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Abstract 
 

An Association Rule (AR) is a common knowledge 

model in data mining that describes an implicative co-

occurring relationship between two disjoint sets of 

binary-valued transaction database attributes (items), 

expressed in the form of an “antecedent ⇒ 

consequent” rule. A variant of the AR is the Weighted 

Association Rule (WAR). With regard to a marketing 

context, this paper introduces a new knowledge model 

in data mining  ALlocating Pattern (ALP). An ALP 

is a special form of WAR, where each rule item is 

associated with a weighting score between 0 and 1, 

and the sum of all rule item scores is 1. It can not only 

indicate the implicative co-occurring relationship 

between two (disjoint) sets of items in a weighted 

setting, but also inform the “allocating” relationship 

among rule items. ALPs can be demonstrated to be 

applicable in marketing and possibly a surprising 

variety of other areas. We further propose an Apriori 

based algorithm to extract hidden and interesting 

ALPs from a “one-sum” weighted transaction 

database. The experimental results show the 

effectiveness of the proposed algorithm. 

 

1. Introduction 
 

Data mining is an area of current research and 

development in computer science, which is attracting 

increasing attention from a wide range of different 

groups of people. It aims to extract various types 

(models) of hidden, interesting, previously unknown 

and potentially useful knowledge (i.e. rules, patterns, 

regularities, customs, trends, etc.) from databases, 

where the volume of a collected database can be 

measured in gigabytes. In data mining, common models 

of mined knowledge include: association rules [1], 

classification rules [10], prediction rules [8], clustering 

patterns [9], emerging patterns [6], sequential patterns 

[13], etc. 

Association Rule Mining (ARM) [1] is a well-

established data mining technique for the extraction of 

hidden and interesting patterns called Association 

Rules (ARs) from a given transaction (basket) database. 

It deals with binary-valued data attributes (items) only, 

where all attributes in a transaction database are valued 

in a Boolean manner. An AR describes an implicative 

co-occurring relationship between two disjoint sets of 

items, expressed in the form of an “antecedent ⇒ 

consequent” rule. In a marketing context, a typical AR 

can be exemplified as “〈 bread egg milk 〉 ⇒ 〈 butter 
ham 〉”, which can be interpreted as: when people 

purchase bread, egg and milk together, it is likely that 

both butter and ham are also purchased. 

The original ARM problem treats the importance of 

all items in a uniform manner. Based on a “real-life” 

marketing experience, Cai et al. [3] indicate that not all 

goods (items) share the same importance in a market, 

and introduce the concept of weighted items to improve 

the applicability of ARs. With regard to a retailing 

business, mining from weighted items/goods enables 

the generation of such ARs with more emphasis on 

some particular goods (e.g. goods that are under 

promotion, goods that always make significant profits) 

and less emphasis on other goods. The idea of mining 

ARs in a special transaction database, where each item 

is assigned a weighting score, directly depicts the 

problem of mining Weighted Association Rules 

(WARs). As a consequence, a number of alternative 

Weighted Association Rule Mining (WARM) 



approaches have been developed over the past decade, 

such as [11, 12]. 

A special case of WAR can be introduced as the 

“one-sum” WAR, where each rule item is associated 

with a weighting score between 0 and 1, and the sum of 

all rule item scores is 1. A one-sum WAR can not only 

indicate the implicative co-occurring relationship 

between two disjoint sets of items in a weighted setting, 

but also inform the “allocating” relationship among 

rule items. In a marketing context, an archetypal one-

sum WAR can be exemplified as “〈 bread[0.15] 
egg[0.20] milk[0.10] 〉 ⇒ 〈 butter[0.20] ham 

[0.35] 〉”, which can be interpreted as: when people 

spend 15%, 20% and 10% of their money to purchase 

bread, egg and milk together, it is likely that people 

will also spend 20% and 35% of their money to 

purchase butter and ham. In this paper, we introduce 

the concept of one-sum WARs, as a new knowledge 

model in data mining, and name such WARs as 

ALlocating Patterns (ALPs). We further propose an 

algorithm, based on the well-established Apriori 

algorithm [2], which effectively extracts hidden and 

interesting ALPs from a one-sum weighted transaction 

database. We believe that ALPs can be shown to be 

useful in a surprising variety of applications other than 

just marketing. 

