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Abstract

We propose in this paper a combined model of Long
Short Term Memory and Convolutional Neural Networks
(LSTM CNN) that exploits word embeddings and positional
embeddings for cross-sentence n-ary relation extraction.
The proposed model brings together the properties of both
LSTMs and CNNs, to simultaneously exploit long-range se-
quential information and capture most informative features,
essential for cross-sentence n-ary relation extraction. The
LSTM CNN model is evaluated on standard dataset on cross-
sentence n-ary relation extraction, where it significantly out-
performs baselines such as CNNs, LSTMs and also a combined
CNN LSTM model. The paper also shows that the LSTM CNN
model outperforms the current state-of-the-art methods on
cross-sentence n-ary relation extraction.

Introduction
Research in the field of relation extraction has largely fo-
cused on identifying binary relations that exist between two
entities in a single sentence, known as intra-sentence rela-
tion extraction (Bach and Badaskar 2007). However, rela-
tions can exist between more than two entities that appear
across consecutive sentences. For example, in the text span
comprising the two consecutive sentences in LISTING 1,
there exists a ternary relation response across three entities:
EGFR, L858E, gefitnib appearing across sentences. This re-
lation extraction task, focusing on identifying relations be-
tween more than two entities – either appearing in a single
sentence or across sentences, is known as cross-sentence n-
ary relation extraction.

LISTING 1: TEXT SPAN OF TWO CONSECUTIVE SENTENCES

“The deletion mutation on exon-19 of EGFR gene was present
in 16 patients, while the L858E point mutation on exon-21 was
noted in 10. All patients were treated with gefitnib and showed
a partial response.”

This paper focuses on the cross-sentence n-ary relation
extraction task. Formally, let {e1, .., en} be the set of enti-
ties in a text span S containing t number of consecutive sen-
tences. For example, in the text span comprising 2 sentences
(t = 2) in LISTING 1 above, given cancer patients with mu-
tation v (EGFR) in gene g (L858E), the patients showed a
partial response to drug d (gefitnib). Thus, a ternary relation
response(EGFR, L858E, gefitnib) exists among the three
entities spanning across the two sentences in LISTING 1.

The entities e1, .., en in the text span can either appear in a
single sentence (t = 1) or multiple sentences (t > 1). Thus,
given an instance defined as a combined sequence of m to-
kens x = x1, x2, ..., xm in t consecutive sentences and a set
of entities {e1, .., en}, the cross-sentence n-ary relation ex-
traction task is to predict an n-ary relation (if exists) among
the entities in x.

Cross-sentence n-ary relation extraction is particularly
challenging compared to intra-sentence relation extraction
for several reasons. Lexico-syntactic pattern-based relation
extraction methods (Hearst 1992; Brin 1998; Agichtein and
Gravano 2000), have shown to be highly effective for intra-
sentence relation extraction. Unfortunately, such pattern-
based relation extraction methods cannot be readily applied
to cross-sentence n-ary relation extraction because it is dif-
ficult to match lexico-syntactic patterns across longer text
spans such as covering multiple sentences. Features ex-
tracted from the dependency parse trees for individual sen-
tences (Culotta and Sorensen 2004; Bunescu and Mooney
2005; Fundel, Küffner, and Zimmer 2006; Xu et al. 2015;
Miwa and Bansal 2016) have found to be extremely use-
ful for intra-sentence relation extraction. However, it is non-
obvious as how to merge dependency parse trees from dif-
ferent sentences to extract path-based features for cross-
sentence relation extraction. Moreover, difficulties in coref-
erence resolution and discourse analysis, further complicate
the problem of detecting relations among entities across sen-
tences (Elango 2005).

The principal challenges for cross-sentence n-ary relation
extraction arise from (a) difficulties in handling long-range
sequences resulting from combining multiple sentences, (b)
modeling the contexts of words related to different entities
present in different sentences, and (c) the problem of repre-
senting a variable-length text span containing an n-ary re-
lation using a fixed-length representation. To address these
issues, we propose a combined model consisting a Long
Short-Term Memory unit and a Convolutional Neural Net-
work (LSTM CNN) that exploits both word embedding and
positional embedding features for cross-sentence n-ary re-
lation extraction. The LSTM is used as the first layer to en-
code the combined set of sentences representing an n-ary
relation, thereby capturing the long-range sequential infor-
mation. The hidden state representations obtained from the
LSTM is then used with the CNN to further identify the salient
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features for relation classification. Our main contributions in
this paper can be summarised as follows:

a. Propose an LSTM CNN model that exploits word embed-
ding and position embedding features for cross-sentence
n-ary relation extraction. We compare the proposed
model against multiple baselines such as CNN, LSTM
and a combined CNN LSTM model. Experimental results
show that the proposed model significantly outperforms
all baselines.

b. Evaluate the proposed model against state-of-the-art
(SOTA) for cross-sentence n-ary relation extraction on
two different benchmark datasets. Results show that the
proposed model significantly outperforms the current
SOTA methods for cross-sentence n-ary relation extrac-
tion.

