Classification of 3D Surface Data Using the
Concept of Vertex Unique Labelled Subgraphs

Wen Yu®*, Frans Coenen *, Michele Zito * and Kwankamon Dittakan *
*Department of Computer Science
The University of Liverpool
Ashton Building, Ashton Street, Liverpool, L69 3BX, UK
Email: {yuwen,coenen,michele,dittakan} @liverpool.ac.uk

Abstract—An overview is presented on the use of the concept
of Vertex Unique Labelled Subgraph (VULS) mining for the use
of localised classification of regions in 3D surfaces represented
in terms of grid graphs. A VULS is a sub graph within some
larger graph G that has a unique (‘“one-of’) vertex labelling
associated with it. Given a 3D surface represented as a grid
graph, we can identify a number of different forms of VULS
that may be discovered: (i) all, (ii) minimal, (iii) frequent and
(iv) frequent minimal. Algorithms for discovering (mining) these
are presented in the paper. The paper also presents the Backward
Match Voting (BMV) algorithm for predicting (classifying) vertex
labels associated with an ‘“unseen’ graph using a given collection
of VULS. The operation of the VULS mining algorithms, and the
BMYV algorithm, is fully described and evaluated. The evaluation
is conducted using satellite image data where the ground surface
is represented as a 3D surface with the » dimension describing
grey scale value. The idea is to predict vertex labels describing
ground type. A statistical analysis of the results, using the
Friedman test, is also presented so as to demonstrate the
statistical significance of the VULS based 3D surface regional
classification idea. The results indicate that the VULS concept is
well suited to the task of 3D surface regional classification.

Keywords-Data Mining; Graph Mining; Vertex Unique La-
belled Subgraph Mining; Vertex Classification;

I. INTRODUCTION

Three Dimensional (3D) surface data occurs in the context
of many environments. Obvious examples are applications that
use map data such as geological studies. Other applications
include manufacturing processes where 3D parts are produced;
one example is sheet metal forming ([1]). There are many
other domains where we can represent the data in a 3D x-y-
z format such that 3D surfaces can be defined. For example
image data can be defined in terms of a surface where the z
coordinate represents (say) intensity or gray scale value. Given
a 3D surface we may wish to classify this in a global manner,
surface s belongs to class c¢; or we might wish to classify the
surface in a local manner, region 7 in surface s belongs to class
c. For example, with respect to the latter we might wish to
say that a certain region within some given map data features
a particular from geology, or data at a particular locality on
a sheet metal surface has some specific distortion associated
with it, or data in a certain area within an image depicts a
particular object. In this paper we propose a mechanism for
conducting such local 3D surface classification using Vertex
Unique Labelled Subgraphs (VULS). The concept of VULS

Mining (VULSM) was first proposed by the authors in [2]
and further developed in [3], [4]. A VULS is a subgraph
with particular structure and edge labelling that has a unique
vertex labelling associated with it. The idea is to represent the
3D surface of interest in terms of a grid graph with a grid
size of d. Each vertex in the graph is then defined by an x-y
coordinate and has associated with it a z value (vertices thus
represent regions within a surface). Each vertex also has some
class label c¢ assiciated with it, taken from a set of classes
C = {c1,ca,...}. Given a pre-labelled training set, VULS
can be identified using a VULS mining process. The resulting
set of identified VULS can then be used to label vertices in
previously unseen grid graphs.

In the context of VULS based classification there are two
challenges. The first, in common with other forms of graph
mining, is that VULS mining is computationally expensive.
The second is that the identified set of VULS U should be
as comprehensive as possible. We express this in terms of
coverage, which is measured as follows:

V'l

coverage V] @9)]
where V' is the set of vertices contained in U and V is the
complete set of vertices contained in some pre labelled input
graph G. To achieve good coverage a comprehensive training
set is required. In the context of computational complexity,
instead of identifying all VULS, we can also attempt to
identify some appropriately descriptive (in terms of coverage)
subset of the complete set of VULS. To this end we can
identify a number of different forms of VULS: (i) minimal
VULS, (ii) frequent VULS and (iii) frequent minimal VULS.
A minimal VULS is a VULS ¢ such that none of its subgraphs
are VULS. A frequent VULS is a VULS ¢ whose occurrence
count within an input graph G is greater than some pre-
specfied threshold o. A frequent minimal VULS is then a
VULS ¢ which is both frequent and minimal.

To illustrate the operation of the proposed approach we
consider the classification of regions within satellite imagery
for the purpose of land usage analysis [5], [6], [7], [8].

The rest of this paper is organised as follows. An overview
of the proposed VULS mining and classification process is
presented in Section II. The algorithms for mining VULS,
minimal VULS, frequent VULS and frequent minimal VULS

are described in section III. The Backward-Match-Voting
algorithm (for predicting vertex labels in previously unseen
data) is then presented in Section IV. An experimental analysis
of the proposed approach, in the context of satellite images, is
then given in section V. Section VI presents some conclusions
and summarises the work and main findings.

II. SYSTEM OVERVIEW

An overview of the proposed VULS based 3D surface clas-
sifier generation process is presented in this section. A block
diagram is given in Figure 1. The input is a set of 3D surfaces
(grayscale satellite images with respect to the work described
in this paper). These images are then translated into grid graph
format; in the case of our satellite images the z coordinate
describes the average grayscale value with respect to each grid
square. Once the satellite images have been translated into a
grid-graph format VULS mining can be applied. Recall that
we can mine either: (i) the complete set of VULS, (ii) minimal
VULS, (iii) frequent VULS or (iv) frequent minimal VULS.
The VULS mining process is described in further detail in
Section III below. To apply (or test) the resulting set of VULS,
in the context of classification (vertex label prediction), we
match the mined VULS to subgraphs in new data so that
the labels associated with the VULS can be used to label
the new graph. This is achieved using what we have termed
the Backward Match Voting (BMV) algorithm which is thus
described in further detail in Section IV.

