
 1

Finding Associations in Composite Data Sets: The
CFARM Algorithm

M. Sulaiman Khan1, Maybin Muyeba2, Frans Coenen1, David Reid3, Hissam
Tawfik3

1 University of Liverpool, Department of Computer Science

2 School of Computing, Mathematics & Digital Technology, Manchester Metropolitan
University, UK

3 Liverpool Hope University, School of Computing, Liverpool, UK

{mskhan@liv.ac.uk, m.muyeba@mmu.ac.uk, frans@csc.liv.ac.uk,
reidd@hope.ac.uk, tawfikh@hope.ac.uk }

Abstract. A fuzzy association rule mining mechanism (CFARM), directed at
identifying patterns in datasets comprised of composite attributes, is described.
Composite attributes are defined as attributes that can take simultaneously two
or more values that subscribe to a common schema. The objective is to generate
fuzzy association rules using “properties” associated with these composite
attributes. The exemplar application is the analysis of the nutrients contained in
items found in grocery data sets. The paper commences with a review of the
back ground and related work, and a formal definition of the CFARM concepts.
The CFARM algorithm is then fully described and evaluated using both real
and synthetic data sets.

Keywords: Association rules, fuzzy association rules, composite attributes,
quantitative attributes.

1 Introduction

Data mining is an important well established research area and Association Rule
Mining (ARM) is a very popular topic in the data mining community. The objective
of ARM is to identify patterns, expressed as Association Rules (ARs), usually from
binary-valued transaction data sets (Fayyad et al. 1996), (Ferenc, B. 2003), (Coenen et
al. 2004), (Agrawal et al. 1993). Work has been done on a variety of extensions of the
standard (binary-valued) approach to ARM thus allowing for its applicability to
quantitative and categorical (non-binary) data (Gyenesei, A. 2001), (Dong and
Tjortjis, 2003), (Srikant and Agrawal, 1996), (Au and Chan, 1999). To deal with
quantitative data, values are divided into ranges such that each range represents a
binary valued attribute and then labelling the identified range attributes; for example
“low”, “medium”, “high” etc. There are two possible ways for assigning ranges: using
crisp boundaries or fuzzy boundaries. Fuzzy ARM uses the latter to identify fuzzy
ARs. Some earlier works show that more expressive ARs can be obtained using fuzzy
ARM than “crisp” methods (Gyenesei, A. 2001), (Kuok et al. 1998), (Dubois et al.
2006), (Khan et al. 2006). ARM (both fuzzy and standard) algorithms typically use
the support-confidence framework to identify “interesting” ARs during the rule
generation process. This framework, however, has a number of disadvantages, for

 2

example, generating a vast AR set many of which are either obvious, subsumed by
other rules or largely redundant. Consequently there are motivations in the data
mining community for finding more expressive, succinct or significant and useful
ARs. Some earlier work (Kuok et al. 1998), (Khan et al. 2006) demonstrate this using
the certainty measure, which is of note in the context of the work described here.

In this paper we introduce a particular category of a fuzzy ARM application called
Composite item Fuzzy ARM (CFARM). CFARM’s objective is to generate fuzzy
ARs from “properties” associated with composite attributes (Kim et al. 1989) i.e.
attributes or items composed of sets of sub-attributes or sub-items that have a
common schema. Image mining is a typical example where different areas of an
image has groups of pixels such that each group can be represented by the normalized
summation of the RGB values of the pixels in that group. In this case the set of
composite attributes () is the set of groups, and the set of properties () shared by
the groups is equivalent to the RGB summation values (i.e.). We can
then express fuzzy sets such as “light”, “medium” and “dark” and find associations
between such composite attribute attributes with their properties. Considering the
familiar market basket scenario, we can have define as a set of groceries and as
a set of nutritional properties that these groceries may possess, for example protein,
iron, calcium and copper (i.e. P = {Pr, Fe, Ca, Cu...}). Of note is the difference in
these two examples. In the shopping basket, is constant i.e. it only represents a
categorical list of common properties. In the image mining example, is a
normalized summation of properties.

Further, a stock control database can have as a collection of stock items where
a collection of stock item properties is common to all items, including for example

cost price, sale price, reorder time etc. Given that we have quantitative attributes that
can be partitioned into intervals or ranges, we rename such partitions with linguistic
values or in this case, introduce fuzzy sets for these attributes. We are motivated by
the fact that the approach described in this paper is a new way of dealing with so-
called composite attributes that may potentially have fuzzy features.

The main contributions of the paper are:

1. The concept of CFARM.
2. The potential of ARs from itemset properties.
3. A practical example of the use of CFARM.
4. Employment of certainty factor, a quality measure to produce strong rules.
5. New Fuzzy Apriori-T algorithm for better efficiency.

We also demonstrate that a more succinct set of property ARs (than that generated

using a non-fuzzy method) can be produced using the proposed approach.
The paper is organised as follows. In section 2 we present the background and

related work to the proposed composite fuzzy ARM approach described. Section 3
presents a sequence of terms and concepts for the work and section 4 introduces the
CFARM algorithm. The motivation for the work is expanded upon in Section 5 where
an example application is described. A complete analysis of the operation of the
CFARM algorithm is given in Section 6, and section 7 concludes the paper with a
summary of the contribution of the work and directions for future work.

 3

2 Background and Related Work

The most familiar ARM approach is to first generate all the itemsets (attribute sets)
and then derive sets of ARs (Agrawal et al. 1993). A frequent itemset is defined as
one that appears most often in the given data set. To determine “frequency” of an
item, there is a user supplied support threshold measure that checks item frequencies.
Similarly, a confidence threshold is a conditional probability measure of the strength
of ARs generated. The user must select support and confidence thresholds to
influence the number and strength of ARs. To ensure that itemsets with low support
but from which high confidence rules may be generated depends on careful selection
of support and confidence.

Some drawbacks on using only the support and confidence framework to assess
association rules have been reported (Berzal et al. 2002), (Silverstein et al. 1998),
(Sanchez, D. 1999). To avoid some of these and to ensure interesting discovered
rules, the certainty factor and the new concept a very strong rule was proposed in
(Berzal et al. 2002), (Sanchez, D. 1999). Implementations can be found in (Gyenesei,
A. 2001), (Kuok et al. 1998), (Khan et al. 2006), (Khan et al. 2008).

From database literature, the term composite item has been used previously in the
context of data mining. Authors in (Wang et al. 2006), (Ye, X. and Keane, J. 1997)
define a composite item as combining several items e.g. if itemset {A, B} and {A, C}
are not frequent then rules {B}{A} and {C}{A} will not be generated, but by
combining B and C to make a new composite item {BC} which may be frequent,
rules such as {BC}{A} may be generated. The difference with the approach in this
paper is that we define a composite item to be a structured attribute as indicated in the
introduction to this paper and explained further in Section 3. The definition concurs
with database literature (Kim et al. 1989), (Kim et al. 1987), the earliest references to
composite attributes that the authors are aware of, which also defines composite
attributes (items) in this manner, i.e. as attributes that comprise two or more sub-
attributes. The difference with fuzzy ARM algorithms is their non-use of composite
items.