Related Work
There is a large body of research on intra-sentence rela-
tion extraction (Bach and Badaskar 2007). However, our
main focus in this paper is on cross-sentence relation ex-
traction. Therefore, we will limit our discussion below to
the cross-sentence relation extraction. Research on cross-
sentence relation extraction has extensively used features
drawn from dependency trees (Swampillai and Stevenson
2010; Quirk and Poon 2016; Peng et al. 2017), tree kernels
(Moschitti, Patwardhan, and Welty 2013; Nagesh 2016),
and graph LSTMs (Peng et al. 2017). Further, studies on
inter-sentence relation extraction have limited their atten-
tion on extracting binary relations present across sentences
(Swampillai and Stevenson 2010; Quirk and Poon 2016;
Moschitti, Patwardhan, and Welty 2013; Nagesh 2016). Re-
cently, Peng et al. (2017) proposed graph-LSTMs not only to
consider binary relations, but also for n-ary relations across
sentences. Although graph LSTMs are useful to model n-ary
relations across sentences, the process of creating directed
acyclic graphs covering words in multiple sentences is com-
plex and error-prone. It is non-obvious as where to connect
two parse trees and the parse errors compound during the
graph creation step. Moreover, co-reference resolution and
discourse features used by Peng et al. (2017) do not always
improve performance of cross-sentence relation extraction.

We present a neural network-based approach that does
not rely on heavy syntactic features such as dependency
trees, co-reference resolution or discourse features for cross-
sentence n-ary relation extraction. Although, previous stud-
ies have explored LSTMs and CNNs separately for cross-
sentence n-ary relation extraction, we propose in this paper,
a combined model of lstm cnn network that simply takes
as input the combined sequence of sentences containing
n-ary relations. While, LSTMs generate features that pre-
serve long-range relations among words in the combined se-
quence of sentences, CNNs can generate different weighted
combinations of those features and select the most infor-
mative ones via pooling. Although recently several stud-
ies have explored combining CNNs and RNNs for vari-
ous NLP tasks such as text classification (Lai et al. 2015;
Lee and Dernoncourt 2016; Hsu et al. 2017) and senti-
ment analysis (Wang, Jiang, and Luo 2016), to the best

Figure 1: Architecture of the LSTM CNN+WF+PF model for
cross-sentence n-ary relation extraction. The input to the
network is the sequence of tokens from text span (with two
sentences and three entities) shown in LISTING 1. The posi-
tion features are derived for highlighted entities (e1 and e3).

of our knowledge, we are the first to propose a combined
LSTM CNN model for cross-sentence n-ary relation extrac-
tion.

Cross-Sentence n-ary Relation Extraction
The architecture of the proposed LSTM CNN+WF+PF model
- combined LSTM CNN using word features (WF) and posi-
tional features (PF) for cross-sentence n-ary relation extrac-
tion is shown in Figure 1. Next, we describe the different
components of the proposed model.

Input Representation
The input to the lstm cnn model is the combined sequence of
tokens in a text span S comprising t consecutive sentences
where an n-ary relation exists between two entities. The se-
quence of tokens is transformed into a combination of word
embeddings and position embeddings as follows:

Word Embeddings The transformation of words into
lower dimensional vectors are observed to be useful
in capturing semantic and syntactic information about
words (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014). Thus, each of the words in the combined se-
quence x = x1, x2, ..., xn is mapped to a k−dimensional
embedding vector using a look-up matrix W ∈ R|V |×k
where |V | is the number of unique words in the vocabulary.



Position Features Following Zeng et al. (2014), positional
features (PFs) are used to encode the position of entities
for n-ary cross-sentence relation extraction. Given entity
mentions e1, .., en in the sequence x = x1, x2, ..., xn, Al-
though n PFs can be defined based on n entities, the pro-
posed model, specifically considers only e1 and en to create
position embeddings for the input sequence because prelim-
inary experiments show that having n PFs decreases the per-
formance of the model. Thus, the model defines two sets of
PFs PF1 and PFn for the entities e1 and en, respectively, as
a combination of the relative distances from the current word
to the respective entity. The position embedding matrices are
randomly initialised and the relative distance of words w.r.t
entities are transformed into real valued vectors by looking
up the position embedding matrices.

Thus, the vector representation for models using position
features, transforms an instance into a matrix S ∈ Rs×d by
combining the word embeddings and position embeddings,
where s is the sentence length and d = da + db × 2 (da and
db are the dimensions of respectively the word and position
embeddings).

