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Abstract

Age related Macular Degeneration (AMD) is the primary cause of adult
blindness. Currently AMD cannot be cured, however early detection does al-
low the progress of the condition to be inhibited. One of the first symptoms of
AMD is the presence of fatty deposits, called drusen, on the retina. The pres-
ence of drusen may be identified through the manual inspection/screening of
retinal images. This task, however, requires recourse to domain experts and
is therefore resource intensive. This paper proposes and compares two data
mining techniques to support the automated screening for AMD. The first
uses spatial-histograms, that maintain both image colour and spatial informa-
tion, for the image representation; to which a Case Based Reasoning (CBR)
classification technique is applied. The second is founded on a hierarchical
decomposition of the image set so that a tree representation is generated. A
weighted frequent sub-graph mining technique is then applied to this repre-
sentation to identify sub-trees that frequently occur across the data set. The
identified sub-trees are then encoded in the form of feature vectors to which
standard classification techniques can be applied.
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case based reasoning, weighted frequent sub-graph mining

1. Introduction

Age-related Macular Degeneration (AMD) is the leading cause of blind-
ness in people over 50 years of age. It is caused by damage to the macula, a
small area on the human retina that is responsible for seeing fine detail and
colour [1]. Although there is no cure for AMD, the condition can be mitigated
against in the event of early detection. One of the first symptoms of AMD
is the presence of fatty deposits, called drusen, on the retina. These can be
detected by inspection of retinal images routinely collected within screen-
ing programmes. This image inspection is usually conducted manually by
trained clinicians. This paper describes two image classification mechanism
designed to automate the identification of AMD in retinal images.

The main challenge of the retinal image AMD classification problem is
that it is often difficult to distinguish drusen from background noise. This
requires appropriate pre-processing of the image data. The need for appro-
priate image representations, to facilitate the application of data mining, has
been identified as a generic challenge within the context of medical image
classification in general [2, 3]. In the context of AMD screening “standard”
object segmentation techniques were found to be unsuitable as the shape and
size of drusen varies significantly from image to image and tends to “blur”
into the background. The motivation for the work described in this paper is
the need for representations, that are entirely compatible with the applica-
tion of data mining techniques, but which avoid the need for segmentation.
In this paper two such techniques are proposed. The first is founded on spa-
tial histograms, the second on a hierarchical decomposition of the “image
space”. The first is coupled with a Case Based Reasoning (CBR) approach
to classification, while the second uses a weighted frequent sub-graph mining
technique to achieve the desired classification.

Spatial-histograms (first proposed in [4, 5]) emphasise both colour and
spatial information [6]. A region based approach is suggested in this paper
whereby images are subdivided into “regions” and histograms are generated
for each. The identified histograms were then conceptualised as time series
where the X-axis represents the histogram “bin” number, and the Y-axis the
bin size (number of pixels contained in each). Two different mechanisms were
used to identify the desired regions. The first divided each image into 3 ×
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3 grid describing 9 regions, while the second applied an angular partitioning
describing 8 regions. Both approaches produced better results then using
colour histograms in isolation. The second proposed AMD screening tech-
niques was founded on the concept of hierarchical decomposition whereby
images are decomposed into successive sub-regions until either uniform re-
gions or a maximal decomposition is arrived at. The decomposition was
conducted using a novel, alternating, angular and circular decomposition.
The resulting decomposition was stored in a sequence of tree structures, one
per image, to which a frequent sub-graph mining technique [7] was applied
to identify frequently occurring sub-tree. These sub-trees were then used to
form a set of feature vectors (one per image) to which established classifica-
tion techniques could be applied.

The principal contributions of the work described in this paper are as
follows:

1. A novel approach to AMD screening.

2. The use of a novel spatial histogram technique, founded on a sub-
division of the image space into a small number of regions, to represent
images.

3. The use of a novel hierarchical decomposition technique, using inter-
leaved angular and circular decomposition, to represent images.

4. In relation to (2) the application of a CBR technique for classification
using a time series analysis based mechanism to identify “similar cases”.

5. In relation to (3) the application of a frequent sub-graph mining tech-
nique, to generate feature vectors, that uses a weighting mechanism to
reduce the search space.

The rest of this paper is organised as follows. Section 2 describes the
application domain and Section 3 some relevant previous work. The nec-
essary image preprocessing required for the proposed screening techniques
to operate successfully are described in Section 4. The two proposed AMD
screening techniques are then described in Sections 5 and 6 respectively. The
evaluation of the proposed approaches is presented in Section 7, and some
conclusions in Section 8.

2. Age-related Macular Degeneration

The work described in this paper is focused on the classification of retinal
images, in particular the identification of age-related macular degeneration
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(AMD). As shown in Figure 1(a), the macula is a small area approximately
5 to 5.5mm in diameter centered on the fovea. The fovea is a concave central
retinal depression approximately 1.5mm in diameter which is thought to
account for the most acute central and colour vision. The delicate cells of the
macula become damaged and stop functioning properly in various conditions.
Of these, AMD is the leading cause of irreversible vision loss in people aged
50 or over [1].

