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ABSTRACT 

 

 

In this paper a number of alternative strategies for distributed/parallel association rule mining are 

investigated. The methods examined make use of a data structure, the T-tree, introduced previously by 

the authors as a structure for organising sets of attributes for which support is  being counted.  We 

consider six different approaches, representing different ways of parallelising the basic Apriori-T 

algorithm that we use. The methods focus on different mechanisms for partitioning the data between 

processes, and for reducing the message-passing overhead. Both ‘horizontal’ (data distribution) and 

‘vertical’ (candidate distribution) partitioning strategies are considered, including a vertical 

partitioning algorithm (DATA-VP) which we have developed to exploit the structure of the T-tree. 

We present experimental results examining the performance of the methods in implementations using 

JavaSpaces.  We conclude that in a JavaSpaces environment, candidate distribution strategies offer 

better performance than those that distribute the original dataset, because of the lower messaging 

overhead, and the DATA-VP algorithm produced results that are especially encouraging. 

 

Keywords: Distributed Association Rule Mining, Parallel Association Rule Mining. 

 

1. INTRODUCTION 

 

Association Rule Mining (ARM) is now a well-established branch of Knowledge Discovery in 

Databases (KDD). The challenge is to identify a set of relations in a binary valued attribute set which 

describe the likely coexistence of groups of attributes. To do this it is first necessary to identify 

frequent itemsets --- subsets of the available set of attributes which co-occur sufficiently often for 
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them to be deemed to be potentially interesting. These frequent, or ‘large’ itemsets are then used to 

generate “Association Rules” (ARs) of the  form BA ⇒ , where A  and B  represent disjoint subsets 

of a frequent itemset I such that IBA =∪ . A number of subsequent tests can then be applied to 

assess whether the rules found are genuinely “interesting” (Berry and Linoff, 1997; Tan et.al. 2002).  

Generally speaking, however, the most computationally intensive element of any ARM exercise is the 

identification of the frequent itemsets. 

 

Whether an item set is "frequent" is expressed in terms of the support for that itemset. Support is the 

number of occurrences of an itemset I  in a data set, usually written as ( )IP . Thus given an item set 

{ }ba,  its support will be expressed as ( )baP , . For such an itemset, and assuming that the support is 

adequate (i.e. above some user defined threshold), we can produce association rules of the form 

ba ⇒ . The confidence in this rule is then expressed as: ( ) ( )aPabP ), . Critics of this approach (for 

example Brin et al. 1997) point out that it ignores the contribution that ( )bP  may have --- it may be 

that a  and b  are independent of one another. In all alternatives suggested, however, it remains 

necessary to determine the frequent itemsets. 

 

The principal contributing factor to the time complexity of any ARM algorithm is the “width” of the 

dataset to be mined; given N attributes the number of combinations will be 12 −N , so other than for 

small values of N exhaustive enumeration is impractical. Alternative approaches are therefore 

required to reduce the overall size of the search space. Most ARM algorithms make use of the 

“downward closure property of itemsets”: the observation that if an itemset I  is adequately 

supported, then all the subsets of I  will also be adequately supported. Consequently if an itemset I  

is not supported, any effort to calculate the support for its supersets will be wasted. The most well 

known ARM algorithm that makes use of this property is the Apriori algorithm (Agrawal and Srikant 

1994), although there are many others (for example Brin et al. 1997, Park et al. 1995 and Shintani and 

Kitsuregawa 1996). The Apriori algorithm operates broadly as shown in Table 1. 

 

The second consideration, when implementing ARM algorithms, is the nature of the data structures 

used to store itemsets as the algorithm progresses; this must be concise while at the same time 

offering fast access times. Agrawal and Srikant (1994) originally used Hash Trees to store candidate 

itemsets. Brin et al. (1997) use a tree data structure (a trie) similar to the hash tree used by Agrawal 

and Srikant (other examples of the use of Hash Trees can be found in Park et al., 1995; and Shintani 

and Kitsuregawa, 1996). More recently researchers have focused on the use of Set Enumeration Trees 

as originally proposed by Rymon (1992); examples of this work can be found in Bayardo (1998) and 

Agarwal et al. (2000). Other similar tree structures include AD-trees (Moore 1998) and FP-trees (Han, 
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2000). The authors have also developed set-enumeration tree structures to support ARM --- namely 

the T-tree and the P-tree (Goulbourne et al. 2000 and Coenen et al. 2003), and a number of serial 

ARM algorithms to be used in association with P-trees and T-trees. Of particular relevance with 

respect to this paper is the Apriori-T algorithm, described below. 
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Table 1: Fundamental Apriori Algorithm 

 

Notwithstanding the extensive work that has been done in the field of ARM, there still remains a need 

for the development of faster algorithms and alternative heuristics to increase their computational 

efficiency. Because of the inherent intractability of the fundamental problem, much research effort is 

also currently directed at parallel ARM to decrease overall processing times (see Han et al. 1997, 

Parthasarathy et al. 1998, Shintani and Kitsuregawa 1996, and Tamura and Kitsuregawa 1999), and 

distributed ARM to support the mining of data sets distributed over a network (Cheung et al. 1996a 

and 1996b). 

 

The contribution of this paper is also in distributed/parallel ARM. Our aim is to examine 

experimentally the most effective ways in which our Apriori-T algorithm may be implemented in a 

parallel or distributed environment, using JavaSpaces technology. In a preliminary analysis (Coenen 

et. al 2003b) we examined a strategy that uses the T-tree structure to define a vertical partitioning of 

the data, which we found to be more effective than either a “count distribution” strategy (Agrawal and 

Schafer 1996), which partitions the source data horizontally, or a “candidate distribution” strategy that 

assigns the counting of sets of candidates as tasks. In the present paper we extend the comparison to 

include two further strategies, and present a more complete analysis of the methods and their 

performance characteristics.  

 

The organisation of the paper is as follows: in Section 2 we outline the architecture/network 

configuration that is assumed, and in Section 3 we consider some previous work in the field of 

parallel ARM. In section 4 the Apriori-T algorithm and the T-tree data structure is described, and in 
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section 5 some particular considerations with respect to their use in distributed/parallel ARM. We 

then go on to consider (Sections 6, 7, 8, 9 and 10) a number of distinct forms of the algorithm, 

representing different strategies for distributed/parallel implementation: (1) Distributed Apriori-T 

Algorithm using Data Distribution (DATA-DD), (2) Distributed Apriori-T Algorithm using Task 

Distribution (DATA-TD) using two distinct approaches to task distribution, (3) Distributed Apriori-T 

Algorithm using Horizontal Segmentation (DATA-HS), (4) Distributed Apriori-T Algorithm using the 

Negative Border concept (DATA-NB), and (5) Distributed Apriori-T Algorithm using Vertical 

Partitioning (DATA-VP). Some performance comparisons are presented in Section 11, and 

conclusions in Section 12. 

 

 

 

1.1. Note on Data Sets  

The datasets used in ARM are usually presented as sequences of records comprising item (column) 

numbers, which in turn represent attributes of the data set. The presence of a column number in a 

record indicates that the associated attribute exists for that record. This form of dataset is exemplified 

by “shopping trolley” scenarios, where records represent customer “trolley-fulls” of shopping 

purchased during a single transaction and the columns/attributes, items or groups of items available 

for purchase. It should be noted that although ARM is directed at binary valued attribute sets, it can be 

applied to non-binary valued sets and also sets where attributes are continuously valued through a pre-

process of data normalisation. 