.| VULS |
"I Mining
Backward-
Match-Voting
algorithm

Fig. 1: The VULS generation and application/testing process
ITII. VULS MINING

The mining of the complete set of VULS encompasses
traversing the entire search space starting with £k = 1 edge
subgraphs and continuing until some user-specified Maximum
number of edges (Max) is reached. Note that in the context
of classification very large VULS will be of little use as they
will be “overfitted” to the training set and therefore unlikely to
appear in any unseen data. Note also that if a k edge subgraph
is not a VULS this does not necessarily mean that its k£ + 1
edge super graphs will also not be VULS (and vice versa).
Indeed as k approaches max the likelihood of finding VULS
increases. Thus the process for finding all VULS is exhaustive,
involving exponential time complexity as the size of the input
graph increases.

The high level pseudo code for the VULSM algorithm is
presented in Algorithm 1. The input is a labelled graph G and
a value maz for the maximum size of an identified VULS.
Note that the input graph G is encoded using minimal Depth
First Search (DFS) lexicographical ordering, a canonical form
also used with respect to the well known gSpan algorithm [9].

Pre-processing
and grid-graph
generation

Y

Algorithm 1 : VULSM algorithm for mining All VULS
: Input:

: G = The input graph

: max = The maximum size of a VULS

: Output:

U = The set of all VULS contained in G

}{I#b)l\)r—

6: U=1)
7: G1 = the set of 1 edge (candidate) subgraphs contained
in G

8: procedure main(G, max)

9: k=1

10: while (k < maz) do

11: U =UUidVULS(G}) (Algorithm 2)

12: coverage = Coverage calculated using Equation 1

13: if coverage = 100% then

14: exit

15: end if

16: k=k+1

17: G = candidateGeneration(G1, Gg_1, k) (Algo-
rithm 3)

18: end while

19: end procedure

The output is the set of identified VULS U. Recall that we
limit the size of the searched-for VULS using the parameter
maxz; if we do not do this the entire input graph may ultimately
be identified as a VULS which, in the context of the intended
applications of VULS (prediction), will not be very useful.
At the start of the VULSM procedure, the set U will be
empty (line 6). Note also that max < |Eg| as otherwise we
will attempt to generate candidate subgraphs that are bigger
than the input graph. We proceed in a breadth first manner
commencing with one edge candidate VULS, then two edge
candidate VULS, and continuing until max edge candidate
VULS are arrived at. On each iteration we first identify the
k edge VULS contained in the set of candidate VULS G,
(line 11), using the idVULS procedure (Algorithm 2), and
include them in the set U. We then check the coverage (lines
12 to 15) using Equation 1. Note that coverage checking
requires isomorphism checking which, for any reasonably
sized input graph G, is computationally expensive. Although
not shown in Algorithm 1, as the algorithm progresses, we
mark vertices in the input graph that are covered so that as
the algorithm progresses we only need to check the vertices
that are uncovered so far. If the entire input graph G is
covered (coverage = 100%) the procedure stops. Otherwise we
continue and generate the k£ + 1 edge candidate VULS (line
17) using the candidateGeneration procedure (Algorithm 3),
and so on.

Algorithm 2 shows the «dVULS procedure (and the asso-
ciated isVU LS procedure). The idVU LS procedure takes as
input a set of k edge candidate VULS (G},) and returns a set

Algorithm 2 : VULS identification procedure

1: procedure idVULS(Gg)

2 U =190

3 for all g € G, do

4 if isVULS(g) then
5: U =U'Ug

6 end if

7 end for

8 return U’

9: end procedure

10: procedure isVULS(g)

11: isaVULS = true

12: S = List of lists of labels that may be assigned to
each vertex in g

13: for all s € S do

14: if |s| # 1 then

15: isaVULS = false
16: break

17: end if

18: end for

19: return ¢saVULS
20: end procedure

(U’) of discovered k edge VULS (if any). Each candidate
subgraph ¢ in G} is processed in turn (line 3). Note that
each subgraph g in G, has the form (V, Ey, Lg,) (no vertex
label set). If a candidate graph ¢ is identified as a VULS
it is appended to the set U’ (line 5). To determine whether
a candidate VULS g is a VULS the isVULS procedure is
called. The isVULS procedure is given in the second part of
Algorithm 2 (lines 10 to 20). In line 12 a list of sets of possible
labels for each vertex in the current candidate VULS g is
determined (S = {s1, 82, ... 5|4,/ }); note that S is generated
with respect to the original input graph G and that there is
a one to one correspondence between the sets in S and the
vertices in V. If the size of any of the sets s; € S is greater
than 1 (line 14) then g is not a VULS and the procedure returns
false. Otherwise the procedure returns true.

Algorithm 3 : Candidate Generation procedure

1: procedure candidateGeneration(G1,Gg—1, k)

2 Gk = @

3: for each g € G;_1 do

4 for each edge e € G; do

5 Giemp = Set of k edge subgraphs produced by
extending g with e using a modified form of “right most
extension”

6 Gy =G U Gtemp

7: end for

8 end for

9: Return Gy,

10: end procedure

Algorithm 3 gives the candidateGeneration procedure.
This is similar to that found in frequent subgraph mining
algorithms such as gSpan, but using a modified form of
“right most extension” (using unlabelled vertices instead of
labelled vertices). The input to the procedure is the set of one
edge subgraphs (G; identified at the beginning of the process
(Algorithm 1, line 7), the set of candidate VULS from the
previous iteration (Gx_1) and the current candidate VULS of
size k. Then for each g in Gj_1, and each one edge subgraph
e in G;, we compute the k& edge subgraphs by applying our
modified “right most extension” principle. In other words we
grow an existing candidate graph g by adding edges to its right
most nodes.

