which are

sgnificant or probably sgnificant.

The results for the Credit Screening data set are summarised in Table 8. The

average training time for the quadratic programming approach was 1022 seconds with

astandard deviation of 400 seconds.

Table 8. Results on the Credit Screening data set

k Quadratic Standard k-NN Difference Significant
Programming (Yates %)
1 79.29+3.08 77.19+3.80 +2.10 Yes(7.52)
3 83.22+1.57 81.81+2.33 +1.41 Probably
(3.96)
5 83.97+2.40 83.44+1.66 +0.53 No (0.569)
7 84.54+1.33 83.80+1.08 +0.74 No (1.16)
9 84.92+0.96 83.76+1.58 +1.16 No (2.92)
11 85.17+0.71 83.97+1.61 +1.20 No (3.16)
13 85.25+0.52 83.80+1.68 +1.45 Probably
(4.63)
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15 85.12+0.70 83.80£1.99 +1.32 No (3.82)

17 85.10+1.04 83.95:2.24 +1.15 No (2.90)

19 85.02+0.90 83.47+2.29 +155 Probably
(5.22)

Again, our method appears dightly better than the standard k-NN for this data s,

with improved results for al the values of k.

5.5 Analysis of the Experimental Results

Based on the above experimenta results, we can find the following properties of

our method.

551 Stableincreasein accuracy

For an dtribute setting method for k-NN, the basic evaduation is the increase in
accuracy over the standard k-NN. In our experiments, we tested ten vaues of k for
each data set. For the three less noisy data sets, our method achieves increases in
accuracy for dl the different vdues of k unanimoudy. For the three noisy data sets,
our method achieves increases in accuracy for 24 vaues of k, and some decrease for
the other 6 values of k. However, if Kk is tuned into the optimal vaues for our method,
there is dways an increase for each data set, and the accuracy achieved in this caseis
aways greater than for any case of standard k-NN tested. For the three less noisy data
sts, dl the increases are dgnificant. Moreover, whereas the accuracy of standard k-
NN sometimes reduces sgnificantly if too large a vadue of k is chosen, the weighted
classfication appears to be reativey sable once a sufficently high vaue of k is
reached. For the three noisy data sets, nine increases are sgnificant or probably
ggnificant, but no decreases ae dggnificant or probably dgnificant. In generd,

athough our method may not guarantee a better performance over the standard k-NN,



our method is not likely to be much worse. The increases and decreases of our method

aresummarised in Table 9.

Table 9. Summary of increases

Data Set Number of | Number of | Maximum | Minimum | Increase
increases | decreases increase increase for
(dgnificant) | (sgnificant) optimal k
Mushroom 10 (10) 0(0) 5.87 (k=19) | 0.54 (k=1) 0.54
(k=1)
Congressiond 10 (10) 0(0) 6.36 (k=19) | 3.32(k=3) | 6.15
Vating (k=15)
Thyroid 10 (10) 0(0) 14.40 2.58 (k=1) 3.50
Disease (k=19) (k=7)
Breast Cancer 5(0) 5(0) 172 (k=17) | -1.29 1.72
(k=7) (k=17)
Pima Indians 9(3) 1(0) 2.10 (k=15, | -0.78 2.04
Diabetes 19) (k=1) (k=13)
Credit 10 (1) 0(0) 210 (k=1) | 053(k=5) | 1.45
Screening (k=13)

In [39], 9x classfication methods were evaluated usng Sx data sets with no

irrdevant atributes. All of the previous weighted approaches analysed in that paper

demondtrated decreases in accuracy for some data sets. In contrast, our method seems

more stable in achieving increases in accuracy for different data sets It should be

noted that, in the absence of irrdevant attributes, it is natural that our method does not

achieve dramatic increases in accuracy.
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A summary of the results reported [39] is shown in Table 10, in which the
increase is achieved when K is tuned to the values that let the corresponding weighting

method achieve the highest accuracy.