Early diagnosis of AMD is achieved by the identification of drusen [1, 8],
yellowish-white sub-retinal fatty deposits, by screening patient retinal im-
ages. The severity of AMD can be categorised into three classes: early,
intermediate, and advanced. Early AMD is characterised by the existence
of several small (63µ m in diameter) or a few medium (63 to 124µm) sized
drusen or retinal pigmentary abnormalities. The presence of at least one
large (124µm) and numerous medium sized drusen, or geographic atrophy,
that does not extend to the centre of the macula, characterises intermediate
AMD. AMD can be either non-neovascular or neovascular [8]. Advanced
non-neovascular (dry) AMD exists once the drusen has reached the center of
the macula. Choroidal neovascularisation characterizes advanced neovascular
(wet) AMD. Drusen are often categorised as hard or soft drusen. Hard drusen
have a well defined border, while soft drusen have boundaries that often blend
into the retinal background. Figure 1(a) shows an example of normal retinal
image with the macula circled. A retina image that features drusen is given in
Figure 1(b) (drusen indicated by a white arrow). The classification of AMD
images by means of drusen identification is not a straightforward process.
Most of the previous works have focused on automatic drusen segmentation
[9, 10, 11, 12, 13] as a necessary precursor prior to AMD classification. The
work proposed in this paper, however, approaches the AMD screening prob-
lem without the need for the prior identification of the physical existence of
drusen. The aim is to classify images as either “AMD” or “non-AMD”.

3. Previous Work

The earliest work reported in the literature concerning drusen detection
is that of Sbeh et al. [14] who used mathematical morphology to identify
“brightest points” and hence aid the detection of drusen. More recent work
[9] used a wavelet analysis technique to extract drusen patterns, and multi-
level classification (based on various criteria) for drusen categorisation. Other
work on the identification of drusen in retina images has focuses on segmen-
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(a) (b)

Figure 1: Illustration of fundus images in grayscale: (a) Normal and (b) AMD.

tation coupled with image enhancement approaches [11, 12, 13]. Rapantzikos
et al. [13] adopted a multilevel histogram equalisation to enhance the image
contrast followed by drusen segmentation, in which two types of threshold,
global and local, were applied to retinal images. Köse et al. [11, 12] proposed
two approaches involving inverse drusen segmentation within the macular
area. A region growing technique was used to identify “healthy” pixels by
applying a threshold on the colour intensity levels [11]. Once this was done,
the inverse of the segmented image was used to generate the segmentation of
the drusen. A similar inverse segmentation approach, supported by statistical
information, was adopted in [12]; where healthy Characteristic Images (CIs)
were compared to new Sample Images (SIs) and a predetermined threshold
applied to classify SI. In [10] another approach, based on a non-parametric
technique for anomaly detection, was described that used a Support Vector
Data Description (SVDD) to segment anomalous pixels.

There has been very little reported work on the application of image min-
ing techniques for AMD screening. The existing work (see above) has been
mostly focuses on the segmentation/identification of drusen. Of the reported
work that the authors’ are aware of, only two reports [9, 10] extend drusen
detection and segmentation to distinguish retinal images with and without
AMD features. However, all the previous work is focused on the detection of
drusen using segmentation, a challenging task given the inconsistent visual
appearance of drusen and other lesions. The clarity, colour, luminosity and
texture of images are affected by several factors during the image acquisi-
tion process, such as involuntary eye movement and the media opacity of the
subject.

The distinction between the work described here and previous approaches
is that we make no attempt to locate and isolate (segment) drusen within
retinal images. Instead we propose two techniques whereby retina images can
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be classified that obviate the need for the specific identification of drusen.
The first extends the use of individual colour channel histograms [15] to a
spatial-histogram based approach. Spatial-histograms extend the concept of
simple colour histograms by including spatial pixel information [6, 16, 17] and
have been shown to perform well in region-based tracking [6], object detection
[17] and image retrieval [16]. We described the generated histograms using
X-Y curves. The proposed classification is then conducted using a CBR
approach. CBR is a well established AI technique with an associated, well
established, body of literature. Recommended reference works include [18]
and [19]. A specific application of CBR to signals and images have been
comprehensively described in [20]. CBR has also been widely used in medical
applications [21], as well as other domains. Recent work on the utilisation
of CBR for classification in the medical domain can be found in [22]. One
particular issue for CBR is the similarity measures used to identify the “most
similar cases” [20]. In the context of the work described here Dynamic Time
Warping (DTW) [23, 24] is used. DTW is a time series analysis approach to
measuring the distance between two different curves (i.e. histograms).

The second approach is founded on the concept of hierarchical decompo-
sition applied to retina images so that each image is described using a tree
structure. Hierarchical data structures have been widely applied in various
domains, such as image segmentation [25], image coding [26] and image clas-
sification [27]. One main advantage of this type of data structure is its ability
to represent different parts of images using different levels of granularity. De-
tailed parts of the image are “tessellated” down to a high level of granularity
(depth) while less detailed parts are tessellated to a fairly course level of
granularity. This gives rise to an efficient representation with associated im-
proved execution times [28]. The most commonly used image decomposition
techniques result in a quadtree representation. A given “space” is initially
split into four quadrants. Each quadrant is then decomposed further into
sub-quadrants, and so on, until a certain level of granularity is reached, or
homogeneous sub-quadrants are arrived at.