LSTM Layer
Although RNNs are useful in learning from sequential data,
these networks are observed to suffer from the problem of
exploding or vanishing gradient, which makes it difficult
for RNNs to learn long distance correlations in a sequence
(Hochreiter and Schmidhuber 1997; Hochreiter et al. 2001).
To specifically address this issue of learning long-range de-
pendencies, LSTM (Hochreiter et al. 2001) was proposed
which maintains a separate memory cell that updates and
exposes the content only when deemed necessary. Given the
long-range sequential information resulting from combined
set of sentences expressing an n-ary relation, LSTM is an
excellent choice to learn long-range dependencies. Thus, as
shown in Figure 1, the transformed vector representation
combining word embeddings and position features is pro-
vided as input to the LSTM layer. The LSTM units at each
time step t is defined as a collection of vectors in Rl and
comprises the following components: an input gate it, a for-
get gate ft, an output gate ot, a memory cell ct and a hidden
state ht. l is number of LSTM units and the entries of the
gating vectors it, ft and ot are in [0, 1]. The three adaptive
gates it, ft and ot depend on the previous state ht−1 and the
current input xt (Equations 1-3). The candidate update vec-
tor gt (Equation 4) is also computed for the memory cell.

it = σ(Wixt +Uiht−1 + bi) (1)
ft = σ(Wfxt +Ufht−1 + bf ) (2)
ot = σ(Woxt +Uoht−1 + bo) (3)

gt = tanh(Wgxt +Ught−1 + bg) (4)
The current memory cell ct is a combination of the previ-

ous cell content ct−1 and the candidate content gt, weighted
respectively by the input gate it and forget gate ft (Equation
5).

ct = it � gt + ft � ct−1 (5)

The hidden state ht, which is the output of the LSTM units
is computed using the following equation:

ht = ot � tanh(ct). (6)

Here σ denotes a sigmoid function and � denotes
element-wise multiplication.

CNN Layer
Let hi ∈ Rl be the l-dimensional hidden state vector corre-
sponding to the i-th token in the combined sequence x. The
combined hidden state vectors in the sequence of length m
is represented as:

h1:m = h1 ⊕ h2 ⊕ ...⊕ hm, (7)
where ⊕ denotes vector concatenation. In general, let

hi:i+j refer to the concatenation of hidden state vectors
hi, hi+1, ..., hi+j . The convolution operation involves a fil-
ter w ∈ Rpl, which is is applied to a window of p hidden
state vectors to generate a new feature. For instance, a fea-
ture ci is generated from a window of hidden state vectors
hi:i+p−1.

ci = f(w · hi:i+p−1 + b). (8)
Here b ∈ R is the bias term and f is a non-linear function

such as the rectified linear unit (ReLU). This filter is ap-
plied to each possible window of hidden state vectors in the
combined sequence h1:p, h2:p+1, . . . , hm−p+1:n to produce
a feature map c ∈ Rm−p+1 given by,

c = [c1, c2, ..., cm−p+1]. (9)

Max-pooling is applied over the feature map to take the max-
imum value ĉ = max{c} as the feature corresponding to
this particular filter. The use multiple filters and select the
most important feature (one with the highest value) for each
feature map. Finally, the use of multiple filters with vary-
ing window sizes result in obtaining a fixed length vector
g ∈ Rfw, where f is the number of filters and w is the num-
ber of different window sizes.

Predicting n-ary Relations
The task of predicting n-ary relations is modeled both as
a binary and multi-class classification problem. The output
feature vector g obtained from the convolution and max-
pooling operation is passed to softmax layer, to obtain the
probability distribution over relation labels. Dropout (Sri-
vastava et al. 2014) is used on the output layer to prevent
over-fitting. Thus, given a set of instances, with each in-
stance being a text span Si comprising t consecutive sen-
tences (combined sequence of tokens x = x1, x2, ...xm),
entity mentions e1, ..., en and having an n-ary relation r, the
cross-entropy loss for this prediction is defined as follows:

J(θ) =

s∑
i=1

log p(ri|Si, θ) (10)

where s indicates the total number of text spans and θ indi-
cates the parameters of the model.



Implementation details
The proposed model is implemented using Tensorflow
(Abadi et al. 2016) and will be made publicly available upon
paper acceptance. The hyper-parameters of the models were
set based on preliminary experiments on an independent de-
velopment dataset. Training was performed following mini-
batch gradient descent (SGD) with batch size of 10. The
models were trained for at most 30 epochs, which was suffi-
cient to converge. The dimensions of the hidden vectors for
the LSTM was set to 300. The window sizes for CNN was
set to 3,4 and 5, and experiments were conducted with dif-
ferent number of filters set to 10 and 128. Word embeddings
were initialised using publicly available 300-dimensional
Glove word vectors trained on a 6 billion token corpus from
Wikipedia and web text (Pennington, Socher, and Manning
2014). The dimensions for position embeddings was set to
100 and were initialised randomly between [-0.25, 0.25].

Experiments
Datasets
We conduct experiments using the following datasets.