The rest of this paper is organized as follows. In 

section 2, we describe some related work relevant to 

this study, where ARM is reviewed and three of the 

existing approaches in WARM are outlined. In section 

3, the concept of ALP is introduced, based on 

describing the one-sum weighted: transaction databases, 

itemsets and WARs. An algorithm for ALlocating 

Pattern Mining (ALPM) is proposed in section 4. 

Experimental results are presented in section 5 that 

demonstrate the effectiveness of the proposed 

algorithm. Finally our conclusions and open issues for 

further research are given in section 6. 

 

2. Related Work 
 

2.1. Association Rule Mining 
 

Association Rule Mining (ARM), first introduced in 

[1], aims to extract a set of ARs from a given 

transaction database DT. It is a well-established 

research field in data mining. Cornelis et al. [5] suggest 

that the concept of mining ARs can be dated back to 

the work of Hájek et al. in 1966 [7]. Let I = {a1, a2, …, 

an–1, an} be a set of items (binary-valued database 

attributes), and Ŧ = {T1, T2, …, Tm–1, Tm} be a set of 

transactions (database records), DT is described by Ŧ, 

where each Tj ∈ Ŧ comprises a set of items I' ⊆ I. An 

AR can be given as “antecedent (X) ⇒ consequent (Y)”, 

where X, Y ⊂ I and X ∩ Y = ∅. In ARM, two threshold 

values are usually used to determine the significance of 

an AR: 

1. Support: A set of items S is called an itemset. The 

support of S is the proportion of transactions T in Ŧ 

for which S ⊆ T. If the support of S exceeds a user-

supplied support threshold σ, S is defined to be a 

Frequent Itemset (FI). 

2. Confidence: Represents how “strongly” an itemset 

(rule antecedent) X implies another itemset (rule 

consequent) Y. A confidence threshold α, supplied 

by the user, is used to distinguish high confidence 

ARs from low confidence ARs. 

An AR “X ⇒ Y” is said to be valid when the support 

for the co-occurrence of X and Y exceeds σ, and the 

confidence of this AR exceeds α. The computation of 

support is: 

support(X ∪ Y) = count(X ∪ Y) / |Ŧ| , 

where count(X ∪ Y) is the number of transactions 

containing the set X ∪ Y in Ŧ, and |Ŧ| is the size 

function of the set Ŧ. The computation of confidence is: 

confidence(X ⇒ Y) = support(X ∪ Y) / support(X) . 
 
Algorithm 1: The Apriori Algorithm 
Input:  (a) A transaction database DT; 

 (b) A support threshold σ; 
Output: A set of frequent itemsets SFI; 

Begin Algorithm: 
(1) k � 1; 
(2) SFI � an empty set for holding the identified frequent 

itemsets; 
(3) generate all candidate 1-itemsets from DT; 
(4) while (candidate k-itemsets exist) do 
(5)      determine support for candidate k-itemsets from DT; 
(6)      add frequent k-itemsets into SFI; 
(7)      remove all candidate k-itemsets that are not  

       sufficiently supported to give frequent k-itemsets; 
(8)      generate candidate (k+1)-itemsets from  

          frequent k-itemsets using “closure property”; 
(9)      k � k + 1; 
(10)  end while 
(11)   return (SFI); 
End Algorithm 
 

The most well-known ARM algorithm is the Apriori 

algorithm, developed by Agrawal and Srikant [2], 

which has been the basis of many subsequent ARM 

and/or ARM-related algorithms. In [2], it was observed 

that ARs can be straightforwardly generated from a set 

of FIs. Thus, efficiently and effectively mining FIs 

from data is the key to ARM. The Apriori algorithm 

iteratively identifies FIs in data by employing the 

“closure property” of itemsets in the generation of 



candidate itemsets, where a candidate (possibly 

frequent) itemset is confirmed as frequent only when 

all its subsets are identified as frequent in the previous 

pass. The “closure property” of itemsets can be 

described as follows: if an itemset is frequent then all 

its subsets will also be frequent; conversely if an 

itemset is infrequent then all its supersets will also be 

infrequent. The Apriori algorithm is outlined in 

Algorithm 1. 

