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Abstract. This paper describes an application of data mining, namely
classification, with respect to 3-D surface analysis. More specifically in
the context of sheet metal forming, especially Asymmetric Incremental
Sheet Forming (AISF). The issue with sheet metal forming processes is
that their application results in springback, which means that the result-
ing shape is not necessarily the desired shape. Errors are introduced in
a non-linear manner for a variety of reasons, but the main contributor
is the geometry of the desired shape. A Local Geometry Matrix (LGM)
representation is thus proposed that allows the capture of local 3-D sur-
face geometries in such a way that classifier generators can be effectively
applied. The resulting classifier can then be used to predict errors with
respect to new surfaces to be manufactured so that some correcting strat-
egy can be applied. The reported evaluation of the proposed technique
indicates that excellent results can be produced.
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1 Introduction

Data Mining classification techniques have been applied in many domains using
a variety of classifier generators. Much of the original work was directed at the
classification of tabular data. Subsequent work focused on more ambitious forms
of data such a text, graph and image classification. The current focus is on
even more challenging forms of data such as video and 3-D volumes. The work
described in this paper is concerned with 3-D surface classification. The challenge
with these different forms of classification is not the classification techniques
that are used, these tend to be well established, but on the nature of the data
preprocessing required to convert the data into a form suited to the application of
classifier generators. The data needs to be translated into a format that captures
the salient features of the data but at the same time support efficient processing.

In this paper we propose a method for capturing the nature (geometry) of
3-D surfaces in such a way that classification can be applied. More specifically
we are interested in data mining techniques for identifying correlations between
3-D surfaces, and then to predict likely correlations with respect to “new” 3-D
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surfaces. To act as a focus for the work the investigation is directed at predict-
ing the springback that occurs during Asymmetric Incremental Sheet Forming
(AISF); a manufacturing process used to shape sheet metal. The advantages of
AISF are that it is comparatively inexpensive and does not require heating of
the metal (heating introduces potential fracture points and adds an additional
financial overhead). The disadvantage of AISF metal forming is that springback
is introduced into the shape. The AISF process commences with a desired in-
put shape, defined in terms of a set of 3-D coordinates, and produces an output
shape which, as a result of the process, is a “variation” of the desired input
shape because of the springback that has been introduced. The nature of the
resulting output shape can be recorded using an optical measuring system1 to
generate a second set of 3-D coordinates. Thus we have before and after coor-
dinate clouds (input and output). Therefore, given a desired shape T , a process
P and a result T ′ we wish to learn the correlation A between T and T ′ so that
given a new shape S we can predict the outcome S′ and consequently attempt
to redefine S so as to minimise the springback. A simple answer to the problem
can be expressed as A = T+T ′

2 . However, the springback introduced by process
P is not evenly spread across the entire output shape; it is conjectured by do-
main experts that the nature of the springback may be dependent on a number
of factors such as tool head shape, tool head speed, tool head pitch, lubricant,
blank holder, type of alloy, sheet thickness, sheet size, shape geometry and the
forming process used. Whatever the case is generally acknowledged that a key
influencing factor is the geometry of the desired shape. The nature of the spring-
back (correlation) between T and T ′ as a result of application of the process P
is localised according to the geometry of T (and by extension T ′).

The proposed technique presented in this paper uses a grid representation
for both T and T ′ so that by registering and superimposing T ′ over T we can
calculate the springback between the two surfaces for each grid point contained
in T . We then numerically define the “local surface” surrounding each grid point
in T in terms of the change in elevation (the z coordinate) of each of the eight
neighbouring grid points compared to the z coordinate of the “centre” grid point.
This then gives us a 3 × 3 Local Geometry Matrix (LGM) for each grid point
(except of course at edges and corners) as discussed in Section 5 and shown in
table 1 and 3. Any given 3-D surface can then be described in terms of a set
of records (one per grid point) such that each record comprises an LGM. If we
describe T in this way, and for each record include an error value e obtained by
comparing correlated grid points in T and T ′, we can produce a “training set”
set that can be used to train a classifier. The fundamental idea is then, given a
new shape S, to use the classifier to predict the springback (S′) so that corrective
measures can be applied to S to compensate for the springback to give S′′ (a
corrected definition of S′ to be feedback into the AISF process).

