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Abstract This paper proposes an Intelligent Process

Model (IPM), founded on the concept of data mining,

for predicting springback in the context of sheet metal

forming, in particular, Single Point Incremental Form-

ing (SPIF). A limitation with the SPIF process is that

the application of the process results in geometric de-

viations, which means that the resulting shape is not

necessarily the desired shape. Errors are introduced in

a non-linear manner for a variety of reasons, but a con-

tributor is the geometry of the desired shape. A Local

Geometry Matrix (LGM) representation is used that

allows the capture of local geometries in such a way

that they are suited to input to a classifier generator.

It is demonstrated that a rule based classifier can be

used to train the classifier and generate a classification

model. The resulting model can then be used to predict

errors with respect to new shapes so that some correc-

tion strategy can be applied. The reported evaluation

of the proposed IPM indicates that very promising re-

sults can be obtained with regard to reducing the shape

deviations due to springback.
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1 Introduction

Single Point Incremental Forming (SPIF) is a sheet

metal forming process that involves a local and pro-

gressive pressing out of the desired shape on a clamped

sheet by a round-headed forming tool which follows a

continuous path. Flexibility in sheet metal forming has

attracted interest in recent years due to the shrinking

of the product life cycle, increased demand and cus-

tomisation requests [1, 8, 23]. SPIF offers full flexibility

since the use of dedicated tooling, required with many

sheet metal forming operations, isn’t necessary. How-

ever one disadvantage is that the operation time is typ-

ically high. Nevertheless, SPIF may still be of use for

low volume series, can help increase the flexibility of

any forming process in the design and industrialisa-

tion phases by providing realistic prototypes and can

be used in combination with other forming processes,

for instance, to produce part details.

Material springback is a phenomenon common to

any sheet metal forming process that leads to the geo-

metric inaccuracy of the resulting shape. In SPIF the

increase in geometric deviations from the design shape

because of the absence of tooling is the key deterrent

from the widespread industrialisation take up of the

process [17].

Typically, the management of geometric deviations

due to springback is based on Finite Element (FE)

predictions combined with practical expertise on the

tooling set up. It is well known that Finite Element

Analysis (FEA) requires intensive resource consump-

tion. For SPIF the resource consumption represents a

severe drawback since the process itself is highly time-

consuming and hence numerical simulations are only

affordable for small parts requiring short tool paths

[4, 14, 31]. On the other hand, the accuracy of numeri-
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cal predictions is much affected by the value of material

data. In this sense, the reliability of the estimated data

is not fully evident yet due to the cyclic nature of de-

formation in SPIF. As a result, and despite significant

research efforts to date, the application of FEA to pre-

dict shape geometric deviations caused by springback is

still very limited. In terms of empirical practices, some

guidelines have been proposed [5, 26, 3, 2] aiming to

increase the geometric accuracy.

Dedicated CAM tools [28, 30, 24] have been pro-

posed which aim to improve not only the geometric

accuracy but also other quality aspects as well as the

process time-efficiency. However the gained accuracy is

insufficient to meet typical design requirements high-

lighting the need for a tool that enables the prediction

and compensation for shape deviations due to spring-

back.

Multivariate Adaptive Regression Splines (MARS)

models are proposed in [6] to predict the springback

in SPIF. MARS models are based on statistical regres-

sion techniques, and are generated and trained by first

identifying different geometric features such as planes,

surfaces, borders and ribs in a shape geometry using

mesh techniques. Individual STL files are generated for

each feature comprising coordinate values, process pa-

rameters and errors between the desired shape and the

formed part. Regression models for each STL are then

generated and trained using STL files and a new tool

path is generated. Using regression models the authors

have shown improvements in the formed part using a

corrected tool path. The focus on features relates to

our approach in that we represent geometries as records

capturing local surfaces but without the need to explic-

itly determine specific features.

There has also been reported work on dynamic tool

path correction in the context of laser guided tools. For

example, initial work in [10] concluded that it was im-

portant to have an on-line monitoring system during

laser forming able to predict and correct distortion due

to springback. In [7] an iterative, laser forming pro-

cess was developed aimed at correcting distortion in

aluminium parts. However, SPIF requires that the tool

path is specified in advance rather than as the process

develops.