 

2.2. Weighted Association Rule Mining 
 

Weighted Association Rule Mining (WARM), first 

introduced in [3], aims to apply the concept of 

weighting into ARM and consequently extract WARs 

from a weighted transaction database. In the past 

decade, a number of alternative WARM approaches 

have been introduced. Three major studies can be 

described as follows. 

 

2.2.1. The Traditional Approach. Cai et al. [3] 

introduce the concept of weighted items and the 

weighted transaction database D
W

T. Let I
W
 = {a

W
1, 

a
W
2, …, a

W
n–1, a

W
n} be a set of weighted items, where 

each a
W

i ∈ I
W
 is an item ai ∈ I (see section 2.1) labeling 

with a user-defined weighting score wi (0 ≤ wi ≤ 1). Let 

Ŧ = {T1, T2, …, Tm–1, Tm} be a set of transactions, D
W

T 

is described by Ŧ, where each Tj ∈ Ŧ comprises a set of 

weighted items I
W
' ⊆ I

W
. To measure the significance of 

a WAR, the “weighted-support  weighted-

confidence” approach, an extension of the “support  

confidence” framework (as described in section 2.1), 

was introduced in [3]. A weighted support threshold σ
W
 

is supplied by the user that distinguishes frequent 

weighted itemsets from the infrequent ones. A weighted 

itemset X
W
 ∪ Y

W
 is considered to be frequent if (∑aW

i ∈ 

(X
W
 ∪ Y

W
) wi) × support(X

W
 ∪ Y

W
) ≥ σ

W
, where X

W
, Y

W
 ⊂ 

I
W
 and X

W
 ∩ Y

W
 = ∅. Having a set of frequent weighted 

itemsets generated from D
W

T, a set of WARs can be 

further obtained. A WAR “X
W
 ⇒ Y

W
” is said to be 

valid when X
W
 ∪ Y

W
 is frequent, and ((∑aW

i ∈ (X
W
 ∪ Y

W
) wi) 

× support(X
W
 ∪ Y

W
)) / ((∑aW

i ∈ X
W
) wi) × support(X

W
)) ≥ 

α
W
, where α

W
 is a user-defined weighted confidence 

threshold. 

 

2.2.2. The Variant Approach. Wang et al. [12] 

propose an alternative approach of mining WARs by 

introducing a variant weighted transaction database 

D
W

T
*
. With regard to real-life marketing, the newly 

mined WARs “can not only improve the confidence in 

the rules, but also provide a mechanism to do more 

effective target marketing by identifying or segmenting 

customers based on their potential degree of loyalty or 

volume of purchases” [12]. In Table 1 several points, 

in terms of item weighting score properties, that 

differentiate D
W

T
*
 from D

W
T are listed. 

Table 1. The difference between D
W

T and D
W

T
*
 

Properties of Item 

Weighting Scores D
W

T D
W

T

*
 

Single-value like 

vs. 

Interval-value like 

The weighting score of 

an item in DW
T is given 

as a single value v. The 

weighting score is 

defined as single-value 

like. 

The weighting score of 

an item in DW
T
* is given 

as an interval of two 

values [v1, v2], where v1 

< v2. The weighting 

score is defined as 

interval-value like. 

Percentage like 

vs. 

Positive-integer like 

The value of the 

weighting score for an 

item in DW
T is given as 

0 ≤ v ≤ 1. The 

weighting score is 

defined as percentage 

like. 

Both lower and upper 

values of the weighting 

score interval for an 

item in DW
T
* are given 

as v1, v2 ≥ 1 and v1, v2 ∈ 

Z (both v1, v2 are 

positive integers). The 

weighting score is 

defined as positive-

integer like. 

Static like 

vs. 

Dynamic like 

The weighting score of 

an item in DW
T is given 

as a fixed value in all 

transactions. The 

weighting score is 

defined as static like. 

The weighting score of 

an item in DW
T
* can be 

valued differently in 

different transactions. 

The weighting score is 

defined as dynamic like. 