Algorithm 1 can be easily modified to mine: (i) minimal
VULS, (ii) frequent VULS, and (iii) frequent minimal VULS.
For minimal VULS mining, on each iteration, we only ex-
tend non-minimal VULS instead of all subgraphs to form
further candidate VULS. For (frequent VULS mining, on each
iteration, we only extend frequent subgraphs instead of all
subgraphs to form further candidate VULS ready for the next
stage processing (if a VULS ¢ is infrequent none of its super
graphs will be frequent). As noted above a frequent VULS
is one whose occurrence count exceeds some threshold value
o. In the case of transaction graph mining, we can express o
in terms of a proportion of the number of transaction graphs
under consideration (a subgraph is frequent if it appears in
% of the available set of transaction graphs). In single graph
mining this is not so straight forward, o can of course be
predefined in terms of a fixed value but this does not take
account of the overall graph size. With respect to the work
described in this paper the value o is calculating dynamically
as the average of the sum of the support values for the
complete set of candidate VULS identified on each iteration as
shown in Equation 2 where g; € G, and support is a function
that returns the occurrence count (support value) of g; in G.

S\ support(g;)
o= == 2
|Gl
For frequent minimal VULS mining we simply combine the

minimal and frequent VULS mining procedures.

IV. CLASSIFICATION USING VULS

The proposed classification mechanism, founded on the
VULS concept, where by the vertices in a new unseen graph
Grew are labelled, is presented in this section. Essentially
the process is one of matching subgraphs in a G, with
subgraphs in the set U of previously identified VULS. An issue
with this approach is that vertices in G, may be matched
to more than one vertex in the set U of VULS with different
vertex labels. In this case the conflicting label issue needs to be
resolved. We can identify a potential number of mechanisms
for doing this but we have opted for a voting mechanism.
A variety of voting mechanisms also exist, including: (i)
majority voting and (ii) weighted voting. We adopted the first
as the nature of the most appropriate weighting mechanisms
to use was difficult to determine (as indicated by some initial

experiments not reported here). We refer to the proposed
approach as the Backward Match Voting (BMV) algorithm
because: (i) we work “backwards” from the maximum value
for k to k = 1 (because this is more efficient as potentially
larger numbers of vertices in G, Will be covered early on
in the process), (ii)) we “match” graph structures and edge
labelings in U with graph structures and edge labelling in
Grew SO as to label the vertices in G,e, using the labelling
from U, and (iii) where more than one vertex label is assigned
to a vertex in G, We use a majority “voting” scheme.

The Backward Match Voting algorithm is presented in
Algorithm 4. The algorithm comprises a single main procedure
(main) and a sub-procedure. The algorithm takes as input a
collected set U of VULS and a new graph G, Which has
known edge labels but unknown vertex labels. The algorithm
also utilises the parameter maz set to the same value as
that used to generate the VULS in U so that the algorithm
does not try to find matches beyond the maximum size of the
VULS presented as part of the input. The output is a vertex
labelled graph G)c. The algorithm, as noted previously,
starts with VULS of size max and iteratively proceeds with
VULS of decreasing size until one edge VULS are reached or
100% coverage of the vertices in G,y is obtained, whichever
happens first. On each iteration a set, L, is generated (line
13) to hold vertex labels extracted from relevant VULS in
U. Note that each set in L corresponds to a vertex in Geqy
that does not yet have a label associated with it. We then, on
each iteration, process the VULS of size k£ and populate L.
We then process each set L; in L. If the number of labels
in a given set L; is greater than one (Line 18) the voting
mechanism is invoked and the most popular label assigned to
the corresponding vertex V; in G,.¢. If a set L; has only one
label (line 21) this is the label assigned to the corresponding
vertex V; in Gpew. In some case a set L; will be empty
Whatever the case once L has been processed the coverage
is calculate, if coverage is equivalent to 100% the process
stops (line 28), otherwise we continue with the k£ — 1 subsets.
At the end of the process any remaining vertex in Gy, that
does not yet have a label attached to it is assigned a default
label (lines 32 to 37).

V. EXPERIMENTS AND PERFORMANCE STUDY

This section describes the evaluation of the proposed VULS
based classifier mechanism in terms of effectiveness and
efficiency. Because of the novelty of the proposed VULS
concept there are no alternative algorithms that can be used
for comparison purposes. However, it was possible to compare
the operation of the proposed mechanism in the context of grid
size d ({8, 16, 32} pixels) and varying vertex degree values (4
or 8). It was also possible to evaluate classification effective-
ness using the four different forms of proposed VULS: all ,
minimal, frequent and frequent minimal. Thus 24 (3 x 2 x 4)
VULS mining configurations were considered. A fixed max
parameter setting of 4 was used because earlier experiments,
not reported in this paper, had demonstrated that this produced
the best results. The evaluation was conducted by considering

Algorithm 4 : Backward Match Voting (BMV) algorithm to
predict vertex labels in a vertex-unlabelled graph

1: Input:

2: U = Set of identified VULS

3: Gpew = Edge labelled previously unseen input graph
(with unlabelled vertices)

4: Max = the Maximum VULS size (consistent with train-
ing procedure)

5: Output:

6: Graph G, with labelled vertices

7: defaultVertexLabel = A default vertex label
8: coverage=0

9: V' = Set of vertices in Grew ({v1,02,...,9G,.0|})

10: k = max

11: procedure main(Gyey, mazx, U)

12: while (k >=1) do

13: L = Set of empty sets related to vertices in Geq
that do not already have a vertex label