 

Data sets can thus be considered to be DN ×  tables whereN is the number of columns and D is the 

number of records. 

 

 

2. ARCHITECTURE AND NETWORK CONFIGURATION 

 

The algorithms described here assume the availability of at least two processes (preferably more), one 

Master process and one or more Worker processes. We will assume also a one-to-one matching of 

processes to processors operating across a network. The significant distinction between the master and 

the worker processes is that synchronisation, where required, is managed by the master. Processes are 

identified by a unique ID number; 0 for the Master, and 1 to N for the Worker processes. 

 



 4

The algorithms also assume that all processes have access, across a network, to a central data 

warehouse. Figure 1 shows the assumed distribution of processors and shared data warehouse across 

the network; the figure also shows a “JavaSpace”, through which the processes communicate. 

 

The distributed/parallel ARM algorithms described here have all been implemented using JavaSpaces 

(Arnold et al. 1999), which in turn is inspired by Linda (Carreiro and Gelernter 1989). The 

philosophical underpinning of both JavaSpaces and Linda is the existence of a central store of objects 

(called a tuple space) which can be accessed using a small number of operations (three in the case of 

JavaSpaces – send, read and take); this in turn greatly simplifies the implementation of both 

parallel and distributed applications. 

 

Although we have used JavaSpaces, the ARM algorithms/techniques described here could equally 

have been implemented using many other appropriate platforms, including agent platforms such as 

Java agents and the JADE message passing environment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ARM processors, Data Warehouse and JavaSpace distributed across a network 

(Note that all communication is asynchronous via the JavaSpace). 

 

3. PREVIOUS WORK 

Most parallel/distributed ARM algorithms are adaptations of existing sequential (serial) algorithms. 

Generally speaking two strategies for distributing data for parallel computation can be identified 

(Chattratichat et al. 1997): 
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1. Data distribution: The data is apportioned amongst the processes, typically by “horizontally” 

segmenting the dataset into sets of records. Each process then mines its allocated segment 

(exchanging information on-route as necessary). 

2. Task distribution: Each process has access to the entire dataset but is responsible for some 

subset of the set of candidate itemsets.  

Algorithms that apply these approaches include those described by Agrawal and Schafer (1996), 

Becuzzi et al (1999), and Cheung and Xiao (1999). The "count distribution algorithm" (Agrawal and 

Shafer 1996) is an example of the data distribution approach. The algorithm operates as follows: 

1. Divide the dataset amongst the available processes so that each process is responsible for a 

particular horizontal segment.  

2. Each process determines the local support counts in its segment for the candidate 1-itemsets.  

3. Exchange information between processes so that each process obtains the global support 

counts for all 1-itemsets (a process which Agrawal refers to as global reduction).  

4. Each process then prunes the 1-itemsets, generates a set of candidate 2-itemsets from the 

supported 1-itemsets, and then determines the local support for each of these candidate sets, 

and so on.  

Park et al. (1995) and Cheung et al. (1996b) both suggest modifications to the above. Park et al. make 

use of their "direct hashing technique" to prune candidate sets. Cheung et al. (1996b) also suggest 

more advanced candidate pruning and global reduction techniques. The first Apriori-T algorithm 

considered here, DATA-DD (Distributed Apriori-T Algorithm with Data Distribution) is an 

adaptation of the count distribution algorithm. 

 Agrawal and Shafer (1996) also describe an example of the task distribution approach, which they 

refer to as a “data distribution” algorithm, in contrast to the “count distribution” algorithm outlined 

above. This terminology conflicts with that used by Chattratichat and others, and is potentially 

ambiguous. We will here use “data distribution” to refer to strategies which partition and distribute 

the original source data in some way, as is the case for Agrawal’s “count distribution” algorithm. The 

so-called “data distribution” algorithm of Agrawal operates differently, as follows (Agrawal and 

Shafer actually also horizontally segment and distribute the dataset): 

1. Equally distribute the candidate 1-itemsets amongst the processes.  

2. Each process generates support counts for its local candidate sets.  

3. Each process exchanges its local candidate set counts with those associated with other 

processors; these are then collated and the resulting large 1-itemsets pruned.  
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4. Generate the next level candidate sets, distribute these sets equally amongst the processes and 

repeat until there are no more candidate item sets.  

A disadvantage associated with the above  algorithm is the amount of messaging that will be involved. 

Consequently a number of authors (for example Han et al. 1997, Shintani et al. 1996, Zaki et al. 1997, 

Morishita and Nakaya 2000) have described alternatives to improve on this. The second and third 

algorithms considered here are variations on the task distribution concept, using different mechanisms 

for dividing the candidate itemsets between the available processes. 

 

 

4. THE APRIORI-T ALGORITHM 

 

The Apriori-T algorithm combines the classic Apriori ARM algorithm (Agrawal and Srikant, 1994) 

with a set enumeration tree structure (Rymon 1992), developed by the authors, called the T-tree --- 

Total support tree (Coenen et al. 2003). Elsewhere (Coenen et al. 2001) we have described an 

algorithm, Apriori-TFP, which uses both the T-tree structure and another set-enumeration tree, the P-

tree. In this paper we examine methods using only the T-tree structure. The T-tree differs from more 

standard set enumeration trees in that the nodes at the same level in any sub-branch are organised into 

1-D arrays such that the array indexes represent column numbers. This structure offers two initial 

advantages over standard set enumeration trees: 

 

 

 

1. Fast traversal of the tree using indexing mechanisms, and  

2. Reduced storage, in that itemset labels are not required to be explicitly stored and no sibling 

reference variables (pointers) are required. 

 

To support this array organisation the T-tree is structured in reverse to the usual ordering. A 

comparison between the “standard” set enumeration tree and the T-tree is presented in Figure 2 for the 

powerset of },,,{ dcba and assuming a minimum support threshold of zero. Figure 2(a) shows a 

standard set enumeration tree, 2(b) the T-tree data structure, and 2(c) a representation of the T-tree 

where unsupported nodes (if any) will not be included in the figure, that will be used later in this 

article. The numbers associated with each node represent support counts; the illustration shows the 

total support counts that would arise from a dataset containing exactly one instance of each 

combination of the 4 attributes. The trees illustrated here are complete; in practice, however, branches 

of the tree are included only if they contain sets that are to be counted.  
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Figure 2: Comparison between structure of standard set enumeration tree and T-tree 

 

In Figure 2(a), the nodes of the tree enumerate all possible itemsets, in an order in which each subtree 

includes all lexicographically-following supersets of its root node. For computing support totals, 

however, the organisation shown in Figure 2(c) is more efficient. Here, each subtree includes only 

lexicographically-preceding supersets of the root node, and for reasons of compactness, items 

(attributes) included in the parent node are not repeated in its children. The implementation of the tree 

is illustrated in Figure 2(b). In each case, the same itemsets are enumerated, but the reverse ordering 

of the T-tree is used to complement the P-tree ordering of Figure 2(a). In the present work, we will 

use only the T-tree, but the reverse ordering of this is retained because it tends to lead to a more 

balanced tree if we order the attributes by their frequency of occurrence. This is helpful for the 

vertical partitioning strategy discussed in section 10 below. 