Table 10. Previousresults on data setswithout irreevant attributes

Data Set Relief-F | K-NNysy | CCF | VDM MVDM | MI
LED-7 -1.0 0.0 -15 -14 -1.3 -1.2
Waveform-21 0.3 -0.5 -6.1 -3.7 -39 0.5
Clevdand -0.5 0.0 -1.3 0.2 0.7 -0.6
Congressond 29 25 10 21 21 2.0
Vating

Isolet 04 19 -1.1 -3.9 16 16
NETtak 9.2 6.6 1.7 10.0 121 9.7

The average increases in accuracy in percentage points for the six data sets are
respectively 1.88 (Relief-F [21]), 1.75 (k-NNvsv [38]), -0.22 (CCF [11]), 0.55 (VDM
[36]), 1.88 (MVDM [10Q]), and 2.00 (MI [12]). Our method achieves an average
increase of 2.57 percentage points on the tested six data sets when k is tuned to the
optima vaues. Please note tha this is not a judified comparison of accuracy
increases as many data sets used in Table 10 are not binary classfication data sets and
are not used in our experiments. This review does suggest, however, that weighted k-
NN methods typicdly show only smdl increases in accuracy compared with the

standard non-weighted k-NN when the tested data sets have no irrelevant attributes.

552 Bearabletrainingtime
The idea of using optimisation for machine learning has dready been proposed in
the literature (see e.g. [24] and [16]). The main drawback of these gpproaches is that

they usudly need much computation, which may mean a long training time. However,



with the increase of the capacity of computation, it seems that we can dready often
overcome this drawback. In our experiments, the average training times for the six
data sets were respectively 32.33t5.72 minutes (Mushroom), 19.32+3.43 minutes
(Congressond Voting), 33.47+6.05 minutes (Thyroid Disease), 8.72+1,52 minutes
(Breast Cancer), 6.57+0.45 minutes (Pima Indians Diabetes), and 17.03+6.67 minutes
(Credit Screening). Any of the above traning times is bearable, and it can be
predicted that the training time of our method for larger training sets and/or data sets

with more attributes should aso be bearable.

553 Competitive performance

As previoudy mentioned, the data sets chosen for our experiments have been the
subject of experiments published for many other methods, with which we are able to
make comparisons. The results of these are summarised in table 11. This shows that,
compared with previous reaults, if k is tuned to the optima vaues for our method, the
overdl accuracies for our method are compstitive.

In [14], he RISE method was evaduated using dl the data sets we have used. In 4
of the 6 cases, we have been able to show improved accuracy. The STAGGER
method [32] was applied to both the Mushroom data set and to the Congressional
Voting data set, and the Mushroom data set was used in the method described in [18]
as. In [39], sx weghted k-NN approaches were tested on the Congressional Voting
data set and the accuracies achieved were respectively 95.5% (Relief-F [21]), 95.1%
(k-NNvysau [38]), 93.6% (CCF [11]), 94.7% (VDM [36]), 94.7% (MVDM [10]) and
94.6% (Ml [12]). In dl these cases a greater accuracy was achieved by our method.
The Breast Cancer data set has been used to evaluate methods described in [26], [8],
[9] and [37], as well as [14]. Only one of these, [8] demondtrates higher accuracy than

that of our method. This is dso the case for the Pima Indians Diabetes data set in [35],
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dthough on this data our method improves on RISE. Overdl, our method performs
better than most or al other methods on every data set except the Thyroid Disease
data, for which the only comparison, RISE, is superior.

Table 11. Comparison of average performance

Method Ours [14] [32] | [18] [39] [26] | [8] [9] [37] | [35]
M ushroom 98.67% 100% | 9% [ 95% - - - - - -
Congressional | 95.70% | 95.2% | 90%- - 93.6%-

Voting 95% 95.5%

Thyroid 91.86% | 97.5% - -

Disease

Breast 7355% | 67.7% - - - 66%- | 78% | 65%- | 68%-
Cancer 72% 72% | 735%
Pimalndians | 7361% | 704% - - - - - - - 76%
Diabetes

Credit 85.25% | 833%

Screening

554  Small training sets

Intuitively, our method can teke dl the comparisons between any two training
ingances into condderation in the training process, and therefore, our method may
acquire enough knowledge from fewer training indtances to get a good performance.
The experimentd results aso support this.