Quirk and Poon (QP) Dataset We use the dataset1 de-
veloped by Quirk and Poon (2016) and Peng et al. (2017)
for the task of cross-sentence n-ary relation extraction. Dis-
tant supervision was followed to extract relations involving
drug, gene and mutation triples from the biomedical litera-
ture available in PubMed Central2. The idea of minimal span
(Quirk and Poon 2016) was used to avoid co-occurrence of
the same entity triples and also to obtain spans with ≤ 3
consecutive sentences to avoid candidates where triples are
far apart in the span. A total of 59 drug-gene-mutation triples
was used to obtain 3,462 ternary relation instances and 3,192
binary relation instances (involving drug-mutation entities)
as positive examples. The dataset has instances with ternary
and binary relations, either appearing in a single sentence
or across sentences. Each instances is labeled using four la-
bels: ‘resistance’, ‘resistance or non-response’, ‘response’,
and ‘sensitivity’. The label ‘none’ is used for negative in-
stances. Negative samples were generated by randomly sam-
pling co-occurring entity triples without known interactions,
following the same restrictions used for obtaining positive
samples. Negative examples were sampled as the same num-
ber of positive samples to develop a balanced dataset.

Chemical Induced Disease (CID) Dataset We also eval-
uate the proposed model using the CID dataset3, which pro-
vides binary relation instances between chemicals and re-
lated diseases. We followed the methodology of Gu, Qian,
and Zhou (2016) to obtain relation instances from the cor-
pus. Accordingly, a total of 1206, 1999 and 1330 positive
instances were obtained for binary relations in single sen-
tences and total of 702, 788 and 786 positive instances were
binary relations across sentences, respectively. Negative in-
stances were created following the same restrictions, how-
ever without any known interactions between entities.

1http://hanover.azurewebsites.net
2http://www.ncbi.nlm.nih.gov/pmc
3https://github.com/JHnlp/BC5CIDTask

SemEval-2010 Task 8 (SE) Dataset . The SemEval-2010
Task 8 dataset (Hendrickx et al. 2009) is a standard dataset
used intra-sentence relation extraction. The SE DATASET de-
fines 9 relation types between nominals. The relation ‘other’
is used to denote negative type. The dataset consists of 8,000
training and 2,717 test sentences.

Evaluation Metrics
We conduct five-fold cross-validation and report average
test accuracy on held-out folds experiments using Q&P
DATASET, as prior work (Peng et al. 2017) follow similar
evaluation measures. To avoid training and test contamina-
tion, held-out evaluation is conducted in each fold, based on
categorizing instances related to specific entity pairs (binary
relations) or entity triples (ternary relations). For example,
for binary relations, the instances relating to the first 70% of
the entity pairs drawn from a unique list of entity pairs are
used as training set. Instances relating to the next 10% and
last 20% are used as development set and test set, respec-
tively. For CID DATASET, the Precision, Recall and F-score
on test set is reported, since the corpus is already divided in
train, development and test set and also for comparison as
previous studies (Gu, Qian, and Zhou 2016; Gu et al. 2017;
Zhou et al. 2016) have used similar measures for reporting
the performance. For SE DATASET, we used 10% of ran-
domly selected instances from the training set as the devel-
opment set. To evaluate the test set, the official task setting
(Hendrickx et al. 2009) was followed and we report the offi-
cial macro-averaged F1-Score on the 9 relation types.

Baseline models
The proposed LSTM CNN+WF+PF model is evaluated
against the following baseline models: (a) CNN+WF: a
CNN model using word features alone; (b) CNN+WF+PF:
a CNN model using word features and positional features;
(c) LSTM+WF: an LSTM model using word features alone;
(d) LSTM+WF+PF: an LSTM model using word features and
positional features; (e) CNN LSTM+WF: a model that begins
with a CNN layer followed by an LSTM layer and uses word
features only; (f) CNN LSTM+WF+PF: model that begins
with a CNN layer followed by LSTM layer and employs word
features and position features; (g) LSTM CNN+WF: model
that begins with an LSTM layer followed by a CNN layer and
employs word features only.

Results and Discussion
Performance of the proposed model. The performance
of the proposed model LSTM CNN+WF+PF for cross-
sentence n-ary relation extraction on Q&P DATASET is
shown in Tables 1 and 2. As seen in Tables 1 and 2,
the LSTM CNN+WF+PF model achieves statistically signif-
icant accuracy (p ≤ 0.05;Friedman Test) against all base-
line models such as CNN+WF, CNN+WF+PF, LSTM+WF,
LSTM+WF+PF, CNN LSTM+WF, CNN LSTM+WF+PF and
LSTM CNN+WF, for both cross-sentence ternary and binary
relation extraction. The results showing the performance of
the combined LSTM CNN model higher than CNN and LSTM
models in isolation, indicates the usefulness of such com-
bined models for relation extraction. Combining LSTM and

http://hanover.azurewebsites.net
http://www.ncbi.nlm.nih.gov/pmc
https://github.com/JHnlp/BC5CIDTask


single cross
sentence sentences

nf=10 nf=128 nf=10 nf=128
CNN+WF 72.5 75.5 75.2 76.3
CNN+WF+PF 73.3 73.9 78.5 78.7
LSTM+WF† - 75.0 - 78.2
LSTM+WF+PF† - 74.5 - 78.9
CNN LSTM+WF 77.6 75.4 76.9 75.3
CNN LSTM+WF+PF 72.0 53.0 76.8 62.6
LSTM CNN+WF 78.3 78.4 77.5 78.8
LSTM CNN+WF+PF 73.1 79.6* 80.5 82.9*