     In a marketing context, a typical WAR mined from 

D
W

T
*
 can be exemplified as “〈 bread[9, 14] 〉 ⇒            

〈 ham[12, 20] 〉”, which can be interpreted as: when 

bread is purchased in the quantity between 9 and 14, it 

is likely that ham in the quantity between 12 and 20 is 

also purchased. In [12] the proposed WAR generation 

approach comprises two phases: (1) generating a set of 

frequent itemsets from D
W

T
*
 regardless the weighting 

issue; and (2) extracting hidden and interesting WARs 

based on (1). In (2) a set of candidate rules can be 

enumerated from the result of (1), where the 

consequent of each candidate rule “only contains one 

weighted item for the sake of simplicity” [12]. A 

number of “qualified” WARs can be further identified 

in the set of candidate rules with respect to the user-

specified threshold values of support, confidence and 

density. Since this study is direct at producing 

maximum rules only, a set of maximum WARs  “a 

qualified WAR X ⇒ Y is a maximum WAR if for any 

generalization X′ of X and Y′ of Y where X′ ≠ X and Y′ 

≠ Y, neither of X′⇒ Y, X ⇒ Y′, nor X′⇒ Y′ is a 

qualified WAR” [12]  is finally obtained. In [11] Tao 

et al. classify the process of mining WARs from D
W

T
*
, 

proposed in [12], as a technique of post-processing or 

maintaining ARs. 

 

2.2.3. The Improved Approach. Tao et al. [11] 

identify the main challenge of mining WARs: the 



closure property of itemsets (see section 2.1) is invalid 

in the generation of significant/frequent weighted 

itemsets. To solve this problem, an improved approach 

of mining WARs was proposed in [11], which takes an 

alternative weighted transaction database DW
T
+ as the 

input. The only difference between D
W

T
+
 and D

W
T is 

that the item weighting scores in D
W

T
+
 can be valued as 

any positive real number, whereas the item weighting 

scores in D
W

T are valued between 0 and 1, i.e. 

“percentage like”. This improved approach 

automatically assigns a weighting score w_tj to each 

transaction Tj in D
W

T
+
, where the computation of w_tj is: 

(∑aW
i ∈ Tj wi) / |Tj|. Based on the assigned transaction 

scores, a set of frequent weighted itemsets SFI
W can be 

generated. A weighted itemset X
W
 ∪ Y

W
 is considered 

to be frequent if (∑j = 1…|Ŧ| & (X
W
 ∪ Y

W
) ⊆ Tj w_tj) / (∑j = 1…|Ŧ| 

w_tj) ≥ σ
W
, where X

W
, Y

W
 ⊂ I

W
, X

W
 ∩ Y

W
 = ∅, and σ

W
 

is a user-supplied weighted support threshold. In the 

generation of frequent weighted itemsets, the closure 

property can be proven work properly. With respect to 

the idea presented in [2], all WARs can be further 

mined from SFI
W. 

 

3. Allocating Patterns 
 

A new type of WAR, namely ALlocating Pattern 

(ALP), is designed in this section. As mentioned in 

section 1, an ALP can not only indicate the implicative 

co-occurring relationship between two (disjoint) sets of 

items in a weighted setting, but can also inform the 

allocating relationship among AR items. In a marketing 

application, ALPs can be used to show individual 

customer habits of allocating an amount of money to a 

variety of goods. This can be further used in sales and 

goods promotion, customer segmentation, transaction 

classification, etc. We would like to expect that ALPs 

may be proven to be applicable in a wide range of 

fields other than marketing related situations. The 

approach of mining ALPs requires a special weighted 

transaction database D
W

T-OS as the input. 

 

3.1. One-sum Weighted Transaction Database 
 

In Table 1 three sets of item score properties were 

defined to analyze different weighted transaction 

databases. These properties are “single-value like vs. 

interval-value like”, “percentage like vs. positive-

integer like”, and “static like vs. dynamic like”. In  

D
W

T-OS item weighing scores show an additional 

property (“one-sum” like) that distinguishes D
W

T-OS 

from other weighted transaction databases  the sum 

of all item scores in each transaction is 1. Hence D
W

T-OS 

can be referred to as a “one-sum” weighted transaction 

database. 

