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Abstract 

The most computationally demanding aspect of association rule 
mining is the identification and counting of support of the frequent 
sets of items that occur together sufficiently often to be the basis of 
potentially interesting rules. The task increases in difficulty with the 
scale of the data and also with its density. The greatest challenge is 
posed by data that is too large to be contained in primary memory, 
especially when high data density and/or low support thresholds give 
rise to very large numbers of candidates that must be counted. In this 
paper we consider strategies for partitioning the data to deal 
effectively with such cases. We describe a partitioning approach 
which organises the data into tree structures that can be processed 
independently. We present experimental results that show the method 
scales well for increasing dimensions of data, and performs 
significantly better than alternatives, especially when dealing with 
dense data and low support thresholds. 
 
Keywords : Association Rules, Partial Support, Data Structures, Set-
Enumeration Tree 

1      Introduction 
An association rule [2] is an implication of the form A → B, relating disjoint sets 
of database attributes, which is interpreted to mean “if the set of attribute-values A 
is found together in a database record, then it is likely that the set B will be present 
also”. Association Rule Mining involves the discovery, in a tabular database, of all 
such rules that satisfy defined threshold requirements. Of these requirements, the 
most fundamental concerns frequency: a rule  is likely to be applicable only if the 
relationship it describes occurs sufficiently often in the data. The support for the 
rule A → B is the number (or proportion) of database records within which the set 
of attribute-values A ∪ B is found. The frequent sets are those sets for which the 
support exceeds some threshold value. Association Rule Mining requires that all 
frequent sets are identified, and their support determined, so that other properties of 
rules such as confidence and lift [6] can be calculated.  

It is recognised that identifying the frequent sets is the most 
computationally demanding aspect of Association Rule Mining. The problem 
arises because the number of possible sets is exponential in the number of possible 



attribute-values. Continuously-valued attributes can be dealt with by discretization, 
and, for convenience of processing, most methods convert multiple -valued 
attributes into a number of binary attributes, or items, each of which can be said to 
be present or absent in each record.  For most real data, the number n of such items 
is likely to be such that counting the support of all 2n sets of items (itemsets) is 
infeasible. For this reason, almost all methods attempt to count the support only of 
candidate itemsets that are identified as possible frequent sets. It is, of course, not 
possible to completely determine the candidate itemsets in advance, and it will 
therefore be necessary to consider many itemsets that are not in fact frequent. 

In general, algorithms for finding frequent sets involve one or (usually) 
several passes of the source data, in each of which the support for some set of 
candidate itemsets is counted. The performance of these methods, clearly, depends 
both on the size of the original database, typically millions or billions of records, 
and on the number of candidate itemsets being considered. The number of possible 
candidates increases with increasing density of data (greater number of items 
present in a record) and with decreasing support thresholds. In applications such as 
medical epidemiology, we may be searching for rules that associate rather rare 
items within quite densely-populated data, and in these cases the low support-
thresholds required may lead to very large candidate sets. These factors motivate a 
continuing search for efficient algorithms.  

Performance will be affected, especially, if the magnitudes involved make 
it impossible for the algorithm to proceed entirely within primary memory. In these 
cases, some strategy for partitioning the data may be required to enable 
algorithmic stages to be carried out on primary-memory -resident data. Effective 
partitioning will reduce the number of accesses to secondary memory. In this paper 
we examine methods of partitioning to limit the total primary memory requirement, 
including that required both for the source data and for the candidate sets. We 
consider both ‘horizontal’ partitioning, which divides the source data into sets of 
records, and ‘vertical’ partitioning, which partitions records into sets of items. We 
describe a new method of vertical partitioning that exploits tree structures we have 
previously developed for Association Rule Mining. Experimental results are 
presented that show this method offers significantly better performance than 
horizontal partitioning.                 