 

The Apriori-T algorithm, like Agrawal and Srikant’s Apriori algorithm, is founded on the downward 

closure property of large itemsets but uses the T-tree data structure instead of Hash trees. The 

algorithm has the same basic  structure that was outlined in Table 1. As each level is processed 

candidates are added as a new level of the tree, their support is counted, and those that do not reach 

the required threshold of support are subsequently pruned. When the algorithm terminates, the T-tree 

contains only the frequent itemsets. At each level, new candidate K -itemsets (other than the single 

top-level sets in the tree) are generated from identified frequent 1−K  itemsets, using the rule that a 

K -itemset can only be a candidate frequent itemset if all its 1−K  subsets are frequent itemsets. For 

example, referring to Figure 2(c), for the node b  at the right-most end of the third level from the top 
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(representing the 3-itemset { }dcb ,, ) to be a candidate frequent itemset its 2-itemset subsets 

( { }{ }{ }{ }dcdbcb ,,, ) must all be adequately supported. { }db,  and { }dc,  are both immedia te parent 

nodes of the proposed candidate node and thus their level of support can be established immediately 

(if they have been removed from the tree during the pruning stage of the Apriori-T algorithm they will 

not be frequent). However, { }cb,  is in a neighbouring branch and its existence or non-existence must 

be established by traversing the tree in an attempt to reach the node, a process which we refer to as X-

checking.  

 

X-checking adds a computational overhead offset against the additional effort required to establish 

whether a candidate K -itemset, all of whose 1−K  -itemsets may not necessarily be supported, is or 

is not a frequent itemset. In some cases it might be more expedient to assume that those 1−K  subsets 

of a candidate K -itemset that are contained in neighbouring branches of the tree are supported than to 

carry out X-checking; this may especially be the case in a distributed implementation in which the 

branches may be handled by different processes. Consequently we have produced two versions of the 

Apriori-T algorithm, one with X-checking and one without.  

 

Table 2 presents a comparison, in terms of: (i) number of T-tree nodes generated, (ii) number of T-

tree updates (support incrementations) and (iii) T-tree generation time, between the Apriori-T 

algorithm with X-checking and without X-checking for a range of minimum support thresholds from 

0.5% to 2.0%. The dataset T20.I10.D500K.N500 used in this comparison, and others in this 

paper, was generated using the IBM Quest generator used in Agrawal and Srikant (1994) and 

subsequently by many other researchers. The table also includes the storage requirements for the 

resulting T-tree and the number of identified large (frequent) itemsets in each case (which will be the 

same for a given support threshold regardless of whether X-checking is used or not). 

 

From the table it can be seen that, for the given dataset, it makes little difference whether X-checking 

is implemented or not. The version without X-checking in fact performs slightly faster, suggesting 

that X-checking may not be worthwhile, even though without it some unnecessary counting takes 

place. This becomes more significant in a distributed implementation when the cost of X-checking 

may be higher. 

 

We note here the relationship between our structures and those used in the FPgrowth algorithm (Han, 

2000). The FP tree algorithm is also founded on a form of set enumeration tree structure, but with 

extra links to facilitate fast traversal of the tree. The drawback of this is that the additional links 

utilised by FPgrowth make parallelisation/distribution more difficult, with increased performance 

costs when links cross boundaries between processes.  
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 Apriori-
T with 

X-check 

Apriori-
T no X-
check 

Apriori-
T with 

X-check 

Apriori-
T no X-
check 

Apriori-
T with 

X-check 

Apriori-
T no X-
check 

Apriori-
T with 

X-check 

Apriori-
T no X-
check 

Min. Sup. 2% 1.5% 1% 0.5% 
Num. T-

tree nodes 
created 

48,139 48,142 62,799 62,833 112,093 112,344 400,715 402,684 

Num. 
updates  

98,899, 
320 

98,904, 
425 

111,209, 
495 

111,248, 
921 

147,846, 
636 

147,995, 
814 

285,401, 
889 

285,837, 
823 

Generation 
time 

(Seconds) 

17 
 

15 
 

22 
 

19 
 

33 
 

31 
 

97 
 

95 
 

T-tree 
storage 
(Bytes) 

199,328 267,056 502,412 1,871,952 

Num. large 
itemsets 

569 1,144 3,104 11,886 

Table 2: Comparisons between Apriori-T with X-checking and Apriori-T without X-checking; using 

the data set T20.I10.D500K.N500 where T = average number of elements per record, I = average 

number of elements in a large itemset, D = number of records, N = number of attributes 

 

4.1. Preprocessing of Input Data 

 

The number of candidate nodes generated during the construction of a T-tree, and consequently the 

computational effort required, is very much dependent on the distribution of columns within the 

dataset. We have found that best results are produced by reordering the dataset, according to the 

support counts for the 1-itemsets, so that the most frequent 1-itemsets occur first (Coenen and Leng 

2001). At the same time all 1-itemsets that fail to meet the support threshold can be removed from the 

dataset, consequently leaving only those column numbers representing frequent 1-itemsets and thus 

reducing the value of N (the number of attributes/columns). 

 

Both the Apriori-T algorithms (with and without X-checking) allow for data pre-processing whereby 

the given dataset is both ordered and pruned prior to the application of the algorithms. Note that 

reordering and pruning will entail column renumbering so that the indexing mechanism will continue 

to operate effectively. Note also that the advantages offered by reordering and pruning are applicable 

to set enumeration trees in general.  

 

 

 

5. APRIORI-T DISTRIBUTION/PARALLELISATION ISSUES 

 



 10

In this section we consider a number of issues concerned with distribution/parallelisation of the 

Apriori-T algorithm: 

 

1. The messaging overhead. 

2. Data serialisation. 

3. Vertical partitioning and horizontal segmentation. 

4. Comparison of approaches. 

 

5.1. Messaging 

 

Distributed/parallel ARM algorithms may entail much exchange of data (messaging) as the algorithm 

proceeds. Messaging represents a significant computational overhead (in some cases out-weighing 

any other advantage gained). Usually, the number of messages sent is a much more significant 

performance factor than the size of the content of the message. It is therefore expedient, in the context 

of the techniques described here, to minimize the number of messages that are required to be sent. 

 

In the ARM algorithms described here the exchange of data requires each process to send data to each 

other process. In the implementation environment we have chosen, each such exchange involves the 

sending of data into a JavaSpace from where it can be read/taken. Data cannot be left in the JavaSpace 

indefinitely as the space has only a finite capacity. Two approaches to the exchange of data can be 

adopted: (1) One -to-Many, or (2) Many-to-Many. 

 

One -to-Many operates as follows: 

1. Each process sends a message labelled with its own identification number into the JavaSpace. 

2. Each process reads messages sent by each other process (using knowledge of the 

identification numbers of the other processes) 

3. Each process checks (e.g. using a semaphore) that its own message has been read by all the 

other processes, and if so takes its message out of the JavaSpace. 

