
Mining Allocating Patterns in One-sum Weighted Items

Yanbo J. Wang
1
, Xinwei Zheng

2
, Frans Coenen

1
, and Cindy Y. Li

3

1
 Department of Computer Science, University of Liverpool, UK

{Y.J.Wang, Coenen}@liverpool.ac.uk
2 School of Accounting Economics and Finance, Deakin University, Australia

xinwei.zheng@deakin.edu.au
3
 Histocompatibility and Immunogenetics Laboratory,

National Blood Service Bristol Centre, UK

Ying.Li@nbs.nhs.uk

Abstract

An Association Rule (AR) is a common knowledge

model in data mining that describes an implicative co-

occurring relationship between two disjoint sets of

binary-valued transaction database attributes (items),

expressed in the form of an “antecedent ⇒

consequent” rule. A variant of the AR is the Weighted

Association Rule (WAR). With regard to a marketing

context, this paper introduces a new knowledge model

in data mining ALlocating Pattern (ALP). An ALP

is a special form of WAR, where each rule item is

associated with a weighting score between 0 and 1,

and the sum of all rule item scores is 1. It can not only

indicate the implicative co-occurring relationship

between two (disjoint) sets of items in a weighted

setting, but also inform the “allocating” relationship

among rule items. ALPs can be demonstrated to be

applicable in marketing and possibly a surprising

variety of other areas. We further propose an Apriori

based algorithm to extract hidden and interesting

ALPs from a “one-sum” weighted transaction

database. The experimental results show the

effectiveness of the proposed algorithm.

1. Introduction

Data mining is an area of current research and

development in computer science, which is attracting

increasing attention from a wide range of different

groups of people. It aims to extract various types

(models) of hidden, interesting, previously unknown

and potentially useful knowledge (i.e. rules, patterns,

regularities, customs, trends, etc.) from databases,

where the volume of a collected database can be

measured in gigabytes. In data mining, common models

of mined knowledge include: association rules [1],

classification rules [10], prediction rules [8], clustering

patterns [9], emerging patterns [6], sequential patterns

[13], etc.

Association Rule Mining (ARM) [1] is a well-

established data mining technique for the extraction of

hidden and interesting patterns called Association

Rules (ARs) from a given transaction (basket) database.

It deals with binary-valued data attributes (items) only,

where all attributes in a transaction database are valued

in a Boolean manner. An AR describes an implicative

co-occurring relationship between two disjoint sets of

items, expressed in the form of an “antecedent ⇒

consequent” rule. In a marketing context, a typical AR

can be exemplified as “〈 bread egg milk 〉 ⇒ 〈 butter
ham 〉”, which can be interpreted as: when people

purchase bread, egg and milk together, it is likely that

both butter and ham are also purchased.

The original ARM problem treats the importance of

all items in a uniform manner. Based on a “real-life”

marketing experience, Cai et al. [3] indicate that not all

goods (items) share the same importance in a market,

and introduce the concept of weighted items to improve

the applicability of ARs. With regard to a retailing

business, mining from weighted items/goods enables

the generation of such ARs with more emphasis on

some particular goods (e.g. goods that are under

promotion, goods that always make significant profits)

and less emphasis on other goods. The idea of mining

ARs in a special transaction database, where each item

is assigned a weighting score, directly depicts the

problem of mining Weighted Association Rules

(WARs). As a consequence, a number of alternative

Weighted Association Rule Mining (WARM)

approaches have been developed over the past decade,

such as [11, 12].

A special case of WAR can be introduced as the

“one-sum” WAR, where each rule item is associated

with a weighting score between 0 and 1, and the sum of

all rule item scores is 1. A one-sum WAR can not only

indicate the implicative co-occurring relationship

between two disjoint sets of items in a weighted setting,

but also inform the “allocating” relationship among

rule items. In a marketing context, an archetypal one-

sum WAR can be exemplified as “〈 bread[0.15]
egg[0.20] milk[0.10] 〉 ⇒ 〈 butter[0.20] ham

[0.35] 〉”, which can be interpreted as: when people

spend 15%, 20% and 10% of their money to purchase

bread, egg and milk together, it is likely that people

will also spend 20% and 35% of their money to

purchase butter and ham. In this paper, we introduce

the concept of one-sum WARs, as a new knowledge

model in data mining, and name such WARs as

ALlocating Patterns (ALPs). We further propose an

algorithm, based on the well-established Apriori

algorithm [2], which effectively extracts hidden and

interesting ALPs from a one-sum weighted transaction

database. We believe that ALPs can be shown to be

useful in a surprising variety of applications other than

just marketing.