Table 1: Average test accuracy in five-fold cross-
validation for drug-gene-mutation ternary interactions in
QP DATASET. nf - number of filters. † LSTM+WF and
LSTM+WF+PF models does not use filters

CNN helps in bringing together the strength of LSTMs to
learn from long sequences (input sequence) and the ability of
CNNs to identify salient features from the hidden-state out-
put sequence from LSTM for cross-sentence n-ary relation
extraction.

Given the above results, it is highly intriguing that a com-
bined model of LSTM and CNN using together word features
(WF) and positional features (PF), outperforms the evaluated
strong baselines. Interestingly, the use of WF alone already
helps the combined model (LSTM CNN) in achieving higher
performance against other baselines, particularly for extract-
ing binary relations in single sentences and across sentences,
and also ternary relations in single sentences (Tables 1 and 2
with nf = 128). However, it is the addition of PF that helps
in drastically improving the performance for relation extrac-
tion. The PF clearly helps the combined LSTM CNN model
by providing useful encoding of the position of words w.r.t
entities in the text span, which helps in achieving higher ac-
curacy.

Further, the higher performance achieved in extracting
both ternary and binary relations, particularly from cross-
sentence text spans which are longer in sequence, indicates
that the LSTM CNN+WF+PF model is highly suitable for ex-
tracting relations from longer sequences. Furthermore, the
LSTM CNN+WF+PF model’s superior performance extract-
ing ternary and binary relations from single sentences also
indicates the suitability of the LSTM CNN+WF+PF model for
relation extraction in single sentences. The evaluation results
of the LSTM CNN+WF+PF on Semeval-2010 Task 8 dataset
(standard dataset for intra-sentence relation extraction) pre-
sented later in this section, further confirms that the com-
bined model (LSTM CNN) performs better than employing
CNN and LSTM in isolation for relation extraction in single
sentences.

Where exactly does LSTM CNN model score? To assess
the contribution of LSTM CNN+WF+PF against the baseline
models, we divided each dataset into three groups based
on the distance between entity e1 and en in the text span.
Specifically, we calculated the average number of tokens (µ)
between e1 and en and the standard deviation (σ) over dif-
ferent lengths of tokens between e1 and en in the dataset.

single cross
sentence sentences

nf=10 nf=128 nf=10 nf=128
CNN+WF 68.9 72.4 73.2 76.6
CNN+WF+PF 74.0 74.2 81.3 81.3
LSTM+WF† - 75.4 - 80.3
LSTM+WF+PF† - 74.4 - 80.8
CNN LSTM+WF 71.2 72.3 76.5 76.5
CNN LSTM+WF+PF 74.7 56.2 81.2 74.4
LSTM CNN+WF 74.9 76.7 79.7 82.0
LSTM CNN+WF+PF 85.3 85.8* 85.1 88.6*

Table 2: Average test accuracy in five-fold cross-validation
for drug-gene binary interactions in QP DATASET. nf - num-
ber of filters. † LSTM+WF and LSTM+WF+PF models does
not use filters

Thus, if k is the total number of tokens between e1 and en,
the dataset was divided into the following three groups: (a)
short-distance spans (k≤µ−σ); (b) medium-distance spans
(µ−σ < k < µ+σ); (c) long-distance spans (k ≥ µ+σ).
Analysing the performance of models on different groups of
spans divided in the above manner will provide insights into
the model’s performance on different sequence lengths and
the contribution of different features for relation extraction.

The performance of various models on three groups of
sentences, divided based on the number of tokens between
entities e1 and en in the text span is provided in Table 3.
As seen in Table 3, the proposed LSTM CNN+WF+PF model
score higher particularly for medium-distance spans (µ−σ<
k<µ+σ) and long-distance spans (k≥µ+σ). For example,
for short-distance and long-distance spans involving ternary
relations across sentences, the LSTM CNN+WF+PF model
predicts ternary relations correctly for a higher percent of
81.3 and 82.9 spans, respectively. Similarly, the percentage
of correct predictions for binary relation extraction in single
sentences and across sentences is significantly higher than
the performance of other models. These results clearly in-
dicate that the combined LSTM CNN model is more useful
compared to using CNN and LSTM models in isolation for
cross-sentence n-ary relation extraction, particularly where
the distance between the first (e1) and the last entity (e2) is
large. In other words the combined LSTM CNN models are
more useful in extracting relations from larger spans of con-
secutive sentences.