As an alternative, a data mining approach can be

considered. Data mining techniques have been previ-

ously applied to sheet metal forming, in particular Neu-

ral Networks [27, 22, 9, 16, 21, 25, 29]. Neural networks

are mostly used in classification problems but their op-

eration is complex, resource intensive, and difficult to

understand because of their “black box” nature. Sev-

eral training cycles are typically required to obtain an

optimal structure of the network, such as the number

of neuron layers in the network and the number of neu-

rons in each layer [16]. In [27, 29] neural networks are

applied to predict springback based on factors such as

thickness, lubrication, material properties etc and com-

pared to FEM models. The application of neural net-

works in [21] reduced the number of finite element sim-

ulations necessary and could be applied to multi-stage

process planning. Manabe et al [25] developed a control

system for deep drawing using a combination of neural

networks and plasticity theory by identifying process

parameters e.g. material properties and lubricant. In

[22] a neural network with a stepped binder force tra-

jectory was used to control springback angle and max-

imum principal strain in a simulated channel forming

process.

Rule based learning techniques have also been adopted

by researchers, for example in [32, 33] where rule based

systems were used to extract knowledge from a FEM

model. This work was directed at the effect of the na-

ture of the material (rather than local geometry), and

various process parameters to study their reaction on

springback.

However, there has been very little reported work

on the use of data mining techniques to address the

SPIF springback problem as formulated in this paper.

The advocated approach is not only concerned with ex-

tracting knowledge from sheet metal forming data, but

also with data representation and the generation of clas-

sification models that can be used to predict and ap-

ply springback errors in order to minimise their effect.

What distinguishes the proposed IPM from the previ-

ous work is the way in which it operates using local ge-

ometries to predict local springback values. The central

idea exposed in this paper is that if the springback effect

can be predicted and quantified, a suitable correction

can be applied to the CAD model so that an alterna-

tive tool path can be defined that takes into consider-

ation the likely effects of the springback phenomenon.

To this end an Intelligent Process Model (IPM) is pro-

posed that allows for the correction of CAD models

in order to minimise, the springback effect. The cen-

tral element of the IPM is a classifier which, given a

specific local geometry definition, can predict the likely

magnitude and direction of the associated springback.

These predictions then can be used for generating a

corrected CAD model that leads to a geometry with

minimal shape deviations due to springback. Thus, the

main contribution of this paper is the development of a

classifier-based IPM and its application to, and evalu-

ation on, two new geometries. The key features of this

approach are provided below.

1. The development of representations applicable to

data mining techniques capturing the shape geom-
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etry. Here we use a Local Geometry Matrix repre-

sentation. For a point on the surface this describes

the local surface in relation to neighbouring points.

By using this representation many different local

geometries can be described. Other representations

have also been developed (see for example [12, 13]).

2. The development of a classifier that predicts spring-

back with a high level of accuracy based on data

mining techniques and these representations. Data

mining techniques have the ability to detect pat-

terns based on complex phenomena that do not need

to be expressed explicitly.

3. The use of classifiers that allow the generation of

rules so that the validity of rules can, if necessary,

be verified.

4. The construction of an IPM that both predicts the

springback errors in new shapes and applies correc-

tions to generate (corrected) co-ordinate clouds.

The rest of this paper is structured as follows. Sec-

tion 2 describes the application domain. Section 3 in-

troduces the Intelligent Process Model (IPM). The cor-

rected cloud geometry is described in Section 4 and

evaluation of the IPM is presented in Section 5. Finally

conclusions are presented in Section 6.

2 Application Domain

To act as an application focus, and for evaluation pur-

poses, the two square pyramidal geometries shown in

Figures 1 and 2 were specifically designed. One of the

geometries shown in Figure 1 corresponds to a simple

non-symmetric pyramid (Benchmark Pyramid) whereas
the other one in Figure 2 (Modified Pyramid) is an evo-

lution of the first geometry where the edges have been

smoothed.