Let I
OSW

 = {a
OSW

1, a
OSW

2, …, a
OSW

n–1, a
OSW

n} be a set 

of one-sum weighted items, and Ŧ = {T1, T2, …, Tm–1, 

Tm} be a set of transactions. Each a
OSW

i ∈ I
OSW

 

represents an item ai ∈ I (see section 2.1) that is 

assigned a set of weighting scores θi = {wi1, wi2, …, 

wim–1, wim}, where 0 ≤ wij ≤ 1 and |θi| = |Ŧ| which means: 

for different transactions Tj ∈ Ŧ, different scores wij ∈ 

θi can be assigned to a particular item a
OSW

i ∈ I
OSW

. A 

one-sum weighted transaction database D
W

T-OS is 

described by Ŧ, where each Tj ∈ Ŧ comprises a set of 

one-sum weighted items I
OSW

' ⊆ I
OSW

, and ∑i = 1…|I
OSW

′| or 

|Tj| wji = 1. An overall comparison, in terms of item 

weighting score properties, of four different weighted 

transaction databases is provided in Table 2. 

Table 2. The comparison of DW
T, D

W
T
*, DW

T
+ and DW

T-OS 

Properties of Item 

Weighting Scores D
W

T D
W

T

*
 D

W

T

+
 D

W

T-OS 

Single-value like 

vs. 

Interval-value like 

Single-

value like 

Interval-

value like 

Single-

value like 

Single-

value like 

Percentage like 

vs. 

Positive-integer / 

Positive-real like 

Percentage 

like 

Positive-

integer like 

Positive-

real like 

Percentage 

like 

Static like 

vs. 

Dynamic like 

Static  

like 

Dynamic 

like 

Static  

like 

Dynamic 

like 

One-sum like No  No  No  Yes 

 

3.2. One-sum Weighted Itemsets 
 

An itemset can be recognized in a transaction 

database DT if this particular set of items appears as a 

subset of at least one transaction Tj in DT. A one-sum 

weighted itemset can be treated as an itemset that is 

presented in a particular weighting frame, where the 

item scores are assigned in a one-sum percentage 

manner. For example, {I1[0.1], I2[0.3], I3[0.3], I5[0.3]} 

and {I1[0.1], I2[0.3], I3[0.5], I5[0.1]} are two different 

weighting frames for the itemset {I1, I2, I3, I5}. An 

itemset can produce as many as infinity possible 

weighting frames. If an itemset weighting frame IWF 

appears as a subset of at least one transaction Tj in a 

one-sum weighted transaction database D
W

T-OS, this 

IWF can be identified as a one-sum weighted itemset in 

D
W

T-OS. 

 

3.2.1. The Score Transformation Procedure. To 

determine whether an IWF is a subset of a particular Tj 

in D
W

T-OS or not, the actual weighting score wji that is 



assigned to each item a
OSW

i ∈ Tj where a
OSW

i ∈ IWF 

needs to be transformed as: (wji) / (∑q = 1…|Tj| & (a
OSW

q ∈ IWF) 

wjq ∈ Tj). The transformed scores clarify the actual 

allocating relationship among these IWF-related items 

in Tj. An IWF is defined as a subset of Tj if the score of 

each item involved in IWF matches the relative item 

score transformed in Tj. For example, an IWF can be 

given as {I1[0.4], I2[0.2], I3[0.4]} while a transaction Tj 

may be {I1[0.2], I2[0.1], I3[0.2], I4[0.25], I5[0.25]}; the 

weighing scores for items I1, I2 and I3 are grouped since 

the item intersection IWF ∩ Tj = {I1, I2, I3}; although 

the actual scores of I1, I2 and I3 are presented differently 

in IWF (as “0.4”, “0.2” and “0.4”) and Tj (as “0.2”, 

“0.1” and “0.2”), IWF is still a subset of Tj because the 

transformed scores of I1, I2 and I3 ∈ Tj are computed as 

“0.2 / (0.2 + 0.1 + 0.2) = 0.4”, “0.1 / (0.2 + 0.1 + 0.2) = 

0.2” and “0.2 / (0.2 + 0.1 + 0.2) = 0.4”, and these 

match the scores given in IWF. The transformation of 

transaction item scores enables the one-sum weighted 

property to be translated from transactions to the 

extracted weighted itemsets. 

 

3.2.2. Frequent One-sum Weighted Itemsets. A one-

sum weighted itemset is considered to be frequent if it 

can be found as a subset of more than (σ
W

OS × |Ŧ|)-

many transactions in D
W

T-OS, where σ
W

OS is a user-

supplied one-sum weighted support threshold. The 

closure property of itemsets can also be observed in 

one-sum weighted itemsets, so that: if a one-sum 

weighted itemset is frequent then all its subsets will 

also be frequent; conversely if a one-sum weighted 

itemset is infrequent then all its supersets will also be 

infrequent. 