2      Background 
Most methods for finding frequent sets are based to a greater or lesser extent on the 
“Apriori” algorithm [3]. Apriori performs repeated passes of the database, 
successively computing support-counts for sets of single items, pairs, triplets, and 
so on. At the end of each pass, sets that fail to reach the required support threshold 
are eliminated, and candidates  for the next pass are constructed as supersets of the 
remaining (frequent) sets. Since no set can be frequent which has an infrequent 
subset, this procedure guarantees that all frequent sets will be found.  

One of the inherent performance weaknesses of Apriori is that it requires 
the source data to be scanned repeatedly; in principle, the number of passes 
required is one greater than the size of the largest frequent set. This is especially a 
problem if, as is likely to be the case in many applications, the source data cannot 
be contained in primary memory. An early refinement of the method attempted to 
reduce this cost by partitioning the data into a number of equal-sized segments that 



can be so contained. The “Partition” algorithm [18] applies the Apriori procedure 
to each data segment in turn, retaining the segment in primary storage throughout 
its repeated passes. For each segment, thus, a set of locally frequent itemsets is 
determined, each of which reaches the proportionate threshold of support in that 
segment. A second pass of the complete database is required to establish which of 
the locally frequent sets are (globally) frequent. Similar thinking motivated the 
strategy introduced by Toivonen [19]. Here, a random sample of the source data, 
small enough to contain in primary memory, is first processed using the Apriori 
procedure, with a modified support threshold and other modifications designed to 
make it likely that all the globally frequent sets will be identified in the sample. 
The sets thus found become candidates for a single full pass of the source data to 
verify this.  

The drawback of both these approaches highlights the second weakness of 
Apriori: that the number of candidates whose support is to be counted may become 
very large, especially when the data is such that the frequent sets may contain 
many items (the “long pattern” problem [1]). If, for example, there is just one set of 
20 items that reaches the threshold of support, then the method inescapably 
requires the support for all the 220 subsets of this set to be counted.  In the Partition 
algorithm, this is exacerbated because there may be many more sets that are locally 
frequent in some partition, even though they are not globally frequent. In 
Toivonen’s method, also, it is necessary for the initial processing of the sample to 
identify an enlarged candidate set, to give a reasonable probability that all the 
actual frequent sets will be included. Both these methods also require all 
candidates to be retained in primary memory (for efficient processing) during the 
final database pass. 

Other methods [4] [5] [1] [20] aim to identify maximal frequent sets 
without first examining all their subsets. These algorithms may cope better with 
densely-populated databases and long patterns than the others described, but again 
usually involve multiple database passes. The DepthProject [1] algorithm bypasses 
the problem by exp licitly targeting memory-resident data.  The method of Zaki et. 
al. [20] is of interest, as it introduces a different kind of partitioning. In this, 
candidate sets are partitioned into clusters which can be processed independently. 
The problem with the method is that, especially when dealing with dense data and 
low support thresholds, expensive pre-processing is required before effective 
clustering can be identified. The partitioning by equivalence class, however, is 
relevant to the methods we will describe. 

Our methods begin by performing a single pass of the database to perform 
a partial summation of the support totals. These partial counts are stored in a tree 
structure that we call the P-tree, which enumerates itemsets counted in 
lexicographic order. The term P-tree has been used elsewhere (e.g. [15]) to 
describe other structures: here we use it to denote the structure we first introduced 
in [12], representing a tree of Partial support counts.  The P-tree contains all the 
sets of items present as distinct records in the database, plus some additional sets 
that are leading subsets of these.  

To illustrate this, consider a database with items {a,b,c,d,e}, and  20 
records: 

 
{abcde,abce,abd,abde,abe,acde,ace,ade,b,bcde,bce,bd,bde,be,cd,cde,ce,d,de,e} 



(Not necessarily in this order). For convenience, we will use the notation abd, for 
example, to denote the set of items {a,b,d}. Figure 1 shows the P-tree that would 
be constructed. The counts stored at each node are incomplete support-totals, 
representing support derived from the set and its succeeding supersets in the tree. 