In our experiments, our method uses 100 training indances. Conversdy, the
experiments reported for RISE [14], STAGGER [32], and for the method used in [35]
and the various methods reported in [39] dl use larger traning sets, in some cases
much larger. Despite this our method achieves higher accuracy in amost dl cases
The only exceptions are for the Mushroom data set and Thyroid Disease data set, for
which RISE obtains greater accuracy usng 5416 training cases and 2108 training
cases respectively, and for the method described in [35], which obtains gresater
accuracy on the Pima Indians Diabetes set using 576 traning cases.  Ovedl, it
appears that other methods only perform better than ours, f a al, in cases where very
much larger training sets are used. These results are summarised in Table 12.

Table 12. Comparison of training set sizes
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Data Set Previous M ethods Our Method
Training Set Average Training Set Average
Sze Accuracy Sze Accuracy
Mushroom 1000 ([32)]) 95% 100 98.67%
5416 ([14]) 100%
Congressiond 305 ([39]) 93.6%-95.5% 100 95.70%
Voting 290 ([14]) 95.2%
Thyroid 2108 ([14]) 97.5% 100 91.86%
Disease
Breast Cancer | 190 ([14]) 67.7% 100 73.55%
Pmalndians | 576 ([35)]) 76% 100 73.61%
Diabetes 512 ([14]) 70.4%
Credit 460 ([14]) 83.3% 100 85.25%
Screening

6. FUTURE WORK

An interesting and ussful sudy might be a dudy of the learning curve of our
method. This can be done by repeating the experiments in this paper for various
different gzes of the training sets. It may dso be worthwhile to investigate to what
extent the smplification Strategy suggested in section 4.4 will work. We would expect
a dightly better performance for our method when the size of the training set is tuned
to the optimd vaue with some light smplification.

A limitation of our method may be the assumption that the red smilarity between
ingances in the same dass is 1 and the red Smilaity between ingtances in different

classes is 0. Although this seems naturd for many problems, it is not dways the case.
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For example, when dassfying ingances as normd or abnorma, those normd
ingances should be smilar in nature, but those anorma ingtances may not be sSmilar
a dl. Furthermore, instances in different classes may not be totally dissmilar to each
other. This is more the case when the problem is not a binary classfication problem. It
is dways in nature that some classes are somewhat smilar to each other while other
classes are dissmilar to each other.

For this reason, we think this method can achieve good performance only on
binary classfication problems, and will require some adaptation before it can be
gpplied to other classfication problems.

In the future, we plan to identify some mechaniams to acquire the red Smilarities
between classes rather than using the assumed similaritiess One possible gpproach
may be to use ddidicd information for setting the smilarities Another possble
goproach may be to recursvely apply our method and gradudly adjust the red
gmilarities accordingly. We think if we can acquire the genuine red dmilarities, it
will be possible to extend our method to generd classfication problems and/or further

improve the performance of our method.

7. CONCLUSION

There have been quite a few dtribute weight setting dgorithms for k-NN reported
in the literature. In this paper, we proposed a new attribute weight setting method for
k-NN based binary classfication usng quadratic programming. We aso peformed a
series of experiments on sx previoudy known binary classfication data sets. For the
three less noisy data sets, our method achieved dgnificant increases for dl the tested
vaues of k over the standard k-NN. For the three noisy data sets, our method aso
achieved dgnificant or probably dgnificant increeses and no dgnificant or probably

sgnificant decreases over the standard k-NN in most cases.
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In concluson, our experimentd results suggest that our method may have the
following properties a dable increase in accuracy over standard k-NN, bearable
traning time, a good performance compared with other methods, and the ability to

achieve this performance using smdl training sets.
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