Fig. 1 SPIF Manufactured Square based Benchmark Pyra-
mid

Fig. 2 SPIF Manufactured Square based Modified Pyramid

The key differences between the shapes are described

below and a schematic provided in Figure 3. By a side

wall having an “inward bulge” we mean the side wall of

the pyramid is made up of two flat surfaces that meet

where the angle between them is greater than 180◦ on

the inside of the shape. By a side wall having an “out-

ward bulge” we mean the side wall of the pyramid is

made up of two flat surfaces that meet where the an-

gle between them is less than 180◦ on the inside of the

shape.

– The edges of the Modified Pyramid have a smooth

curve between the adjacent surfaces whereas the

Benchmark Pyramid has sharper edges (see Fig-

ures 1 and 2).

– The Benchmark Pyramid has two flat side walls fac-

ing each other and two side walls facing each other

one with an inward bulge and one with an outward

bulge (see Figures 3 and 4).

– The Modified Pyramid has two adjacent side walls

with an “inward bulge” and two adjacent flat sides

(see Figures 3 and 5).

Fig. 3 Schematic of Benchmark (left) and Modified (right)
Pyramids

Data relating to the respective sizes of the two pyra-

mids is provided is provided in Table 1. The Benchmark
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Pyramid Width Length Height
Benchmark 195 195 43
Modified 190 190 42

Table 1 Geometric Data for the Two Test Pyramids(mm)

Pyramid is a simple test geometry with varying surface

slopes, whereas the Modified Pyramid, is a hybrid be-

tween a real aeronautic part and the Benchmark Pyra-

mid.

Non-symmetric parts show a geometric distortion

higher than symmetric ones since residual stresses lead-

ing to distortion cannot be compensated. The edge smooth-

ing of the second geometry is closer to geometric fea-

tures typical in aeronautical components where geomet-

ric accuracy is a major concern. The material used in

both cases was DC04 stamping steel sheets of 1.0mm

thickness. The dimension of the sheets was 185 x 185

mm. Figures 1 and 2 show the studied geometries once

they had been manufactured and unclamped.

The SPIF experiments were carried out in an AMINO

DLNC-RB forming machine. A round-headed forming

tool with a 20.0mm diameter was used The programmed

process parameters were a 4.0m/min feed rate and a

0.8mm tool step down.

The two produced parts were scanned using the op-

tical 3D measurement system ATOS by GOM. For each

part their complete upper face (formed area plus sur-

rounding non-deformed flange) was digitised and matched

to the equivalent area of the CAD model. The three

holes near the centre of each geometry were used to

help align the measured data to the coordinate system

of the CAD model. Finally, both the CAD and the digi-
tised areas were converted to coordinate cloud where

the surfaces are represented by a cloud of points defined

by three orthogonal coordinates x, y and z. The clouds

comprised 250,847 points for the Benchmark Pyramid

pyramid and 565,817 points for the Modified Pyramid.

Figures 4 and 5 present 3D views of the two geometries

generated using coordinate clouds extracted from the

CAD model of the shapes.

3 Intelligent Process Model

The proposed Intelligent Process Model (IPM) is a gen-

eralised classification based model for the generation of

corrected coordinate clouds to predict springback. A

schematic describing the operation of the IPM is pre-

sented in Figure 6.

From Figure 6 the IPM model operates as follows.

1. Input a CAD generated coordinate cloud.

Fig. 4 Coordinate cloud for Benchmark Pyramid

Fig. 5 Coordinate cloud for Modified Pyramid

2. Pre-process the coordinate cloud to produce an in-

put data set. The necessary pre-processing is de-

scribed in further detail in the Section 3.1 below.

3. After pre-processing, the data is passed to the clas-
sification module where the classifier is applied to

each record (representing a grid square) in the data

set to predict the associated springback error (see

Section 3.2 for detail).

4. The predicted springback is then applied to the CAD

cloud and a modified CAD shape P is produced

(Section 3.3).

5. The predicted cloud is then used to generate a cor-

rected cloud C (described in Section 3.4).

6. Smoothing is applied to the corrected cloud C so as

minimise gaps and bandings, in order to produce a

smooth corrected cloud that can be translated into

a CAD tool path for manufacturing (described in

Section 3.5).

Note that the corrected shape (Step 5) is generated

by applying the predicted error at each point in the

grid in the opposite direction to the predicted direction.