ARM typically operates using binary valued attributes. Given quantitative
attributes, these can be discretised into a number of interval partitions where each
partition is regarded as a binary valued attribute. A major problem in discretising
quantitative attributes using interval partitions (Gyenesei, A. 2001), (Khan et al.
2006), (Kuok et al. 1998) is the “sharp boundary problem”. Fuzzy ARM (Kuok et al.
1998), (Gyenesei, A. 2001), (Chen, G. and Wei, Q. 2002), (Au and Chan, 1999) is one
approach to addressing this problem. Fuzzy ARM is used to discover frequent
itemsets using fuzzy sets (with overlapping partitions) in order to handle the
quantitative attributes. Fuzzy approaches deal with quantitative attributes by mapping
numeric values to membership degrees from their partitions. The mapping is
undertaken in such a way that individual item contributions to support counts remain
at unity regardless of whether an item value belongs to one or more fuzzy sets (a
similar approach was used in (Gyenesei, A. 2001)). The main benefit of using fuzzy
ARs is that fuzzy sets can soften the effect of sharp boundaries and make the rules
more understandable to the user. Detailed overviews for fuzzy association rules are
given in (Gyenesei, A. 2001), (Kuok et al. 1998), (Delgado et al. 2003), (Au and
Chan, 1999).

More generally, fuzzy data mining algorithms have been utilized in many
application domains, example include (i) fuzzy ARs for classifier in capturing
correlations between genes (Mohammad et al. 2008), (ii) parallel fuzzy c-Means

 4

clustering for large data sets (Terence et al. 2002) and (iii) Acquisition of fuzzy
association rules from medical data (Delgado et al. 2001, 2002).

To the best of our knowledge there seems to be no work on composite association
rule mining using fuzzy approaches.

To illustrate the work described here we consider super market basket analysis
where the set of groceries have a shared set of nutritional quantitative properties

. Some examples are given in Table 1. The objective is then to identify patterns
linking the properties (nutrients in the case of the example).

Items/Nutrients Protein Fibre Carbohydrate Fat …

Yogurt 2.9 0.0 5.1 0.3 …

Pitta Bread 9.5 3.6 39.9 1.6 …

Wafers 7.1 4.9 58.3 24.9 …

… … … … … …

Table 1: Example composite attributes (groceries) with their associated properties (nutrients)

Table 1 shows some items from market basket data that we can extract nutrients,
presumably “edible items”, all with common properties or nutrients. The context of
our problem is illustrated using figure 1. The figure shows edible composite items
with common properties such as Protein, Fibre, Iron etc. defined by the same five
fuzzy sets {Very Low, Low, Ideal, High, Very High}.

Fig 1: Edible items, Nutrients & Fuzzy Intervals

In figure 1, a composite item such as “yogurt” can have properties of nutrients
(protein, iron, calcium...) measured quantitatively as such and therefore can be
expressed as fuzzy sets in the usual way. The amount of nutrients in an item can be
measured by the degree of membership, for example membership of “fibre” in
“yogurt” is zero. We define the problem of addressing composite item fuzzy
association rules in the next section.

 5

3 Problem Definition

In this section a sequence of terms and concepts is presented to: (i) define the term
composite attributes, (ii) describe the concept of fuzzy association rule mining and
(iii) the fuzzy approach adopted by the authors. The normalization process for Fuzzy
Transactions (FT) and rule interestingness measures will also be discussed later in this
section. In this section, we look data, and fuzzy specific concepts, and finally quality
measures for fuzzy association rules.

3.1 Data Specific Concepts

Raw Data: A Raw Dataset (the input data) consists of a set of transactions
, a set of composite items and a set of

properties . Each transaction (the “ ” transaction) is

some subset of , and each item (the “ ” item in the “ ” transaction) is a

subset of . Thus each item will have associated with it a set of values

corresponding to the set , i.e. . The “ ” property

value for the “ ” item in the “ ” transaction is given by . Note that a
property attribute can take either a categorical or a quantitative value. An example is
given in Table 2 where each composite item is represented using the notation
<label,value>; thus record 1 comprises two items and which have (numeric)
values {2,4,6} and {4,5,3} respectively. Note that in this example each distinct item
has a common set of property values (in practice this is usually the case).

TID Record

1 {<a,{1,5,4}>, <b,{3,7,2}>}
2 {<c,{6,2,4}>, <d,{2,5,1}>}
3 {<a,{1,5,4}>, <c,{6,2,4}>, <d,{2,5,1}>}
4 {<b,{3,7,2}>, <d,{2,5,1}>}

D = {T1’ T2’ T3’ T4}
I = {a, b, c, d)
P = {x, y, z}

Table 2: Example raw dataset D

In the rest of this paper the term item is used to mean an item in an itemset in the
manner associated with traditional ARM, and the term attribute is used to mean a
property item (sub-item).

Property Dataset: In the process described here the given raw dataset is
initially transformed into a property data set . A property dataset consists of
property transactions and a set of property attributes P

(instead of a set of composite items). Each transaction (the “ ” transaction) is

some subset of . The value for each property attribute

 (the “ ” property attribute in the “ ” property transaction) has a

numeric value obtained by aggregating the numeric values for all in . Thus:

 6

(1)

An example is given in Table 3.

TID X Y Z
1 2.0 6.0 3.0
2 4.0 3.5 2.5
3 3.0 4.0 3.0
4 2.5 6.0 1.5

Table 3: Example property data set generated from raw data set given in table 2

In table 3 the values are calculated by first aggregating and then averaging the
items’ property values using table 2 e.g. in table 3 row 1 the value for property X is
calculates by first aggregating the property values from table 2 row 1 using item “a”
and “b” as 1.0+3.0=4.0 and later averaging them 4.0/2.0=2.0. Same for the property
value Y as 5.0+7.0=12.0, then 12.0/2.0=6.0.

Fuzzy Dataset: With respect to the work described here, once a property data

set has been established this is further transformed into a fuzzy dataset . A
fuzzy dataset consists of fuzzy transactions and a set of

fuzzy property attributes each of which in turn has a number of fiuzzy sets
associated with it identified by a set of linguistic labels (for

example). The fuzzy sets describe a sequence of
overlapping user defined ranges into which all possible values for property attributes
may be mapped. Each property attribute is associated (to some degree) with
several fuzzy sets. The degree of association is given by a membership degree value,
in the range , which indicates the correspondence between the value of a given

 and the set of fuzzy linguistic labels. The “kth” label for the “jth” property

attribute for the “ith” fuzzy transaction is given by . The nature of the user
defined fuzzy ranges is expressed in a properties table (see definition 6 below). The
numeric values for each property attribute are fuzzified (mapped) into the

appropriate membership degree values using a membership function

that applies the value of to the definition of a specified label ,thus

The nature of the function is discussed in more detail in sub-section 3.2 below. The

complete set of fuzzy property attributes is then given by .
An example fuzzy data set is given in Table 4 based on the property data set given

in Table 3. Note that the membership values have all been normalised so that the

 7

contribution to the support count for a single attribute in a single record remains in
[0,1].