 

Thus given P processes each exchange of data will involve one send, P-1 reads and one take, i.e. a 

total of P+1 operations. 

 

Alternatively, Many-to-Many operates thus: 

 

1. Each process sends a message to each other process labelled with the identification number of 

the process to which the message is directed. 
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2. Each process then takes the messages sent to it (i.e. labelled with its own identification 

number) out of the JavaSpace. 

 

Thus given P processes each exchange of data will involve P-1 sends, P-1 takes and no reads, i.e. 2(P-

1) operations. 

 

The advantage offered by the One-to-Many approach is that (for P>3) it involves fewer operations; 

the significance of this advantage increases as the number of processes used increases. However, the 

disadvantage of the One-to-Many approach is that it may require processes to wait before they can 

take their messages out of the space and continue with the execution of the algorithm. An additional 

consideration is that using the Many-to-Many approach P(P-1) messages may be sent in to the space 

at any one processing stage. For example, if the message represents a T-tree of size (say) 10Mbytes, 

and if we are working with (say) 7 processes, this could mean that: 

 

( ) MBytes420104210177 =×=×−  

 

will be sent into the space at the same time, possibly exceeding the storage capacity limits of the 

JavaSpace. For these reasons all the algorithms described here have been implemented using one-to-

many message passing, although each could also be implemented using the many-to-many approach. 

 

5.2. Serialization 

 

We noted above that: (1) messaging in both parallel and distributed ARM represents a significant 

computational overhead and (2) the number of messages is usually much more significant than the 

total size. By using the one-to-many approach described above we reduce the number of messages 

exchanged. The cost of messaging is also reduced if we can ensure that an entire T-tree is sent as a 

single message rather than as a sequence of messages describing individual nodes. 

 

Messaging using JavaSpaces takes the form of sending serialized objects (i.e. converted into a stream 

of bytes) to and from the space. Consequently, to send a T-tree, the tree must be converted into a 

single object, comprised of only object attributes, and serialized. Although we can convert and 

serialize an array of (say) short integers into an array of Short objects we cannot directly serialize 

the references in the T-tree linking the different level arrays (see Figure 2(b)). Consequently we carry 

out our own “serialization” by, where necessary, converting the T-tree in to a stream (array) of 

integers which can then be sent to a JavaSpace. 
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5.3. Data Segmentation and Partitioning 

 

To allow the data to be mined using a number of cooperating processes the most obvious approach is 

to allocate different subsets of the data to each process. There are essentially two fundamental 

approaches to partitioning the data: 

 

1) Vertical partitioning where the data is divided according to column number.  

2) Horizontal segmentation where the data is divided according to row numbers. 

 

The nature of the division will in turn influence the nature of the algorithm to be used. The most 

natural method to vertically partition a dataset is to divide the number of columns by the number of 

available processors so each is allocated an equal number of columns. Given such a partitioning the 

nature of the T-tree structure is such that, assuming all nodes are supported, the number of nodes in 

each branch will increase exponentially from left to right (see Figure 2(b)). However, if we order the 

tree as described in Sub-section 4.1 this exponential growth is offset by the fact that most supported 

sets are contained in the left-hand portion of the tree --- the effect is that the tree becomes more 

balanced. Experiments carried out by the research team have shown that any optimum division (i.e. 

one that divides the computational effort required to process the data equally amongst the contributing 

processes) is very much dependent on the nature of the dataset (number of columns/rows, 

homogeneity and density) and the minimum support threshold adopted. In practice, therefore, in most 

cases it is simplest to divide the data into equal portions.  

 

Horizontal partitioning, or segmentation, is in general more straightforward. Assuming a 

uniform/homogenous dataset it is sufficient to divide the number of records (D ) by the number of 

available processes and allocate each resulting segment accordingly. In the following sections we 

describe algorithms using both vertical and horizontal partitioning, and also task partitioning 

algorithms which do not explicitly partition the original dataset. 

 

5.4. Comparison of approaches 

 

In the following Sections six distinct parallel/distributed versions of the Apriori-T algorithm will be 

considered. So that fair comparisons can be made it is assumed that each process is required to end up 

with a complete T-tree so that the following rule generation stage can also be parallelised/distributed 

in such a manner that each process has access to complete information regarding support counts, and 

thus does not have to obtain this information in the form of requests to other processes. Some of the 

approaches described (DATA-DD and DATA-TD) naturally end with each process possessing a 

complete T-tree, others end with each process having either an incomplete T-tree (DATA-NB and 
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DATA-HS) or a complete part of a T-tree only (DATA-VP). In the latter cases it would be possible to 

complete the construction of the final tree using a single process only to collate the portions. 

However, to ensure a complete distribution of the final tree we have arranged for this final collation to 

be done by all processes in parallel. 

 

 

6. THE DISTRIBUTED APRIORI T-TREE ALGORITHM WITH DATA 

DISTRIBUTION (DATA-DD) 

 

The DATA-DD (Distributed Apriori T-tree Algorithm with Data Distribution) uses horizontal 

partitioning, or segmentation, dividing the dataset into segments each containing an equal number of 

records. ARM in this case involves the generation of a number of T-trees, one for each segment, 

carried out by separate processes which must communicate on completion of each level. The approach 

is essentially that of the “count distribution algorithm” described in Section 3 above. 

 

The algorithm comprises the following steps: 

 

1) Start all processes, Master plus a number of Workers. 

2) Master determines horizontal segmentation according to the total number of available 

processes and transmits this information, via the JavaSpace, to the Worker processes. 

3) Each process generates and counts a level 1 local T-tree for its allocated segment. 

4) Each process serialises and sends its counted level 1 local T-tree to each other process, so that 

all processes can collate their own and the other level 1 local T-trees into a single level 1 

global T-tree.  

5) Each process prunes its level 1 global T-tree according to the support threshold, and generates 

and counts the next level local candidates for its allocated segment. 

6) Steps 4 and 5 are repeated, for levels 2, 3,… until there are no more candidate sets to be 

counted. 

 

Note that the Data-DD algorithm requires the transmission of a local (component) T-tree at each level 

on behalf of each process. This is necessary because pruning of the current level and construction of 

the next level requires knowledge of the global support counts. As noted in Section 5.2 message-

passing represents a significant computational overhead (in some cases out-weighing any other 

advantage gained). By serializing a single level of nodes in a T-tree and wrapping the serialisation up 

as a single message this overhead is significantly reduced, but remains a significant factor in the 

performance of this method.  
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7. THE DISTRIBUTED APRIORI T-TREE ALGORITHM WITH TASK 

DISTRIBUTION (DATA-TD) 

 

In the Distributed Apriori T-tree Algorithm with Task Distribution (DATA-TD) each process interacts 

with the entire data set (as opposed to a horizontal segment or a vertical partition). The candidate sets 

generated at each level (as the algorithm proceeds) are equally distributed amongst the available 

processes so that each process determines the support counts only for its allocated candidates. The 

approach is therefore essentially that of Agrawal and Schafer’s “data distribution algorithm” 

described  in Section 3 above, although as discussed above, we prefer a terminology that describes 

this as “task distribution”. 

 

The algorithm comprises the following steps: 

 

1. Start all processes, Master plus a number of Workers. Each process has an identification 

number and is aware of the number of processes (Workers plus Master) that are running. 