Also note that the idea is that the classifier generation

process is such that a sufficiently generic classifier is
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Fig. 6 Intelligent Process Model (IPM)

produced. In [19] the notion of a Local Geometry Ma-

trix (LGM) (see Section 3.1.3) was introduced to rep-

resent the input data with reference to the shape of

local neighbourhoods. It was demonstrated that suffi-

ciently robust classifiers can be generated, at least with

respect to similar styles of shape. This work was ex-

tended to other representations, for example a Local

Distance Measure (LDM) which involves the distance

from the nearest edge in the shape and combinations of

LGM and LDM [12]. Also a Point Series representation

was developed [13] where the slope of each neighbouring

region is represented as a sequence of points. Good clas-

sifiers were produced based on these representations.

3.1 Data Pre-processing and Representation

Generation

The generation of training and test data for the classi-

fication process requires pre-labelled data, thus a geo-

metric representation of the input data that includes a

representation of the errors between the input and the

resultant cloud data. The following sub-sections briefly

explain the data pre-processing techniques used for the

data representation.

3.1.1 Grid Representation

As already noted above, the inputs to the proposed

IPM are an input coordinate cloud Cin and an out-

put coordinate cloud Cout. Each coordinate cloud com-

prises a set of N , 〈x, y, z〉 coordinate triples, such that

x, y, z ∈ R. The number of coordinates per cm2 (within

the x, y plane) in each coordinate cloud varies between

120 points per cm2 to 20 points per cm2 depending on

how the data is generated/collected.

The Cin coordinate cloud is obtained from the CAD

model. Thus, it represents the part design geometry.

The Cout coordinate cloud is obtained from the scan-

ning of the produced part and it represents its real ge-

ometry. Both coordinate clouds have been registered to

the same reference origin and orientation, as described

above.

j

d

d

x

y

i

Fig. 7 Coordinate cloud points associated with a grid point
(grid spacing = d)

We first cast Cin into a (discrete) grid representa-

tion (Figure 7) such that each grid point is defined by
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a 〈xi, yi〉 coordinate value pair. This produces a “repre-

sentative” point for each grid square reducing the num-

ber of data records. The number of grid lines is defined

by some grid spacing d. Each coordinate pair 〈xi, yi〉
in the grid has a z value calculated by averaging the z

values associated with the part of the input coordinate

cloud contained in the d× d grid square centred on the

point 〈xi, yi〉 (Figure 7). We then cast the Cout coor-

dinate cloud into the same grid format so that we end

up with two grids, Gin and Gout, describing the before

and after surfaces.

3.1.2 Springback Measurement

A simple mechanism for establishing the degree of spring-

back (e) at a particular grid point is simply to measure

the difference between the z values in Gin and Gout.

However, a more accurate measure is to determine the

length of the surface normal from each grid point in

Gin to the point where it intersects Gout (Figure 8).

e

Before Shape

After Shape e e

e

e

Fig. 8 Cross section at a grid line showing springback error
calculation between a before and after shape

The distance between any two three dimensional

points can be calculated using the Euclidean distance

formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)

However, the application of (1) first requires knowledge

of the x, y, z coordinates of the point where the nor-

mal intersects Gout. With respect to the work described

in this paper we have used the line plane intersection

method [11] to determine the length of the normal be-

tween two surfaces. Using this approach we find the nor-

mal to a plane by calculating the cross product of two

orthogonal vectors contained within the plane. Once we

have the normal we can calculate the equation for the

line that includes the start and end points of the nor-

mal and then determine the point at which this line

cuts Gout. We can then calculate the length of the nor-

mal separating the two planes. The process is as follows

(with reference to Figure 9).

4

Set of four
normals

p

p

p

p

p

0

1

2

3

Fig. 9 Error calculation using the line plane intersection
method

1. For each grid point in Gin first identify the four

neighbouring grid points in the x and y planes as

shown in Figure 9 (except at edges and corners where

three and two neighbouring grid points will be iden-

tified respectively).

2. Define a set of four vectors V =

{v1, . . . v4} = {〈p0, p1〉, 〈p0, p2〉, 〈p0, p3〉, 〈p0, p4〉} each

described in terms of its x, y, z distance from p0 (the

origin of the vector system).