Further, the highest margin between LSTM CNN+WF+PF
and the baselines is recorded for binary interactions in sin-
gle sentences and across sentences with an accuracy of 85.8
and 88.6, respectively (Table 2). This is followed by ternary
interactions in single sentences and across sentences with an
accuracy of 79.6 and 82.9, respectively (Table 1). It is inter-
esting to note that the average length of tokens (µ) between
entities in text spans in the datasets relating to binary and
ternary interactions in single sentences and across sentences
is of the order 19, 29, 34 and 44, respectively. Based on these
results, it can be broadly concluded that the contribution of
PF decreases with the increase in the distance between enti-
ties in the text span.



Model k≤µ−σ µ−σ<k<µ+σ k≥µ+σ
(%) (%) (%)

drug-gene-mutation - ternary relations - cross sentence (µ=44)
CNN+WF 82.9 74.9 79.8
CNN+WF+PF 84.7 76.5 80.3
LSTM+WF 46.2 77.0 79.5
LSTM+WF+PF 54.2 77.6 80.4
CNN LSTM+WF 51.4 74.9 79.0
CNN LSTM+WF+PF 86.2 74.8 78.8
LSTM CNN+WF 52.0 76.0 79.1
LSTM CNN+WF+PF 81.3 81.3 82.9
drug-gene-mutation - ternary relations - single sentence (µ=34)
CNN+WF 20.0 73.1 86.6
CNN+WF+PF 10.0 72.0 83.4
LSTM+WF 20.0 73.5 85.8
LSTM+WF+PF 20.0 73.0 85.6
CNN LSTM+WF 20.0 76.2 87.3
CNN LSTM+WF+PF 20.0 69.7 88.8
LSTM CNN+WF 20.0 76.8 88.0
LSTM CNN+WF+PF 20.0 79.5 86.6

drug-mutation - binary relations - cross sentence (µ=29)
CNN+WF 0.0 79.6 78.1
CNN+WF+PF 20.0 83.9 82.7
LSTM+WF 20.0 80.7 79.9
LSTM+WF+PF 20.0 81.2 80.5
CNN LSTM+WF 20.0 78.0 81.3
CNN LSTM+WF+PF 20.0 84.8 87.3
LSTM CNN+WF 20.0 81.6 83.2
LSTM CNN+WF+PF 20.0 90.9 90.2

drug-mutation - binary relations - single sentence (µ=19)
CNN+WF 16.1 73.5 66.6
CNN+WF+PF 18.4 74.8 67.3
LSTM+WF 17.6 77.7 66.5
LSTM+WF+PF 16.9 75.7 64.9
CNN LSTM+WF 15.3 72.7 62.5
CNN LSTM+WF+PF 19.2 76.8 65.8
LSTM CNN+WF 16.1 76.4 67.6
LSTM CNN+WF+PF 17.6 84.9 86.5

Table 3: Performance of models on different groups of
sentences.k - length of tokens between entities e1 and en,
µ average number of tokens between e1 and en, σ standard
deviation over the length of tokens.

LSTM CNN vs. CNN LSTM. The results shown above
clearly indicate that it is more useful to start with an LSTM
layer followed by CNN layer (LSTM CNN model) than hav-
ing a CNN LSTM model for cross-sentence n-ary relation
extraction. As seen from Tables 1 and 2, the LSTM CNN
models perform significantly higher than CNN LSTM mod-
els both for ternary and binary relations in single sentences
and across sentences. A LSTM CNN model is more useful
in that, it initially learns from the sequential information
available in the input, which is further exploited by CNN
max-pooling layer to identify salient features. However, in
the CNN LSTM model, the use of CNN layer with max-
pooling as the fist component though helps in identifying
salient features from the input, the output from the CNN layer
does not retain the sequential information. The CNN out-
put feature vector without sequential information when fed
to LSTM layer, results in poor performance. This indicates

that an LSTM CNN model is more useful than CNN LSTM
model for cross-sentence n-ary relation extraction. Further,
as the results show, the addition of position embeddings in
the CNN LSTM model (CNN LSTM+WF+PF) results in poor
performance in comparison to the use of word embeddings
alone (CNN LSTM+WF). This is particularly true for ternary
relation extraction (Table 1). Further as seen in Table 1, the
use of higher number of filters combining word embeddings
and position embeddings, dramatically lowers the perfor-
mance. This indicates that position embeddings along with
higher number of filters are not useful for CNN LSTM mod-
els. However, it is also worthwhile to note that as seen from
Table 3, the CNN LSTM+WF+PF model extracts ternary re-
lations in single sentences for the higher number of long-
distance spans (88.8%), indicating that CNN LSTM models
are useful in certain cases.