 

3.3. One-sum Weighted Association Rules 
 

A frequent one-sum weighted itemset is presented as 

X
OSW

 ∪ Y
OSW

, where X
OSW

, Y
OSW

 ⊂ I
OSW

 and X
OSW

 ∩ 

Y
OSW

 = ∅. A one-sum WAR in the form of “X
OSW

 ⇒ 

Y
OSW

” can be subsequently produced by a rule 

formalization procedure, namely Rule-Formalization 

(see Algorithm 2). In Rule-Formalization, w(a
OSW

i) ∈ 

(X
OSW

 ∪ Y
OSW

) represents the corresponding (actual) 

weighting score for the item a
OSW

i in X
OSW

 ∪ Y
OSW

. 

A one-sum WAR “X
OSW

 ⇒ Y
OSW

” is said to be valid 

when count((X
OSW

 ∪ Y
OSW

) ⊆ (Tj ∈ Ŧ)) / count(X
OSW

 ⊆ 

(Tj ∈ Ŧ)) ≥ α
W

OS, where α
W

OS is a user-supplied one-

sum weighted confidence threshold, count(J) is the 

count function that returns the number of occurrences 

of an object J, and the previously described score 

transformation procedure is employed to verify the “⊆”  

relationship. 

Algorithm 2: The Rule-Formalization Procedure 
Input:    A frequent one-sum weighted itemset in terms of 

      (XOSW, YOSW); 
Output: A formalized one-sum weighted association rule p 

      (as “XOSW ⇒ YOSW”); 

Begin Algorithm: 
(1) prepare p to be a formalized one-sum weighted 

      association rule; 

(2) formalize “〈” as the first part of p; 
(3) for each aOSWi ∈ XOSW do 
(4)      update p iteratively by formalizing “ aOSWi ‘[’ w(aOSWi)   

         ∈ (XOSW ∪ YOSW) ‘]’ ” as its second part; 
(5) end for 
(6) update p by formalizing “〉 ⇒ 〈” as its third part; 
(7) for each aOSWi ∈ YOSW do 
(8)      update p iteratively by formalizing “ aOSWi ‘[’ w(aOSWi)  

         ∈ (XOSW ∪ YOSW) ‘]’ ” as its fourth part; 
(9) end for 

(10)  update p by formalizing “〉” as its last part; 
(11)   return (p); 
End Algorithm 

 

4. Allocating Pattern Mining 
 

     In this section, an ALlocating Pattern Mining 

(ALPM) approach is proposed to extract all hidden and 

interesting ALPs from a one-sum weighted transaction 

database D
W

T-OS. With respect to the traditional ARM 

approach presented in [2], the proposed ALPM method 

consists of two phases: (1) generating a set of frequent 

one-sum weighted itemsets from D
W

T-OS; and (2) mining 

one-sum WARs (noted as ALPs) based on (1). 
 

4.1. Generating Frequent One-sum Weighted 

Itemsets 
 

An algorithm, namely Apriori-ALP, is proposed to 

generate a set of frequent one-sum weighted itemsets 

from D
W

T-OS, which takes the Apriori algorithm (see 

Algorithm 1) as its basis. A one-sum weighted support 

threshold σ
W

OS, as a parameter of Apriori-ALP, is taken 

from the user. The Apriori-ALP algorithm is presented 

(see Algorithm 3). 

 

4.2. Generating One-sum WARs (ALPs) 
 

     Given a set of frequent one-sum weighted itemsets 

SFI
W
OS that is generated by Apriori-ALP, an algorithm, 

namely ALP-Generation, is further proposed to extract 

ALPs from SFI
W
OS. A one-sum weighted confidence 

threshold α
W

OS, as a parameter of ALP-Generation, is 

taken from the user. According to the closure property 

of one-sum weighted itemsets, all subsets of a frequent 

one-sum weighted itemset fi are included in SFI
W

OS, 

where |fi| ≥ 2. Hence the process of ALP-Generation 

can be designed based on the closure property (see 

Algorithm 4). 