2. Each process determines the set of 1-itemset candidates, and then (using knowledge of the 

number of available processes) identifies its allocation of candidate items. 

3. Processes then generate and count local “top-level'' T-trees for their allocation, serialise these 

trees and transmit them to each other process.  

4. Each process collates its local top-level T-tree with those received from other processes to 

produce its own copy of the global T-tree “so far''. 

5. Processes then generate the next level of candidate itemsets, determine their own allocation of 

candidates, and then each generates and counts a new level in their copy of the global T-tree 

“so far'' with respect to their allocation. 

6. Each process serialises and transmits the newly counted T-tree level for its allocation to the 

other processes, after which it will collate the serialisations received from the other processors 

into its copy of the global T-tree “so far''. 

7. Steps 5 and 6 are repeated for levels 2, 3,…until there are no more candidate sets. 

 

As with the DATA-DD approach, DATA-TD requires messaging at the end of each level, although in 

this case the quantity of information exchanged is le ss.  

 

We have considered two approaches to apportioning candidate sets between processes (once they 

have been generated): 
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1. Partition Distribution: Partition the list of candidate itemsets and allocate a block to each 

process (Version 1). 

2. Round Robin Distribution: Divide up the available candidate itemsets in a “round robin” 

manner (Version 2). 

 

Both methods have been implemented, as two versions of the DATA-TD algorithm. 

 

 

8. THE DISTRIBUTED APRIORI T-TREE ALGORITHM WITH HORIZONTAL 

SEGMENTATION (DATA-HS) 

 

The Distributed Apriori T-tree Algorithm with Horizontal Segmentation (DATA-HS) algorithm is a 

variation on the DATA-DD approach. The inherent problem with DATA-DD is the need for all 

processes to exchange information as each level is completed. DATA-HS avoids this by using the 

concept of the negative border (Toivonen, 1996). As with DATA-DD, the dataset is simply divided 

into segments each comprising an equal number of records. Each process then generates a complete 

local T-tree for its allocated segment. Finally, the local T-trees are collated into a single tree which 

contains the overall large itemsets. 

 

With no other modifications, this procedure would not usually lead to a correct identification of all the 

frequent itemsets. The problem is that, in a non-homogenous dataset, some itemsets which are 

globally frequent may not reach the required support threshold in all segments. Any such set will be 

pruned from the local T-tree of any segment in which it is not adequately supported, and so the global 

count for the set will be incomplete. To avoid (in most cases) this problem, two modifications are 

made to the procedure for building the local T-trees: 

 

1. A local threshold of support is chosen that is lower (proportionately) than the required global 

threshold. With respect to the experiments carried out here we have reduced the threshold 

arithmetically by 0.25% (e.g. from 1% to 0.75%). The effect is that fewer sets will be pruned 

in the local counting procedure, making it less likely that frequent sets will be overlooked.  

2. The inclusion in the local tree of its negative border. 

 

The concept of the negative border envisages all the itemset combinations represented by a dataset in 

the form of a Lattice, or, as in our implementations, a set-enumeration tree. In a complete tree for 

which support-counts are known, we can draw a boundary through the arcs demarcating the transition 
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from supported to unsupported nodes. Maximal Frequent Itemsets are those nodes just within the 

border, i.e. those nodes that are not subsets of any other frequent itemsets. Minimal infrequent 

itemsets are then those nodes just outside the boundary; they are those sets that are not themselves 

frequent, but all of whose subsets are frequent. The latter sets form the negative border. Toivonen 

used a sample of the database to estimate the frequent sets, augmented by their negative border, 

before completing the support-counting in a single database pass. The hope is that the inclusion of the 

negative border in the set of candidates to be counted will ensure that no frequent sets fail to be 

counted. The same principle applies here. Each process, when constructing its local T-tree (with a 

reduced support threshold) retains in the tree its negative border. All being well, when the local trees 

are finally collated, every set that could reach the required (higher) support threshold will have been 

fully counted. Note that this cannot be guaranteed even when using the negative border concept and a 

reduced temporary minimum support threshold, especially if the dataset is very non-homogenous. 

Any possible omissions can be detected, and will require further counting. In the experiments 

described here (Section 11) using DATA-HS no omissions occurred. 

 

Ignoring the possibility of omissions existing, the algorithm comprises the following steps: 

 

1. Start all processes, Master plus a number of Worker processes. 

2. Master determines horizontal segmentation according to the total number of available 

processes and transmits this information, via the JavaSpace, to the Worker processes. 

3. Each process generates a local T-tree for its allocated segment using a reduced minimum 

support threshold, and retaining the negative border in the tree. 

4. Each process then sends its local T-tree to all other processes, which then collate these trees 

into a single composite  T-tree which is then pruned in the usual manner using the original 

minimum support threshold. 

 

In comparison with DATA-DD, the algorithm avoids the need to send messages as each level 

is completed, but at the cost of larger trees that must be constructed.  

 

 

9. THE DISTRIBUTED APRIORI T-TREE ALGORITHM WITH NEGATIVE 

BORDER (DATA-NB) 

 

The DATA-NB (Distributed Apriori T-tree Algorithm with Negative Border) algorithm also is an 

application of Toivonen’s approach in distributed form. The algorithm follows Toivonen more 

closely, in that an initial estimate of the sets to be counted is made using a sample of the database. In 
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our experiments, we have assumed the data is sufficiently homogenous to allow a segment of the data 

to be used as a sample. In our implementation, the Master constructs an initial T-tree (using a 

minimum support threshold reduced by 0.25%), including its negative border, from a segment of data. 

This tree is then used by all processes to count the support for the candidates it contains, in all other 

segments. The algorithm operates as follows: 

 

1. Start all processes, Master plus a number of Workers. 

2. Master determines horizontal segmentation according to the total number of available 

processes (plus 1) and transmits this information, via the JavaSpace, to the Worker processes. 

(Note that the Master has two segments). 

3. Master uses its first segment of data to produce a T-tree, using a reduced support threshold 

and including its negative border. An empty (i.e. without support values) copy of this tree is 

then passed to all the workers (Negative border T-tree generation Phase). 

4. Each process (Master and Workers) then adds into the T-tree the support counts determined 

from its segment of the data to form a local T-tree (Count Phase). 

5. Each process then sends its local T-tree to all the other processes, which then collate these 

trees into a single composite T-tree which is then pruned according to user supplied minimum 

support threshold (Collation Phase). 

 

In comparison with DATA-HS, this algorithm enables each process to count the support deriving 

from its local segment in a single pass of the data. The drawback is that the worker processes cannot 

start until the master has constructed the initial tree framework. 

 

As with DATA-HS the algorithm does not guarantee the discovery of all large item sets, however in 

our experiments (Section 11) no omissions were detected. 

 

 

10. THE DISTRIBUTED APRIORI T-TREE ALGORITHM WITH VERTICAL 

PARTIONING (DATA-VP) 

 

The Distributed Apriori T-tree Algorithm with Vertical Partitioning (DATA-VP), unlike DATA-DD, 

DATA-HS and DATA-NB which use horizontal segmentation, makes use of vertical partitioning. The 

set of attributes is divided equally between the available processes, each of which counts the support 

for all those sets in the subtrees rooted at its partition. The algorithm comprises the following steps: 

 

1. Start all processes, Master plus a number of Workers. 
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2. Master determines vertical partitioning according to the total number of available processes 

and transmits this information, via the JavaSpace, to the Workers. 