For evaluation, a data mining technique is used to predict the springback
in sheet metal forming. We evaluated the proposed technique by generating a

1 In our case the GOM (Gesellschaft fr Optische Messtechnik) optical measuring tool
produced by GOM mbH was used.



Predicting Springback in Sheet Metal Forming 3

set of records, using the process described above, and applying a standard Ten-
fold Cross Validation (TCV) technique where we built the classifiers using nine
tenths of the data and tested on the remaining tenth (using a different tenth as
the test set on each occasion). For the evaluation we used a large and a small
flat topped square based pyramid. As will be demonstrated later in this paper,
the experiments produced excellent results; in some cases a classification best
accuracy above 90% was obtained.

The rest of this paper is structured as follows. In section 2 a brief overview of
some related previous work is presented. Sections 3 and 4 describe respectively
our LGM representation and the mechanism to measure springback between T
and T ′. The processing of the shape representation to produce a training data
set from which classifiers can be generated is described in Section 5. The actual
generation of our desired classifiers is then considered in Section 6, followed by
the evaluation of the proposed technique in Section 7. Finally some conclusions
are presented in Section 8.

2 Previous Work

When manufacturing parts using AISF a metal sheet is clamped into a holder
and the desired shaped is produced using the continuous movement of a simple
round-headed forming tool. A typical AISF machine is shown in Figure 1. The
forming tool is provided with a “tool path” generated by a CAD model and the
part is “pressed” out according to the co-ordinates of the tool path. However,
due to the nature of the metal used and the manufacturing process springback
occurs, which means that the geometry of the shaped part is different from the
geometry of the desired part, i.e. some springback has been introduced. In [1]
the authors consider a number of products that could potentially be formed
using AISF and demonstrated that the accuracy of the formed part needs to be
improved before this process could be used in a large scale production. In [13]
the authors considered two drawbacks of the AISF process relating to the metal
thickness and the geometric accuracy of the resulting shape.

There has been substantial reported work on dynamic tool path correction
in the context of laser guided tools (see for example [5] and [8]). However, AISF
requires that the tool path is specified in advance rather than as the process
develops. In [2] the authors propose a multi-stage forming technique, i.e. rather
than a single pass by the machine tool, several are made so that the process
can take into account the springback. As a case study a square based pyramid
shape was considered (similar to those considered in this paper). From [2] it is
interesting to note that if the initial geometry comprises corner radii larger than
the desired radii, and if a number of forming passes are applied, less springback
results then would be encountered otherwise.

For several years the Finite Element Method (FEM) has been used as an
industry standard for calculating the springback of sheet metal in forming pro-
cesses [20]. However, the results of FEM calculations are not very accurate
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Fig. 1. Asymmetric Incremental Sheet Forming (AISF), the work piece is clamped in
position while the tool head “pushes out” the desired shape, on release springback
occurs as a result of which the final shape is not the desired shape

because of the involvement of complex non-linear factors [26]. A data mining
approach is advocated in the paper. Not unexpectedly data mining techniques
have been applied to sheet metal forming. There are many examples of the use of
neural networks to support sheet metal forming [7, 14, 16, 17, 19, 22, 25]. Consid-
ering one example only, in [22] a neural network is trained to predict springback.
Several inputs were used for the neural network to train on; such as: thickness,
radius and springback. It was observed that the predictions made by the neural
networks were very close to the simulation results. Rule based learning tech-
niques have also been popular. For example in [27] rule based mining was used
to extract knowledge from data generated by Finite Element Analysis (FEA).
A four phase knowledge discovery model was proposed that included: (i) prod-
uct design and development, (ii) data-collection, (iii) knowledge discovery and
(iv) management and reuse. In the fourth phase the extracted knowledge was
filtered with the aim of supporting the design process. Another similar approach
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was proposed in [29] for the U-draw bending process where a rule based system
was used to extract knowledge from FEA simulation data. The nature of the
material, and various process parameters, were considered to study their effect
on springback. However, there has been very little reported work on the use of
data mining techniques to address the AISF springback problem as formulated
in this paper. The approach proposed advocated here is not only concerned with
extracting knowledge from the sheet metal forming data, but also with proposing
a classification model that can be used to predict and apply springback errors
in order to minimise their effect.