The rest of this paper is organized as follows. In

section 2, we describe some related work relevant to

this study, where ARM is reviewed and three of the

existing approaches in WARM are outlined. In section

3, the concept of ALP is introduced, based on

describing the one-sum weighted: transaction databases,

itemsets and WARs. An algorithm for ALlocating

Pattern Mining (ALPM) is proposed in section 4.

Experimental results are presented in section 5 that

demonstrate the effectiveness of the proposed

algorithm. Finally our conclusions and open issues for

further research are given in section 6.

2. Related Work

2.1. Association Rule Mining

Association Rule Mining (ARM), first introduced in

[1], aims to extract a set of ARs from a given

transaction database DT. It is a well-established

research field in data mining. Cornelis et al. [5] suggest

that the concept of mining ARs can be dated back to

the work of Hájek et al. in 1966 [7]. Let I = {a1, a2, …,

an–1, an} be a set of items (binary-valued database

attributes), and Ŧ = {T1, T2, …, Tm–1, Tm} be a set of

transactions (database records), DT is described by Ŧ,

where each Tj ∈ Ŧ comprises a set of items I' ⊆ I. An

AR can be given as “antecedent (X) ⇒ consequent (Y)”,

where X, Y ⊂ I and X ∩ Y = ∅. In ARM, two threshold

values are usually used to determine the significance of

an AR:

1. Support: A set of items S is called an itemset. The

support of S is the proportion of transactions T in Ŧ

for which S ⊆ T. If the support of S exceeds a user-

supplied support threshold σ, S is defined to be a

Frequent Itemset (FI).

2. Confidence: Represents how “strongly” an itemset

(rule antecedent) X implies another itemset (rule

consequent) Y. A confidence threshold α, supplied

by the user, is used to distinguish high confidence

ARs from low confidence ARs.

An AR “X ⇒ Y” is said to be valid when the support

for the co-occurrence of X and Y exceeds σ, and the

confidence of this AR exceeds α. The computation of

support is:

support(X ∪ Y) = count(X ∪ Y) / |Ŧ| ,

where count(X ∪ Y) is the number of transactions

containing the set X ∪ Y in Ŧ, and |Ŧ| is the size

function of the set Ŧ. The computation of confidence is:

confidence(X ⇒ Y) = support(X ∪ Y) / support(X) .

Algorithm 1: The Apriori Algorithm
Input: (a) A transaction database DT;

 (b) A support threshold σ;
Output: A set of frequent itemsets SFI;

Begin Algorithm:
(1) k � 1;
(2) SFI � an empty set for holding the identified frequent

itemsets;
(3) generate all candidate 1-itemsets from DT;
(4) while (candidate k-itemsets exist) do
(5) determine support for candidate k-itemsets from DT;
(6) add frequent k-itemsets into SFI;
(7) remove all candidate k-itemsets that are not

 sufficiently supported to give frequent k-itemsets;
(8) generate candidate (k+1)-itemsets from

 frequent k-itemsets using “closure property”;
(9) k � k + 1;
(10) end while
(11) return (SFI);
End Algorithm

The most well-known ARM algorithm is the Apriori

algorithm, developed by Agrawal and Srikant [2],

which has been the basis of many subsequent ARM

and/or ARM-related algorithms. In [2], it was observed

that ARs can be straightforwardly generated from a set

of FIs. Thus, efficiently and effectively mining FIs

from data is the key to ARM. The Apriori algorithm

iteratively identifies FIs in data by employing the

“closure property” of itemsets in the generation of

candidate itemsets, where a candidate (possibly

frequent) itemset is confirmed as frequent only when

all its subsets are identified as frequent in the previous

pass. The “closure property” of itemsets can be

described as follows: if an itemset is frequent then all

its subsets will also be frequent; conversely if an

itemset is infrequent then all its supersets will also be

infrequent. The Apriori algorithm is outlined in

Algorithm 1.

2.2. Weighted Association Rule Mining

Weighted Association Rule Mining (WARM), first

introduced in [3], aims to apply the concept of

weighting into ARM and consequently extract WARs

from a weighted transaction database. In the past

decade, a number of alternative WARM approaches

have been introduced. Three major studies can be

described as follows.