We then apply to this structure an algorithm, Apriori-TFP, which 
completes the summation of the final support counts, storing the results in a second 
set-enumeration tree (the T-tree, of Total support counts), ordered in the opposite 
way to the P-tree. The T-tree finally contains all frequent sets with their complete 
support-counts. The algorithm used, essentially a form of Apriori that makes use of 
the partial counting that has already been done, is described in [8], where we also 
explain the rationale of the approach and its advantages.  Experimental results 
reported in [8] demonstrate significant performance gains in comparison with 
Apriori, and also some improvements over the FP-growth [13] algorithm, which 
uses somewhat similar structures and has some similar properties. The FP-tree 
used in [13] is a more pointer-rich structure than the P-tree, leading to greater 
difficulties in dealing with non-memory-resident data, although strategies for this 
have been proposed, which will be discussed further below. The CATS tree, an 
extension of the FP-tree proposed in [7], also assumes no limitation on main 
memory capacity. In this paper we consider implementations of Apriori-TFP in 
cases when it will be impossible to contain all the data required in main memory, 
requiring some strategy for partitioning this. 

Figure 1: Example of a P-tree 
 

 



3  Strategies for Partitioning 

Horizontal partitioning 

The natural implementation of Apriori, when source data cannot be contained in 
primary memory, requires all the data to be read from secondary memory in each 
pass. The equivalent for Apriori-TFP, because the first stage of the method 
involves the construction of a P-tree, requires a partitioning of the data into 
segments of manageable size. We will refer to this form of partitioning, in which 
each segment contains a number of complete database records, as ‘horizontal’ 
partitioning (HP), or segmentation. We first take each segment of data separately 
and create for it a P-tree that is then stored in secondary memory. The stored P-
trees are then treated as a composite structure from which we compute the final 
support totals for all the frequent sets, storing these in a single T-tree. Each pass of 
Apriori-TFP requires each of the P-trees to be read in turn from secondary 
memory. The method creates a final T-tree in primary memory, which contains all 
the frequent sets and their support-counts.  

Vertical partitioning 

 The drawback of the simple approach outlined above is that it replicates the two 
weaknesses of the Apriori methodology. As with Apriori, all the source data (now 
in the form of  P-trees) must be re-read from secondary memory in each pass.  The 
second problem is that the entire T-tree, which finally contains all the frequent sets, 
must be contained in primary memory while counting proceeds. As we have noted, 
this tree may itself become very large, especially when long frequent patterns are 
encountered. Even if the tree is not too large to be contained in primary memory, a 
large set of candidates leads to slower counting, in Apriori-TFP just as for Apriori. 

A possible alternative way of partitioning the data is to divide the set of 
items under consideration into subsets, each of which defines a vertical partition of 
the data set. The problem with this is that, in general, the sets for which support is 
to be counted contain items from several partitions. The P-tree structure offers 
another form of vertical partitioning, into subtrees that represent equivalence 
classes of the items represented.  In this case, again, it is still not possible to 
compute the support for a set by considering only the subtree in which it is located. 
Although succeeding supersets of a set S in the P-tree are located in the subtree 
rooted at S, predecessor supersets are scattered throughout the preceding part of the 
P-tree. For example, consider the support for the set bd in the data used for Figure 
1. In the subtree rooted at b, we find a partial support total for bd, which includes 
the total for its superset bde. To complete the support count for bd, however, we 
must add in the counts recorded for its preceding supersets bcde, abd 
(incorporating abde) and abcde, the latter two of which are in the subtree headed 
by a. 

The problem can be overcome by a different partitioning of the P-tree 
structure. Our Tree Partitioning (TP) method begins by dividing the ordered set of 
items into subsequences. For example, for the data used in Figure 1, we might 
define 3 sequences of items, {a,b}, {c,d} and {e}, labelled 1,2,3 respectively. For 
each sequence we define a Partition-P-tree (PP-tree), labelled PP1, PP2 and PP3. 
The construction of these is a slight modification of the original method. The first 



partition-tree, PP1, is a proper P-tree that counts the partial support for the power 
set of {a,b}. PP2, however, counts all those sets that include a member of {c,d} in 
a tree that includes just these items and their predecessors. The third tree, PP3, will 
count all sets that include any member of {e}. The three trees obtained, from our 
example, are illustrated in Figure 2. The PP-trees are, in effect, overlapping 
partitions of the P-tree of Figure 1, with some restructuring resulting from the 
omission of nodes when they are not needed. 