3 Grid Representation

The inputs to the proposed procedure are: (i) an input “coordinate cloud” Cin

(representing T ) and (ii) an output coordinate cloud Cout (representing T ′).
Each coordinate cloud comprises a set of N , (x, y, z) coordinate triples, such
that x, y, z ∈ R. The number of coordinates per cm2 (within the X-Y plane) in
each coordinate cloud varies between 120 points per cm2 to 20 points per cm2

depending on how the data is generated/collected. The Cin coordinate cloud is
typically obtained from a tool path specification generated using a CAD model,
while Cout is collected using an optical measuring system; |Cout| is typically
less than |Cin|. Both coordinate clouds must be registered to the same reference
origin and orientation.

We first cast Cin into a grid representation (Figure 2) such that each grid
point is defined by a 〈xi, yj〉 coordinate value pair. The number of grid lines is
defined by some grid spacing d. Each coordinate pair 〈xi, yj〉 in the grid has a z
value calculated by averaging the z values associated with the part of the input
coordinate cloud contained in the d×d grid square centered on the point 〈xi, yj〉
(Figure 3). We then cast the Cout coordinate cloud into the same grid format
so that we end up with two grids, Gin and Gout, describing the before and after
surfaces (T and T ′).

Fig. 2. Example grid referenced to a cen-
tral origin (grid spacing = d)

Fig. 3. Coordinate cloud points associ-
ated with a grid point 〈xi, yj〉
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4 Springback Measurement

A simple mechanism for establishing the degree of springback (e) at a particular
grid point is simply to measure difference between the z values in Gin and Gout

(Figure 4). However, a more accurate measure is to determine the length of the
surface normal from each grid point in Gin to the point where it intersects Gout.
The distance between any two three dimensional points can be calculated using
the point to point Euclidean distance formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)

Fig. 4. Cross section at a grid line showing simple vertical springback error calculation
between a before and after shape

However, the application of equation (1) first requires knowledge of the x, y, z
coordinates of the point where the normal intersects Gout. With respect to the
work described in this paper we have used the line plane intersection method [9]
to determine the length of the normal between two surfaces. Using this approach
we find the normal to a plane by calculating the cross product of two orthogonal
vectors contained within the plane. Once we have the normal we can calculate
the equation for the line that includes the start and end points of the normal and
then determine the point at which this line cuts Gout. We can then calculate the
length of the normal separating the two planes. The process is as follows (with
reference to Figure 5):

Fig. 5. Error calculation using the line plane intersection method
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1. For each grid point in Gin first identify the four neighbouring grid points in
the X and Y planes as shown in Figure 5 (except at edges and corners where
three and two neigbouring grid points will be identified respectively).

2. Define a set of four vectors V = {v1, . . . , v4} = {〈p∅, p1〉, 〈p∅, p2〉, 〈p∅, p3〉,
〈p∅, p4〉}, each described in terms of its x−y−z distance from p∅ (the origin
for the vector system).

3. Using the four vectors in V , four surface normals are calculated, N =
{n1 . . . n4}, by determine the cross product between each pair of vectors:
v1× v2, v2× v3, v3× v4, v4× v1. (Note that to validate a surface normal ni,
the dot product of one of its associated vectors vj and ni must be equal to
zero, ni · vj = 0.)

4. For each normal n1 . . . n4 calculate the local plane equation in Gin that
includes P∅ (thus using, in turn, points {p1, p∅, p2}, {p2, p∅, p3}, {p3, p∅, p4}
and {p4, p∅, p1}). The plane equation is given by Equation 2.

ax+ by + cz + d = 0 (2)

5. For each plane equation identified in (4) determine the parametric equations
(a set of equations/functions which describe the x, y and z coordinates of
the graph of some line in a plane) [9] of the surface normal as a straight line
according to the identities given in equation 3.

x = a+ i(t), y = b+ j(t), z = c+ k(t) (3)

where t is a constant; a, b and c are the x-y-z coordinates for the point p∅;
and i, j and k are the normal components. The constant t is calculated by
substituting the parametric equations in plane equation 2 for x, y and z.

6. Once the parametric equations for each surface normal are found, they are
then used to compute the points of intersection of each normal with Gout.

7. We then use the coordinates for each of the four points of intersection and
p∅ to calculate the Euclidean distance (the error) between p∅ and each in-
tersection point to give four error values E = {e1 . . . e4}

8. We then assign each error a direction (-ve or +ve) based on the direction of
the springback. If springback is “downwards”, a -ve direction is assigned to
the error. Similarly if the springback is “upwards” a +ve direction is assigned
to the error. Note that for each point the direction for each of the four errors
is same.