14: for all g € U where |g| = k do

15: Ly, = Updated set of labels in Ly, where
vertices in g match G ey

16: end for

17: for all L; € L do

18: if |L;| > 1 then

19: v;.label = most frequent label in L;

20: else

21: if |[L;| =1 then

22: v;.label = label in L;

23: end if

24: end if

25: end for

26: coverage = compute coverage using Equation 1
with respect to Gpeq

27: if coverage = 100% then

28: exit

29: end if

30: k=k—-1

31: end while

32: if coverage # 100% then

33: for all v; € G,cr, do

34: if v;.label = null then

35: v;.label = DefaultVertexLabel

36: end if

37: end for

38: end if

39: end procedure

a specific case study directed at a rural area of Ethiopia
which is described in Sub-section V-A below. Ten fold Cross-
Validation (TCV) was used throughout. The recorded metrics
were: (i) Area Under the Receiver Operating Characteristic
Curve (AUC), (ii) coverage and (iii) run time. To determine
the statistical significance of the AUC results the Friedman
test combined with the Nemenyi’s post-hoc test was applied.
A variant of Demsars significance diagrams was used to visu-
alise the statistical significance results obtained. Note that the
Friedman statistic was computed using the approach presented
in [10]. Image preprocessing and preparation was conducted
using the MATLAB (matrix laboratory) workbench?. The
presented VULSM algorithms were implemented using the
JAVA programming language. All experiments were conducted
using a 2.7 GHz Intel Core i5 with 4 GB 1333 MHz DDR3
memory, running OS X 10.8.1 (12B19).

A. Case Study Application Domain

For evaluation purposes a set of satellite images describing
part of the Ethiopian hinterland was used. Image grey scale
pixels values were interpreted as z values and consequently
each image represented a 3D surface. Clearly other forms
of imagery than satellite imagery could equally well have
been used; or indeed other forms of 3D surface. The satel-
lite images were extracted from Google Earth!. An exam-
ple image is given in Figure 2. In total 10 images were
downloaded and hand annotated with land usage labels de-
scribing regions with in each satellite. For the evaluation
presented in this short paper the label (class) set was C' =
{HouseHold, NonHouseHold} (thus |C| = |Ly| = 2).
To identify regions a segmentation process was adopted. The
satellite images were converted into a grid graph, as described
earlier in this paper, with each node representing a segmented
region. If a node encompassed more than one region the
majority region was selected. The vertex labelling is inspired
by the work presented in [11] which used the same data set for
the purpose of population estimation. in Edges were labelled
according to the grey scale difference between the end vertices,
and were directed from low grayscale value to high. The
edge labels were discretised using equal range discretisation.
Different numbers of ranges were used, {2,3,4,5,6,7,8,9},
for the edge label discretisation.

B. AUC results

Table I shows the AUC results obtained. The 24 VULS
models are represented by the columns. The highest AUC
value obtained in each column is highlighted in grey. From
the table it can be seen that the best average AUC result was
obtained when using a grid size of d = 8 and grid graphs
with degree 8 (an average AUC of 0.760). Thus successfully
distinguishing “HouseHold” nodes (grid squares) from “Field”
nodes (grid squares). Regardless of VULS model (all VULS,
minimal VULS, frequent VULS, or frequent minimal VULS),
as the grid size d decreased, the recorded AUC values tended

Zhttp://www.mathworks.com
Thttp://www.google.co.uk/intl/en_uk/earth/index.htm]

Fig. 2: Example satellite image

to increase. This was because as the grid size decreases
the number of grid squares increases, thus the number of
vertices increases and consequently the grayscale intensity
difference (represented by edge labels) between end vertices
becomes substantial, therefore labelling of vertices associated
with VULS is more straight foward and the final performance
tends to be better.

C. Coverage results

Tables II shows the coverage results obtained. As expected
the best coverage (100%) is achieved when using all VULS or
minimal VULS mining. This is an interesting result indicating
that, at least in the case of this reported experiment, that the
identified set of minimal VULS incorporated all those VULS
from the complete set of VULS required to produce good
coverage. Using a grid size d = 32 and grid graphs with
degree 4 produced the best overall performance in terms of
average coverage (100%). From the table it can also be seen
that in the case of frequent VULS and frequent minimal VULS
the coverage was often 0%. This is because fewer VULS are
identified using these models, consequently fewer vertices are
covered, thus lower coverage results are produce. Although
in some cases, when using frequent VULS, coverage does on
occasion reach 100% it is conjectured that if a lower threshold
value o were used more frequent VULS might be identified
and consequently better coverage (and possibly AUC) results
produced. However, this is an item for further investigation
and future work.

D. Run time results

Tables III shows the recorded run time (seconds) results
obtained. For convenience the recorded run time is made up
of both the training and testing phases, thus the application
of both the appropriate VULSM algorithm and the Backward