The term “graph mining” refers to the collection of data mining tech-
niques that are used to find interesting patterns in tree/graph data. From
the literature two broad types of graph mining can be identified: transac-
tion and single graph mining [7]. Transaction graph mining is directed at
the discovery of frequently occurring sub-graphs that exist across a collec-
tion of graphs. The process is similar to the processes found in Association
Rule Mining (ARM). Thus we can apply Frequent Sub-Graph (FSG) mining

6



techniques to our tree represented images to discover frequently occurring
sub-trees which can then be used as features with which our retina images
can be encoded. The application of FSG algorithms entails a significant
computational overhead. To reduce this overhead Weighted FSG (WFSG)
can be applied, the objective being to focus on the identification of those
frequent sub-graphs that are likely to be the most significant according to
some weighting scheme.

4. Image Pre-processing

This section describes the nature of the image pre-processing that we
applied in order to represent the retinal images in a meaningful form ready
for image mining. The preprocessing comprised:

1. Image Enhancement: Normalisation and enhancement of the image
contrast.

2. Object Segmentation: Identification of blood vessels.

3. Noise Reduction: Removal of the identified blood vessel pixels from
the retina images.

Image enhancement and the segmentation of blood vessels (for noise removal)
are described in more detail in the following two sub-sections respectively.

4.1. Image Enhancement

The quality of the retinal images is often severely affected by factors such
as colour variance and non-uniform illumination [29, 30], which are difficult
to control. In the context of the proposed AMD classification this will lead
to the introduction of inaccuracies, and hamper the associated identification
and localisation of retinal common structures such as retinal blood vessels.

The adopted image enhancement comprised colour and illumination nor-
malisation and contrast enhancement. Colour normalisation was applied
first, followed by illumination normalisation and then contrast enhancement
to increase the “visibility” of the main retinal anatomy (i.e. blood vessels).
Due to the colour variation between different retinal images, colour normal-
isation must be performed prior to image enhancement. To normalise the
colours featured in retinal images a histogram specification approach was ap-
plied [31]. First, a reference image that represents the best colour distribution
and contrast is selected by a trained clinician. Then, the Red-Green-Blue
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(RGB) colour histograms of the reference image are generated. Finally, the
RGB histograms of other images are extracted and each of these histograms
is tuned to match the reference image histograms. Figure 2(b) shows the
normalised colour fundus retinal image (the colour image has been converted
to grayscale only for illustrative purposes) of the original image (Figure 2(a)).

Once the colour is normalised, illumination normalisation is applied so as
to reduce the luminosity variations. An approach, to estimate the luminosity
and contrast variability of the retinal image based on the image background
colour, proposed by Foracchia et al. [29] was adopted. This approach esti-
mates the original image pixels, Ī (x, y), as follows:

Ī (x, y) =
I (x, y)− L̄ (x, y)

C̄ (x, y)
, (1)

where I is the observed image, and L̄ and C̄ are the estimations of luminosity
and contrast, calculated in the neighbourhood N of each pixel. One drawback
of this approach is that drusen that are larger than the window size N, used
for the estimation, are smoothed in the normalisation process. However, the
authors found that this disadvantage could be limited by setting the C̄ value
to 1, thereby excluding the contrast estimation. Contrast normalisation was
then conducted using Contrast Limited Adaptive Histogram Equalisation
(CLAHE) as described in [32]. Figures 2 (c) and (d) show the illumination
normalised and contrast enhanced retinal image given in Figure 2(a).

4.2. Object Segmentation

The presence of retinal anatomies, such as blood vessels and the optic disc,
sometimes hampers the detection of drusen. The authors’ own experiments
have indicated that the removal of blood vessel pixels from retina images
can improve classification accuracy [15]. This has also been observed more
generally by other researchers in the field ([12, 33, 13]). We refer to the
process of removing specific retinal anatomy as “noise removal”.

To segment the retinal blood vessels 2-D Gabor wavelet filters [34] were
applied. A pixel is classified as vessel or non-vessel by means of a Bayesian
classifier with a class-conditional probability density function, generated us-
ing the Gaussian mixture model. As a result a “retinal vessels” binary rep-
resentation is generated for each image which is then applied as a “mask” to
the enhanced retinal images and consequently the blood vessels pixel values
replaced with a “null” value. The outcomes of these processes is visualised
in Figures 2 (e) and (f).
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Original image, (b) colour normalised, (c) illumination normalised, (d) con-
trast enhanced, (e) retinal blood vessels segmented, and (f) noise (blood vessels) removed.

The optic disc was however left untouched as experiments conducted by
the authors, reported in [15], indicated that removal of the optic disc only
resulted in increased accuracy with respect to a minority of retina images
and decreased accuracy with respect to the majority.