9. We now have four error values for each grid point (except at the corners
and edges where we will have two or three respectively), we then find the
“overall” error e simply by selecting the minimum error that is nearest to
zero. The reason for selecting the minimal error is that it gives us the nearest
point to the before surface.

On completion of the process our input grid, Gin, will comprise a set of (x, y, z)
coordinates describing the N grid points, each with an associated springback
(error) value e.
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5 Surface Representation (The Local Geometry Matrix)

In this section we describe how local geometries can be represented using the
concept of a Local Geometry Matrix (LGM). From the foregoing it has already
been noted that the value of e is particularly influenced by the nature of the
geometry of the desired surface (shape). We can model this according to the
change in the δz value of the eight grid points surrounding each grid point. (Of
course along the edges and at the corners of the grid we will have fewer neigh-
bouring grid points). Thus we generate n records (where n is the number of grid
points) each typically comprising nine values, eight δz values and an associate
e value. We, then coarsen the δz values by describing them using qualitative
labels taken from a set L to describe the nature of the “slope” in each of the
eight neighbouring directions. Therefore we can describe |L|8 different “local ge-
ometries” if we take orientation into consideration. Thus if we have a label set
{negative, level, positive} we can describe 38 = 6561 different local geometries.

Example 1. Considering the flattened square based pyramid shape in Figure 6
and a section of the surface, measuring 3 × 3 grid points, covering an edge as
shown, then the z coordinate matrix associated with the grid point might be as
shown in Table 1. The δz values are then calculated by subtracting the centre z
value from each of the surrounding z values in turn. With respect to the exam-
ple the δz matrix result would be as shown in Table 2 (the centre grid reference
point always has a value of 0). We refer to this matrix as a Local Geometry Ma-
trix (LGM). Assuming L = {negative, level, positive}, and ordering the matrix
elements (grid points) in a clockwise direction from the top left, would give us a
record of the following form where e is the error value associated with the grid
point that the record describes:

(positive, positive, positive, level, negative, negative, negative, level, e)

where e is the error value.

Fig. 6. Square Based Pyramid With Side
Section (Example 1)

Fig. 7. Square Based Pyramid With Cor-
ner Section (Example 2)

Example 2. Again considering a flattened square based pyramid shape but now
looking at a section of the surface, measuring 3 × 3 grid points, located at the
corner of the shape as shown in Figure 7, the z coordinates associated with the
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20 20 20

10 10 10

0 0 0

Table 1. Z matrix for Example 1

10 10 10

0 0 0

-10 -10 -10

Table 2. LGM for Example 1

grid point might be as shown in Table 3. The LGM would then be as shown
in Table 4. Again assuming L = {negative, level, positive} the resulting record
would be:

(positive, level, negative, negative, negative, negative, negative, level, e)

20 10 0

10 10 0

0 0 0

Table 3. Z matrix for Example 2

10 0 -10

0 0 -10

-10 -10 -10

Table 4. LGM for Example 2

The proposed representation can be used to capture all local geometries.
Given a suitable test shapes (in this paper we have used two flattened square
based pyramid shapes, one substantially larger than the other) we can associate
an error value with every possible geometry. It should be noted that, at least
conceptually, the use of LGMs is akin to the use of Local Binary Patterns (LBPs)
as applied in the context of image texture analysis [12, 21].

The set of error values was also discretised using a number of qualitative
labels each describing a particular sub-range of error values. The sub-ranges
used were of equal size and designed to encompass the full range of error values
from the recorded minimum to the recorded maximum.

6 Classifier Generation

There are a number of classification mechanisms that can be applied to data
pre-processed in the manner described above, so as to generate a classifier that
can be applied to unseen data. In the work described here we favour a classifier
that generates rules. Rule base representations offer two principal advantages:

1. Rule representations are intuitive; they are simple to interpret and under-
stand.

2. Because of (1), the validity of rules can be easily verified by domain experts.

It is possible to generate rules using many of the available classifier generation
techniques, although some are more suited to rule generation than others. Clas-
sification Association Rule (CAR) generators directly generate rule sets. There
are a number of well established CAR Mining (CARM) algorithms that can be
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adopted: examples include CPAR [28], CMAR [18] and TFPC [3, 4]. Although
the principle is the same each of these operates in slightly different manner. It
is also fairly straightforward to generate rule sets using decision tree classifiers
such as the ID3 Algorithm [24], C4.5 [23] or the MARS Algorithm [11]. Generat-
ing rules from Neural Network based classification techniques or Support Vector
Machines is less straight forward but can be done [10, 6]. Regardless of the clas-
sification algorithm adopted it was assumed that the required input would be
in the form of a set of binary valued attributes. Thus for our representation (as
describbed above) we will use |L|×8 attributes plus a number of error attributes.
Thus if |L| = 5 the input training data will comprise 45 columns, 5×8 attributes
plus the class (error) attributes.