3. Each process then generates a T-tree for its allocated partition (a subtree of the final T-tree). 

To do this, it uses a “cleaned” version of the input data with respect to its allocated partition 

(this cleaning process is described in more detail in section 10.1. below). 

4. On completion each process transmits its (serialised) partition of theT-tree to all other 

processes. These are then merged into an overall T-tree.  

 

Each process begins with a top-level ‘tree’ comprising only those 1-itemsets included in its partition. 

Recall that we have previously eliminated all unsupported 1-itemsets. From its partition, the process 

will generate candidate 2-itemsets that belong in its subtree. These will be all those pairs formed from 

at least one attribute of the partition concatenated with a lexicographically preceding attribute; i.e., no 

attributes from succeeding partitions are included in the subtree (see Figure 2(b)). The support values 

for the candidate 2-itemsets are then determined and the sets pruned to leave only frequent 2-itemsets. 

Candidate sets for the third level are then generated. Again, no attributes from succeeding partitions 

need be considered, but the possible candidates will, in general, have subsets which are contained in 

preceding partitions and which, therefore, are being counted by some other process. To avoid the 

overhead involved in X-checking, which in this case would require message-passing between the 

processes concerned, X-checking does not take place. Instead, the process will generate its candidates 

assuming, where necessary, that any subsets outside its partition are frequent. As we have discussed 

previously, this will result in some sets being counted unnecessarily, but will avoid the overheads of 

X-checking and the associated message-passing. 

 

10.1. Cleaning Vertically Partitioned Data 

 

The partitioning strategy used was first described briefly in Coenen et. al (2003b). Vertical partitions 

are defined by a startColNum and endColNum. We define an “allocationItemSet” as follows: 

 

{ }endColNumnmstartColNunItemSetallocation ≤<=    

 

Each process will have its own allocationItemSet. Recall from the above, that the process must count 

the support for those candidates that include at least one attribute in the allocationItemSet, together 

(possibly) with preceding attributes. The process need not consider any sets including an attribute 

whose column number is greater than endColNum. Hence, with respect to any process, the input data 

can be cleaned to:  
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1. Firstly remove those records which do not intersect with the allocationItemSet. 

2. Out of the remaining records to remove those attributes in each record whose column number 

identifier is greater than the endColNum. We cannot remove those attributes whose identifiers are 

less than the startColNum because these may still need to be included in the subtree counted by 

the process.  

 

Thus the data cleaning process can be summarised as follows: 

 

( )

record delete else      

}endColNumn record,n{n  record             

 trueItemSetallocation  record if      

≤∈=

≡∩
∈∀ usedataWarehorecords

 

 

The result of the data cleaning operation is thus that the overall size of the dataset (applicable to the 

process in question) is reduced. Because the data set is ordered according to frequency of 1-itemsets 

the size of the individual cleaned sets does not necessarily increase as the endColNum approaches N 

(the number of columns in the dataset); in the later partitions, the lower frequency leads to more 

records being eliminated through rule 1 above. 

 

10.2 Simple example  

 

Table 3(a) gives a trivial dataset. Assuming 3 processes and using the above “cleaning” process this 

will result in three dataset partitions as shown in Table 3(b). Figure 3 shows the resulting T-tree given 

the above vertical portioning and assuming all nodes represented by the dataset are supported. 

 
{a,c,f} 
{b} 
{a,c,e} 
{b,d} 
{a,e} 
{a,b,c} 
{d} 
{a,b} 
{c} 
{a.b,d} 

(a) Original 
dataset 

 
Process 1 
(a to b) 

Process 2 
(c to d) 

Process 3 
(e to f) 

{a} 
{b} 
{a,} 
{b} 
{a} 
{a,b} 
- 
{a,b} 
- 
{a.b} 

{a,c} 
- 
{a,c} 
{b,d} 
- 
{a,b,c} 
{d} 
- 
{c} 
{a.b,d} 

{a,c,f} 
- 
{a,c,e} 
- 
{a,e} 
- 
- 
- 
- 
-  

 
 
 
 
(b) Data set 
partitioned 
amongst 3 
processes 

Table 3: Simple example of data vertical partitioning 
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Figure 3: Distributed T-tree representing the dataset and vertical partitioning suggested in Table 3 

(and a minimum support threshold of 0%) 

 

11. EVALUATION 

 

In the foregoing Sections six different approaches to distributed/parallel ARM using the T-tree data 

structure have been described: 

 

1. DATA-DD --- Distributed Apriori-T Algorithm using Data Distribution. 

2. DATA-TD --- Distributed Apriori-T Algorithm using Task Distribution. 

a. Version 1 with partition distribution of candidate sets. 

b. Version 2 with round robin partition of candidate sets. 

3. DATA-HS --- Distributed Apriori-T Algorithm with Horizontal Segmentation. 

4. DATA-NB --- Distributed Apriori-T Algorithm with Negative Border. 

5. DATA-VP --- Distributed Apriori-T Algorithm with Vertical Partitioning. 

 

In this Section these approaches will be evaluated using the dataset T20.I10.D500K.N500 

(generated using the IBM Quest generator used in Agrawal and Srikant 1994 and subsequently by 

many other researchers). Most of our experiments have been carried out using five processes (Master 

and four Workers), but we also show results for 3 and 7 processes, to illustrate scaling effects. In each 

case the dataset has been preprocessed so that it is ordered and pruned of unsupported 1-itemsets. The 

evaluation will be presented under four headings: 

 

1. Number of messages: The total number of messages sent and received by each process. 

2. Amount of data sent and received: The total size in Bytes of the T-tree content of the 

messages received and sent by each process. 

3. Execution time: The average time in seconds to generate/collate a complete T-tree.  
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4. Number of updates: The average number of updates (support value additions/ 

incrementations) carried out by each process to arrive at a complete T-tree. This is a measure 

of how much work is being done by each process. 

 

11.1. Number of Messages 

As noted above the most significant overhead of any distributed/parallel ARM algorithm is the 

number of messages sent and received between processes. For DATA-DD and DATA-TD, processes 

are required to exchange information as each level of the T-tree is constructed; the number of levels 

will equal the size of the largest supported set. Including messages sent, read and taken, this will 

comprise for each process a total of: 

 

)1Pr(arg +× ocessesNumberOfeItemsetlongestL  

 

For DATA-HS and DATA-VP the number of messages sent is independent of the number of levels in 

the T-tree; communication takes place only at the end of the tree construction, thus a total of: 

 

1Pr +ocessesNumberOf  

 

messages will be sent, read and taken by each process. DATA-NB is similar, with the addition of the 

transmission of the initial T-tree generated by the Master: 

 

2Pr +ocessesNumberOf  

 

Table 4 shows the number of messages sent and received per process, assuming five processes, using 

each of the identified distributed Apriori-T algorithms for a range of support thresholds and using the 

T20.I10.D500K.N500 dataset. From this limited analysis it can be seen that DATA-VP, DATA-

NB and DATA-HS have a clear advantage in this respect. Note that in the case of DATA-NB the 

initial T-tree, generated by the Master, is sent into the JavaSpace from where it is read by each of the 

workers and then removed by the Master.  