Algorithm 3: The Apriori-ALP Algorithm 
Input:  (a) A one-sum weighted transaction database DWT-OS; 

                  (b) A one-sum weighted support threshold σWOS; 
Output: A set of frequent one-sum weighted itemsets SFIW

OS; 

Begin Algorithm: 
(1) k � 1;  
(2) SFIW

OS � an empty set for holding the identified frequent  
       one-sum weighted itemsets; 

(3) Ck � generate the set of candidate k-itemsets from DW
T-OS; 

(4) while (Ck ≠ ∅) do 

(5)      for each element ei ∈ Ck do 
(6)           generate all itemset weighting frames (IWFs) for ei  

                 through scanning all transactions in DWT-OS; 
(7)          initialize a Boolean variable frequentFlag as false; 
(8)           for each IWF fj ∈ ei do 

(9)                support � count(fj ⊆ transactions in DWT-OS); 
             // the score transformation procedure (see section  

                  3.2.1) is employed to verify the “⊆” relationship 

(10)                if ((support / |DWT-OS|) ≥ σWOS) then 
(11)                     add fj into SFIW

OS;  
                  // fj is stored with its actual support value 

(12)                     set frequentFlag to be true; 
(13)           end for 

(14)           if (¬frequentFlag) then 
(15)                remove ei from Ck; 
(16)      end for 
(17)      k � k + 1; 
(18)      Ck � generate the set of candidate k-itemsets from  

            frequent (k–1)-itemsets using “closure property”; 
(19) end while 
(20) return (SFIW

OS); 
End Algorithm 
 
Algorithm 4: The ALP-Generation Algorithm 
Input:  (a) A set of frequent one-sum weighted itemsets  

       SFIW
OS; 

 (b) A one-sum weighted confidence threshold αWOS; 
Output: A set of allocating patterns SALP; 

Begin Algorithm: 
(1) SALP � an empty set for holding the identified allocating  

       patterns; 
(2) for each frequent one-sum weighted itemset fi ∈ SFIW

OS do 
(3)      for each frequent one-sum weighted itemset fj ∈ SFIWOS do 

(4)            if (fj ⊂ fi) then // the score transformation procedure 

                    (see section 3.2.1) is employed to verify the “⊂”  
      relationship 

(5)                 confidence � fi.support / fj.support; 

(6)                if (confidence ≥ αWOS) then 
(7)                      allocating pattern p  

                            � Rule-Formalization(fj, fi – fj); 
(8)                      add p into SALP; 
(9)      end for 
(10)  end for 
(11)   return (SALP); 
End Algorithm 
 

5. Results 
 

In this section, we aim to show the effectiveness of 

the proposed ALPM approach. First of all, a one-sum 

weighted “shopping-basket” (transaction) database was 

simulated in a two-stage process. In the first stage, a 

traditional transaction database DT was generated using 

the QUEST generator described in [2]. This defines 

four parameters: 

• N  the number of attributes (items) in DT; 

• D  the number of records (transactions) in DT; 

• T  the average number of items in a transaction; 

and 

• I  the largest number of items expected to be  

       found in a frequent itemset. 

     In a marketing context, it can be assumed that a 

small-sized supermarket (or convenience store) 

contains about 100 distinct categories of goods (i.e. N 

= 100); and that there are 300 ~ 350 customers 

(transactions) per day, so that in 1-month period there 

are around 10,000 transactions (i.e. D = 10,000); in 

average each transaction involves 10 goods (i.e. T = 

10); and we expect that I = 5. Note that T = 10 and I = 

5 were also used in [4] to simulate a set of “shopping-

basket” data. As a result of this stage, a transaction 

database T10.I5.N100.D10000 was produced.   

Table 3. List the top 10 and the bottom 10 mined ALPs 

(based on confidence) 

No. ALPs mined from T10.I5.N100.D10000.W3 Conf. 