The effect of this is that the total support for any set S can now be 
obtained from the PP-tree corresponding to the last item within S; for example, we 
now find all the counts contributing to the support of bd are included in PP2.  The 
drawback is that the later trees in the sequence are of increasing size; in particular, 
PP3 in our example is almost as large as the original P-tree. We can overcome this, 
however, by a suitable reordering of the items. In descending order of their 
frequency in the data, the items of our example are e,d,b,c,a. Using the same data 
as for Figures 1 and 2, we will construct PP-trees using this ordering, for the sets 
of items {e,d}, {b,c} and {a} respectively.  

The results are shown in Figure 3. Now, because the less frequent items 
appear later in the sequence, the trees become successively more sparse, so that 
PP3 now has only 13 nodes, compared with the 23 of PP3 in Figure 2. In fact, our 
previous work has shown  [9] that ordering items in this way leads to a smaller P-
tree and faster operation of Apriori-TFP. The additional advantage for partitioning 
is that the PP-trees become more compact and more equal in size. The total 
support-count for bd (now ordered as db) is again to be found within PP2, but now 
requires the addition of only 2 counts (db+edb). 

 

 
Figure 2: Partition-P-trees from figure 1 



 
Figure 3: PP-trees after reordering of items  

 
 
Counting total support using PP-trees 
 
The form of partitioning we have described offers us a way of dividing the source 
data into a number of PP-trees each of which may then be processed 
independently. With a sufficiently large data set, it will of course still not be 
possible to construct the PP-trees within primary memory. We can, however, 
combine this approach with a (horizontal) segmentation of the original data into 
segments small enough to allow the corresponding PP-trees to be contained in 
primary store.  

The overall method is as follows. For clarity, we will use the term segment 
when we refer to the horizontal division of the data into sets of records, and 
partition when we refer to the vertical division into sets of items and the 
corresponding tree structures: 
 

1. Obtain an (at least approximate) ordering of the frequency of items. 
2. Using this ordering, choose an appropriate partitioning of the items into n 

sequences 1, 2, 3,..etc. 
3. Divide the source data into m segments. 
4. For each segment of data, construct  n PP-trees in primary memory, 

storing finally to disk. This construction phase involves just one pass of 
the source data. 



5. For partition 1, read the PP1 trees for all segments into memory, and 
apply the Apriori-TFP algorithm to build a T-tree that finds the final 
frequent sets in the partition. This stage requires the PP1 trees for each 
segment of data to be read once only. The T-tree remains in memory 
throughout, finally being stored to disk. 

6. Repeat step 5 for partitions 2, 3, ..n. 
 
The method offers two speed advantages over simple horizontal segmentation. 
First, we have now effectively reduced the number of disk passes to 2: one (step 4) 
to construct the PP-trees, and a second pass (of the stored trees) to complete the 
counting (steps 5 and 6). The second advantage is that we are now, at each stage, 
dealing with smaller tree structures, leading to faster traversal and counting.  
 
Comparison with other methods  
 
As we have noted above, our P-tree structure, first presented in [12], has many 
properties in common with the FP-tree structure developed independently and 
contemporaneously by Han et. al. [13]. The principal differences are two. First, the 
nodes of the FP-tree correspond to individual items, whereas in the P-tree a 
sequence of items which is partially closed (i.e. which has no leading subsequence 
with greater support in the tree) will be stored as a single tree node. Thus, for 
example, two transactions {a,b,c,d,e} and {a,b,c,x,y}, which share a common 
prefix {a,b,c}, would require in all 7 nodes in the FP-tree. In the P-tree, 
conversely, only 3 nodes would necessarily be created: a parent for {a,b,c}, and 
child nodes for {d,e} and {x,y}. The second difference is that, in order to 
implement the FP-growth algorithm, the FP-tree must store pointers at each node 
to link all nodes representing the same item, and also to link a node to its parent 
and child nodes. The Apriori-TFP algorithm, however, treats the P-tree essentially 
as a set of nodes which can be processed in any order. This makes it possible, once 
the tree has been constructed, to store it in a tabular form in which no pointers are 
required. 