X Y Z TID
Small Medium Large Small Medium Large Small Medium Large

1 0.79 0.21 0.00 0.00 0.00 1.00 0.16 0.84 0.00
2 0.00 0.43 0.57 0.53 0.47 0.00 0.62 0.38 0.00
3 0.00 1.00 0.00 0.01 0.99 0.00 0.16 0.84 0.00
4 0.18 0.72 0.00 0.00 0.00 1.00 1.00 0.00 0.00

Table 4: Example Fuzzy data set (, unspecified).

Composite Itemset Value Table: A Composite Itemset Value (CIV) table is a
table that allows us to get property values for specific items. For completeness the
CIV table for the example raw dataset given in Table 2 is given in Table 5 below.

Property
attributes Item

X Y Z
A 2 4 6
B 4 5 3
C 1 2 5
D 4 1 3

Linguistic values Property
Low Medium High

X

Y

Z

Table 5. CIV Table Table 6. Property Table for raw dataset given in Table 2

Properties Table: A Properties Table is a table that maps all possible values for

each property attribute onto user defined (overlapping) ranges, each

associated with a linguistic label taken from the set of available linguistic labels .
Properties tables provide a mapping of property attribute values to membership values
according to the correspondence between the given values to the given ranges
(linguistic labels). An example is given in Table 6 for the raw data set given in Table
2.

3.2 Fuzzy Specific Concepts

Fuzzy Association Rules: A Fuzzy Association Rule (Kuok et al. 1998) is an
implication of the form:

if then

where A and B are disjoint itemsets and X and Y are fuzzy sets. In our case the
itemsets are made up of property attributes and the fuzzy sets are identified by
linguistic labels (for example “small”, “medium”, “large”).

Fuzzy Frequent Itemset: A property attribute set , where , is a
fuzzy frequent attribute set if its fuzzy support value is greater than or equal to a user
supplied minimum support threshold (the notion of fuzzy support values is discussed
further in sub-section 3.3 below). The significance of fuzzy frequent attribute sets is

 8

that fuzzy association rules are generated from the set of discovered frequent attribute
sets.

Fuzzy Normalisation: Fuzzy normalisation is the process of finding the
contribution to the fuzzy support value, , for individual property attributes

 such that a partition of unity is guaranteed. This is given by the equation
(where is the membership function):

(2)

Without normalisation, the sum of the support contributions of individual fuzzy

sets associated with an attribute in a single transaction may no longer be unity. This is
illustrated in Tables 7 and 8 (both taken from the example application outlined in
Section 5 below). In the tables, the possible values for the item “Proteins” have been
organised into five fuzzy sets labelled: “Very Low” (VL), “Low” (L), “Ideal”, “High”
(H) and “Very High” (VH). Table 7 shows a set of raw membership degree values,
while Table 8 shows the normalised equivalents.

Proteins …

TID
VL L Ideal H VH …

1 0.0 0.0 0.0 0.32 1.0 …
2 0.0 0.38 0.83 0.0 0.0 …
3 … … … … … …

Proteins
TID

VL L Ideal H VH …
1 0.0 0.0 0.0 0.24 0.76 …
2 0.0 0.31 0.69 0.0 0.0 …
3 … … … … … …

Table 7: Fragment of example data set
without normalization

Table 8: Fragment of example data set
with normalization

In table 7, without normalisation, it would increase the support of protein by 0.32
in row I and 0.21 in row 2. That means, these transactions will be counted
0.32+1.0=1.32 and 0.38+0.83=1.21 times for protein. However, it is unreasonable for
one transaction to contribute more than others, if the corresponding discrete sets are
disjoint.

The normalisation process ensures fuzzy membership values for each property
attribute are consistent and are not affected by boundary values.

Fuzzy Membership Function: Contribution or membership degree to a particular
fuzzy set (described by a linguistic label), is determined by a membership
function. There are many different types of membership function and the type of
representation of the membership function depends on the nature of the fuzzy set. The
most common membership function is an isosceles trapezoidal function, others
include triangular, rectangular and semi-circular functions. An example, using the
market basket analysis application introduced in Section 1, is given in Figure 2. The
figure demonstrates the membership functions for the Protein nutrient. With respect to
the application, the trapezoidal shape was chosen as it best captures the intuition
(promoted by nutritionists) that nutrient values above or below the ideal is
undesirable. Note that the ideal nutrient value equates to 1.

 9

Fig 2: Fuzzy membership functions

(3)

Equation 3 (Paetz, J. 2002) is a function representing all the membership degrees
of an input value “x”. Other parameters , , and refer to the corners of the
trapezium proceeding in a clockwise fashion starting with the bottom-left corner. The
value x has an “ideal” value between the points to along the “X” axis, with the
lowest value and the highest value . From the example in figure 2, an “ideal”
protein intake will have values in the range [40,60]. If there are missing properties (or
trace elements) in an item, as shown in figure 1 (e.g. Bread has no proteins, so called
“trace” elements), the fuzzy function evaluates to zero degree membership.

3.3 Quality Measures for Fuzzy Association Rules

A very important aspect in data mining is the discovery of interesting knowledge.,
where interestingness relates to unexpectedness(Fayyad et al. 1996). Extensive study
in databases has been carried out recently in order to find out the most interesting
rules with subjective and objective measures. Subjective measures (Silberschatz and
Tuzhilin, 1995) take into account the user’s goals and domain knowledge. Objective
measures (Freitas, A. 1998) evaluate the interestingness of a rule in terms of rule
structure and the underlying data in rule generation such as support, confidence,
certainty and entropy.

However, the support-confidence framework remains the most popular approach in
traditional ARM and identifies frequent itemsets and assesses the relevance of the
generated ARs. The support-confidence framework, with some modifications, can
also be applied to composite item fuzzy association rule mining.

Fuzzy Support: Frequent fuzzy attribute sets are identified by calculating fuzzy
support (significance) values. Fuzzy Support is typically calculated as
follows:

 10

where is a set of property attribute-fuzzy set (label) pairs

such that . A record “satisfies” if . The individual vote per
record, , is obtaining by multiplying the membership degree associated with each
attribute-fuzzy set pair :

 (4)

(5)

Note that by using the product operator (often referred to in fuzzy ARM literature

as the mul operator) for fuzzy aggregation, the degree of contribution of all items is
taken into account and thus provides for a more effective result (and also ensures that
the overall contribution remains within the range). Alternatives found in the
literature include the min and max operators as:

However these do not include the contribution of all values. Table 9 demonstrates
the effect of using mul, min and max fuzzy support calculation using

 and . Note that the vote for is zero

because is not a subset of A.