3. Using the four vectors, four surface normals can

be calculated, N = {n1 . . . n4} by determining the

cross product between each pair of vectors: v1 × v2,

v2 × v3, v3 × v4, v4 × v1. Note that to validate a

surface normal ni the dot product of one of its asso-

ciated vectors vj and ni must be equal to zero (i.e.

ni · vj = 0).

4. For each normal n1, . . . n4 calculate the local plane

equation in Gin that includes p0 (thus using, in turn,

points {p1, p0, p2}, {p2, p0, p3}, {p3, p0, p4}, {p4, p0, p1}.
The plane equation is given by equation (2).

ax + by + cz + d = 0 (2)

5. For each plane equation identified in step 4 deter-

mine the parametric equations (a set of equations

which describe the x, y and z coordinates of the

graph of some line in a plane) [11] of the surface

normal as a straight line according to the identities

given in equation (3)

x = a + it

y = b + jt

z = c + kt

(3)

where t is a constant, a, b and c are the x, y, z co-

ordinates for the point p0 and i, j and k are the

normal components. The constant t is calculated by

substituting the parametric equations in (2) for x, y

and z.

6. Once the parametric equations for each surface nor-

mal are found, they are then used to compute the

points of intersection of each normal with Gout.
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7. We then use the coordinates for each of the four

points of intersection and p0 to calculate the Eu-

clidean distance (the error) between p0 and each

intersection point to give four error values E =

{e1, . . . , e4}.
8. We then assign each error a direction (negative or

positive) based on the direction of the springback.

If springback is inwards, a negative direction is as-

signed to the error, otherwise a positive direction is

assigned.

9. We now have four error values for each grid point

(except at the corners and edges where we will have

two or three respectively), we then find the overall

error e simply by selecting the least error. The rea-

son for selecting the least error is that it gives us

the nearest point to the before surface.

On completion of the process our input grid Gin will

comprise a set of 〈x, y, z〉 coordinates describing the N

grid points, each with an associated springback (error)

value e.

3.1.3 Surface Representation (Local Geometry

Matrix)

In this section we describe how local geometries are rep-

resented using the concept of a Local Geometry Matrix

(LGM) (see [19]). From the foregoing it has already

been noted that the value of e is influenced by the na-

ture of the geometry of the desired surface (shape). We

can model this according to the change in the z value

of the eight grid points surrounding each grid point as

shown in Figure 10(a). Of course along the edges and at

the corners of the grid we will have fewer neighbouring

grid points as shown in Figure 10(b).

Thus we generate n records (where n is the number

of grid points) each comprising eight z values and, in

the case of the training data required for classifier gen-

eration (see Subsection 3.2.2), an associated e value.

We, then coarsen the z values (to produce a more

generic definition) by describing them using qualita-

tive labels taken from a set L to describe the nature of

the slope in each of the eight neighbouring directions.

Therefore we can describe |L|8 different local geome-

tries if we take orientation into consideration. Thus if

we have a label set, {negative, level, positive} we can

describe 38 = 6561 different local geometries. Note that

this gives an idea of how many different local geome-

tries are possible. This would obviously be higher with

a larger label set. Given a particular shape there may

only be a fraction of these possible different local ge-

ometries actually generated and by no means is this

number required.

(a) Grid point with eight neighbours

(b) Grid point at corners and edges

Fig. 10 LGM: Centre point and the neighbouring points

3.2 Classification

The proposed IPM model uses a classifier for prediction

purposes. A classifier is piece of software that is typi-

cally trained using pre-labelled training data, so as to

predict some value (called a class label) to be associ-

ated with previously unseen data. It is thus important

to use an appropriate classifier generation mechanism

so as to maximise prediction accuracy. Once generated

the classifier can be applied.

3.2.1 Training data

With respect to the work presented in this paper the

training data is presented in tabular form where each

record comprises a tuple of the form 〈x1, . . . , xn, e1 . . . em〉,
where x1 to xn are values associated with a set of at-

tributes I = {i1, . . . , in} (there is a one to one corre-

spondence between values and attributes), and e1 to

em are a set of class labels E. The values for the at-

tributes I and E are binary, 1 (exists) and 0 (does not

exist). Note that because we can have only class label

per record only one value in the set {e1 . . . em} can be

set to 1, the rest must be set to 0. In our case the records
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are grid centre points, I is a set of ranged z difference

(slope) values and E is a set of potential ranged spring-

back values. The size of I is equal to 8 × |L|, where

L is the set of qualitative labels associated with the

slope values (as described in Subsection 3.1.3 above).