CNN and LSTM models. The results provided above
clearly shows that, when used in isolation, LSTM-based
models are more useful for cross-sentence n-ary rela-
tion extraction, compared to CNN-based models. Interest-
ingly, the use of PF helps only longer sequences (accu-
racy of 78.9 (LSTM+WF+PF) vs. 78.2 (LSTM+WF) and
80.8 LSTM+WF+PF) vs. 80.3 (LSTM+WF+PF) scored for
ternary relations in drug-mutation-gene (Table 1) and drug-
mutation (Table 2), respectively). However, for shorter se-
quences, the use of PF results in decrease in accuracy (ac-
curacy of 74.5 (LSTM+WF+PF) vs. 75.0 (LSTM+WF) and
74.4 LSTM+WF+PF) vs. 75.4 (LSTM+WF+PF) scored for bi-
nary relations in drug-mutation-gene (Table 1) and drug-
mutation (Table 2), respectively). The contribution of WF
in CNN model significantly improves with the use of higher
number of filters, so much so that the model performs bet-
ter than combining WF and PF. This is particularly true for
extracting ternary relations in single sentences (Table 1).

n-positional embeddings. Given entities e1, ..en in the
text span, the proposed LSTM CNN+WF+PF model em-
ployed only e1 and en to create positional embeddings.
However, we could also create n-positional embeddings for
each of the n entities in the text span. To this end, we eval-
uated the LSTM CNN+WF+PF model using n-positional em-
beddings. The use of n-positional embeddings resulted in a
lower accuracy of 80.5 and 77.9 (compared to 82.5 and 79.6
using position embeddings for e1 and en) for ternary rela-
tion extraction across sentence and single sentences, respec-
tively. This indicates that using positional embeddings for e1
and en is more useful for cross-sentence relation extraction.

Comparison against the state-of-the-art. As seen from
Table 4, the proposed LSTM CNNW-WF+PF model outper-
forms various state-of-the-art methods for cross-sentence n-
ary relation extraction on Q&P DATASET. These models in-
clude GRAPH LSTM (Peng et al. 2017), feature-based mod-
els (Quirk and Poon 2016), RNN-based networks such as
BILSTM (Miwa and Bansal 2016) and TREE-LSTM, and also
combining multi-task learning with BILSTM and GRAPH
LSTM (Peng et al. 2017). The strength of the proposed model
comes from the fact that the previous state-of-the-art meth-
ods heavily rely on syntactic features such as dependency



Model Single Cross
Sent. Sents.

drug-gene-mutation - ternary relations
FEATURE-BASED 74.7 77.7
BILSTM 75.3 80.1
GRAPH LSTM-EMBED 76.5 80.6
GRAPH LSTM-FULL 77.9 80.7
BILSTM+MULTI-TASK - 82.4
GRAPH LSTM+MULTI-TASK - 82.0
LSTM CNN+WF+PF (proposed model) 79.6 82.9

drug-mutation - binary relations
FEATURE-BASED 73.9 75.2
BILSTM 73.9 76.0
BILSTM-SHORTEST-PATH 70.2 71.7
TREE-LSTM 75.9 75.9
GRAPH LSTM-EMBED 74.3 76.5
GRAPH LSTM-FULL 75.6 76.7
BILSTM+MULTI-TASK - 78.1
GRAPH LSTM+MULTI-TASK - 78.5
LSTM CNN+WF+PF (proposed model) 85.8 88.5

Table 4: Average test accuracy in five-fold cross validation
of the proposed model and SOTA methods on n-ary cross-
sentence relation extraction (Q&P DATASET)

tress, co-reference and discourse features, which are time-
consuming and less accurate particularly in the biomedical
domain. However, in comparison to these models, the pro-
posed LSTM CNN+WF+PF model does not use any such so-
phisticated features, but uses much simpler features such as
WF and PF. The ability to provide significantly higher per-
formance with much simpler features make the proposed
LSTM CNN+WF+PF an attractive choice for cross-sentence
n-ary relation extraction.

The performance of LSTM CNN+WF+PF model on CID
DATASET is provided in Table 5. As seen in Table 5, the
LSTM CNN+WF+PF model achieves statistically significant
performance for extracting binary relations from text spans
with two sentences (t = 2) against methods based on su-
pervised learning using linguistic features and maximum
entropy models. The LSTM CNN+WF+PF model also per-
forms well in extracting binary relations in single sentences
(t = 2). The combined LSTM CNN+WF+PF model achieves
higher F-score (0.63) against various SOTA methods4 on
CID DATASET as shown in Table 5. The combination of
LSTM CNN provides a slight increase than using CNN and
LSTM separately on CID DATASET. The CNN-based models
proposed by Nguyen and Verspoor (2018) although achieve
a higher recall, they tend to achieve a lower precision. The
same is the case with CNN+ME+PP (Gu et al. 2017) and CNN
(Zhou et al. 2016). On the other hand, LSTMs achieve higher
precision, but suffer from poor recall (LSTM, LSTM+SVMP
(Zhou et al. 2016)). In comparison to CNN models and LSTM
models, the combined LSTM CNN achieve a higher preci-
sion and at the same time do not lose on recall, resulting in
achieving a higher F-score on CID DATASET.