A

a1 a2 a3 a4 Max Min Mul
 0.4 0.6 0.7 0.9  0.900 0.400 0.151

 0.9 0.8 0.5 0.6  0.900 0.500 0.216

 0.7 0.5 0.3 0.8  0.800 0.300 0.084

 0.8 0.9 0.7 0.2  0.900 0.200 0.101
 FS(A) 0.875 0.350 0.138

Table 9: Effect of fuzzy mul operator

We use an example to illustrate the computation of the fuzzy support value. Let
A={X, Z} and P={Small, Large} and a part of database shown in table 4. The fuzzy
support of {A, P} is calculated as follows: SupportFuzzy (A, P)=(0.5+0+0.5)/3=0.33

 11

Fuzzy Confidence: Frequent attribute sets with fuzzy support above the user
specified threshold are used to generate all possible rules. A fuzzy AR derived from a
fuzzy frequent attribute set is of the form:

where and are disjoint subsets of the set such that
Fuzzy Confidence is calculated in the same manner that confidence is
calculated in traditional ARM:

(6)

Certainty Measure: The Fuzzy Confidence measure described
above is often criticised because it does not take into account the effect of

. The certainty measure addresses this. The certainty measure

is a statistical measure founded on the concepts of covariance and variance
. Certainty is calculated using equation 7:

(7)

Certainty values range between -1 and +1, positive when the dependence between

A and B is positive, 0 when there is independence and negative when the dependence
is negative. We are only interested in rules that have a certainty value that is greater
than 0. As the certainty value increases from 0 to 1, the more related the attributes are
and consequently the more interesting the rule is. It is worth noting that the certainty
of an association rule reaches its maximum possible value, 1, if and only if the rule is
completely accurate (Delgado et al. 2003).

4 The Fuzzy Apriori-T (CFARM) Algorithm

For fuzzy association rule mining standard ARM algorithms can be used or at least
adopted after some modifications (Khan et al. 2006), (Gyenesei, A. 2001), (Khan et
al. 2008). There is limited work addressing performance issues in fuzzy association
rule mining but still there are some contributions in this area (Chen and Wei, 2002),
(Khan et al. 2006). An efficient algorithm is required because a significant amount of
processing is undertaken to prepare the raw data prior to the application of fuzzy
association rule mining. For example, filtration where data is filtered or extracted,
specifically edible items from non-edible ones, conversion of quantitative properties
into fuzzy sets and normalizing membership contributions of the properties.

The proposed Composite Fuzzy Apriori-T ARM (CFARM) algorithm is developed
using T-tree data structures (Coenen et al. 2004a) and works in a fashion similar to the
Apriori algorithm (Ferenc, B. 2003).

 12

The CFARM algorithm consists of four major steps:

Data preprocessing Steps:
1. Transformation of ordinary transactional data set () into a property data set

().
2. Transformation of property data set () into a fuzzy data set .
Association Rule Mining Steps:
3. Apply Fuzzy Apriori-T association rule mining algorithm to using fuzzy

support, confidence and certainty measures of the form described above to
produce a set of frequent item sets .

4. Process and generate a set of fuzzy ARs such that the
interestingness threshold (either confidence or certainty as desired by the end
user) is above some user specified threshold.

The algorithms for steps 1and 2 are presented in Tables 10 and 11.

Input:
 = Raw data set

Output:

= Property data set
1.

2.

3.

4.

5.

6.

7.

Table 10: rawToPropertyDataSetConverter (T)

To illustrate steps 1 and 2 from table 10, a fragment of a raw data set () is given

in Table 2. This raw data is then cast into a properties data set (). This is done, as
described above; by averaging the property values for each transaction (see section
3.1 and table 3). For example, assuming the CIV table given in table 5 and
considering transaction , from Table 2, has property values
and has property values .

 13

Input:
 = property data set

Output:
= Fuzzy data set

1.

2.

3.

4.

5.

6.

Table 11 : propertToFuzzyDataSetConverter (Tp)

Thus , assuming the
properties table of the form presented in Table 6 where

. The result is as shown in Table 3 which is then cast
into a fuzzy data set as shown in Table 4.

The final part of the CFARM algorithm is given in Table 14. In the Table: is

the set of candidate itemsets of cardinality , is the set of frequent item sets, is
the set of potential rules and is the final set of generated fuzzy ARs.

The Fuzzy Apriori-T Algorithm

The Fuzzy Apriori-T algorithm (Apriori-Total) is founded on tree structure called
the T-tree (Coenen et al. 2004b). This is a set enumeration tree structure in which to
store frequent item set information. What distinguishes the T-tree from other set
enumeration tree structures is:

1. Levels in each sub-branch of the tree are defined using arrays. This thus

permits "indexing in" at all levels and consequently offers computational
advantages.

2. To aid this indexing the tree is built in "reverse". Each branch is founded on
the last element of the frequent sets to be stored. This allows direct indexing
with attribute number rather than first applying some offset.

Thus given a data set of the form (ignoring any fuzzy membership issues):

A=0.6, B=0.5, C=0.3, D=0.2, E=0.8, F=0.3

{ 1 2 3 4 5 6 }
{0.6 0.3 0.2 0.4 0.1 0.9}
{0.5 0.2 0.8 0.5 0.6 0.4}
{0.5 0.2 0.3 0.3 0.2 0.1}

 14

and assuming a support count of less than 0.01, we can identify the following frequent
sets (support counts in parenthesis):

1 (0.53)
2 (0.23)
3 (0.43)
4 (0.40)
5 (0.30)
6 (0.47)

1 2 (0.13)
1 4 (0.21)
1 6 (0.26)
2 6 (0.12)
3 4 (0.19)
3 5 (0.18)

4 5 (0.13)
4 6 (0.19)
1 4 6 (0.11)

These can be presented in a T-tree of the form given in Figure 3 (note the reverse
nature of the tree).

Fig 3: Conceptual example of the T-tree data structure

The internal representation of this "reverse" T-tree founded on arrays of T-tree

nodes that can be conceptualised as shown in Figure 4. The storage required for each
node (representing a frequent set) in the T-tree is then 12 Bytes:

1. Reference to T-tree node structure (4 Bytes)
2. Support count field in T-tree node structure (4 Bytes)
3. Reference to child array field in T-tree node structure (4 Bytes)

Thus housekeeping requirements are still 8 Bytes, however storage gains are

obtained because it is not necessary to explicitly store individual attribute labels (i.e.
column numbers representing instantiated elements) as these are implied by the
indexing. Of course this approach must also require storage for "stubs" (4 Bytes)
where nodes are missing (unsupported). Overall the storage advantages for this
technique is thus, in part, dependent on the number of missing combinations
contained in the data set.

 15

Fig 4: Internal representation of T-tree presented in Figure 3

The T-tree described above is built in an Apriori manner, as first proposed in (Ferenc,
B. 2003), starting with the one item sets and continuing until there are no more
candidate N-itemsets. Thus, at a high level, a standard Apriori algorithm is used (see
table 12).