2.2.1. The Traditional Approach. Cai et al. [3]

introduce the concept of weighted items and the

weighted transaction database D
W

T. Let I
W
 = {a

W
1,

a
W
2, …, a

W
n–1, a

W
n} be a set of weighted items, where

each a
W

i ∈ I
W
 is an item ai ∈ I (see section 2.1) labeling

with a user-defined weighting score wi (0 ≤ wi ≤ 1). Let

Ŧ = {T1, T2, …, Tm–1, Tm} be a set of transactions, D
W

T

is described by Ŧ, where each Tj ∈ Ŧ comprises a set of

weighted items I
W
' ⊆ I

W
. To measure the significance of

a WAR, the “weighted-support weighted-

confidence” approach, an extension of the “support

confidence” framework (as described in section 2.1),

was introduced in [3]. A weighted support threshold σ
W

is supplied by the user that distinguishes frequent

weighted itemsets from the infrequent ones. A weighted

itemset X
W
 ∪ Y

W
 is considered to be frequent if (∑aW

i ∈

(X
W
 ∪ Y

W
) wi) × support(X

W
 ∪ Y

W
) ≥ σ

W
, where X

W
, Y

W
 ⊂

I
W
 and X

W
 ∩ Y

W
 = ∅. Having a set of frequent weighted

itemsets generated from D
W

T, a set of WARs can be

further obtained. A WAR “X
W
 ⇒ Y

W
” is said to be

valid when X
W
 ∪ Y

W
 is frequent, and ((∑aW

i ∈ (X
W
 ∪ Y

W
) wi)

× support(X
W
 ∪ Y

W
)) / ((∑aW

i ∈ X
W
) wi) × support(X

W
)) ≥

α
W
, where α

W
 is a user-defined weighted confidence

threshold.

2.2.2. The Variant Approach. Wang et al. [12]

propose an alternative approach of mining WARs by

introducing a variant weighted transaction database

D
W

T
*
. With regard to real-life marketing, the newly

mined WARs “can not only improve the confidence in

the rules, but also provide a mechanism to do more

effective target marketing by identifying or segmenting

customers based on their potential degree of loyalty or

volume of purchases” [12]. In Table 1 several points,

in terms of item weighting score properties, that

differentiate D
W

T
*
 from D

W
T are listed.

Table 1. The difference between D
W

T and D
W

T
*

Properties of Item

Weighting Scores D
W

T D
W

T

*

Single-value like

vs.

Interval-value like

The weighting score of

an item in DW
T is given

as a single value v. The

weighting score is

defined as single-value

like.

The weighting score of

an item in DW
T
* is given

as an interval of two

values [v1, v2], where v1

< v2. The weighting

score is defined as

interval-value like.

Percentage like

vs.

Positive-integer like

The value of the

weighting score for an

item in DW
T is given as

0 ≤ v ≤ 1. The

weighting score is

defined as percentage

like.

Both lower and upper

values of the weighting

score interval for an

item in DW
T
* are given

as v1, v2 ≥ 1 and v1, v2 ∈

Z (both v1, v2 are

positive integers). The

weighting score is

defined as positive-

integer like.

Static like

vs.

Dynamic like

The weighting score of

an item in DW
T is given

as a fixed value in all

transactions. The

weighting score is

defined as static like.

The weighting score of

an item in DW
T
* can be

valued differently in

different transactions.

The weighting score is

defined as dynamic like.

 In a marketing context, a typical WAR mined from

D
W

T
*
 can be exemplified as “〈 bread[9, 14] 〉 ⇒

〈 ham[12, 20] 〉”, which can be interpreted as: when

bread is purchased in the quantity between 9 and 14, it

is likely that ham in the quantity between 12 and 20 is

also purchased. In [12] the proposed WAR generation

approach comprises two phases: (1) generating a set of

frequent itemsets from D
W

T
*
 regardless the weighting

issue; and (2) extracting hidden and interesting WARs

based on (1). In (2) a set of candidate rules can be

enumerated from the result of (1), where the

consequent of each candidate rule “only contains one

weighted item for the sake of simplicity” [12]. A

number of “qualified” WARs can be further identified

in the set of candidate rules with respect to the user-

specified threshold values of support, confidence and

density. Since this study is direct at producing

maximum rules only, a set of maximum WARs “a

qualified WAR X ⇒ Y is a maximum WAR if for any

generalization X′ of X and Y′ of Y where X′ ≠ X and Y′

≠ Y, neither of X′⇒ Y, X ⇒ Y′, nor X′⇒ Y′ is a

qualified WAR” [12] is finally obtained. In [11] Tao

et al. classify the process of mining WARs from D
W

T
*
,

proposed in [12], as a technique of post-processing or

maintaining ARs.