 

11.2. Amount of Data Sent and Received 

 

All the distributed Apriori-T algorithms described involve the exchange of T-tree data. Table 5 shows 

the average amount of data (in Bytes) sent and received by each process for the different distributed 

Apriori-T algorithms under consideration assuming five processes. The same data is presented in 

Figure 4 in the form of two graphs, graphs (a) and (b). Note that: 
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Support (%)  
2.0 1.5 1.0 0.5 

DATA-DD 18 18 18 24 
DATA-TD Ver 1 18 18 18 24 
DATA-TD Ver 2 18 18 18 24 
DATA-HS 6 6 6 6 
DATA-NB 7 7 7 7 
DATA-VP 6 6 6 6 

Table 4: Number of messages sent, read and taken per process using each of the identified distributed 

Apriori-T approaches (with 5 processes) for the T20.I10.D500K.N500 dataset 

 

• The figures given in Table 5 are averages; in most cases the range of values making up the 

average is relatively small and thus the averages are a genuine reflection of the amount of 

data received and transmitted by each process. The exception to this is the DATA-VP 

algorithm where the difference between the minimum and maximum may be as much as 

0.1Mbytes (see Table 6); this is because the vertical partitioning approach used in DATA-VP 

does not guarantee an equal division of the work load. 

• With respect to DATA-DD, for each generated T-tree level, un-pruned levels of the T-tree are 

passed from one process to another (and then pruned). 

• In the case of DATA-TD (both versions) pruned sections of levels in the T-tree are passed 

from one process to another. Note also that the values obtained for the two versions of 

DATA-TD are almost identical. 

• DATA-HS and DATA-NB pass a T-tree with a negative border from one process to another. 

The size of these trees is substantially greater than that of the T-tree containing only frequent 

sets.  

• For DATA-NB the figures given inc lude the initial T-tree generated and sent in the JavaSpace 

by the Master process, and read by the Worker processes. 

• DATA-VP passes pruned branches of T-trees (not just levels). 

• Overall, from Table 5, and graphs 4(a) and (b), it can be seen that the amount of data passed 

between processes when using DATA-VP is significantly less than that associated with any of 

the other approaches. 

 

Figure 4, graphs (c) and (d) illustrate the amount of data communicated for a support threshold of 0.5, 

when 3, 5 or 7 processes are used. Here we can see that in the case of the data distribution algorithms, 

DD, HS and NB, adding more processes increases the amount of communication, because all 

processes send data to all others. In the case of TD and VP, however, each process sends only the set 

of candidates it is counting or has counted, which becomes proportionately smaller as the number of 

processes is increased, so with these methods the messaging overhead remains approximately 

constant. 
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Support (%)  
2.0 1.5 1.0 0.5 

DATA-DD 3471888 4621056 8855256 36118584 
DATA-TD Ver 1 694896 924480 1771200 7224816 
DATA-TD Ver 2 694464 924240 1771152 7224624 
DATA-HS 4663408 6343520 13005760 63243808 
DATA-NB (worker) 5239404 7128864 14592528 70869816 
DATA-VP 10925 21965 59597 228211 

Table 5: Average Total size (Bytes) of messages sent and read/taken per process using each of the 

identified distributed Apriori-T approaches (with 5 processes) for the T20.I10.D500K.N500 

dataset 

 

Support threshold (%)  
2.0 1.5 1.0 0.5 

Master 14144 31184 85040 267248 
Worker 1 10288 20464 59296 276064 
Worker 2 10064 19424 51760 212944 
Worker 3 10064 19376 50976 193232 
Worker 4 10064 19376 50912 191568 
Averages 10925 21965 59597 228211 

Table 6: Size (Bytes) of serialised T-tree messages sent and read/taken per process using the DATA-

VP approach (with 5 processes) for the T20.I10.D500K.N500 dataset 

 

11.3 Number of Updates 

 

The number of support value updates/incrementations per process is a good indication of the amount 

of work done by each process. Table 7 gives the number of updates for each of the algorithms under 

consideration for a range of support thresholds and using five processes. The same data is presented in 

Figure 4(e) in the form of a graph. Note that: 

 

• DATA-DD, DATA-TD (both versions) and DATA-VP all have the same average number of 

updates (as would be expected). 

• Although the average number of updates for both versions of DATA-TD is the same the range 

of values making up the average for Version 1 is much greater than that for Version 2, thus 

demonstrating that the “round robin” distribution of candidate itemsets (Version 2) gives a 

much better division of the required work than the partition approach (Version 1). This is 

illustrated in Tables 8 and 9 which show the number of updates required by the DATA-TD 

algorithm with partition distribution of candidate itemsets and “round robin” distribution of 

candidate item sets respectively. From Table 8 (DATA-TD Version 1) it can also be seen that 

in this case the majority of the work is done by the Master process which deals with the most 

common candidate itemsets. 
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Figure 4: Performance plots for the dataset T20.I10.D500K.N500 

 

• The range of values associated with DATA-VP entries in Table 7 is also fairly large. This is 

illustrated in Table 10, which gives the number of updates required by the DATA-VP 

algorithm for this data set. Worker 4 does the least work because the “right most side of the 

T-tree” (Figure 2) deals with those itemsets that are the least likely to be frequent. 
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• DATA-HS and DATA-NB have a higher number of updates because of the negative border 

included in the T-trees, and the reduced support threshold, leading to more sets being counted. 

• The values given for DATA-NB are split into the number of updates carried out by the master 

process and those by the worker processes. The distinction is that the Master, in this case, 

process generates the initial T-tree which is then updated by all the processes (master and 

Workers)  

• Table 7 includes, for comparison, values for the serial form of the Apriori-T algorithm. 

 

In general, the total number of updates is a constant for any support threshold, although this value is 

grater for methods that use the negative border. This number is divided between the processes, so that 

each does less work as the  number of processes increases. This scaling is illustrated in Figure 4(f). 