TABLE I: AUC results

VULS Minimal VULS FVULS Frequent Minimal VULS

Graph d=32 d=16 d= d=32 = d= d=32 d =16 d= d=132 = d=38

Deg4 \ Deg8 Deg4 | Deg8 Deg4 Deg8 Deg4 | Deg8 | Deg4 | Deg8 Deg4 Deg8 Deg4 | Deg8 | Deg4 | Deg8 Deg4 | Deg8 | Deg4 | Deg8 Deg4 | Deg8 Deg4 | Deg8
SIE2V2 | 0.500 & 0.500 | 0.500 | 0.500 0.752 0.756 | 0.567 | 0.545 | 0.778 0.75 0.661 0.452 0.566 | 0.507 | 0.608 | 0.608 0.71 0.500 | 0.517 | 0.519 | 0.608 | 0.608 | 0.500 | 0.500
SIE3V2 | 0.500 0.500 | 0.500 | 0.557 0.691 0.805 0.54 0.616 = 0.851 | 0.863 | 0.719 0.795 0.508 | 0.548 | 0.696 | 0.508 | 0.747 | 0.687 0.692 | 0.615 | 0.696 | 0.697 | 0.500 | 0.500
SIE4V2 | 0.500 = 0.500 | 0.508 | 0.608 0.764 0.814 | 0.499 | 0.541 | 0.668 0.53 0815 0.865 0.497 | 0.569 | 0.608 | 0.608 | 0.674 | 0.629 | 0.565 | 0.568 | 0.607 | 0.608 | 0.674 | 0.579
SIESV2 | 0.500 = 0.500 | 0.558 | 0.608 0.748 0.777 | 0.508 | 0.545 | 0.502 | 0.556 | 0.812 0.893 0.569 | 0.549 | 0.664 | 0.608 | 0.686 | 0.628 | 0.646 | 0.565 | 0.664 | 0.665 | 0.686 | 0.578
SIE6V2 | 0.500 0.500 | 0.558 | 0.608 0.731 0.764 | 0.547 | 0.613 | 0.591 | 0.707 | 0.809 0.788 0.498 0.55 0.608 | 0.608 | 0.735 | 0.579 0.56 0.615 | 0.608 | 0.697 | 0.735 | 0.686
SIE7V2 | 0.499 = 0.500 | 0.608 | 0.608 0.752 0.748 0.55 0.549 | 0.582 | 0.733 | 0.691 0.681 0.497 | 0.560 | 0.608 ~0.615 | 0.666 | 0.554 | 0.646 | 0.567 | 0.664 | 0.615 | 0.666 | 0.566
SIE8V2 | 0.500 = 0.500 | 0.508 | 0.687 0.744 0.702 0.56 0.512 | 0.563 | 0.739 | 0.743 0.75 0.548 0.57 0.665 ‘ 0.608 | 0.674 | 0.629 0.57 0.564 | 0.672 | 0.673 | 0.674 | 0.628
SIE9V2 | 0.500 0.500 | 0.508 | 0.565 0.768 0.711 0.55 0.663 | 0.674 | 0.682 | 0.739 0.726 0.545 | 0.576 | 0.658 0.615 | 0.678 | 0.628 0.58 0.560 | 0.664 | 0.697 | 0.678 | 0.628
average | 0.500 ‘ 0.500 | 0.531 | 0.593 | 0.7438 | 0.760 | 0.540 | 0.573 | 0.651 | 0.695 | 0.749 | 0.7438 | 0.529 | 0.554 | 0.639 ‘ 0.597 | 0.696 | 0.604 | 0.597 | 0.572 | 0.648 | 0.658 | 0.639 | 0.583

TABLE II: Coverage resuts
VULS MinVULS FVULS FminVULS

Graph d=32 d=16 d=38 d=32 d=16 d=38 d=32 d=16 d=38 d=32 d=16 d=38

Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8
SIE2V2 100 100 100 100 99.883 | 90.322 100 100 100 100 99.834 | 90.488 | 98.75 | 97.188 | 99.766 | 99.844 | 97.891 0 89.063 | 89.531 | 99.766 | 99.844 0 0
SIE3V2 100 100 100 100 99.98 100 100 100 100 100 99.98 100 99.375 | 99.531 | 99.453 | 99.922 | 99.502 | 99.785 | 96.719 | 98.438 | 99.297 | 99.531 0 0
SIE4V2 100 100 100 100 100 100 100 100 100 100 100 100 100 99.375 | 99.727 | 99.844 | 99.736 | 99.844 | 98.594 | 99.063 | 99.609 | 99.844 | 99.736 | 89.863
SIE5V2 100 100 100 100 100 100 100 100 100 100 100 100 99.375 | 99.844 99.57 99.727 99.6 99.766 | 97.656 | 98.594 99.57 99.648 99.6 89.785
SIE6V2 100 100 100 100 100 100 100 100 100 100 100 100 100 99.844 | 99.766 | 99.844 | 99.316 | 99.922 | 98.438 | 98.438 | 99.727 | 99.531 99.316 | 99.619
SIE7V2 100 100 100 100 100 100 100 100 100 100 100 100 99.844 | 99.688 | 99.727 | 99.766 | 99.814 | 99.941 | 97.656 | 98.906 | 99.492 | 99.766 | 99.814 | 99.834
SIE8V2 100 100 100 100 100 100 100 100 100 100 100 100 100 99.844 | 99.492 | 99.805 | 99.736 | 99.844 | 98.281 | 98.438 | 99.453 | 99.609 | 99.736 | 99.824
SIE9V2 100 100 100 100 100 100 100 100 100 100 100 100 99.688 | 99.688 | 99.727 | 99.766 | 99.658 9.805 | 98.125 | 99.688 99.57 99.531 | 99.658 | 99.785
average 100 100 100 100 99.983 | 98.790 100 100 100 100 99.977 | 98811 | 99.629 | 99.375 [99.654 | 99.815 [99.407 | 87.363 | 96.817 | 97.637 | 99.561 [99.663 | 74.733 | 72.339

TABLE III: run time (seconds) where |Ly|=2 for graphs
VULS MinVULS FVULS FminVULS