2.2.3. The Improved Approach. Tao et al. [11]

identify the main challenge of mining WARs: the

closure property of itemsets (see section 2.1) is invalid

in the generation of significant/frequent weighted

itemsets. To solve this problem, an improved approach

of mining WARs was proposed in [11], which takes an

alternative weighted transaction database DW
T
+ as the

input. The only difference between D
W

T
+
 and D

W
T is

that the item weighting scores in D
W

T
+
 can be valued as

any positive real number, whereas the item weighting

scores in D
W

T are valued between 0 and 1, i.e.

“percentage like”. This improved approach

automatically assigns a weighting score w_tj to each

transaction Tj in D
W

T
+
, where the computation of w_tj is:

(∑aW
i ∈ Tj wi) / |Tj|. Based on the assigned transaction

scores, a set of frequent weighted itemsets SFI
W can be

generated. A weighted itemset X
W
 ∪ Y

W
 is considered

to be frequent if (∑j = 1…|Ŧ| & (X
W
 ∪ Y

W
) ⊆ Tj w_tj) / (∑j = 1…|Ŧ|

w_tj) ≥ σ
W
, where X

W
, Y

W
 ⊂ I

W
, X

W
 ∩ Y

W
 = ∅, and σ

W

is a user-supplied weighted support threshold. In the

generation of frequent weighted itemsets, the closure

property can be proven work properly. With respect to

the idea presented in [2], all WARs can be further

mined from SFI
W.

3. Allocating Patterns

A new type of WAR, namely ALlocating Pattern

(ALP), is designed in this section. As mentioned in

section 1, an ALP can not only indicate the implicative

co-occurring relationship between two (disjoint) sets of

items in a weighted setting, but can also inform the

allocating relationship among AR items. In a marketing

application, ALPs can be used to show individual

customer habits of allocating an amount of money to a

variety of goods. This can be further used in sales and

goods promotion, customer segmentation, transaction

classification, etc. We would like to expect that ALPs

may be proven to be applicable in a wide range of

fields other than marketing related situations. The

approach of mining ALPs requires a special weighted

transaction database D
W

T-OS as the input.

3.1. One-sum Weighted Transaction Database

In Table 1 three sets of item score properties were

defined to analyze different weighted transaction

databases. These properties are “single-value like vs.

interval-value like”, “percentage like vs. positive-

integer like”, and “static like vs. dynamic like”. In

D
W

T-OS item weighing scores show an additional

property (“one-sum” like) that distinguishes D
W

T-OS

from other weighted transaction databases the sum

of all item scores in each transaction is 1. Hence D
W

T-OS

can be referred to as a “one-sum” weighted transaction

database.

Let I
OSW

 = {a
OSW

1, a
OSW

2, …, a
OSW

n–1, a
OSW

n} be a set

of one-sum weighted items, and Ŧ = {T1, T2, …, Tm–1,

Tm} be a set of transactions. Each a
OSW

i ∈ I
OSW

represents an item ai ∈ I (see section 2.1) that is

assigned a set of weighting scores θi = {wi1, wi2, …,

wim–1, wim}, where 0 ≤ wij ≤ 1 and |θi| = |Ŧ| which means:

for different transactions Tj ∈ Ŧ, different scores wij ∈

θi can be assigned to a particular item a
OSW

i ∈ I
OSW

. A

one-sum weighted transaction database D
W

T-OS is

described by Ŧ, where each Tj ∈ Ŧ comprises a set of

one-sum weighted items I
OSW

' ⊆ I
OSW

, and ∑i = 1…|I
OSW

′| or

|Tj| wji = 1. An overall comparison, in terms of item

weighting score properties, of four different weighted

transaction databases is provided in Table 2.

Table 2. The comparison of DW
T, D

W
T
*, DW

T
+ and DW

T-OS

Properties of Item

Weighting Scores D
W

T D
W

T

*
 D

W

T

+
 D

W

T-OS

Single-value like

vs.

Interval-value like

Single-

value like

Interval-

value like

Single-

value like

Single-

value like

Percentage like

vs.

Positive-integer /

Positive-real like

Percentage

like

Positive-

integer like

Positive-

real like

Percentage

like

Static like

vs.