The value 8 is used because each grid centre point, ac-

cording to the proposed LGM representation, can have

up to eight neighbours.

3.2.2 Classifier Generation

In the work described here relating to the IPM we

favour a classifier that generates classification rules.

Rule based classifiers offer two principal advantages:

1. Rule representations are intuitive; they are simple

to interpret and understand.

2. Because of the above the validity of rules can be

easily verified by domain experts.

Classification rules are then of the form:

X → e

where X is a set of binary values associated with some

subset of I and e ∈ E. Such rules may be interpreted

as “if X exists in a given record then the record should

have the class label e associated with it”. An example

rule, with L = {negative, level, positive}, might be:

{positive, negative, positive, level, negative, negative,
negative, level} → negative

The purpose of a rule based classifier generator is to

produce a set of rules of the above form from a given

training set. There are a number of techniques that can

be adopted but for the work presented in this paper a

decision tree classifier was adopted from which classifi-

cation rules can be easily extracted. This technique was

adopted because from previous research work [20] and

extended results from [19] it was concluded that, for the

CAD datasets, decision tree based classifiers produced

the most effective outcomes when compared to other

kinds of classifier generator.

3.2.3 Classifier Application

Once we have generated our desired classifier we need

to incorporate it into the IPM, so it can be applied to

unseen data, i.e. a new shape S so that we can predict

S′. To do this, the coordinate cloud describing S must

be expressed in terms of its components in the same

manner as that used to define the training data used to

generate the classifier. Thus the coordinate cloud for S

must be expressed as a grid using the same value of d

(the grid size) and the same label set |L| as that which

was used to generate the classifier. Errors are predicted,

using a classifier comprised of a set of classification rules

generated as described above, and then the corrected

cloud is produced by applying the predicted errors in

the reverse direction to the input cloud.

3.3 Predicted Shape

Once the classifier has predicted the errors at each point

of the grid, the errors can be applied to the CAD shape.

Recall that each grid cell features a normal from its cen-

tre point, and also that the predicted springback errors

for each point feature both direction and magnitude.

Errors can thus be applied accordingly.

3.4 Corrected Shape

The corrected shape is generated by applying correc-

tions to the CAD shape by reversing the predicted er-

rors in the direction of the normal. For this work we use

a correction factor of 1.0. Other authors have applied

different correction factors. For example, the effects of

different correction factors (1.0, 0.7 and 0.5) were con-

sidered in [18] and in [15] a correction factor of 0.7 is

used. It would be interesting to investigate alternative

correction factors, for example using a constant factor

over the shape or even using data mining techniques

to propose different correction factors dependent on lo-

cal geometries. However this remains as part of future

work.

The method can be applied in parts showing both

underforming and overforming areas. The only limita-

tion concerns overformed areas located near where the

sheet is clamped. This appears in designs with very low

wall angles at the edges of the geometry and occurs due

to plastic deflection of the sheet under the tool action.

Although the error could be predicted by the classifier

and the correction estimated, producing a convex fea-

ture from a flat sheet and a downwards moving forming

tool is not possible.

Figure 11 shows the process of producing a corrected

shape. The top row in the figure, from left to right,

shows: (i) a CAD shape (the before geometry), (ii) a

predicted shape (geometry) produced using our classi-

fier, and (iii) a corrected shape (geometry) produced

by reversing the predicted springback errors. The bot-

tom row, from left to right, shows: (i) the CAD shape

(again), (ii) the predicted shape superimposed over the

CAD shape (so that the nature of the springback effect
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Fig. 11 Corrected cloud generation process and comparison

can be observed), and (iii) the corrected, predicted and

CAD shapes superimposed over one another.