Graph =32 d=16 d=38 d=32 d=16 d=38 d=32 d=16 d=38 d=32 d=16 d=

Deg# | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 | Degd | Deg8 Degd Deg8 Deg# | Deg8 | Degd | Deg8 | Degd | Deg8
SIE2V2 1.76 7.49 4.45 48.36 14.03 50.66 1.14 2.17 1.86 3.56 6.15 39.94 1.89 1.52 9.65 4641.82 4.95 12.82 1.08 0.98 117 3.09 1.8 10.13
SIE3V2 1.71 19.5 5.89 20.27 228 111.99 0.93 1.58 1.86 13 723 32.74 1.45 2.29 6.41 3057.38 49.33 27231.6 1.22 1.02 1.41 2.41 22 10.13
SIE4V2 1.88 9.71 5.74 92.86 29.22 147.92 1.22 2.15 3.01 17.8 747 52.49 1.76 1.23 5.08 1419.99 46.32 26119.6 091 12 112 2 2.56 9.89
SIE5V2 1.93 6.36 8.71 63.09 45.66 2333 1 2.08 2.08 8.45 6.72 204.46 24 247 4.07 16.66 42.73 23364.87 0.96 0.94 1.25 1.6 2.94 8.03
SIE6V2 1.71 4.99 6.58 93.57 35.36 278.18 117 1.79 2.73 4.16 6.83 128.76 1.95 4.38 2.74 2.99 38.03 21909.67 0.81 1.41 117 1.49 243 529
SIE7V2 1.5 4.76 4.89 43.17 3215 549.85 117 1.94 2.93 7.06 7 108.58 2.35 1.66 2.68 3.72 26.81 6096.72 1 .19 1.24 1.32 2.48 3.54
SIE8V2 1.46 7.27 5.49 46.11 33.06 170.14 1.03 1.88 213 10.39 58 126.57 2.47 6.62 3.08 6.21 20.29 596.78 0.85 1.52 1.26 1.61 2.31 2.88
SIE9V2 1.55 6.9 3.96 36.72 28.03 248.75 1.11 1.81 2.31 6.71 4.75 2154 2.48 8.81 4.65 12.57 18.25 541.12 0.96 1.12 1.38 1.66 2.31 2.98
average | 1.688 | 8.373 | 5.714 | 55.519 | 30.039 | 223.849 | 1.096 | 1.925 | 2.364 | 8.891 | 6.494 | 113.618 | 2.094 | 3.623 | 4.795 | 1145.168 | 30.839 | 13234.148 | 0.974 | 1.173 | 1.250 | 1.898 | 2.379 | 6.609

Match Voting (BMV) algorithm. Inspection of the table in-
dicates that, understandably, using minimal VULS, frequent
VULS and frequent minimal VULS requires less average
run time than when using all VULS. Minimal VULSM and
frequent VULSM is significantly more efficient than when
mining all VULS. General speaking, the fastest approach was
when using frequent minimal VULS, however, as already
noted, this produced very few VULS and poor coverage (and
consequently poor AUC results) so we can discount this. The
second fastest approaches were when minimal VULS and
frequent VULS were used. Reference to the previous results
presented above show that the use of minimal VULS also
produced good coverage and acceptable AUC results. From
Table III it can also be noted that in most cases the recorded
run time when using graphs with a degree of 8 was greater
than when using graphs with a degree of 4. Furthermore, there
are some cases where the used of frequent VULS required
much more run time than when using all VULS, especially
the cases highlighted in grey in Table III. This is because,
although frequent VULSM requires less time than all VULSM,
much more run time was required with respect to the BMV
algorithm, thus producing a substantial overall run time result.

E. Statistical Comparison of VULSM Models

To determine whether the AUC results presented in the
foregoing section were statistically significant or not, signifi-
cance testing was conducted using the Friedman test and the
Nemenyi post hoc test. The Friedman’s test [10], [12], [13],
[14], [15] as applied to the VULS concept was based on
the Average Ranked (AR) performances of the 24 different

VULS based classifiers. For this purpose the eight data used
to produce the AUC results presented in Table I were used
complemented with a further sixteen data sets generated
again using a range of values for the number of discretised
edge labels ({2,3,4,5,6,7,8,9}), and |Ly| = |C] = 3
and |Ly| = |C] 4. Where Ly 3 the class set
was {HouseHold, Forest, Field}; where Ly = 4 the class
set was {HouseHold, Forest, BrownField, GreenField}.
Thus a total 24 data sets (without assuming any specific
data distribution) and the 24 different VULS mining based
classification approaches were considered for the purpose of
the significance testing. Recall that using different values for
the grid size d was interpreted as representing a different
VULS based classification approach, as was using different
degree values (4 or 8).

All 24 VULS based classification approaches under con-
sideration were ranked according to their AUC performance
in ascending order with respect to each data set. The mean
rank of each classifier j, AR;, was then computed across all
the data sets. With D representing the overall number of data
sets, /X the overall number of classifiers, and r;- the rank of
classifier 5 with respect to data set ¢, the Friedman test statistic
was calculated as follows:

_ 12D K K(K+1)?2
Xp = K(K+1)) 21 ARJZ - 1 }

D i
AR; = 5>t

where Y% is distributed according to the Chi-Square distribu-
tion with K — 1 degrees of freedom (D = 24 and K = 24).
The null hypothesis, Hy, being tested was that there was

no statistically significant difference between the operation of
the VULS approaches. In other words that the performance
differences observed with respect to the above reported AUC
results was not statistically significant, but simply due to
random chance. If the value of X2F is above a given threshold,
then the null hypothesis that there is no difference in the
operation of the classifiers can be rejected. The smallest
level of significance that can result in the rejection of the
null hypothesis is represented by a threshold value called
the p-value. The p-value not only provides information about
whether a statistical hypothesis test is significant or not, it
also indicates something about “how significant” the result
is. Note also that the smaller the p-value, the stronger the
evidence against Hy. If Hj can be rejected, a so-called post
hoc test can be applied to detect which specific approaches
differ significantly. In this respect Demsar [15] recommended
the use of the Nemenyi test. The Nemenyi post-hoc test [16]
was thus applied so as to identify significant differences (if
any) between the individual approaches. Using the Nemenyi
post-hoc test the performances of two or more approaches
(classifiers) is significantly different if their average ranks
differ by at least a Critical Difference value (C'D), given by:

K(K+1)

12D 3
The value ¢, i is based on the “studentized” range statistic
and is tabulated in standard statistical textbooks. With respect
to the evaluation presented here the outcome from applying the
Friedman test and the Nemenyi post-hoc tests are presented
using a modified version of Demsar’s significance diagrams
[15], [14]. These diagrams display the ranked performances
of the VULS approaches, along with their critical difference,
to clearly indicate those approaches whose operation is sig-
nificantly different from the other approaches (classifiers) in
terms of recorded AUC value.