4Note that the SOTA methods listed in Table 5 does not use any
knowledge base or the development set for learning the model.

Model P R F
Single sentences (text span where t=1)

LINGUISTIC FEATURES
(Gu, Qian, and Zhou 2016)

0.67 0.68 0.68

CNN (Gu et al. 2017) 0.59 0.55 0.57
LSTM CNN+WF+PF (proposed model) 0.69 0.70 0.69

Across sentences (text span where t=2)
LINGUISTIC FEATURES
(Gu, Qian, and Zhou 2016)

0.51 0.29 0.37

MAXIMUM ENTROPY (Gu et al. 2017) 0.51 0.07 0.11
LSTM CNN+WF+PF (proposed model) 0.57 0.57 0.57*

Across sentences (text span where t≤2)
LINGUISTIC FEATURES + ME
(Gu, Qian, and Zhou 2016)

0.62 0.55 0.58

CNN+ME (Gu et al. 2017) 0.60 0.59 0.60
CNN+ME+PP (Gu et al. 2017) 0.55 0.68 0.61
CNN (Zhou et al. 2016) 0.41 0.55 0.47
LSTM (Zhou et al. 2016) 0.54 0.51 0.53
LSTM+SVMP (Zhou et al. 2016) 0.64 0.49 0.56
LSTM+SVM+PP (Zhou et al. 2016) 0.55 0.68 0.61
SVM (Xu et al. 2016) 0.55 0.68 0.61
CNN 0.54 0.69 0.61
CNN+CNNCHAR 0.57 0.68 0.62
CNN+LSTMCHAR
(Nguyen and Verspoor 2018)

0.56 0.68 0.62

LSTM CNN+WF+PF (proposed model) 0.63 0.63 0.63

Table 5: Comparison of performance of
LSTM CNN+WF+PF with state-of-the-art models on
CID DATASET. t = number of sentences, P - precision, R -
recall, F - F-score.

Performance of LSTM CNN model on SE DATASET. To
examine the performance of the proposed model on stan-
dard relation extraction dataset, the LSTM CNN model was
evaluated on SE DATASET (Hendrickx et al. 2009). The
LSTM CNN+WF and LSTM CNN+WF+PF models achieved
F1-scores of 71.6 and 81.5, respectively. These scores are
slightly better than employing CNN with WF to obtain an F1-
score of 69.7 and combining WF and PF with CNN to achieve
an F1-score of 78.9, further suggesting that combining LSTM
and CNN is useful for relation extraction.

Conclusion
To conclude, we presented in this paper a combined
LSTM CNN model that exploits both word embeddings and
position embeddings for the task of cross-sentence n-ary re-
lation extraction. The experimental results provided in this
paper clearly establish that combining LSTMs and CNNs of-
fer the ability to harness together the strength of LSTMs to
learn from longer sequences and the usefulness of CNNs
to learn salient features, vital for cross-sentence n-ary rela-
tion extraction. The comparison with state-of-the-art results
further proves the usefulness of combined LSTM and CNN
model for cross-sentence n-ary relation extraction.

References
[Abadi et al. 2016] Abadi, M.; Agarwal, A.; Barham, P.;
Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis,



A.; Dean, J.; Devin, M.; et al. 2016. Tensorflow: Large-
scale machine learning on heterogeneous distributed sys-
tems. arXiv preprint arXiv:1603.04467.

[Agichtein and Gravano 2000] Agichtein, E., and Gravano,
L. 2000. Snowball: Extracting relations from large plain-
text collections. In Proceedings of the fifth ACM conference
on Digital libraries, 85–94. ACM.

[Bach and Badaskar 2007] Bach, N., and Badaskar, S. 2007.
A survey on relation extraction. Language Technologies In-
stitute, Carnegie Mellon University.

[Brin 1998] Brin, S. 1998. Extracting patterns and relations
from the world wide web. In International Workshop on The
World Wide Web and Databases, 172–183. Springer.

[Bunescu and Mooney 2005] Bunescu, R. C., and Mooney,
R. J. 2005. A shortest path dependency kernel for rela-
tion extraction. In Proceedings of the conference on human
language technology and empirical methods in natural lan-
guage processing, 724–731. Association for Computational
Linguistics.

[Culotta and Sorensen 2004] Culotta, A., and Sorensen, J.
2004. Dependency tree kernels for relation extraction. In
Proceedings of the 42nd annual meeting on association for
computational linguistics, 423. Association for Computa-
tional Linguistics.

[Elango 2005] Elango, P. 2005. Coreference resolution: A
survey. University of Wisconsin, Madison, WI.
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