5. AMD Screening Using Spatial Histograms

An overview of the proposed retinal image AMD classification mechanism
founded on the use of spatial histograms is presented in this section (the hier-
archical decomposition based technique is described in the following section).
The hierarchical histogram based approach can be viewed as comprising two
stages: Case Base (CB) generation and image classification.

CB generation comprises three sub-stages: (i) image preprocessing, (ii)
histogram generation and (iii) feature selection. The image preprocessing
that was undertaken has already been discussed in Section 4. The next step
is to generate the spatial-histograms. In order to make the representation
more tractable, colour quantisation was applied to the preprocessed images
to reduce the overall dimensionality (number of colours). To generate the
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histograms the quantised colour retinal images were first partitioned into N
regions and spatial-histograms extracted for each region. The idea here was
that the presence of drusen is often regionalised and consequently we may be
more interested in some regions than others. Section 5.1 gives more detail
of the technique used to generate the spatial-histograms. During feature se-
lection the spatial-histograms (regions) that feature the best discriminatory
power (in the context of AMD classification) are identified. The regions are
ranked according to their discriminatory power and the top T selected. This
process also ensured that the size (number of pixels) of each region/histogram
does not bias the resulting classification. The feature selection was conducted
using a class separability measure which was applied to the collection of his-
tograms representing each retina image and the most appropriate histograms
selected. The selected spatial-histograms were then combined and stored in
the form of time series curves (one per image). The feature selection process
is discussed in further detail in Section 5.2. The image classification task is
detailed in Section 5.3.

5.1. Spatial Histogram Generation

Colour histograms have been widely used as a simple way of representing
images for object identification and retrieval [35, 36]. The main advantage
is their robustness against object changes in terms of shape and position
within images. The main disadvantage is the loss of spatial information
between pixels and colours, thus images with similar histograms may have
very different appearances [16, 17]. In some images, the colour distribution
of pixels at different sections of an image may be an essential feature that
should be included in the image representation. In the context of AMD
classification there are a significant number of cases where the AMD images
have almost similar colour histograms to the normal ones. The fact that
drusen pixel colours are very similar to the colours of pixels adjacent to the
retinal blood vessels boundaries (as well as the optic disc), may thus lead
to classification errors. A spatial-histogram [4, 5] representation is therefore
suggested.

The spatial information contained within an image can be captured by
preserving the objects texture and shape using templates [17]; as well as
by partitioning the image into regions, based on the chosen colour values,
and recording the regions location for each of the chosen colours [4]. The
utilisation of texture and shape to extract spatial information is hampered
by the nature of the AMD featured images where no common textures and
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shapes exist, other than the main retinal structures. Therefore, a method
to generate colour distribution for each region [16] has been applied in the
work described here as it is conjectured that similar regions, in two different
classes of retinal image, will have different colour distributions. The gen-
eration of spatial-histograms consisted of several steps. First, the number
of colours was reduced to make the computational cost more feasible. The
minimum variance quantisation technique [37], with dithering [38] (imple-
mentation using Matlab1 function rgb2ind), was used to reduce the image
colours to C colours. A careful selection of C value is essential as it will
affect the quality of the generated histograms (as demonstrated in Section
7). The colour quantisation was applied on the global colour space, instead
of the local colour space, in order to standardise the colour mapping. Thus,
all images referenced a similar colour map.

Once the colour quantisation was complete each image was partitioned
into N similar sized regions, R = {r1, r2, ..., rN}, and a spatial-histogram
generated for each. Two image partitioning approach were implemented. A
grid based approach that partitioned an image into a (3 × 3) grid to give
9 equal sized regions; and an angular partitioning, with 8 radii values (45◦,
90◦, 135◦, 180◦, 225◦, 270◦, 315◦ and 360◦) to partition each image into 8
regions. Figure 3 gives an example of each image partitioning approach. The
black coloured pixels surrounding the retina, as well as the retinal blood
vessels were omitted from the generation of the spatial-histograms. The set
of spatial histograms for a given image m is defined as:

hm = {shm
1 , sh

m
2 , ..., sh

m
N} (2)

where shm
n is the spatial-histogram generated for region n, (1 ≤ n ≤ N) in

image m with C bins. The histogram value for colour c in histogram shm
n is

then given by:

shm
n (c) = α (3)

where α is the c-th bin count in region t of image m (0 ≤ c < C). The
size of each image spatial-histograms, hm, for an image m is equivalent to
C × N ; the number of colours, C, multiplied by the number of regions, N .
The complete set of histograms representing an image set is then defined as
H = {h1, h2, ..., hM}, where M is the number of images.

1http://www.mathworks.com
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(a) (b)

Figure 3: Retinal image partitioning using: (a) 3 x 3 image tessellation and (b) angular
partitioning.

5.2. Feature Selection

Feature selection is a process to reduce the number of features contained
in a feature space by removing irrelevant or redundant features [39, 40, 41].
By selecting only those features that have a strong discriminatory power
between classes, the computational cost of classification can be consider-
ably reduced while at the same time maximising classification accuracy [39].
Common feature selection techniques [40, 41] include the χ2 measure, mutual
information, Odds Ratio and Principal Component Analysis.