Both these differences lead to a more compact tree structure. Furthermore, the 
absence of pointers allows us easily to use horizontal partitioning in order to build 
a succession of P-trees, each of which is vertically partitioned into PP-trees, as 
described above. It is then straightforward to collect all the PP-trees representing a 
single partition from their separate segments, and use them in any order to 
construct the final T-tree for that partition. 

Partitioning the FP-tree is necessarily more complex. The partitioning we 
describe, as illustrated in Figure 3, is essentially similar to that obtained by the 
construction of conditional databases described in [13] and [17]. In [14] two 
strategies are proposed for dealing with an FP-tree too large for primary storage. In 
the first of these, parallel projection, the original database is partitioned into a set 
of projected databases, one for each item. Each projected database contains only 
transactions in which the item is present with some predecessors in the item 
ordering. Thus, each projected database essentially represents the same information 
as would be contained in a corresponding PP-tree in our method. The second 
method described, partition projection , would (using our example to illustrate) first 
construct the a-conditional database corresponding to PP3, and after building the 
FP-tree for this, would copy relevant transactions (e.g. {e,d,b,c.a}), into the next 



(c-conditional) database, as {e,d,b,c}. This reduces the total size of the projected 
databases, at a cost of some additional processing.  

A number of other researchers have made use of the FP-tree or variants 
thereof. The CFP-tree described in  [16] stores frequent closed itemsets in a form 
that facilitates subsequent query processing. The construction algorithm is similar 
to that used for FP-tree construction, using conditional databases as described in 
[13] to partition the data and produce separate trees for query processing. The 
focus of this work is on the form of a structure that can be re-used efficiently, 
rather than on the efficiency of the construction algorithm. Reusability is also a 
feature of our P-tree structures, which retain all relevant information from the 
original data as well as performing part of the support-counting. In [15], Huang et. 
al. describe a structure, also (coincidentally) called a P-tree, which is quite similar 
to our P-tree, but (like the FP-tree) stores only one item at each node. The P-tree of 
[15] shares with ours the property of retaining all the information from the 
database needed for counting of support at any threshold, rather than just counts of 
frequent sets. The approach described in [15] constructs FP-trees from the P-tree 
rather than from the original data; results presented show that this offers significant 
performance gains when multiple FP-trees are required. The partitioning strategy 
described for dealing with large databases is essentially horizontal, dividing the 
data into segments for each of which a P-tree is constructed. The method produces 
a single overall FP-tree, however, for which further partitioning might become 
necessary. 

The COFI-trees proposed in [10] also create subtrees that can be processed 
independently, but require an initial construction of an FP-tree that must be 
retained in primary memory for efficient processing. In [11], a method is described 
for building COFI-trees from an inverted database structure called “Inverted 
Matrix”. In this structure, each item is represented by a row of the matrix which 
lists all transactions in which the item occurs. Each element of the list contains a 
pointer to the next item in the transaction. Constructing the Inverted Matrix 
requires two passes of the original database and will, in general, lead to an 
expansion in size because of the need to store a pointer with every item occurrence. 
The COFI-trees constructed from this have similar properties to the conditional 
FP-trees produced by database projection, as in [13]. However, to produce the 
COFI-trees it is necessary to mine the large inverted matrix, and the pointers 
between rows of this imply that no simple partitioning of this is possible. The 
approach seems to work well with very sparse databases, but for dense data it 
seems likely that following the links through a disk-resident matrix will be a costly 
overhead. 