 

Support (%)  
2.0 1.5 1.0 0.5 

DATA-DD, DATA-TD, DATA-VP 19779864 22241899 29569327 57080377 
DATA-HS 20139564 23325951 33504841 74373312 
DATA-NB (Workers) 16847881 19531380 28094029 62828377 
DATA-NB (Master) 33383761 38625613 55307786 121706693 
Apriori-T (with X-checking) 98899320 111209495 147846636 285401889 
Apriori-T (No X-checking 98904425 111248921 147995814 285837823 

Table 7: Average number of updates to generate final T-tree per process using each of the identified 

distributed Apriori-T approaches (with 5 processes) for the T20.I10.D500K.N500 dataset 

Support threshold (%)  
2.0 1.5 1.0 0.5 

Master 44428840 51363688 67884086 116334142 
Worker 1 21274452 23760010 30900857 56736170 
Worker 2 14561747 16119589 21051480 42085942 
Worker 3 10716274 11541229 15319608 36006920 
Worker 4 7918007 8424979 12690605 34238715 
Average 19779864 22241899 29569327 57080377 

Table 8: Number of updates per process using the DATA-TD (with Partition Distribution of 

Candidate Itemsets) approach (with 5 processes) for the T20.I10.D500K.N500 dataset  

Support threshold (%)  
2.0 1.5 1.0 0.5 

Master 19973153 22478121 29824163 57409837 
Worker 1 20218230 22714102 30102988 57893279 
Worker 2 19651582 22068407 29390781 56784577 
Worker 3 19719308 22163155 29443052 56960507 
Worker 4 19337047 21785710 29085652 56353689 
Average 19779864 22241899 29569327 57080377 

Table 9: Number of updates per process using the DATA-TD (with “Round Robin” Distribution of 

Candidate Itemsets) approach (with 5 processes) for the T20.I10.D500K.N500 dataset  
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Support threshold (%)  
2.0 1.5 1.0 0.5 

Master 21170763 29490310 60748663 113448282 
Worker 1 26737796 29711648 36737781 117499445 
Worker 2 27279347 29225025 31516143 40066595 
Worker 3 24898094 25906678 25620695 24432671 
Worker 4 21054340 20014888 17394261 14456772 

Table 10: Number of updates per process using the DATA-VP approach (with 5 processes) for the 

T20.I10.D500K.N500 dataset (maximums highlighted in bold type) 

 

11.4. Execution Time  

 

The overall execution time for each algorithm is arguably the most significant performance parameter. 

A set of times (seconds) is presented in Table 11 (and in graph form in Figures 4(g) and (h)). Note 

that: 

 

• The table includes, for comparison, execution times using the Apriori-T serial algorithm 

without X-checking as this provides a slightly better result for this data set (see Table 2). 

• The advantage of Version 2 of the DATA-TD (using “round robin” distribution of candidate 

sets) in that it offers a more equal distribution of work (see Tables 8 and 9) does not translate 

into any advantage in execution time. In fact the partition distribution approach is more 

effective because the candidates allocated to each process are located together in one region 

of the T-tree, rather than being evenly spread across the T-tree, so less “tree walking” is 

required using version 1.  

 

Support (%)  
2.0 1.5 1.0 0.5 

DATA-NB 20 28 49 301 
DATA-HS 14 18 36 242 
DATA-DD 13 16 25 99 
Apriori-T (No X-check) 15 19 31 95 
DATA-TD Ver 1 9 9 16 66 
DATA-TD Ver 2 11 13 20 77 
DATA-VP 3 4 10 31 

Table 11: Average execution time(seconds) per process using each of the identified distributed 

Apriori-T approaches (with 5 processes) for the T20.I10.D500K.N500 dataset 

 

Overall it is clear that the Task Distribution algorithms, DATA-TD, and (especially) the Vertical 

Partitioning Algorithm DATA-VP perform much better than the data distribution algorithms, DD, HS 

and NB, in this environment. The reasons for this can be seen in the measurements of messaging 

overheads for the different methods. The need for each process to transmit and receive a complete T-
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tree imposes a heavy cost in the DD method, and especially for HS and NB for which a larger tree is 

created. Conversely, TD and VP transmit (essentially) only the candidates they are counting. 

 

The consequences of this can be seen still more clearly in the graphs of Figure 4(i) and (j) which show 

the scaling of performance as the number of processes varies. The results illustrate that for the DD, 

HS and NB methods, the increasing overhead of messaging more than outweighs the gain from using 

additional processes, so the parallelisation is counterproductive. The other methods all show some 

gain from parallelisation, with DATA-VP giving the best results and the best scaling.  

 

 

12. SUMMARY AND CONCLUSIONS 

 

In this paper we have described a number of methods for the distribution/parallelisation of the 

Apriori-T ARM algorithm, using the T-tree set-enumeration structure to contain sets being counted. 

The advantages and disadvantages of each are summarised in Table 12. 

 

Our experimental evaluation of the different approaches clearly demonstrate that, for the datasets 

chosen and in the context of the implementation environment used, the approaches that use candidate 

distribution (TD and VP) perform much better than those that distribute the original dataset between 

processes. This is a because of the high message-passing overheads (in the JavaSpaces environment) 

associated with the latter. In our experiments, the best results were obtained using the DATA-VP 

algorithm, which exploits the structure of the T-tree most effectively. The advantages offered by the 

DATA-VP approach result from the limited number of messages sent and the relatively small content 

of the messages. This advantage results, in turn, entirely from the nature of the T-tree data structure, 

which readily supports vertical partitioning of the form described. 

 

The results demonstrated in respect of the DATA-VP algor ithm are very encouraging, suggesting that 

this is a genuinely practical method of parallelising and ARM. We propose further work to examine to 

what extent the results we have obtained will translate to other parallel processing environments.  

 

Some other possible avenues for further work include: 

 

1. Heuristics to achieve a more effective vertical partitioning with respect to the DATA-VP 

algorithm to provide a more equal distribution of the computational effort required. 

2. The effect of including a pre-processing phase using the P-tree data structure (Goulbourne et 

al. 2000 and Coenen et al. 2003). 
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3. Further experiments to investigate performance varying the number of processors and using 

different datasets. 

 

 Advantages Disadvantages 
DATA-DD 1. Allows data to be distributed.  

 
1. Requires several passes through the data 

( 1arg +eItemsetlongestL ) 
2. The number of messages sent is comparatively 

large. 
3. The size of the messages is also comparatively 

large --- each representing an entire unpruned T-
tree level. 

4. Performance deteriorates as the number of 
processes increases (due to messaging overhead) 

DATA-TD 
Ver. 1 & 2  

1. The content of the message, 
compared to DATA-DD, is 
significantly smaller.  

2. Efficiency in enhanced as the 
number of processes 
increases. 

1. Also requires several passes through the data 

( 1arg +eItemsetlongestL ). 
2. The number of messages sent is the same as that 

associated with DATA-DD  

DATA-HS 1. Allows data to be distributed. 
2. Reduced number of 

messages compared to 
DATA-DD and DATA-TD 

1. Multiple passes of the data set, as with DATA-
DD and DATA-TD. 

2. The number of nodes in the negative border 
represents a substantial overhead. 

3. Although there are fewer messages the size of 
the messages is much larger. 

4. Performance deteriorates as the number of 
processes increases (due to messaging overhead) 

DATA-NB 1. Allows data to be distributed.  
2. A single pass through the 

dataset (excluding the 
generation of the initial T-
tree). 

3. Reduced number of 
messages, compared to 
DATA-DD and DATA-TD.  

1. The required preprocessing to generate the 
initial T-tree.  

2. The number of nodes in the negative border 
represents a substantial overhead. 

3. The relatively large message content due to 
negative border nodes. 

4. Performance deteriorates as the number of 
processes increases (due to messaging overhead) 

DATA-VP 1. Minimal amount of 
messaging as with DATA-
HS  

2. Minimal message size 
compared to other 
approaches. 

3. Efficiency in enhanced as the 
number of processes 
increases. 

1. The algorithm still requires several passes 
through the dataset. 

2. All processes require access to full dataset. 
 

Table 12: Summary of comparison of Distributed/parallel Apriori-T Algorithms 
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