K  1
nextlevelFlag=true;

generate candidate K-itemsets
Loop
 count support values for candidate K-itemsets
 prune unsupported K-itemsets
 K  2
 generate candidate K2 itemsets from previous level
 if no K2 itemsets
 break
end Loop

Table 12 : Apriori Algorithm

Method: createTotalSupportTree
Arguments: none
Return: none
Fields: NA

createTtreeTopLevel()
generateLevel2()
createTtreeLevelN()

Table 13 : The createTotalSupportTree method

In more detail the Apriori-T algorithm commences with a method
createTotalSupportTree which is presented in Table 13. The method starts by
generating the top level of the T-tree (createTtreeTopLevel) and then generating the
next level (generateLevel2) from the supported sets in level 1. Remember that if a 1-
itemset is not supported, none of its super sets will be supported according to
downward closure property in ARM. Once we have generated level 2 further levels
can be generated (createTtreeLevelN).

The method to generate the top level of a T-tree is as presented in Table 14. Note
that the method includes a call to a general T-tree utility method pruneLevelN
described later.

 16

Method: createTtreeTopLevel
Arguments: none
Return: none
Fields: D: number of attributes
 startTtreeRef: start of T-tree
 dataArray 2D: array holding input sets

Dimension and initialise top level of T-tree(length=D)

Loop from i= 0 to i = number of records in dataArray
 Loop j=0 to j=number of attributes in

dataArray[i]
 startTtreeRef[i][j]++
 End loop
End Loop

pruneLevelN(startTtreeRef,1)

Table 14 : The createTtreeTopLevel method

The generateLevel2 method loops through the top level of the T-tree creating new
T-tree arrays where appropriate (i.e. where the immediate parent nodes is supported).
The method is outlined in Table 15. Note that the method includes a call to a general
T-tree utility method generateNextLevel (also described later).

Method: createTtreeLevelN
Arguments: none
Return: none
Fields: startTtreeRef: start of T-tree
 nextlevelFlag: set true if next level exists

K <-- 2
while (nextlevelFlag)
 addSupportToTtreeLevelN(K)
 pruneLevelN(startTtreeRef,K)
 nextlevelFlag  false
 generateLevelN(startTtreeRef,K,{})
 K  K+1
End loop

Table 15 : The createTtreeLevelN method

Once we have a top level T-tree and a set of candidate second levels (arrays) we
can proceed with generating the rest of the T-tree using an iterative process --- the
createTtreeLevelN method presented in Table 15. The createTtreeLevelN method
calls a number of other methods addSupportToTtreeLevelN, pruneLevelN (also called
by the createTtreeTopLevel method) and generateLevelN which are presented in
Tables 16, 17 and 18 respectively.

 17

Method: addSupportToTtreeLevelN
Arguments: K the current level
Return: none
Fields: startTtreeRef: start of T-tree
 dataArray 2D: array holding input sets

Loop i = 0 to i = number of records in dataArray
 length  number of attributes in dataArray[i]

addSupportToTtreeFindLevel(startTtreeRef,K,length,
 dataArray[i]
End loop

Method: addSupportToTtreeFindLevel
Arguments:
 linkref: refers to current array in T-tree
 K: level marker
 Length: array length at current branch in t-tree
 record input data record under consideration
Return: none
Fields: None

if (K=1)
 Loop from i = 0 to i = length
 if (linkref[record[i]] != null)
 increment

linkref[record[i]].weightedsupport
 End if
 End Loop
else
 Loop from i = K-1 to i = length
 if (linkref[record[i]] != null &&
 linkref[record[i]].childRef !=

null)

addSupportToTtreeFindLevel(linkref[record[i]].childRe,
 K-1,i,record)
 End if
 End loop
end if else

Table 16 : addSupportToTtreeLevelN, addSupportToTtreeFindLevel
methods

 18

Method: pruneLevelN
Arguments: linkref reference to current array in T-

tree
 K level marker
Return: true if entire array pruned
Fields: minSupport the minimum support threshold

if (K=1)
 allUnsupported <-- true
 Loop from i = 1 to i = length of array
 if (linkref[i] != null)
 if (linkref[i].support < minSupport)
 linkref[i] <-- null
 else allUnsupported <-- false
 End if else
 End if
 return allUnsupported
 End Loop
else
 Loop from i = K to i = length of array
 if (linkref[i] != null)
 if (pruneLevelN(linkref[i].childRef,K-1)
 linkref[i].childRef <-- null
 End if
 End if
 End loop
End if else

Table 17 : The pruneLevelN

 19

Method: generateLevelN
Arguments: linkref reference to current array in T-

tree
 K level marker
 I the item set represented by the parent node

Return: None, Fields: None

if (K=1)
 Loop from i = 2 to i = length of array
 if (linkref[i] != null)
 generateNextLevel(linkref,i,I union i)
 End if
 End loop
else
 Loop from i = K to i = length of array
 if (linkref[i]!=null && linkref[i].childRef != null)
 generateLevelN(linkref[i].childRef,K-1,I union i

Method: generateNextLevel
Arguments: linkref reference to current array in T-tree
 I: index to parent node in vurrent array
 I: the item set represented by the parent node
Return: None
Fields: nextLevelExists flafg set to true or false

linkref[i].childRef<--empty t-tree array nodes length i

Loop from j = 1 to j = i
 if (linkRef[j] != null)
 newI  I union j
 if (all newI true subsets all supported in the
 T-tree sofar)
 linkRef[i].childRef[j] <-- new T-tree Node
 nextLevelExists <-- true
 else linkRef[i].childRef[j] <-- null
 End if else
 End if
End loop
--

Table 18 : The generateLevelN method and its related generateNextLevel method

5 An Example Application

To evaluate our approach we used a real market basket analysis data set (FIMI),
comprising 1600 composite edible items out of 16,469 total distinct products; the
objective is to determine consumers’ consumption patterns for different nutrients
according to the government promoted Recommended Daily Allowance (RDA). The

 20

properties for each item comprised the 27 nutrients contained in the government
sponsored RDA table (the complete list of nutrients is given in table 19 (a)).

Nutrient # Nutrient # Nutrient # Nutrient
1. Biotin 8. Folacin 15. Protein 22. VitaminB6
2. Calcium 9. Iodine 16. Riboflavin 23. Vitamin C
3. Carbohydrate 10. Iron 17. Selenium 24. Vitamin D
4. Cholesterol 11. Magnesium 18. Sodium 25. Vitamin E
5. Copper 12. Manganese 19. Thiamin 26. Vitamin K
6. Fats 13. Niacin 20. Vitamin A 27. Zinc
7. Fiber 14. Phosphorus 21. Vitamin B12

Table 19 (a): Nutrients listed in RDA table.

This RDA table is thus the CIV table used in the evaluation with actual nutrient
values for individual items. The property data set will therefore comprise

 attributes. The linguistic label set L was defined as follows L –
{Very Low (VL), Low (L), Ideal (I), High (H), Very High (VH)}. Thus the set of
fuzzy attributes has attributes. A fragment of this data set
is given in Table 19 (b).