In general, all methods that use FP-tree-like structures require to employ 
projection of conditional databases in some manner in order to avoid the problem 
of dealing with a single large FP-tree or its equivalent in primary memory. In our 
experiments, described below, we compare the performance of Apriori-TFP using 
our Tree Partitioning method with that of FP-growth using database projection.  

  

4      Results 
We first consider some general performance properties of our method. To 
investigate performance, we have used synthetic data sets constructed using the 



QUEST generator described in [3]. The programs were written in standard C++ 
and run under the Linux operating system. We performed these experiments on an 
AMD Athlon workstation with a clock rate of 1.3 GHz, 256 Kb of cache, and 512 
Mb of RAM. The data was stored on an NFS server (1Gb filestore). 
 We first need to establish that the method scales acceptably; that is, that 
the partitioning strategy successfully constrains the maximum requirement for 
primary memory, without leading to unacceptable execution times. For this 
purpose we generated data sets with parameters T10.I5.N500: i.e 500 items, with 
an average record-length of 10 items and an expected maximal frequent pattern 
size of 5. We divided the data into segments of 50,000 records, and within each 
segment generated 500 partitions, i.e. a PP-tree for each item. In this and all other 
experiments, the tree partitioning is naïve: after ordering the items, we partition 
into sequences of equal length (in this case, 1). In fact, our experiments seem to 
show that increasing the degree of (vertical) partitioning always reduces the 
primary memory requirement (as would be expected), and also almost always 
reduces execution time. The latter, less obvious result arises because the increased 
time taken to construct a greater number of PP-trees (step 4 of the algorithm 
outlined above) is usually more than compensated by the faster processing of 
smaller T-trees (steps 5 and 6). 
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Figure 4: Execution times for T10.I5.N500 (0.01% support) 

Figure 4 shows the overall time to generate frequent sets, with a support 
threshold of 0.01%, for datasets of increasing size, i.e. 1,2,3,4 and 5 segments. The 
figure shows the performance of the Tree-partitioning method (TP) in comparison 
with the simple method involving horizontal partitioning (segmentation) only (HP). 
The times illustrated include both the time to construct the P-trees (HP method) or 
PP-trees (TP method) and to execute the Apriori-TFP algorithm.   As can be seen, 
Tree Partitioning offers substantially better performance than horizontal 
partitioning, and its performance scales linearly with the size of the dataset.  
 Importantly, this performance is achieved within conservative 
requirements for primary storage. In the second phase of the TP method (steps 5 
and 6 of the algorithm outlined above) it is necessary to contain in memory all the 
PP-trees for one partition, and the corresponding T-tree containing the frequent 
sets in that partition. In the experiment of Figure 4, this led to a maximum memory 



requirement for the TP method that varied from 1.38 Mb (1 segment) to 1.6Mb (5 
segments). In general, larger data sets, requiring greater horizontal segmentation, 
lead to some increase in the combined size of the PP-trees, but this is relatively 
slight. By contrast, the HP method requires the P-tree for one data segment and the 
whole of the T-tree to be contained in primary store, leading to a maximum 
memory requirement of between 116 and 128 Mb in the case illustrated. 

The combined sizes of the PP-trees for any one segment are, of course, 
greater than the size of a corresponding P-tree. In the experiment of Figure 4, the 
sum of the sizes of the PP-trees for any one segment was about 15.56MB (varying 
little between segments), compared to a P-tree size of about 1.85Mb. This was not 
the dominant store requirement in the case we have illustrated, but in other cases 
could be a constraint during the construction of the PP-trees (step 4 of the method, 
above). If this is so, the problem can easily be overcome by imposing a greater 
degree of horizontal segmentation. Our experiments show that increasing the 
number of segments has little effect on execution times, while reducing memory 
requirements during the PP-tree construction. Figure 5 shows the results of 
experiments with increasing segmentation of T10.I5.N500.D50000, again with a 
support threshold of 0.01%. Having first established the linear scaling of the 
method, in the results presented above, this experiment for convenience used this 
relatively small database, but in order to replicate the problems of dealing with 
large databases we imposed a requirement that only one segment can be retained in 
primary store at one time. 