3.5 Smoothing

After the correction process has been completed, the

generated corrected shape may contain gaps and band-

ings due to the processing that has taken place e.g.

using representative points and discrete label sets, and

also due to the nonlinear nature of the springback pre-

diction. The smoothing applied uses values from the

springback errors for the current point and the eight

neighbouring points (as shown in Figure 10) which are

then averaged. Smoothing is applied to the predicted

errors to minimise any bands or gaps before generating

the corrected coordinate cloud for input to the SPIF
process.

4 Converting the Corrected Cloud to a CAD

Geometry

Once a corrected cloud has been generated as described

in Section 3, it can be processed and converted to a

CAD geometry so that the part can be manufactured

using an SPIF machine. The conversion process is as

follows.

1. Import the corrected cloud into a software system

that allows for the creation of surfaces from point

clouds and additional smoothing. For our experi-

ments, reverse engineering software from the optical

surface measurement system GOM ATOS was used.

2. Create a polygon mesh (polygonisation), based on

the initial point cloud so it can be read by CAD or

CAM software.

3. Regularise the generated polygon mesh so as to re-

generate it with more homogeneous sizes of the tri-

angles in general and higher density in areas of stronger

curvature.

4. Manually repair individual defects in the polygon

mesh through visual inspection.

5. Apply additional smoothing of the final polygon mesh.

6. Compare the smoothed surface to the original poly-

gon mesh to ensure that the surface optimisation

caused no changes to the macroscopic geometry.

7. Export the smoothed polygon surface in a format

compatible with CAD/CAM software. In the evalu-

ation described later in this paper the STL-file for-

mat was used.

The three main stages of the process of generat-

ing and optimising a surface based on the initial point

cloud are shown in Figure 12. Using the CAD-files based

on the optimised surfaces it was possible to conduct

CNC-Programming for the forming processes in the

CAD/CAM software for a new series of experiments.

5 Evaluation

For evaluation of the IPM, two corrected coordinate

clouds were produced and manufactured. The two clouds

were for two different geometries, (i) the Benchmark

Pyramid and (ii) the Modified Pyramid. The corrected

coordinate clouds were imported into the CAD/CAM-

Software and surfaces from the point mesh were gen-

erated. Afterwards the surfaces had to be smoothed in

order to achieve a suitable and stable tool-path for the

forming operation. With this programmed tool-path,

new parts were produced with SPIF using the same

process parameters as were used to fabricate Cout. The

only difference was that the tool-path was defined ac-
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Fig. 12 Initial point cloud (left); Created polygon mesh based on the initial point cloud (middle); Optimised and smoothed
surface (right)

cording to the corrected coordinate cloud produced by

the proposed IPM.

Two parts/geometries were manufactured based on

the IPM corrected tool path and compared to the origi-

nally manufactured parts (using the original CAD gen-

erated tool path without springback correction). The

nature of the newly formed parts was captured using

the GOM-ATOS System, and the resulting digital ge-

ometry referenced to the original desired shape so that

an evaluation of the geometrical and dimensional ac-

curacy could be conducted. The outcomes from this

comparison are described in the following sub-sections.

The required rule based classifiers were generated using

training data obtained from previous attempts to gen-

erate the Benchmark and Modified pyramids (data also

used for comparison purposes later in this section).

5.1 Geometry Comparison

Recall that two different geometries, the Benchmark

and the Modified pyramids, were fabricated using the

SPIF process based on the corrected clouds as described

above. The new geometries were compared to the pre-

vious geometries formed using the uncorrected CAD

cloud data.

Figure 13 shows the Benchmark pyramid formed

using the original CAD cloud data and the corrected

CAD cloud data respectively. A scale is given from -

3.0mm (dark blue) to +3.0mm (dark red) to represent

the magnitude of the shape deviation that occurred in

the formed parts. From the figures it can be observed

that the shape deviation is reduced with respect to the

part formed using the corrected CAD cloud. Table 2

shows a statistical comparison between the two parts

using data from Figure 13. The maximum, minimum

and mean geometrical deviations are given in the table.

It is clear from the data in Table 2 that the shape devi-

ation has been reduced as a result of application of the

proposed IPM.