The Friedman statistic derived from the recorded AUC
values for the 24 data sets considered are summarized in
Table IV where the “AR” column gives the average AUC
ranked performance and the “AR+CD” gives the average AUC
value plus the calculated critical difference. The values in
the “AR+CD” column can be used to determine wether one
classification approach is statistically different from another.

Recall that the performance of two classifiers is significantly
different if the corresponding AR values differ by at least
the Critical Difference (CD). Note that in this case the chi-
square (x%) value, using 23 (K — 1 = 24 — 1 = 23) degrees
of freedom, is 104.238, whilst the p-value (threshold) is
5.888 E—11. The F-distribution with 23 (K —1 = 24—1 = 23)
and 529 (K — 1)« (D —1) = (24— 1) % (24 — 1) = 529)
degrees of freedom, F'(23,529) is 5.354. The critical value
for F'(23,529), with a critical difference level of « = 0.05, is
1.550. Thus, from the foregoing we can note that the p-value
(5.888 ' —11) is smaller than 0.005 and that the F-distribution
(5.354) is larger than the corresponding F-distribution critical
value (1.550). Referring back to Table IV the average rank
results comparing different VULS classifiers proposed in this

CD = Go,00,K

TABLE IV: Average Rankings of the VULS based classifica-
tion aproaches

Algorithm AR AR+CD
d32-Deg4-VULS 10917 16.166
d32-Deg8-VULS 8.917 14.166
d16-Deg4-VULS 11.063 16.312
d16-Deg8-VULS 8.333 13.583

d8-Deg4-VULS 13.313 18.562
d8-Deg8-VULS 7.667 12916
d32-Deg4-MinVULS 8.917 14.166
d32-Deg8-MinVULS 7.958 13.208
d16-Deg4-MinVULS 8.750 14.000
d16-Deg8-MinVULS 8.625 13.875
d8-Deg4-MinVULS 15.958 21.208
d8-Deg8-MinVULS 13.833 19.083
d32-Deg4-FVULS 18.063 23.312
d32-Deg8-FVULS 13.750 19.000
d16-Deg4-FVULS 12.438 17.687
d16-Deg8-FVULS 15.125 20.375
d8-Deg4-FVULS 12.792 18.041
d8-Deg8-FVULS 15.521 20.770
d32-Degd4-FminVULS | 14.354 19.604
d32-Deg8-FminVULS | 15.917 21.166
d16-Deg4-FminVULS | 14.167 19.416
d16-Deg8-FminVULS | 13.563 18.812
d8-Deg4-FminVULS 14.125 19.375
d8-Deg8-FminVULS 15.938 21.187

paper were all significant (p < 0.005). Therefore we can reject
Hy (that the observed performance differences among the
VULS approaches is not simply a matter of chance) and apply
a Nemenyi post-hoc test to detect which particular VULS
models differ significantly further.

X32-Deg4-FVULS —
X8-Deg4-MinVULS —
X8-Deg8-FminVULS —
X32-Deg8-FminVULS -—
X8-Deg8-FVULS —
X16-Deg8-FVULS -—
X32-Deg4-FminVULS ——
X16-Deg4-FminVULS —
X8-Deg4-FminVULS —
X8-Deg8-MinVULS -—
X32-Deg8-FVULS —
X16-Deg8-FminvVULS —
~—

X8-Deg4-VULS
X8-Deg4-FVULS +
X16-Deg4-FVULS +

X16-Deg4-VULS -—
X32-Deg4-VULS —tr—
X32-Deg8-VULS —
X32-Deg4-MinVULS —
X16-Deg4-MinVULS —
X16-Deg8-MinVULS -—
X16-Deg8-VULS -—
X32-Deg8-MinVULS -—
X8-Deg8-VULS —

0 3 6 9 12 15 18 21 24

Fig. 3: Significance diagram to support the comparisons of the
performance of the 24 VULS based classification approaches
using Nemenyis post hoc test with a = 0.05.

The significance diagram presented in Figure 3 corresponds
to the information presented in Table IV and displays the AUC

performance rankings for the models, along with Nemenyi’s
Critical Difference (CD) tail. The CD value for the diagram is
equal to 5.250. The diagram shows the VULS models listed
in ascending order of their ranked AUC performance (y-axis);
whilst the mean AUC performance values are displayed along
the x-axis. A vertical dashed line has been inserted in the figure
to indicate the end of the best performing approachs tail so
as to allow for comparison with respect to other approaches.
From the Figure it can be seen that the best performing
approach was that using the all VULS model with grid size of
d = 8 and graphs featuring a vertex degree of 8 (a recorded
AR value of 7.667). Using directed minimal VULS (with grid
size of d = 16 or d = 32 and graphs featuring a vertex degree
of 4 or 8) comparable performance was achieved; however,
as established in Sub-section V-D the generation and usage of
minimal VULS is much more efficient than when using the
all VULS model. All the Frequent Minimal VULS approaches
produced substantially the worst performance.