 In this case we imposed a vertical partitioning of 50 items/partition (10 
partitions in all), while varying the number of segments. Figure 5 shows that the 
overall execution time (for both methods) increases only slightly with increasing 
segmentation. The total memory requirement to contain all the PP-trees for any 
one segment decreases, as one would expect, from 7.8 Mb (1 segment) to a 
maximum of 0.22 Mb (50 segments). 
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Figure 5: Effect of increasing segmentation 

 
 The method scales well with increasing number of items, also. Figure 6 
shows the execution times for the TP method for T10.I5.D50000, with a support 
threshold of 0.01, a vertical partitioning of 10 items/partition, and horizontal 



partitioning of 10,000 records per segment (i.e. 5 segments). The maximum 
memory requirement in this case also remained small (between 6 and 15Mb, with 
no general upward trend). Conversely, the simple HP method has a rapidly 
increasing memory requirement in this case because of the greater size of the 
unpartitioned T-tree. 
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Figure 6: Performance of TP with increasing number of items  

 The performance of the method when dealing with more dense datasets is 
shown in figures 7 and 8. In these experiments, we generated databases with 
D=250000, N=500, varying the T and I parameters. Here we compared the TP 
method both with HP and with a method based on the “Negative Border” approach 
of [19] (labelled NB in the figures). In the latter, P-trees are first constructed for all 
segments, as for the HP method. Then, all the proportionately-frequent sets in the 
first segment of data are found, using a support threshold reduced to 2/3 of the 
original, and also retaining the negative border of the sets found, i.e. those sets 
which, although not themselves frequent, have no infrequent subsets. The frequent 
sets, with their negative border, are stored in a T-tree which is kept in store to 
complete the counts for these sets for the remaining segments. The reduced support 
threshold, and the inclusion of the negative border, make it very likely that all the 
finally frequent sets will be included in this tree, in which case the method requires 
the disk-stored P-trees to be read once only. 
 The figures show the results with a support threshold of 0.1%, using 5 
segments, and 10 items/partition. With this support threshold (higher than in the 
previous experiments) there is little difference in the total execution times for the 
T10.I5 data: in this case, the faster computation of the frequent sets by the TP 
method is offset by the longer time taken to construct the PP-trees. With more 
dense data, however, the latter factor becomes decreasingly significant, and the 
advantage of the TP method becomes increasingly apparent. This is principally 
because of the much smaller candidate sets that are involved. This becomes 
apparent from the comparison of maximal memory requirements, shown in Figure 
8. This reflects the growing size of the candidate sets (and hence the T-tree) as the 
data density increases, leading both to larger memory requirements and to longer 
times to find candidates. The problem is particularly acute with the ‘Negative 
Border’ method. This works well with relatively sparse data, but at high density the 



reduced support threshold and the inclusion of the negative border lead to very 
large candidate sets. 
 

 
 

Figure 7: Execution times for various database characteristics 

 

 
Figure 8: Memory requirements for various data 

 
In Figures 9 and 10 we compare the performance of the three methods for 

different support thresholds. These results again relate to the 
T10.I5.N500.D250000 data, for support thresholds decreasing from 1.0 through to 
0.01. In these experiments, we divided the data into 5 segments, and for the TP 
method used 500 partitions (1 item/partition). Here again, as can be seen from 
Figure 9, the overhead of constructing the multiple PP-trees for the TP method 
leads to relatively poor execution times when the support threshold is high; in this 
case, the NB method is fastest. As the support threshold is reduced, however, the 
increasing cost of servicing a growing candidate set leads to rapidly increasing 

0
200
400
600
800

1000
1200

1 2 3 4

Density

T
im

e 
(s

ec
)

HP
NB
TP

T10.I5     T14.I7     T18.I9     T22.I11  

0

50

100

150

200

250

1 2 3 4

Density

M
em

o
ry

 (
M

b
)

HP

NB

TP

T10.I5       T14.I7        T18.I9        T22.I11 



memory requirements and execution times for the alternative methods, whereas the 
TP method scales much better. 