With respect to the AMD screening process described here a class sepa-
rability method [39] that estimates the effectiveness of a features ability to
distinguish between classes, using the Kullback-Leibler (KL) distance mea-
sure, was adopted. This was a two stage process. First an average signature,
γn, histogram was generated for each region with respect to each class as
follows:

γa
n =

1

p

p∑
j=1

shj
n (4)

where n is the region identifier, a is a class label and p is the number of
training set images labelled as class a. The class separability, distn, is then
calculated by:

distn =
d∑

a=1

d∑
b=1

δn(a, b) (5)
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where d is the number of classes and δn(a, b) is the KL distance, between
histograms of γn, corresponding to classes a and b, described as:

δn(a, b) =
C∑

i=1

pn(γa
n(i))log

(
pn(γa

n(i))

pn(γb
n(i))

)
(6)

where C is the number of bins (colours) in the histogram, and pn(γa
n(i)) is the

probability that the n-th feature takes a value in the i-th bin of the signature
spatial-histogram γn given a class a. The probability, pn was calculated by
dividing each bin count of γn by the total number of elements in γn.

The features are then sorted in descending order of distn; the top T
features with the highest distn provided the best separation between classes
and were therefore selected. However, the selection of the value for T is
domain dependent and might not work well if only one single T value is used
(as demonstrated in Section 7). The other regions were omitted from further
processing. Thus, the size of hm has been reduced to only C × T . These
histograms then make up the CB for the CBR process.

5.3. Retinal Image Classification using CBR and DTW

Given a new set of potential AMD images these may be classified using
the CB developed as described in the foregoing subsections. As noted pre-
viously, the histograms in the CB may be viewed as time series. Similarity
checking may therefore be conducted using time series analysis techniques.
For the AMD screening a Dynamic Time Warping (DTW) technique [23, 24]
was adopted. DTW is a time series analysis technique that measures the
distance between two time series through the generation of a warping path
between these sequences. Given two time series, T = {t1, t2, ..., tm} and T̄ =
{t̄1, t̄2, ..., t̄n}, a matrix of size m×n will be formed. The distance between ti
and t̄j, d(ti, t̄j), where 0 ≤ i < m and 0 ≤ j < n for all i and j is computed
using the Euclidean distance similarity measure (other similarity measure
methods can also be applied). The minimal warping path is computed by
summing up the minimal d for each matrix grid point thus giving a distance
between T and T̄ . More details of the DTW approach with respect to retinal
image classification can be found in [42].

6. AMD Screening Using Hierachical Decomposition

As in the case of the spatial histogram based technique, the hierarchical
decomposition based technique commences with retinal image cleaning (as
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described in Section 4). The process then proceeds with the decomposition
of the image, this is described in detail in Section 6.1 below; the result is a
collection of tree represented images (one per image). Next WFSG is applied
to the tree represented data (this is described in Section 6.2). The identified
frequent sub-trees are then used to define the elements of a feature space that
is used to encode the individual input images in the form of feature vectors
itemising the frequent sub-graphs that occur in each image. The adopted
feature selection process is described in Section 6.3. Once the feature vector
representation has been generated we can apply established classification
techniques (see Section 6.4).

6.1. Image Decomposition

As noted above hierarchical image decomposition is a well established
technique [26, 28, 25]. The distinguishing and novel feature of the proposed
approach is that the partitioning is conducted in an interleaving angular and
circular manner. During angular partitioning the decomposition is defined
by two radii describing a minor arc on the circumference of the image “disc”.
Circular decomposition is defined by a pair of arcs radiating out from the
center of the retina disc. Individual regions identified during the decomposi-
tion are thus delimited by a pair of radii and a pair of arcs. Figure 4(a) shows
an example of a partitioning that might be applied to an image; Figure 4(b)
presents the associated Tree storage structure. The proposed image decom-
position proceeds as follows. First we identify the retina region of interest
(ROI) by using the image background to exclude areas outside of the field
of view of the fundus (the retina disc) and the blood vessel pixels within the
fundus. The actual decomposition then commences with an angular decom-
position to divide the image into four equal sectors. If the pixels making up
a sector have approximately uniform colour intensity no further decomposi-
tion is undertaken. All further decomposition is undertaken in a binary form
by alternating between circular and angular decomposition. In the example,
sectors that are to be decomposed further are each divided into two regions
by applying the circular decomposition. The decomposition continuous in
this manner.

The RGB (red, green and blue) colour model is used to extract the pixel
intensity values, which means each pixel will have three intensity values asso-
ciated with it. Thus initially three trees are generated which are then merged.
As already noted the hierarchical image partitioning commences with circu-
lar partitioning. On the following iteration angular partitioning is applied.
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Figure 4: An example of (a) circular and angular image decomposition, (b) The associate
tree data structure.