6.1 Classifier Application

Once we have generated our desired classifier we will wish to apply it to unseen
data, i.e. a new shape S so that we can predict S′. To do this the coordinate
cloud describing S must be expressed in terms of its components in the same
manner as used to define the training data. Thus the coordinate cloud for S must
be expressed as a grid using the same values of d as that was used to generate
the classifier, which must then be converted in to a set of records comprising
L × 8 attributes so as to be compatible with the generated classification rule
representation (again there will be some missing data at edges and corners).

7 Evaluation

This section reports on the outcomes of the evaluation, using a small (SP) and
a large (LP) square based pyramid (similar to that used in [2] and [15]), of the
proposed approach. The two pyramids were constructed using the AISF process
(Figure 10). In each case the before cloud was the CAD generated input to the
AISF process. The resulting after clouds were obtained using a GOM optical
measuring tool. The objective of the evaluations were:

1. To identify the most appropriate value for d, the grid spacing, so as to
maximise the descriptive accuracy of the rules.

2. To identify the most appropriate value for |L|, the number of qualitative la-
bels used to describe local geometries, again so as to maximise the descriptive
accuracy of the rules.

3. To determine the overall effectiveness of the proposed approach, in terms of
classification accuracy.

7.1 Datasets

As already noted the experiments were conducted using two geometries (i) a
Small Pyramid (SP) and (ii) a Large Pyramid (LP). Figure 8 shows a square
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Fig. 8. Square based pyramid (upside
down) at the point when it is unclamped
after application of the AISF process

Fig. 9. Square based pyramid (right way
up); the markings are used with respect
to the GOM optical measuring tool

based pyramid at the point when it was unclamped from the AISF machine,
Figure 9 shows the same shape “the right way up”. The springback that has
been introduced can be observed by inspection of the two figures. The before
clouds comprised 24925 and 114888 points respectively. The clouds are shown
in Figures 10 and 11. In the case of the large pyramid the surrounding surface
that was used to clamp it in the AISF machine was cropped in order to acquire
the desired shape as shown in Figure 11. The large pyramid before cropping is
shown in Figure 12.

For the reported classification experiments 50 datasets were generated using
different combinations of grid sizes d and sets of labels L. Some statistics re-
garding the size of the resulting data sets are presented in Tables 5 and 6. Table
5 displays the number of records contained in each datasets generated using a
range of d values from 1 to 5 (the units are in millimetres). Table 6 shows the
number of attributes in each datasets resulting from the use of different |L| val-
ues from 3 to 11. The number of record decreases as we increase the grid size
because the bigger the grid size the fewer the number of grid points that will
be contained within it. Conversely, if the label size (L) increases, the number of
attributes increases as shown in Table 5.

7.2 Experiments

In [15] we tested a number of CARM algorithms (CMAR, CPAR, TFPC) and
the C4.5 decision tree classifier using Ten-fold Cross Validation (TCV); as a
result C4.5 was found to outperform the other classifiers in terms of accuracy.
Thus in this paper the reported experiments were conducted using only the C4.5
classification algorithm with TCV. Three sets of experiments were performed to
exhibit the applicability of the approach:
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Fig. 10. Before cloud for small square
based pyramid

Fig. 11. Before cloud for large square
based pyramid (after cropping)

Fig. 12. Before cloud for large square based pyramid before cropping

Small Large
(d) Pyramid LPyramid

1 19044 37637
2 4624 9216
3 1936 4096
4 1156 2304
5 676 1444

Table 5. Number of records using a
range of values for d

No. of No. of
(L) Attributes Classes

3 24 3
5 40 5
7 56 7
9 72 9
11 88 11

Table 6. Number of attributes using a
range of values for L

1. Training and testing the classifier using a single dataset with TCV (for both
the small pyramid and the large pyramid datasets).

2. Training the classifier on the small pyramid dataset and testing on the large
pyramid datasets.

3. Training the classifier on the large pyramid dataset and testing on the small
pyramid datasets.

The last two sets of experiment were conducted to ascertain whether a generically
applicable classifier could be produced using the advocated method described in
this paper.