Dynamic like

Static

like

Dynamic

like

Static

like

Dynamic

like

One-sum like No No No Yes

3.2. One-sum Weighted Itemsets

An itemset can be recognized in a transaction

database DT if this particular set of items appears as a

subset of at least one transaction Tj in DT. A one-sum

weighted itemset can be treated as an itemset that is

presented in a particular weighting frame, where the

item scores are assigned in a one-sum percentage

manner. For example, {I1[0.1], I2[0.3], I3[0.3], I5[0.3]}

and {I1[0.1], I2[0.3], I3[0.5], I5[0.1]} are two different

weighting frames for the itemset {I1, I2, I3, I5}. An

itemset can produce as many as infinity possible

weighting frames. If an itemset weighting frame IWF

appears as a subset of at least one transaction Tj in a

one-sum weighted transaction database D
W

T-OS, this

IWF can be identified as a one-sum weighted itemset in

D
W

T-OS.

3.2.1. The Score Transformation Procedure. To

determine whether an IWF is a subset of a particular Tj

in D
W

T-OS or not, the actual weighting score wji that is

assigned to each item a
OSW

i ∈ Tj where a
OSW

i ∈ IWF

needs to be transformed as: (wji) / (∑q = 1…|Tj| & (a
OSW

q ∈ IWF)

wjq ∈ Tj). The transformed scores clarify the actual

allocating relationship among these IWF-related items

in Tj. An IWF is defined as a subset of Tj if the score of

each item involved in IWF matches the relative item

score transformed in Tj. For example, an IWF can be

given as {I1[0.4], I2[0.2], I3[0.4]} while a transaction Tj

may be {I1[0.2], I2[0.1], I3[0.2], I4[0.25], I5[0.25]}; the

weighing scores for items I1, I2 and I3 are grouped since

the item intersection IWF ∩ Tj = {I1, I2, I3}; although

the actual scores of I1, I2 and I3 are presented differently

in IWF (as “0.4”, “0.2” and “0.4”) and Tj (as “0.2”,

“0.1” and “0.2”), IWF is still a subset of Tj because the

transformed scores of I1, I2 and I3 ∈ Tj are computed as

“0.2 / (0.2 + 0.1 + 0.2) = 0.4”, “0.1 / (0.2 + 0.1 + 0.2) =

0.2” and “0.2 / (0.2 + 0.1 + 0.2) = 0.4”, and these

match the scores given in IWF. The transformation of

transaction item scores enables the one-sum weighted

property to be translated from transactions to the

extracted weighted itemsets.

3.2.2. Frequent One-sum Weighted Itemsets. A one-

sum weighted itemset is considered to be frequent if it

can be found as a subset of more than (σ
W

OS × |Ŧ|)-

many transactions in D
W

T-OS, where σ
W

OS is a user-

supplied one-sum weighted support threshold. The

closure property of itemsets can also be observed in

one-sum weighted itemsets, so that: if a one-sum

weighted itemset is frequent then all its subsets will

also be frequent; conversely if a one-sum weighted

itemset is infrequent then all its supersets will also be

infrequent.

3.3. One-sum Weighted Association Rules

A frequent one-sum weighted itemset is presented as

X
OSW

 ∪ Y
OSW

, where X
OSW

, Y
OSW

 ⊂ I
OSW

 and X
OSW

 ∩

Y
OSW

 = ∅. A one-sum WAR in the form of “X
OSW

 ⇒

Y
OSW

” can be subsequently produced by a rule

formalization procedure, namely Rule-Formalization

(see Algorithm 2). In Rule-Formalization, w(a
OSW

i) ∈

(X
OSW

 ∪ Y
OSW

) represents the corresponding (actual)

weighting score for the item a
OSW

i in X
OSW

 ∪ Y
OSW

.

A one-sum WAR “X
OSW

 ⇒ Y
OSW

” is said to be valid

when count((X
OSW

 ∪ Y
OSW

) ⊆ (Tj ∈ Ŧ)) / count(X
OSW

 ⊆

(Tj ∈ Ŧ)) ≥ α
W

OS, where α
W

OS is a user-supplied one-

sum weighted confidence threshold, count(J) is the

count function that returns the number of occurrences

of an object J, and the previously described score

transformation procedure is employed to verify the “⊆”

relationship.