Both circular and angular partitioning will then be called alternately until
uniform regions are arrived at or a maximum “depth” of decomposition is
reached. Throughout the process the tree data structures are continuously
updated. At the end of the decomposition process the three trees are merged
to form a single tree.

6.2. Weighted Frequent Sub-Graph Minimg

On completion of image decomposition the input image set is represented
as a collection of trees. Each tree is defined as follows: T = (V,E, LV , LE, u);
where V and E are sets of vertices and edges respectivey, LV and LE are sets
of labels for vertex and edge respectively, while u defines a label mapping
function.

In [7] it was suggested that for many applications, such as image mining,
some vertices have more significance associated with them than others. In
the case of the hierarchical decomposition described in this paper, vertices
that feature a significant difference in colour intensity, in comparison to their
parent, were deemed to be more significant (than the parent). The under-
pinning philosophy is that normal retinal background pixels have a similar
colour intensity, while a significant difference in intensity is likely to indicate
the presence of drusen. A weighting scheme was therefore applied to the
tree representation so as to enhance the quality of the information contained
within it. Thus, in the tree representation, the strength of each vertex v ∈ V
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was weighted by the average colour intensity value of the region represented
by the vertex, and the strength of each edge e ∈ E, ew was weighted by:

ew =
√

(Ipar − Iv)2 (7)

where Iv is the average colour intensity value for vertex v and Ipar is the
average colour intensity value of its parent.

By adding vertex and edge weights into the tree representation, the
weighted tree representation was able to capture more image information
than comparable unweighted approaches. A Weighted Frequent Sub-Graph
(WFSG) mining algorithm, an extension of the well-known gSpan algorithm
[43], was then applied to the tree data so as to identify frequently occurring
trees within the dataset. The algorithm operated in a similar manner to that
described in [7], but utilised both vertex and edge weightings. In the context
of WFSG mining, a sub-graph pattern g is considered to be “interesting”, if
it satisfies the following two conditions:

(C1)Vwr × sup(g) ≥ σ, (C2)Ewr ≥ λ (8)

Where: Vwr denotes the vertex weighting, sup(g) denotes the support (i.e.
frequency) of g, and σ denotes a minimum support threshold, Ewr denotes
the edge weighting, and λ denotes a minimum weight threshold. Both the
Vwr and Ewr are computed using a similar scheme to that described in [7].

The number of patterns discovered by the WFSG mining algorithm is
thus determined by both the σ and λ values. According to initial exper-
iments conducted by the authors, relatively low σ and λ threshold values
are required, in order to extract a sufficient number of patterns (frequent
sub-graphs). However, setting low threshold values still tends to results in a
substantial number of patterns. Therefore a feature selection was applied as
described in the following subsection.

6.3. Feature Selection

To reduce the number of identified frequent sub-graphs to a manageable
number a feature selection strategy was applied so as to identify those sub-
graphs that displayed a strong discriminatory power (i.e. sub-graphs that
were likely to produce good classification results). A feature ranking mecha-
nism was therefore applied that used linear Support Vector Machine (SVM)
weights to rank features as proposed in [44]. The main advantage of this
approach is its implementation simplicity and effectiveness in determining
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relevant features. The identified sub-graphs were ranked by first calculating
their weights using the L2-regularized L2-loss SVM model, and then sorting
them in descending order according to their absolute value [45, 46]. The
selection of only the top K sub-graphs for classification then concluded the
feature selection process.

6.4. Retinal Image Classification

The final stage of the proposed hierarchical decomposition based AMD
classification process is the classification stage. The identified top K frequent
sub-graphs were used to define a feature space. Each image was then defined,
in terms of this feature space, using a feature vector representation. Any
appropriate classification technique could then be applied. In the reported
experiments (Section 7) a Support Vector Machine (SVM) [47] was adopted.
This was chosen because it is frequently acknowledged to be one of the most
effective classification method in machine learning. The SVM used in the
evaluation was built using LibSVM [48] and a radial basis function kernel.

7. Experimental Setup and Evaluation

To evaluate the proposed AMD screening techniques a collection of 161
retinal images, acquired as part of the ARIA2 project, were used. The col-
lection was manually pre-labelled, and included 101 AMD images and 60
non-AMD images. The experiments described in this section were designed
to evaluate the performance of the proposed approaches. Three metrics were
used for the evaluation: Specificity, Sensitivity and Accuracy. All experi-
ments were conducted using Tenfold Cross Validation (TCV) whereby the
dataset was randomly divided into equal sized “tenths”; and on each TCV
iteration, one tenth was used as the test set while the remainder was used as
the training set. The objectives of the experiments may be summarised as
follows:

1. Spatial Histogram Based Technique.

a) Number of Bins Parameter (C): To determine the minimum num-
ber of bins for the histograms, with respect to colour quantisation, such
that classification accuracy would not be adversely affected.

2http://www.eyecharity.com/aria online
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Table 1: Classification results for a range of C values (number of colour quantisation
output bins)

C Specificity (%) Sensitivity (%) Accuracy (%)

32 58 70 65
64 63 73 67
128 54 79 68
256 60 73 68

b) Number of Regions Parameter (T ): To determine the most ap-
propriate setting for the T parameter, the threshold that determines
the number of regions to be included in the final representation during
feature selection.