Figure 14 shows the Modified pyramid formed using

the original CAD cloud data and the corrected CAD

cloud data respectively. Again a scale is given from -

Benchmark CAD Cloud Corrected Cloud
Pyramid Geometry Geometry
Maximum (mm) +3.24 + 2.15
Minimum (mm) -2.39 -2.33
Mean (mm) -0.24 -0.06
Std. Deviation (mm) 0.89 0.74

Table 2 Benchmark pyramid surface comparison

3.0mm (dark blue) to +3.0mm (dark red) to represent

the magnitude of the shape deviation occurring in the

formed parts. From the figures it can again be observed

that shape deviation is reduced in the part formed from

the corrected CAD cloud compared to that formed us-

ing the original CAD data, thus confirming the effec-

tiveness of the proposed IPM.

Table 3 presents some statistical data comparing the

two parts given in Figure 14. Again the maximum, min-

imum and the mean geometrical deviation is presented.

Although the maximum shape deviation is slightly in-

creased, by looking at the minimum and the mean shape

deviation, it is clear that the overall shape deviation is

reduced in the part formed using the corrected coordi-

nate cloud.

Modified CAD Cloud Corrected Cloud
Pyramid Geometry Geometry
Maximum (mm) +1.22 + 1.27
Minimum (mm) -2.17 -1.56
Mean (mm) -0.30 -0.04
Std. Deviation (mm) 0.60 0.48

Table 3 Modified pyramid surface comparison

From the above reported experiments it is clear that

shape deviation due to springback is reduced with re-

spect both geometries using the corrected CAD cloud

data formed using the proposed IPM.
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Fig. 13 Benchmark Pyramid manufactured using CAD cloud data (left); corrected cloud data(right); scale in millimeters

Fig. 14 Modified Pyramid manufactured using CAD cloud (left); corrected cloud data (right); scale in millimeters

5.2 IPM Processing Times

The overall processing time either to generate the clas-

sifier or process a new cloud given a classifier is less

than 10 seconds. We provide a breakdown below for

the Benchmark pyramid. The timings for the Modi-

fied Pyramid are similar. The IPM software was run

on an Apple Mac computer, running Mac OS X Ver-

sion 10.7.5, 2.66 GHz Intel Core i7 processor and 8GB

of RAM. The run time is shown in Table 4.

Classifier Generation Run Time (secs)
Error calculation 6.2
Error smoothing 0.4
Rule generation 1.2
Predictions
Error prediction 1.9
Generating corrected cloud 6.4

Table 4 Timing for Processes in the IPM

6 Conclusion

In this paper a classification based Intelligent Process

Model (IPM) was proposed to predict springback in
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sheet metal forming incurred using SPIF. A Local Ge-

ometry Matrix (LGM) representation was proposed that

allows the capture of local 3-D surface geometries in

such a way that classifier generators can be effectively

applied. The resulting classifier was integrated into the

proposed IPM. The IPM was designed to:

– predict errors with respect to new surfaces to be

manufactured;

– apply corrections to the original CAD cloud;

– conduct appropriate smoothing to the corrected CAD

cloud.

The corrected cloud is ready for use in the definition

of a new corrected tool path that takes the springback

effect into consideration. The operation of the proposed

IPM has been fully described. The paper also presented

an evaluation of the operation of the proposed IPM,

using two fabricated parts that strongly indicates that

the IPM can be successfully used to generate corrected

tool paths. This was illustrated by reporting on exper-

iments that compared the quality of parts fabricated

using uncorrected tool paths with those fabricated us-

ing corrected tool paths. The timings to generate the

classifier or to apply the IPM to a new part were less

than 10 seconds.

Future work includes further development and anal-

ysis of the IPM. It is anticipated that improvements can

be made such as generalisation of the model to differ-

ent materials, metal thickness and other shapes. For

example, we are currently applying the IPM to differ-

ent geometries including those with curved surfaces and

different materials including titanium and Inconel. Re-

garding correction factors, as mentioned in Section 3.4,

we intend to investigate the use of correction factors

when applying the corrections, for example, using a

data mining approach to associate different factors with

different parts of the shape. Additionally, an iterative

version of the IPM that keeps predicting and apply-

ing corrections until they are within a certain tolerance

range (or a certain number of iterations has been car-

ried out) has been proposed and needs further analysis.
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