Algorithm 2: The Rule-Formalization Procedure
Input: A frequent one-sum weighted itemset in terms of

 (XOSW, YOSW);
Output: A formalized one-sum weighted association rule p

 (as “XOSW ⇒ YOSW”);

Begin Algorithm:
(1) prepare p to be a formalized one-sum weighted

 association rule;

(2) formalize “〈” as the first part of p;
(3) for each aOSWi ∈ XOSW do
(4) update p iteratively by formalizing “ aOSWi ‘[’ w(aOSWi)

 ∈ (XOSW ∪ YOSW) ‘]’ ” as its second part;
(5) end for
(6) update p by formalizing “〉 ⇒ 〈” as its third part;
(7) for each aOSWi ∈ YOSW do
(8) update p iteratively by formalizing “ aOSWi ‘[’ w(aOSWi)

 ∈ (XOSW ∪ YOSW) ‘]’ ” as its fourth part;
(9) end for

(10) update p by formalizing “〉” as its last part;
(11) return (p);
End Algorithm

4. Allocating Pattern Mining

 In this section, an ALlocating Pattern Mining

(ALPM) approach is proposed to extract all hidden and

interesting ALPs from a one-sum weighted transaction

database D
W

T-OS. With respect to the traditional ARM

approach presented in [2], the proposed ALPM method

consists of two phases: (1) generating a set of frequent

one-sum weighted itemsets from D
W

T-OS; and (2) mining

one-sum WARs (noted as ALPs) based on (1).

4.1. Generating Frequent One-sum Weighted

Itemsets

An algorithm, namely Apriori-ALP, is proposed to

generate a set of frequent one-sum weighted itemsets

from D
W

T-OS, which takes the Apriori algorithm (see

Algorithm 1) as its basis. A one-sum weighted support

threshold σ
W

OS, as a parameter of Apriori-ALP, is taken

from the user. The Apriori-ALP algorithm is presented

(see Algorithm 3).

4.2. Generating One-sum WARs (ALPs)

 Given a set of frequent one-sum weighted itemsets

SFI
W
OS that is generated by Apriori-ALP, an algorithm,

namely ALP-Generation, is further proposed to extract

ALPs from SFI
W
OS. A one-sum weighted confidence

threshold α
W

OS, as a parameter of ALP-Generation, is

taken from the user. According to the closure property

of one-sum weighted itemsets, all subsets of a frequent

one-sum weighted itemset fi are included in SFI
W

OS,

where |fi| ≥ 2. Hence the process of ALP-Generation

can be designed based on the closure property (see

Algorithm 4).

Algorithm 3: The Apriori-ALP Algorithm
Input: (a) A one-sum weighted transaction database DWT-OS;

 (b) A one-sum weighted support threshold σWOS;
Output: A set of frequent one-sum weighted itemsets SFIW

OS;

Begin Algorithm:
(1) k � 1;
(2) SFIW

OS � an empty set for holding the identified frequent
 one-sum weighted itemsets;

(3) Ck � generate the set of candidate k-itemsets from DW
T-OS;

(4) while (Ck ≠ ∅) do

(5) for each element ei ∈ Ck do
(6) generate all itemset weighting frames (IWFs) for ei

 through scanning all transactions in DWT-OS;
(7) initialize a Boolean variable frequentFlag as false;
(8) for each IWF fj ∈ ei do

(9) support � count(fj ⊆ transactions in DWT-OS);
 // the score transformation procedure (see section

 3.2.1) is employed to verify the “⊆” relationship

(10) if ((support / |DWT-OS|) ≥ σWOS) then
(11) add fj into SFIW

OS;
 // fj is stored with its actual support value

(12) set frequentFlag to be true;
(13) end for

(14) if (¬frequentFlag) then
(15) remove ei from Ck;
(16) end for
(17) k � k + 1;
(18) Ck � generate the set of candidate k-itemsets from

 frequent (k–1)-itemsets using “closure property”;
(19) end while
(20) return (SFIW

OS);
End Algorithm

Algorithm 4: The ALP-Generation Algorithm
Input: (a) A set of frequent one-sum weighted itemsets

 SFIW
OS;

 (b) A one-sum weighted confidence threshold αWOS;
Output: A set of allocating patterns SALP;

Begin Algorithm:
(1) SALP � an empty set for holding the identified allocating

 patterns;
(2) for each frequent one-sum weighted itemset fi ∈ SFIW

OS do
(3) for each frequent one-sum weighted itemset fj ∈ SFIWOS do

(4) if (fj ⊂ fi) then // the score transformation procedure

 (see section 3.2.1) is employed to verify the “⊂”
 relationship

(5) confidence � fi.support / fj.support;

(6) if (confidence ≥ αWOS) then
(7) allocating pattern p

 � Rule-Formalization(fj, fi – fj);
(8) add p into SALP;
(9) end for
(10) end for
(11) return (SALP);
End Algorithm

5. Results

In this section, we aim to show the effectiveness of

the proposed ALPM approach. First of all, a one-sum

weighted “shopping-basket” (transaction) database was

simulated in a two-stage process. In the first stage, a

traditional transaction database DT was generated using

the QUEST generator described in [2]. This defines

four parameters:

• N the number of attributes (items) in DT;

• D the number of records (transactions) in DT;

• T the average number of items in a transaction;

and

• I the largest number of items expected to be

 found in a frequent itemset.