2. Hierarchical Decomposition Based Technique.

a) Depth of Decomposition Parameter (Dmax): To analyses the ef-
fect that the depth of decomposition had on classification accuracy.

b) Number of Selected Frequent Sub-Graph Parameter (K): To
analyse the performance of the hierarchical decomposition technique
with respect to the size of the feature space (the number of frequent
subgraphs selected to be included in the feature space).

3. Overall Comparison: Overall comparison of the operation of the two
proposed techniques.

The experiments are described in more detail in the following five subsections.

7.1. Number of Bins Parameter (C)

The first set of experiments considered the number of output bins required
for colour image quantisation with respect to the spatial histogram based
technique. The aim was to determine the minimum number of required bins
while at the same time maximising classification accuracy. Experiments using
C values of 32, 64, 128 and 256 were conducted (with N = 1). Table 1 shows
the classification results obtained. The results clearly indicate that the higher
the C value, up to C = 128, the better the classification accuracy. This was
expected, as low numbers of colour bins will tend to group different coloured
pixels in to the same bin, and consequently reduce the discriminative power
of the colour representation.
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7.2. Number of Regions Parameter (T )

The results presented in the foregoing subsection were generated by set-
ting the number of regions parameter T to one. The experiment described
in this sub-section considered the effect on classification accuracy according
to the number of regions considered (the T parameter). Using the proposed
grid and angular partitioning 9 and 8 regions were generated respectively.
Spatial-histograms were then generated as described in Section 5. For the
experiments described here C parameter values of 32, 64 and 128 were used;
C = 256 was omitted from further analysis as it did not give any significant
improved performance over C = 128, and also because it would introduce
a significant computational overhead. The retinal image classification was
performed using the top-T regions that had the highest discriminatory capa-
bility.

Table 2: Classification results with C = 32, a range of T values and grid (grid) and angular
partitioned (ang)

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)
grid ang grid ang grid ang

1 32 61 59 78 67 71 65
2 64 63 65 68 71 66 68
3 96 65 61 70 77 67 69
4 128 68 63 75 77 72 70
5 160 63 66 77 80 70 74
6 192 67 65 73 77 71 71
7 224 61 65 72 74 68 70
8 256 61 63 73 71 69 68
9 288 65 - 78 - 73 -

Tables 2, 3 and 4 compare the operation of the spatial histogram based
approach using various combinations of T and C parameter values. In the
tables the SH-dimension column indicates the total number of bins (dimen-
sions) used for the spatial-histogram representation (calculated by multi-
plying the C parameter by the T parameter). In Table 2 (32 bins) the best
results were obtained using T = 5 for angular partitioning, and T = 9 for grid
partitioning, with an overall accuracy of 74%. Different results are shown in
Table 3 (64 bins) with the best overall accuracy of 72% when T = 2, 3 and 7
for angular partitioning, while grid partitioning produced the best result with
T = 6. Table 4 shows that the best performance was obtained with T = 5
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Table 3: Classification results with C = 64, a range of T values and grid (grid) and angular
partitioned (ang)

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)
grid ang grid ang grid ang

1 64 56 63 71 72 64 69
2 128 61 70 74 75 70 72
3 192 54 65 74 77 65 72
4 256 63 60 74 77 69 69
5 320 65 63 74 75 70 70
6 384 63 60 77 76 72 69
7 448 63 67 73 77 69 72
8 512 63 69 74 75 70 71
9 576 61 - 77 - 70 -

for grid partitioning with an overall accuracy of 74%. The best specificity of
70% was recorded with T = 2 and 64 colour bins (angular partitioning), and
the best sensitivity of 86% with T = 5 and 128 colour bins. The results re-
ported in Table 4 contains only six T values (1 to 6) as the machine memory
required for the classification process increases quadratically with the size of
the colour bins. Thus the process was stopped at T = 6.

Table 4: Classification results with C = 128, a range of T values and grid (grid) and
angular partitioned (ang)

T SH-dimension Specificity (%) Sensitivity (%) Accuracy (%)
grid ang grid ang grid ang

1 128 52 48 78 77 65 66
2 256 44 56 81 76 68 69
3 384 52 48 84 79 70 68
4 512 58 46 84 78 72 67
5 640 56 44 86 80 74 65
6 768 50 46 81 84 69 68

7.3. Depth of Decomposition Parameter (Dmax)

Table 5 shows the performances of the proposed hierarchical decomposi-
tion approach when using three different levels of decomposition (values for
Dmax). Feature selection was not applied in these experiments. F denotes
the size of the feature space in terms of the number of identified frequent
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sub-trees, while Sens, Spec and Acc refer to sensitivity, specificity and accu-
racy. Each σ value was tested against a range of λ values (20, 40, 60 and 80),
however in the table (because of space limitations) only the best performing
λ value associated with each σ value is recorded. Inspection of Tables 5 indi-
cates that the best accuracy was achieved using Dmax = 5 (75%). The best
sensitivity and specificity that were obtained were 100% (for all shown Dmax

values) and 63% (Dmax=5) respectively. The best sensitivity and specificity
occurred using different σ and λ.