With respect to the first set of experiments, Tables 7 and 8 present the
classification accuracies and the AUC values for the SP and the LP datasets
that were obtained using different combinations of d (1 to 5) and L (3 to 7)
values. The results show that the accuracies obtained using the LP datasets
are better than those obtained for the SP datasets due to the fact that the
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LP datasets featured less springback, thus higher accuracies but lower AUC
values. The AUC values indicate that usage of datasets that feature higher error
(springback) values results in the generation of classifier with more true positive
rules as compared to datasets that feature less springback.

SP
¯

|L| = 3 |L| = 5 |L| = 7 |L| = 9 |L| = 11
d = 1

Accuracy 77.715 68.478 60.875 48.918 53.025

AUC 0.693 0.779 0.772 0.755 0.783

d = 2
Accuracy 74.762 67.645 51.189 56.639 51.384

AUC 0.759 0.847 0.808 0.837 0.816

d = 3
Accuracy 71.281 67.562 58.626 57.283 55.320

AUC 0.717 0.849 0.845 0.853 0.851

d = 4
Accuracy 72.751 73.529 67.734 53.460 54.844

AUC 0.723 0.891 0.870 0.841 0.838

d = 5
Accuracy 71.597 69.231 65.976 63.166 54.734

AUC 0.755 0.865 0.876 0.859 0.869

Table 7. C4.5 TCV Classification Results
(Small Pyramid)

LP
¯

|L| = 3 |L| = 5 |L| = 7 |L| = 9 |L| = 11
d = 1

Accuracy 99.939 99.814 99.694 99.529 99.402

AUC 0.454 0.500 0.489 0.494 0.494

d = 2
Accuracy 99.001 98.991 97.536 98.221 97.797

AUC 0.491 0.488 0.495 0.492 0.494

d = 3
Accuracy 99.682 96.899 98.193 96.728 97.094

AUC 0.419 0.491 0.483 0.831 0.495

d = 4
Accuracy 95.529 95.876 95.139 94.791 94.010

AUC 0.490 0.486 0.491 0.496 0.491

d = 5
Accuracy 92.659 91.828 92.245 91.759 91.482

AUC 0.652 0.906 0.906 0.935 0.912

Table 8. C4.5 TCV Classification Results
(Large Pyramid)

For the second set of experiments, Table 9 shows the classification accuracy
and AUC values obtained when using the SP dataset for training and the LP
dataset for testing using different combinations of d (1 to 5) and L (3 to 7) values.
Similarly, for the third set of experiments. Table 10 shows the classification
accuracy and AUC values obtained when training on the LP dataset and testing
on the SP datasets again using different combinations of d (1 to 5) and L (3 to
7) values.

The classification results presented in Tables 9 and 10 demonstrate that high
AUC and accuracies values can be achieved for different d and L combinations.
From the tables the following can be noted:

1. We can predict the springback (error) to a high level of accuracy (best ac-
curacy of 77% for SP from Table 9, and 99.9% for LP from Table 10).

2. The decision tree classifier worked the best with respect to both pyramids.
3. A high size value for |L| seems to be beneficial (the best value for |L| was
|L| = 5).

4. An argument can be made that a small gird size (d = 3 or d = 4) is also
beneficial.

The fact that a high value for |L| is beneficial is not suprising because the
greater the value of |L| the more expressive the label descriptors. However, if
|L| becomes too large there are implications for the runtime complexity of the
approach; and, more significantly, may result in “overfitting” of the training
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|L| = 3 |L| = 5 |L| = 7 |L| = 9 |L| = 11
d = 1

Accuracy 99.939 38.067 30.954 23.788 16.027

AUC 0.5 0.359 0.289 0.302 0.395

d = 2
Accuracy 73.459 39.887 23.741 29.514 18.479

AUC 0.475 0.249 0.405 0.3 0.698

d = 3
Accuracy 92.798 96.435 77.807 91.626 65.967

AUC 0.494 0.503 0.552 0.366 0.610

d = 4
Accuracy 6.163 74.523 27.995 10.156 10.937

AUC 0.478 0.5 0.49 0.325 0.764

d = 5
Accuracy 29.917 15.443 62.574 19.598 19.252

AUC 0.440 0.149 0.898 0.638 0.350

Table 9. Classification Results (Training
on Small Pyramid and Testing on Large
Pyramid)