Very Low Low Ideal High Very High Nutrie

nts /
Fuzzy
Range

s

M
in Core M

ax
M
in Core M

ax
M
in Core M

ax
M
in Core Ma

x
Mi
n Core

Fiber 0 1 10 15 10 15 20 25 20 25 30 35 30 33 38 39 35 40 …
Iron 0 .6 8 12 8 12 16 18 16 18 19 20 19 20 22 23 22 23 …
Protei
n 0 1 15 30 10 20 35 40 35 40 60 65 60 65 75 80 75 70 …

Vit.A 0 15 150 200 150 200 300 400 300 350 440 500 440 490 550 600 550 60
0 …

Zinc 0 .8 8 10 8 10 15 20 15 20 30 40 30 40 46 50 46 50 …
 … … … … … … … … … … … … … … … … … … …

Table 19 (b): Fragment of market basket composite item data set1.

For the example application we used Trapezoidal membership function shown in
figure 2. Core (-) is the region where an attribute has a full membership degree
i.e. 1. Min (-) is the region before core where the value approaches core and
Max (-) is the region after core region where an attribute membership value start
decreasing until zero.

A representative fragment of a raw data set (), comprising edible items, is given
in Table 20(a). This raw data is then cast into a properties data set () using the
given CIV/RDA table to give the properties data set in Table 20(b).

1 Values could be in grams, milligrams, micrograms, International unit or any unit)
.Here Min is the minimum value i.e. , Core is the core region and Max is the

maximum value in the fuzzy membership graph.of figure 2.

 21

TID Items
1. 30, 31, 32
2. 33, 34, 35
3. 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
4. 38, 39, 47, 48
5. 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
6. 32, 41, 59, 60, 61, 62
7. 3, 39, 48
8. 63, 64, 65, 66, 67, 68
9. 32, 69
10. 48, 70, 71, 72

(a) Fragment of retail data set ()

(b) Property data set () (c) Classical ARM data set

TID Bio Cal Car Chl …
1 1 762 255 68 …
2 0 2 0 201 …
3 19 246 1240 1295 …
4 … … … … …

TID Bio Cal Car Chl …
1 2 7 11 16 …
2 1 6 11 18 …
3 5 6 15 16 …
4 … … … ... …

Table 20: Example data fragment from example application

At this point, two solutions may exist for the next mining step. One is to code fuzzy
sets {very low, low, ideal, high, very high} as, for example, {1, 2, 3, 4, 5}, for the
first nutrient (Biotin), {6, 7, 8, 9, 10} for the second nutrient (Calcium) and so on
(Muyeba et al. 2006). The encoded data (Table 20(c)) can be mined by any binary
association rule algorithm to find association rules. This approach only gives us, for
instance, the total support of various fuzzy sets per nutrient and not the degree of
(fuzzy) support. This directly affects the number and quality of rules (see section 6 for
further evidence). To overcome this, the fuzzy approach advocated in this paper has
been adopted, where we convert RDA property data set (Table 20(b)) to linguistic
values (Table 21) for each nutrient and corresponding degrees of membership for the
fuzzy sets they represent. Each transaction then will have fuzzy values {very low,
low, ideal, high, very high} for each nutrient present in every item of that transaction.
Table 21 shows only two nutrients (i.e. a total of 10 fuzzy sets).

Calcium (Cal) Carbohydrate (Car) TID
VL L Ideal H VH VL L Ideal H VH …

1 0.0 1.0 0.0 0.0 0.0 0.83 0.17 0.0 0.2 0.0 …
2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.95 0.05 0.0 …
3 0.0 0.4 0.46 0.0 0.0 0.0 0.0 0.0 0.0 1.0 …
4 … … … … … … … … … … …

Table 21: Linguistic transaction file

Note that table 21 shows a normalised transaction file according to the calculation
examples in previous sections and using equation (2).

 22

We have generated frequent sets using both discrete quantitative and fuzzy
approaches. Discrete approach generated 76 frequent sets and fuzzy approach with
un-normalised data and normalised data produced 43 and 39 frequent sets
respectively. Rules generated using certainty factor with threshold 0.5 are shown in
table 22.

Discrete Method with
Crisp Intervals

Support Fuzzy Approach with
Normalised Data

Support Certainty

525 0.500 525 0.500 0.500
2535 0.600 2535 0.600 0.612
253562 0.400 253562 0.400 0.667
2535110 0.400 2535110 0.400 0.667
2540 0.600 2540 0.600 0.612
254095115 0.400 254095115 0.496 0.816
2540115 0.500 2540115 0.496 0.816
25115 0.500 25115 0.496 0.500
3562 0.400 3562 0.400 0.667
35110 0.400 35110 0.400 0.667
4095115 0.500 4095115 0.496 0.816
40115 0.500 40115 0.496 0.816
8595135 0.500 8595135 0.417 0.713
85135 0.500 85135 0.417 0.713

Table 22: Rules generated using discrete and fuzzy methods

By comparing the itemsets supports with discrete and fuzzy approaches, it can be
noted that for some rules (highlighted) using discrete method the support is slightly
higher as compared to the same rules generated by fuzzy approach. This is due to the
fact that in some cases discrete intervals allow more contribution of items near
interval boundaries (sharp boundary problem), in result, higher the support and
consequently more frequent sets. But in case of overlapped fuzzy intervals each item
contribute its actual contribution in one or more intervals with overall maximum
contribution=1 using normalisation. Table 22 gives a formal proof of that

6 Experimental Evaluation

In order to show the quality, performance and effectiveness of our approach, two
sets of experiments were undertaken:

1. Comparison of CFARM, with and without normalisation, against standard

(discrete) ARM to illustrate: (i) the difference of number of frequent sets
generated and (ii) the number of rules generated (using both the confidence and
the certainty interestingness measures).

2. Comparison of execution times (performance) using Fuzzy Apriori ARM (Khan
et al. 2006), Fuzzy Apriori-T (CFARM) with and without normalisation and
Apriori-TFP (Coenen et al. 2004b) with discrete dataset (boolean attributes).

All the experiments were performed on Mobile Intel(R) Pentium(R) 4 CPU 3.06 GHz
machine with 1 GB ram and installed Microsoft Windows XP Professional with
service pack 2 as operating system.

 23

6.1 Datasets

Both real and synthetic datasets are used in experiments. For real data we used
Retail dataset, it is a real market basket data (FIMI) and T10I4D100K synthetic data
is obtained from the IBM dataset generator (IBM).

Dataset # of Transactions Distinct
Items Avg. Trans. Size Max. Trans.

Size
Retail 88,162 16,469 10.3 76

T10I4D100K 100,000 1000 10.1 30

Table 23: Frequent itemsets comparison

Table 23 characterises the two datasets in terms of the number of transactions, the
number of distinct items, the average transaction size, and the maximum transaction
size. It is worth mentioning that both datasets contains sparse data, since most
association rules discovery algorithms were designed for these types of problems.

For the purpose of the experiments we mapped the item numbers onto products in a
real RDA table.