 In a marketing context, it can be assumed that a

small-sized supermarket (or convenience store)

contains about 100 distinct categories of goods (i.e. N

= 100); and that there are 300 ~ 350 customers

(transactions) per day, so that in 1-month period there

are around 10,000 transactions (i.e. D = 10,000); in

average each transaction involves 10 goods (i.e. T =

10); and we expect that I = 5. Note that T = 10 and I =

5 were also used in [4] to simulate a set of “shopping-

basket” data. As a result of this stage, a transaction

database T10.I5.N100.D10000 was produced.

Table 3. List the top 10 and the bottom 10 mined ALPs

(based on confidence)

No. ALPs mined from T10.I5.N100.D10000.W3 Conf.

1 〈 13[0.25] 72[0.25] 〉 ⇒ 〈 22[0.5] 〉 0.322493

2 〈 9[0.2] 56[0.4] 〉 ⇒ 〈 74[0.4] 〉 0.314868

3 〈 74[0.25] 94[0.5] 〉 ⇒ 〈 22[0.25] 〉 0.313351

4 〈 9[0.4] 70[0.4] 〉 ⇒ 〈 74[0.2] 〉 0.310769

5 〈 22[0.25] 70[0.5] 〉 ⇒ 〈 9[0.25] 〉 0.310240

6 〈 13[0.249999] 74[0.249999] 〉 ⇒ 〈 22[0.500001] 〉 0.306701

7 〈 39[0.4] 74[0.199998] 〉 ⇒ 〈 46[0.4] 〉 0.305389

8 〈 9[0.5] 13[0.25] 〉 ⇒ 〈 22[0.25] 〉 0.304216

9 〈 26[0.500002] 74[0.249998] 〉 ⇒ 〈 22[0.249998] 〉 0.301724

10 〈 39[0.4] 46[0.4] 〉 ⇒ 〈 74[0.199998] 〉 0.3

… … …

69 〈 22[0.249998] 46[0.249998] 〉 ⇒ 〈 9[0.500002] 〉 0.229729

70 〈 46[0.4] 74[0.199998] 〉 ⇒ 〈 9[0.4] 〉 0.228310

71 〈 22[0.249998] 74[0.249998] 〉 ⇒ 〈 71[0.500002] 〉 0.226611

72 〈 22[0.199998] 46[0.4] 〉 ⇒ 〈 13[0.4] 〉 0.226215

73 〈 22[0.4] 74[0.199998] 〉 ⇒ 〈 9[0.4] 〉 0.221757

74 〈 22[0.249998] 74[0.249998] 〉 ⇒ 〈 26[0.500002] 〉 0.218295

75 〈 22[0.400001] 74[0.400001] 〉 ⇒ 〈 98[0.199997] 〉 0.207900

76 〈 22[0.4] 74[0.4] 〉 ⇒ 〈 71[0.199998] 〉 0.207900

77 〈 90[0.333331] 〉 ⇒ 〈 74[0.666668] 〉 0.207897

78 〈 90[0.5] 〉 ⇒ 〈 22[0.5] 〉 0.200929

 In the second stage of the database simulation, the

one-sum weighting score was assigned to each

transaction item, which simulates the customer habits

of allocating their money to different goods. Firstly, an

integer ωi was given to each item ai in a transaction Tj

(in T10.I5.N100.D10000), where ωi is randomly

chosen from {1, 2, 3}. Secondly, the one-sum

weighting score wi for ai was then calculated as: ωi /

(∑k = 1…|Tj| ωk). As a consequence, the simulated one-

sum weighted “shopping-basket” database, namely

T10.I5.N100.D10000.W3, was generated, where W

denotes the size of the random integer set in item (one-

sum) weighting.