Table 5: TCV classification results obtained using different values for Dmax

σ Dmax = 5 Dmax = 6 Dmax = 7
(%) λ F Sens Spec Acc λ F Sens Spec Acc λ F Sens Spec Acc
10 20 1177 82 63 75 20 3762 86 55 74 40 36540 100 15 66
20 20 656 86 33 66 20 3089 94 28 70 20 25234 89 50 74
30 20 403 84 52 72 60 1336 92 23 66 20 13540 83 47 70
40 80 126 99 5 64 20 1144 94 17 65 20 8241 92 23 66
50 80 126 99 5 64 80 511 92 13 63 20 5341 95 20 67
60 20 140 100 3 64 80 511 92 13 63 80 3235 99 7 65
70 20 105 100 3 64 20 410 98 8 65 20 2472 100 3 64
80 20 80 99 7 65 20 280 100 0 63 20 1610 94 20 66
90 20 56 98 7 64 20 188 100 0 63 20 949 100 7 65

7.4. Number of Selected Frequent Sub-Graph Parameter (K)

Tables 6 shows the performances of the proposed hierarchical decompo-
sition approach with respect to different values of K. Recall that the size
of the feature space was determined by selecting only the top K features
defined as a percentage (P ) of |F | where F is the set of features. Experi-
ments using a variety of P values were conducted, however, only the results
using Dmax = 7 and P values of 0.05, 0.2 and 0.6 are presented in the table
because these produced the best classification performances. Inspection of
the tables indicates how the performance changes as the size of the feature
space is reduced.

Inspection of Table 6 demonstrates that the best results were obtained
using lower numbers of features, where P = 0.05 (equating to K = 1262).
A 100% best accuracy was obtained. The highest sensitivity and specificity
was also 100%. All of the best results were generated using various values of
σ and λ. The results shows that accuracy increased as the σ value decreased
for all K values. The results produced show that, as might be expected, the
larger the feature space the better the classification performance. It should
be noted that the results reported in Section 7.3, where feature selection
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Table 6: TCV classification results using Dmax = 7 and a range of K values
σ P0.05 P0.2 P0.6

(%) λ K Sens Spec Acc λ K Sens Spec Acc λ K Sens Spec Acc
10 80 162 100 0 63 20 13101 100 80 93 20 39303 97 65 85
20 20 1262 100 100 100 60 2085 100 100 100 20 15141 98 82 92
30 20 677 99 97 98 60 2085 100 100 100 20 8125 98 78 91
40 20 412 100 2 63 20 1678 99 72 89 20 4945 96 42 76
50 80 162 100 0 63 20 1068 100 17 69 20 3205 96 27 70
60 80 162 100 0 63 80 647 100 0 63 20 2175 99 7 65
70 20 124 100 0 63 20 495 100 0 63 20 1484 100 2 63
80 20 81 100 5 65 20 322 98 25 71 20 967 97 20 68
90 20 48 100 0 63 20 190 100 3 64 20 570 100 7 65

Table 7: Comparison of the proposed Spatial Histogram and Hierarchical Decomposition
based AMD screening approaches

Approach Features Sensitivity Specificity Accuracy
Spatial Histogram 640 86 56 74
Hierarchical decomposition 1262 100 100 100

was not applied are not as good as those reported in Table 6. This clearly
demonstrates that feature selection improves the classification performance.

7.5. Overall Comparison

Table 7 compare the best classification results obtained using both the
spatial histogram based approach and the hierarchical decomposition ap-
proach. The hierarchical decomposition based approach produced much bet-
ter results than the spatial histogram based approach with a recorded ac-
curacy of 100% with respect to the ARIA dataset used in the evaluation.
Indicating that the hierarchical decomposition based approach clearly out-
performs the spatial histogram based approach. Best results using the his-
togram approach were produced using T = 5 and C = 128. Best results
using the decomposition approach were produced using Dmax = 7, P = 0.05
and K = 1262 (based on the lowest value of K).

8. Conclusion

Two approaches to retinal image classification for AMD screening have
been described. In the first approach the images were represented in the
form of spatial-histograms that stored the colour information of the images
while at the same time maintaining the spatial information of each colour
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value. A feature selection strategy, to identify regions in an image that have
strong discriminative power to separate classes, was applied to remove irrele-
vant features, as well as reducing the overall computational cost. The second
approach was founded on a novel hierarchical circular and angular image de-
composition technique. The decomposition resulted in a tree data structure
to which a WFSG mining technique was applied so as to identify frequent
occurring sub-trees. The generated frequent sub-trees were then used to re-
cast the input data (the training set) into a feature vector representation. A
classifier could then be built using this feature vector representation as the
input data. For evaluation purpose the proposed approaches were applied to
publicly available retinal fundus images. A 100% accuracy, sensitivity and
specificity was produced using the hierarchical decomposition technique.
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