6.2 Quality Measures

For experiment one both the real retail and synthetic datasets described above were
used. Figures 5 and 6 show the results and demonstrates the difference between the
numbers of frequent itemsets generated using

I. Standard ARM using discrete intervals,
II. CFARM with fuzzy partitions without normalization (CFARM1), and

III. CFARM with fuzzy partitions with normalization (CFARM2).

For the standard ARM the Apriori-TFP algorithm was used (Coenen et al. 2004b)

and for CFARM-1 and CFARM-2 proposed Fuzzy Apriori-T was used with a range
of support thresholds [0.15-0.6] for both algorithms.

As expected the number of frequent itemsets increases as the minimum support
decreases. From the results, it is clear that standard ARM produces more frequent
itemsets (and consequently rules) than fizzy ARM. This is because the frequent
itemsets generated more accurately reflect the true patterns in the data set than the
numerous artificial patterns resulting from the use of crisp boundaries in standard
ARM. At low support threshold level the approach with normalization (CFARM2)
starts to produce less frequent itemsets than the approach without normalization
(CFARM1). This is because the average contribution to support counts per transaction
is greater without using normalization than with normalization.

 24

Fig 5: Number of frequent Itemsets

Fig 6: Number of frequent Itemsets

Figures 7 and Figure 8 show the comparison of number of interesting rules
produced using specified fuzzy confidence and certainty thresholds [0.1-0.9]
respectively with real and synthetic data. In both cases, the number of interesting rules
is less as using CFARM2; this is a direct consequence of the fact that CFARM2
generates fewer frequent itemsets. Note that fewer, but arguably better, rules are
generated using the certainty measure than the confidence measure (Figures 7 & 8)
because the more related the attributes are and consequently the more interesting the
rule is (see sec. 3.3).

 25

Fig 7: Number of Interesting Rules using Confidence

Fig 8: Number of Interesting Rules using Certainty

The experiments show that using the proposed fuzzy normalization process less
fuzzy ARs are generated. In addition, the novelty of the approach is its ability to
analyse datasets comprised of composite items where each item has a number of
property values such as the nutritional property values used in the application
described here.

Some example fuzzy ARs produced by our approach are as follows:

IF Protein intake is Ideal THEN Carbohydrate intake is low.
IF Protein intake is Low THEN Vitamin A intake is High.
IF Protein intake is High AND Vitamin A intake is Low THEN Fat intake is High.
Note that, for the above rules we have replaced quantitative numeric data with real

linguistic values for better understanding.
The rules above would first need defuzzifying (Roy and Pedrycz, 2001) each fuzzy

value and then either aggregating them into real values or presenting them as a tabled
list of nutritional values, whichever is appropriate to be interpreted by a domain

 26

expert. These rules would therefore be useful in analysing customer buying patterns
concerning their nutrition.

6.3 Performance Measures

Experiment two investigated the effect on execution time caused by varying the
size of data (number of records) and the number of attributes with and without
normalization. For this experiment we have compared the execution time of proposed
Fuzzy Apriori-T CFARM algorithm with Fuzzy Apriori ARM (Khan et al. 2006)
using fuzzified datasets and Apriori-TFP (Coenen et al. 2004b) with discrete data
(boolean attributes). A support threshold = 0.4, confidence = 0.5 and certainty value =
0.5 were used for all algorithms.

Figures 9 and 10 show the effect on execution time by increasing the number of
records. To obtain different sizes both the datasets were partitioned into 10 equal
partitions labelled 10K, 20K… 100K.. All 27 nutrients (properties) were used.

Note that the running time for candidate generation is independent of the number
of records but run time for threshold count (support, confidence and certainty) is
directly proportional to the number of records. Thus we would expect the CFARM
algorithm to have near-linear scale up.

Fig 9: Performance Measures: Number of Records

From the figures it can be seen that discrete method using Apriori-TFP algorithm

and CFARM approach using Fuzzy Apriori-T algorithm have almost similar timings,
the slight difference is due to the extra computational cost while generating fuzzy
frequent sets. But a big difference of execution time can be noted between Fuzzy
Apriori ARM and Fuzzy Apriori-T algorithms. This is due to the efficient frequent
sets generation with Fuzzy Apriori-T algorithm using T-tree data structures. While the
execution time increasing with the number of records. However the experiments also
show that CFARM scales linearly with the number of records. Note that Fuzzy
Apriori-T has the similar timings for dataset with and without normalisation, so only
results with normalised data are shown in the figures.

 27

Fig 10: Performance Measures: Number of Records

Figures 11 and 12 show the effect on execution time by varying the numbers of
attributes. Recall that each attribute has 5 fuzzy sets, therefore for (say) 27 attributes,
we have 135 columns.

Fig 11: Performance Measures: Number of Attributes

 28

Fig 12: Performance Measures: Number of Attributes

In this experiment, we give the experimental results based on the performance of
the algorithm by varying the number of attributes. As expected, similar results are
produced i.e. as the number of attributes increases the execution time increases as
well.

Further, the experiments show that proposed Fuzzy Apriori-T CFARM has better
execution time, almost similar to Apriori-TFP, presently one of the efficient algorithm
(Coenen et al. 2004[a, b]) and the proposed Fuzzy Apriori-T scales linearly with the
number of records and attributes.

7 Conclusion

In this paper, we have presented a novel approach for extracting hidden
information from composite items. We defined composite items and developed a
fuzzy framework for mining such items and measuring their interestingness using
fuzzy measures. We showed that within such items, common properties can be
defined as quantitative (sub) itemsets, transformed into fuzzy sets, mined and
extracted rules measured using fuzzy support, confidence and certainty. Using the
proposed CFARM algorithm a more succinct set of fuzzy association rules can be
derived using fuzzy measures and certainty. The CFARM algorithm thus represents a
new way of mining items efficiently with properties than standard quantitative ARM
which does not use such properties, as described in the literature. We also showed the
application of our method with market basket data. As noted there is significant
potential to apply CFARM to other applications than the daily recommended
allowance analysis, used to illustrate the operation of CFARM in this paper, with
composite items or attributes even with varying fuzzy sets between attributes. We feel
that the approach presented here is novel in its use of composite items for fuzzy
association rule mining. Further work will consider composite fuzzy association rule
mining framework with weighted items and how the fuzzy approach can incorporate
weights in generated composite fuzzy sets.

 29

References

1. Agrawal, R., Imielinski, T. & Swami, A. (1993) Mining association rules
between sets of items in large databases. In: In Proceedings of ACM SIGMOD
International Conference on Management of Data. pp. 207-216.

2. Au, W.H. & Chan, K.C.C. (1999) FARM:A Data Mining System for Discovering
Fuzzy Association Rules, in: Proc. 8th IEEE int’l Conf. on Fuzzy Systems,
(Seoul, Korea, 1999), 1217 - 1222.

3. Berzal. F., I. Blanco, D. S´anchez, and M.A. Vila, (2002) Measuring the accuracy
and interest of association rules: A new framework, Intelligent Data Analysis 6
(3), pp. 221–235..