1 〈 13[0.25] 72[0.25] 〉 ⇒ 〈 22[0.5] 〉 0.322493 

2 〈 9[0.2] 56[0.4] 〉 ⇒ 〈 74[0.4] 〉 0.314868 

3 〈 74[0.25] 94[0.5] 〉 ⇒ 〈 22[0.25] 〉 0.313351 

4 〈 9[0.4] 70[0.4] 〉 ⇒ 〈 74[0.2] 〉 0.310769 

5 〈 22[0.25] 70[0.5] 〉 ⇒ 〈 9[0.25] 〉 0.310240 

6 〈 13[0.249999] 74[0.249999] 〉 ⇒ 〈 22[0.500001] 〉 0.306701 

7 〈 39[0.4] 74[0.199998] 〉 ⇒ 〈 46[0.4] 〉 0.305389 

8 〈 9[0.5] 13[0.25] 〉 ⇒ 〈 22[0.25] 〉 0.304216 

9 〈 26[0.500002] 74[0.249998] 〉 ⇒ 〈 22[0.249998] 〉 0.301724 

10 〈 39[0.4] 46[0.4] 〉 ⇒ 〈 74[0.199998] 〉 0.3 

… … … 

69 〈 22[0.249998] 46[0.249998] 〉 ⇒ 〈 9[0.500002] 〉 0.229729 

70 〈 46[0.4] 74[0.199998] 〉 ⇒ 〈 9[0.4] 〉 0.228310 

71 〈 22[0.249998] 74[0.249998] 〉 ⇒ 〈 71[0.500002] 〉 0.226611 

72 〈 22[0.199998] 46[0.4] 〉 ⇒ 〈 13[0.4] 〉 0.226215 

73 〈 22[0.4] 74[0.199998] 〉 ⇒ 〈 9[0.4] 〉 0.221757 

74 〈 22[0.249998] 74[0.249998] 〉 ⇒ 〈 26[0.500002] 〉 0.218295 

75 〈 22[0.400001] 74[0.400001] 〉 ⇒ 〈 98[0.199997] 〉 0.207900 

76 〈 22[0.4] 74[0.4] 〉 ⇒ 〈 71[0.199998] 〉 0.207900 

77 〈 90[0.333331] 〉 ⇒ 〈 74[0.666668] 〉 0.207897 

78 〈 90[0.5] 〉 ⇒ 〈 22[0.5] 〉 0.200929 

     In the second stage of the database simulation, the 

one-sum weighting score was assigned to each 

transaction item, which simulates the customer habits 

of allocating their money to different goods. Firstly, an 

integer ωi was given to each item ai in a transaction Tj 

(in T10.I5.N100.D10000), where ωi is randomly 

chosen from {1, 2, 3}. Secondly, the one-sum 

weighting score wi for ai was then calculated as: ωi / 

(∑k = 1…|Tj| ωk). As a consequence, the simulated one-

sum weighted “shopping-basket” database, namely 



T10.I5.N100.D10000.W3, was generated, where W 

denotes the size of the random integer set in item (one-

sum) weighting. 

A set of ALPs were then mined from 

T10.I5.N100.D10000.W3, using the proposed ALPM 

method that has been implemented as a standard Java 

program. The experiments were run on a 1.87 GHz 

Intel(R) Core(TM)2 CPU with 2.00 GB of RAM 

running under Unix operating system. With regard to a 

one-sum weighted support threshold value of 1% and a 

one-sum weighted confidence threshold value of 20%, 

78 ALPs were extracted. We ordered these ALPs based 

on their confidence value (in a descending manner); the 

top 10 and the bottom 10 ALPs are presented in Table 

3. Note that in Table 3 the integers shown before the 

square brackets are the item ID-numbers, and the real 

(decimal) numbers shown in the square brackets 

represent the item one-sum weights. 

 

6. Conclusions 
 

     This paper is concerned with the design of a new 

knowledge model in data mining  ALlocating Pattern 

(ALP). The concept of ALPs can be seen as an 

extension of the well-established Association Rules in a 

special weighted setting. In this paper, the applicability 

of mining ALPs in marketing related situations has 

been stated. We expect that ALPs may be further 

proven applicable in a surprising variety of areas/fields. 

     An overview of the traditional Association Rule 

Mining approach and three major Weighted 

Association Rule Mining studies was provided in 

section 2. The newly designed ALP concept was 

presented in section 3. In section 4 an Apriori based 

method was proposed to identify hidden and interesting 

ALPs in data. From the experimental results, the 

effectiveness of the proposed ALlocating Pattern 

Mining (ALPM) method was demonstrated with 

respect to a simulated one-sum weighted “shopping-

basket” database. 

     Further research is suggested to develop improved 

ALPM approaches with respect to the efficiency. 

Another direction of the future work is to explore the 

wide applicability of this new knowledge model. 
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