 

 

Figure 9: Execution times for T10.I5.N500.D250000 

 

 

Figure 10:Memory requirements for T10.I5.N500.D250000 

 

Finally, we compare our method with an implementation of FP-growth, using the 
FP-tree structure of [13]. For this purpose, we implemented both Apriori-TFP, 
using our TP method, and an FP-growth  algorithm in Java, with the aim of 
obtaining as fair a comparison as possible.  In this experiment, we used the dataset 
T20.I10.N500.D500K which was divided into 5 equal segments. For FP-growth, 
we processed each segment in turn to generate conditional databases for each of 
the 500 items, using the parallel projection method described in [14]. The 
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conditional database-segments were then combined in order to build an overall 
conditional-FP-tree for each item in turn, to which the FP-growth  algorithm was 
applied to produce frequent sets. For Apriori-TFP, each segment is used to 
construct 500 PP-trees, as described above. The experiments were in this case run 
on a 1.2 GHz Intel Celeron CPU with 512  MBytes of RAM. 
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Figure 11: Comparison of Apriori-TFP with FP -growth 

 
 
The overall execution times for the two methods are shown in Figure 11, for 
support thresholds from 1.0 down to 0.1. As can be seen, on this data Apriori-TFP 
with tree partitioning outperforms a comparable implementation of FP-growth 
partitioned by parallel projection. We believe the advantage of Apriori-TFP in this 
case arises from the relatively efficient iterative processing of the simple P-tree 
structures, in comparison with the recursive generation of multiple FP-trees 
required by FP-growth. This is especially expensive with relatively dense data, 
because of the greater depth of recursion required. 

 

5     Conclusions  
Because Data Mining is principally concerned with obtaining information from 
data of very large dimensions, it is important that methods used should scale 
effectively to deal with the most extreme cases. In this paper we have examined 
ways of partitioning data for Association Rule Mining. Our aim has been to 
identify methods that will enable efficient counting of frequent sets in cases where 
the data is much too large to be contained in primary memory, and also where the 
density of the data means that the number of candidates to be considered becomes 
very large. Our starting point was a method which makes use of an initial 
preprocessing of the data into a tree structure (the P-tree) which incorporates a 
partial counting of support totals. In previous work we have shown this method to 
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offer significant performance advantages. Here, we have investigated ways of 
applying the approach in cases that require the data to be partitioned for primary 
memory use. We have, in particular, described a method that involves a 
partitioning of the tree structures involved to enable separate subtrees to be 
processed independently. The advantage of this approach is that it allows both the 
original data to be partitioned into more manageable subsets, and also partitions the 
candidate sets to be counted. The latter results in both lower memory requirements 
and also faster counting.  

The experimental results we have reported here show that the Tree 
Partitioning method described is extremely effective in limiting the maximal 
memory requirements of the algorithm, while its execution time scales only slowly 
and linearly with increasing data dimensions. Its overall performance, both in 
execution time and especially in memory requirements, is significantly better than 
that obtained from either simple data segmentation or from other methods 
considered. The advantage increases with increasing density of data and with 
reduced thresholds of support – i.e. for the cases that are in general most 
challenging for association rule mining. Furthermore, a relatively high proportion 
of the time required by the method is taken up in the preprocessing stage during 
which the PP-trees are constructed. Because this stage is independent of the later 
stages, in many applications it could be accepted as a one-off data preparation cost. 
In this case, the gain over other methods becomes even more marked. Note also 
that the P-tree construction, and the partitioning thereof, is essentially generic: it 
leads to no loss of relevant information, and so could be used as the first stage of 
other quite different algorithms for completing the support-counts.  A further 
advantage, not examined here, is that the independent processing of subtrees can be 
carried out in parallel.    
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