|L| = 3 |L| = 5 |L| = 7 |L| = 9 |L| = 11
d = 1

Accuracy 77.667 49.291 35.538 27.972 22.768

AUC 0.5 0.5 0.5 0.5 0.5

d = 2
Accuracy 56.012 42.257 25.562 28.071 19.578

AUC 0.5 0.5 0.5 0.5 0.5

d = 3
Accuracy 55.785 47.675 33.109 31.301 24.483

AUC 0.5 0.576 0.5 0.528 0.5

d = 4
Accuracy 34.429 41.609 22.318 16.263 13.495

AUC 0.349 0.5 0.5 0.433 0.489

d = 5
Accuracy 44.082 40.384 22.337 16.272 14.793

AUC 0.613 0.407 0.473 0.49 0.495

Table 10. Classification Results (Train-
ing on Large Pyramid and Testing on
Small Pyramid)

data. Overall it can be seen that some very good accuracies and AUC values
were obtained. These were very encouraging results. The experiments indicate
that we can generate classifiers (as demonstrated) for given shapes, and that this
classification approach can provide a sound AI platform for (say) an Intelligent
Process Model (IPM) that may be applied in the context of AISF.

8 Conclusions and Perspectives

In this paper we have described a mechanism for discovering correlations between
3-D surfaces. More specifically we have described a mechanism for discovering
local correlations between a target shape T and a shape T ′ produced as a result of
the application of an AISF process. We have demonstrated that the mechanism
we have proposed to represent local geometries, using the LGM concept, can be
used to generate accurate classifiers to predict (and consequently apply) errors
in shapes produced using AISF. More generally we have described a 3-D surface
representation that accurately describes local geometries in such a way that they
are compatible with the effective and efficient generation of classifiers that may
be used for prediction purposes.

Given the above it is suggested that classification is an appropriate technol-
ogy for building Intelligent Process Models (IPMs) for use in AISF (and similar
processes). However, we believe our current representation still needs further
refinement. Firstly the ranging mechanisms used to discretize LGM values may
not be the most appropriate if we wish to apply a classifier built using one shape
to another type of shape. It may also be the case that the current representation
needs to be augmented with additional information regarding the proximity of
grid points to edges and/or corners. The reason for this is that it is conjectured
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Fig. 13. Areas of greatest springback in a flattened square based pyramid shape

that the error magnitude of the springback increases as we move away from
edges (Figure 13). This means that the errors should be greater in the large
pyramid than in the small pyramid. Two possible mechanisms whereby we may
augment our current representation are suggested. The first involves using two
or more d values so that we capture both the “big picture” as well as the “small
picture”. Alternatively we can include an edge/corner proximity measure (p).
Currently we describe shapes using a grid. For each grid point (except at edges
and corners) we have eight surrounding grid points. We have established that
local geometry can be described by the difference in z values between the center
grid points and the surrounding eight points. In each case this gives a 3×3 Local
Geometry Matrix (LGM) describing the δz values (with the value 0 at the center
representing the grid point). Some of these LGM configurations will indicate the
presence of edges and corners provided that the grid distance (d) is sufficient to
capture this. Given a “bank” of LGMs describing edge and corner configurations
we can use pattern matching to identify the corners and edges in any given piece.
We can then use this knowledge to determine values for p for each grid point.
The long term goal is to produce a generally applicable classifier that can be
applied to any shape (of course other influencing factors such as material and
tool head speed must be kept constant).

Currently errors are defined as the distance along the normal from the before
surface to where it intersects the after surface. We calculate four normals for each
grid point and consequently four error values are obtained. The specific error
associated with a grid point is then the minimum of these four error values. To
produce a new coordinate cloud, S′′, we can simply reverse these errors. The
reverse errors can either be applied to the before grid points or directly to the
before coordinate cloud. If we apply the error to the coordinate cloud and if there
is a significant difference between the error associated with adjacent grid points,
we may get a “stepping” effect (especially if d is large); in which case some sort
of smoothing may be required. If we apply the error to the grid coordinates we
may not have sufficient points to allow a new shape to be manufactured. We
will therefore need to use small values of d, d = 1 seems to be a good value. It
should also be noted that we believe that simply reversing the error is unlikely
to produce a good S′′, we therefore propose to apply a factor f to the errors.
The intention is that the nature of f will be dependent on the local geometry
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as defined so far, but augmented by the additional work on representing local
geometries (as described above) that we intend to undertake.
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