VI. CONCLUSIONS AND FURTHER STUDY

In this paper a mechanism for predicting local class labels
associated with 3D surface regions has been presented. The
mechanism is founded on the idea of VULS mining where
a VULS is a subgraph that has a unique labelling associated
with it, in the context of some given training data set, that can
be used to predict class labels to be associated with regions
in previously unseen data. Four different types of VULS
model were considered: (i) all, (ii) minimal, (iii) frequent and
(iv) frequent minimal. This paper described the algorithms
required to generate these different forms of VULS. The
paper also presented the Backward Match Voting algorithm
whereby detected VULS can be used to predict labels associate
with unseen graphs. The algorithms were evaluated using a
satellite image data set describing two villages located in a
rural part of the Ethiopian hinterland. The results produced
by the reported experiments indicate that the proposed VULS
models tended to perform best when dealing with graph sets
where the vertices have a degree of 8 and a grid size of
d = 8. It was also noted that when using minimal VULS
comparable performance with that obtained using all VULS
was achieved, but in a more efficient manner. Using frequent
VULS did not produce good results because very few frequent
VULS were identified. It is suggested that better results using
frequent VULS might be obtained using an alternative way
of determining the threshold o and this is thus a suggested
avenue for future work.

The intension behind the evaluation was to investigate
how well VULS can perform in the context of a satellite
image application. Techniques for translating image data into
the required grid graph format were not considered, but the
manner in which this is conduced will clearly have some
influence on the final VULS based classification performance.
To date only simple 3D surface data has been considered.
Alternative techniques for generating the desired grid graphs
are seen as desirable. In the context of image data, such as
the satellite data used for evaluation purposes in this paper,

techniques for translating images in to graph formats exist
(such as the Waxman model [17], K-means clustering, K-
Nearest Neighbour clustering and so on). It is anticipated that
use of these techniques will improve the performance of the
propose VULS based classification approaches, this is thus a
second anticipated avenue for future work.

REFERENCES

[1] M. Firat, B. Kaftanoglu, and O. Eser, “Sheet metal forming analyses
with an emphasis on the springback deformation,” Journal of Materials
Processing Technology, vol. 196, no. 1-3, pp. 135-148, 2008.

[2] W. Yu, F. Coenen, M. Zito, and S. E. Salhi, “Vertex unique labelled
subgraph mining,” in Thirty-third BCS SGAI International Conference
on Artificial Intelligence (BCS SGAI2013), 2013, pp. 21-38.

[3]1 W. Yu, F. Coenen, M. Zito, and S. E. Salhi, “Minimal vertex unique
labelled subgraph mining,” in 15th International Conference on Data
Warehousing and Knowledge Discovery (DaWak 2013), 2013, pp. 317—
326.

[4] W. Yu, F. Coenen, M. Zito, and S. E. Salhi, “Vertex unique labelled
subgraph mining for vertex label classification,” in The 9th International
Conference on Advanced Data Mining and Applications (ADMA 2013),
2013, pp. 542-553.

[5] M.]. Carlotto, “Spectral shape classification of landsat thematic mapper
imagery,” Photogrammetric engineering and remote sensing, vol. 64, pp.
905-914, 1998.

[6] M. J. Barnsley and S. L. Barr, “Distinguishing urban land-
use categories in fine spatial resolution land-cover data using
a graph-based, structural pattern recognition system,” Computers,
Environment and Urban Systems, vol. 21, no. 34, pp. 209 —
225, 1997, remote Sensing of Urban Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0198971597100011

[7]1 1. Walde, S. Hese, C. Berger, and C. Schmullius, “Graph-based mapping
of urban structure types from high-resolution satellite image objects
x2014;case study of the german cities rostock and erfurt,” Geoscience
and Remote Sensing Letters, IEEE, vol. 10, no. 4, pp. 932-936, July
2013.

[8] I. Walde, S. Hese, C. Berger, and C. Schmullius, “Graph-based
urban land use mapping from high resolution satellite images,” ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 1-4, pp. 119-124, 2012. [Online]. Available: http://www.
isprs-ann-photogramm-remote- sens-spatial-inf-sci.net/I-4/119/2012/

[9]1 X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”

in Proceedings of the 2002 International Conference on Data Mining,

2002, p. 721.

S. Garca and F. Herrera, “An extension on “statistical comparisons of

classifiers over multiple data sets” for all pairwise comparisons,” Journal

of Machine Learning Research, vol. 9, no. 12, pp. 2677-2694, 2008.

K. Dittakan, F. Coenen, R. Christley, and M. Wardeh, “Population

estimation mining using satellite imagery,” in Data Warehousing

and Knowledge Discovery, ser. Lecture Notes in Computer Science,

L. Bellatreche and M. Mohania, Eds. Springer Berlin Heidelberg,

2013, vol. 8057, pp. 285-296. [Online]. Available: http://dx.doi.org/10.

1007/978-3-642-40131-2_25

M. Friedman, “A comparison of alternative tests of significance for the

problem of m rankings,” The Annals of Mathematical Statistics, vol. 11,

no. 1, pp. 86-92, 1940.

I. Brown, “An experimental comparison of classification techniques for

imbalanced credit scoring data sets using sas,” in SAS Global Forum

2012,Data Mining and Text Analytics, 2012.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-

sification models for software defect prediction: A proposed framework

and novel findings.” IEEE Trans. Software Eng., vol. 34, no. 4, pp. 485—

496, 2008.

J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”

The Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.

P. Nemenyi, Distribution-free Multiple Comparisons. Princeton

University, 1963. [Online]. Available: http://books.google.co.uk/books?

id=nhDMtgAACAAJ]

B. M. Waxman, “Routing of multipoint connections,” Selected Areas in

Communications, IEEE Journal on, vol. 6, no. 9, pp. 1617-1622, 1988.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