A set of ALPs were then mined from

T10.I5.N100.D10000.W3, using the proposed ALPM

method that has been implemented as a standard Java

program. The experiments were run on a 1.87 GHz

Intel(R) Core(TM)2 CPU with 2.00 GB of RAM

running under Unix operating system. With regard to a

one-sum weighted support threshold value of 1% and a

one-sum weighted confidence threshold value of 20%,

78 ALPs were extracted. We ordered these ALPs based

on their confidence value (in a descending manner); the

top 10 and the bottom 10 ALPs are presented in Table

3. Note that in Table 3 the integers shown before the

square brackets are the item ID-numbers, and the real

(decimal) numbers shown in the square brackets

represent the item one-sum weights.

6. Conclusions

 This paper is concerned with the design of a new

knowledge model in data mining ALlocating Pattern

(ALP). The concept of ALPs can be seen as an

extension of the well-established Association Rules in a

special weighted setting. In this paper, the applicability

of mining ALPs in marketing related situations has

been stated. We expect that ALPs may be further

proven applicable in a surprising variety of areas/fields.

 An overview of the traditional Association Rule

Mining approach and three major Weighted

Association Rule Mining studies was provided in

section 2. The newly designed ALP concept was

presented in section 3. In section 4 an Apriori based

method was proposed to identify hidden and interesting

ALPs in data. From the experimental results, the

effectiveness of the proposed ALlocating Pattern

Mining (ALPM) method was demonstrated with

respect to a simulated one-sum weighted “shopping-

basket” database.

 Further research is suggested to develop improved

ALPM approaches with respect to the efficiency.

Another direction of the future work is to explore the

wide applicability of this new knowledge model.

7. Acknowledgement

The authors would like to thank Professor Paul Leng,

Dr. Robert Sanderson, Kamal Ali Albashiri, Chuntao

Jiang and Maya Wardeh of the Department of

Computer Science at the University of Liverpool for

their support with respect to the work described here.

8. References
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rules between Sets of Items in Large Databases”,

In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, ACM Press,

Washington, DC, USA, May 1993, pp. 207-216.

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining

Association Rules”, In Proceedings of the 20th International

Conference on Very Large Data Bases, Morgan Kaufmann

Publishers, Santiago de Chile, Chile, September 1994, pp.

487-499.

[3] C.H. Cai, A.W.C. Fu, C.H. Chen, and W.W. Kwong,

“Mining Association Rules with Weighted Items”, In

Proceedings of the 1998 International Database Engineering

and Application Symposium, IEEE Computer Society, Cardiff,

Wales, UK, July 1998, pp. 68-77.

[4] F. Coenen, and P. Leng, “Finding Association Rules with

Some Very Frequent Attributes”, In Proceedings of the 6th

European Conference on Principles and Practice of

Knowledge Discovery in Databases, Springer-Verlag,

Helsinki, Finland, August 2002, pp. 99-111.

[5] C. Cornelis, P. Yan, X. Zhang, and G. Chen, “Mining

Positive and Negative Association Rules from Large

Databases”, In Proceedings of the 2006 IEEE International

Conference on Cybernetics and Intelligent Systems, IEEE

Computer Society, Bangkok, Thailand, June 2006, pp. 613-

618.

[6] G. Dong, and J. Li, “Efficient Mining of Emerging

Patterns: Discovering Trends and Differences”, In

Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

ACM Press, San Diago, CA, USA, August 1999, pp. 43-52.

[7] P. Hájek, I. Havel, and M. Chytil, “The GUHA Method of

Automatic Hypotheses Determination”, Computing 1, 1966,

pp. 293-308.

[8] Han, J., and M. Kamber, Data Mining: Concepts and

Techniques (Second Edition), Morgan Kaufmann Publishers,

San Francisco, CA, USA, 2006.

[9] Mirkin, B., and B.G. Mirkin, Clustering for Data Mining:

A Data Recovery Approach, Chapman & Hall / CRC,

Virginia Beach, VA, USA, 2005.

[10] Quinlan, J.R., C4.5: Programs for Machine Learning,

Morgan Kaufmann Publishers, San Francisco, CA, USA,

1993.

[11] F. Tao, F. Murtagh, and M. Farid, “Weighted

Association Rule Mining using Weighted Support and

Significance Framework”, In Proceedings of the ACM

SIGKDD Conference on Knowledge Discovery and Data

Mining, ACM Press, Washington, DC, USA, August 2003,

pp. 661-666.

[12] W. Wang, J. Yang, and P. Yu, “Efficient Mining of

Weighted Association Rules (WAR)”, In Proceedings of the

ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, ACM Press, Boston, MA, USA, August 2000,

pp. 270-274.

[13] Wang, W. and J. Yang, Mining Sequential Patterns from

Large Data Sets, Springer-Verlag, 2005.