4. Chen. G, and Wei. Q, (2002) Fuzzy Association Rules and the Extended Mining
Algorithms, Information Sciences, 147(1-4) pp. 201 - 228.

5. Coenen, F., Goulbourne, G. & Leng, P. (2004) Tree structures for mining
association rules. Data Mining and Knowledge Discovery, 8 (1), pp.25–51 (a).

6. Coenen, F.P., Leng, P., and Ahmed, S. (2004) Data Structures for Association
Rule Mining: T-trees and P-trees, IEEE Transactions on Data and Knowledge
Engineering, Vol. 16, No 6, pp774-778 (b)..

7. Delgado, M., Marin, M., Martin-Bautista MJ, Sanchez D, Vila MA: Mining
Fuzzy Association Rules: An Overview, proc. of the BISC International
Workshop on Soft Computing for Internet and Bioinformatics 2003.

8. Delgado, M., Sanchez, D. & Vila, M.A. (2002) Acquisition of fuzzy association
rules from medical data. Fuzzy Logic in Medicine, pp.286.

9. Delgado, M., Sánchez, D., Martı ́n-Bautista, M.J. & Vila, M.A. (2001) Mining
association rules with improved semantics in medical databases. Artificial
Intelligence in Medicine, 21 (1-3), pp.241–245.

10. Delgado, M., Marin, N., Sanchez, D. & Vila, M.A. (2003) Fuzzy association
rules: general model and applications. IEEE Transactions on Fuzzy Systems, 11
(2), pp.214–225.

11. Dong. L. and Tjortjis. C., (2003) Experiences of Using a Quantitative Approach
for Mining Association Rules, in: Lecture Notes in Computer Science Series,
Vol. 2690 (Springer, Berlin, 2003) 693 - 700.

12. Dubois, D., Hüllermeier, E. and Prade, H. (2006) A Systematic Approach to the
Assessment of Fuzzy Association Rules, Data Mining and Knowledge Discovery
Journal, 13(2), 167 – 192.

13. Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P., (1996) From Data Mining to
Knowledge Discovery: An Overview. In Advances in Knowledge Discovery &
Data Mining, AAAI/MIT. pp. 1-34.

14. Ferenc Bodon, (2003) A fast APRIORI implementation, IEEE ICDM Workshop
on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, Florida,
USA.

15. FIMI, Frequent Itemset Mining Implementation Repository, http://fimi.cs.helsinki.fi/.
16. Freitas, A.A., (1998) On Objective Measures of Rule Surprisingness. In:

Proceedings of Second European Symposium on Principle of Data Mining and
Knowledge Discovery (PKDD-98), Lecturer Notes in Artificial Intelligence,
1510, pp. 1-9.

17. Gyenesei, A.: (2001) A Fuzzy Approach for Mining Quantitative Association
Rules, Acta Cybernetical, Vol. 15, No. 2, pp.305-320.

18. IBM Synthetic Data Generator,
http://www.almaden.ibm.com/software/quest/resources/index.html

19. Khan, M.S., Muyeba, M., Tjortjis, C. & Coenen, F. (2006) An effective Fuzzy
Healthy Association Rule Mining Algorithm (FHARM). Proc. of UKCI 2007, the

 30

7th Annual Workshop on Computational Intelligence (FUZZ-IEEE 07’ co-
located), 4 (5), pp.14.

20. Khan. M., Muyeba, M and Coenen, F. (2008) Mining Fuzzy Association Rules
from Composite Items, in IFIP International Conference on Artificial Intelligence
(IFIP-AI 2008), Milano, Italy, Volume 276; Artificial Intelligence and Practice
II; Max Bramer; (Boston: Springer), pp. 67–76.

21. Kim. W., Banerjee.J., Chou. H., Garza. J. and Woelk. D., (1987) Composite
object support in an object-oriented database system, in: Proc. OOPSLA’87
(Orlando, Florida, United States) 118 - 125.

22. Kim. W., Bertino. E. and Garza. J., (1989) Composite objects revisited, ACM
SIGMOD Record 18(2) 337 – 347.

23. Kuok, C.M., Fu, A. & Wong, M.H. (1998) Mining fuzzy association rules in
databases. ACM Sigmod Record, 27 (1), pp.41–46.

24. Mohammad Khabbaz, Keivan Kianmehr, Mohammed Al-Shalalfa, Reda Alhajj,
(2008) Effectiveness of Fuzzy Classifier Rules in Capturing Correlations between
Genes. Intl J of Data Warehousing and Mining IJDWM 4(4): 62-83.

25. Muyeba. M, M. Sulaiman Khan, Z. Malik, and C. Tjortjis, (2006) Towards
Healthy Association Rule Mining (HARM), A Fuzzy Quantitative Approach, in:
Proc. IDEAL’06, Lecture Notes in Computer Science, Vol. 4224, (Springer,
Verlag, 2006), 1014 - 1022.

26. Paetz. J., (2002) A Note on Core Regions of Membership Functions, in: Proc.
(EUNITE 2002), (Albufeira, Portugal, 2002) 167 - 173.

27. Roychowdhury. S. and Pedrycz, W. (2001) A survey of defuzzification strategies,
International journal of intelligent systems., vol. 16, no 6, pp.679-695.

28. S´anchez. D., (1999) Acquisition of Relationships between Attributes in
Relational Databases), Ph.D. thesis, Department of Computer Science and
Artificial Intelligence, University of Granada, December 1999.

29. Silberschatz, A. and Tuzhilin, A., (1995) On subjective measures of
interestingness in knowledge discovery. In: Fayyad, U., Uthurusamy, R. (Eds.),
Proceedings of the 1st ACM SIGKDD international conference on knowledge
discovery and data mining KDD-1995, AAAI/MIT Press, Cambridge. pp. 275-
281.

30. Silverstein. C., Brin. S., and Motwani. R., (1998) Beyond market baskets:
Generalizing association rules to dependence rules, Data Mining and Knowledge
Discovery, vol. 2, pp. 39–68.

31. Srikant, R. & Agrawal, R. (1996) Mining quantitative association rules in large
relational tables. ACM SIGMOD Record, 25 (2), pp.1–12.

32. Terence Kwok, Kate A. Smith, Sebastián Lozano, David Taniar, (2002) Parallel
Fuzzy c-Means Clustering for Large Data Sets. Proceedings of the 8th
International Conference Euro-Par, LNCS Vol 2400 Springer, Euro-Par 2002:
365-374.

33. Wang, K., Liu, J.N. & Ma, W. (2006) Mining the Most Reliable Association
Rules with Composite Items. In: Sixth IEEE International Conference on Data
Mining Workshops, 2006. ICDM Workshops 2006. pp.749–754.

34. Ye, X. & Keane, J.A. (1997) Mining composite items in association rules. In:
Proceedings of the 1997 IEEE International Conference on Systems, Man, and
Cybernetics (SMC 1997), Hyatt Orlando, Orlando, Florida, USA. pp.1367–1372.

