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Abstract. A solution to the multi-class classification problem is pro-
posed founded on the concept of an ensemble of classifiers arranged in a
hierarchical binary tree formation. An issue with this solution is that if
a miss-classification occurs early on in the process (near the start of the
hierarchy) there is no possibility of rectifying this error later on in the
process. To address this issue a multi-path strategy is investigated based
on the idea of using Classification Association Rule Miners at individual
nodes. The conjectured advantage offered is that the confidence values
associated with this form of classifier can be used to inform the proposed
multi-path strategy. More specifically the confidence values are used to
determine, at each node, whether one or two paths should be followed.
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1 Introduction

Single-label classification (as opposed to multi-label classification) is concerned
with learning of classifiers, using a set of training examples, where each example
is associated with a single class label c taken from a set of disjoint class labels C.
If |C| = 2 then we have a simple “binary” classification problem, if |C| > 2 it is
referred to as a “multi-class” classification problem. In the context of the work
described in this paper the focus is on the multi-class single-label classification
problem where each example is associated with exactly one element of the class
label set C. For simplicity this problem is referred to here as the multi-class
problem.

An issue with multi-class classification is that when |C| is large the classifi-
cation accuracy tends to degrade for two reasons: (i) each class is represented by
fewer examples in the training dataset than in the case of binary training data,
and (ii) a suitable subset of features that can be used to discriminate between
large numbers of classes (more than two) is often difficult to identify. One mech-
anism for addressing this issue is to adopt some ensemble classification technique
whereby a set of classification models is used in order to obtain a better com-
posite global model [17]. Much research work has been conducted on ensemble
techniques because of the potential benefits of such methods; this research has



demonstrated that it is frequently the case that more accurate and effective clas-
sification results can be produced when using ensemble techniques than when
using a single model [17, 35, 25, 13]. With reference to the literature, two main
mechanisms for arranging the “base classifiers” within an ensemble model can
be identified: (i) concurrent (parallel) [23, 8, 9], or (ii) sequential (serial) [15, 27].
A more recent approach for arranging the base classifiers within an ensemble
model involves the creation and utilisation of a hierarchy of classifiers [18, 10, 32,
4, 19, 24]. One of the most significant advantages of hierarchical classification is
its structural flexibility; the ability to modify or adapt the model so as to fit a
particular classification problem.

The work presented in this paper is directed at hierarchical ensemble clas-
sification using a binary tree representation where nodes near the root of the
tree hold classifiers designed to distinguish between groups of classes while the
leaf nodes hold classifiers designed to distinguish between individual class labels.
Thus classifiers nearer the root of the hierarchy conduct coarse-grain classifica-
tion with respect to subsets of the available set of classes while classifiers near
the leaves of the hierarchy conduct fine-grain classification. More specifically the
work is concerned with the resolution of two issues associated with this form of
ensemble classification. The first is how best to distribute (group) classes across
the nodes in the hierarchy. The second is concerned with the operation of the
hierarchy whereby, if a single-path strategy is adopted, a miss-classification early
on in the process (near the root of the hierarchy) cannot be rectified later in the
process (further down the hierarchy). Three alternative techniques are proposed
in this paper to address the first issue: (i) k-means clustering, (ii) divisive hi-
erarchical clustering, and (iii) data splitting. With respect to the second issue
the novel idea presented in this paper is to utilise confidence values generated
when using Classification Association Rule Mining (CARM) to inform a pro-
posed multi-path strategy that, in certain circumstances, will cause more than
one path to be followed through the hierarchy.

The rest of this paper is organised as follows. Section 2 gives a review of
related work on multi-class classification. Section 3 describes the process for
generating the proposed binary tree hierarchical ensemble classification model,
while Section 4 describes its operation. Section 5 presents an evaluation of the
proposed hierarchical classification mechanism as applied to a range of different
data sets. Section 6 summarises the work and indicates some future research
directions.

2 Literature Review

This section reviews some of the previous work directed at the multi-class classi-
fication problems. It is widely accepted that multi-class problems can be solved
in three ways: (i) using “stand-alone” classification algorithms (Section 2.1), (ii)
using a “two-class” classifiers (Section 2.2), and (ii) using ensemble classifiers
arranged in some specific form (Section 2.3).



2.1 Using Stand-alone Classification Algorithms to Solve
Multi-class Classification Problems

Some classification algorithms are specifically designed to handle binary classi-
fication, for example support vector machines [31]. While other classification al-
gorithms can be used with respect to any number of class labels; examples of the
latter include: decision tree classifiers [26], Classification Association Rule Min-
ing (CARM) [12], Neural Networks [34], k-Nearest Neighbors [6], and Bayesian
classification [20]. Among these CARM algorithms are of interest with respect
to the work described in this paper. The significance is that CARM incorporates
the concept of confidence values which in turn, it is argued in this paper, can
be use to determine the most appropriate paths through a hierarchical ensemble
classification model. CARM integrates Association Rule Mining (ARM) and clas-
sification. CARM algorithms works by applying an association rule mining style
algorithm, such as Apriori [1] or FPgrowth [16], to produce classification rules
from a training set of previously classified data [12] according to user predefined
support (frequency)1 and confidence2 thresholds, where the focus is to gener-
ate association rules that have only a single class label in the consequent. The
generated association rules are referred to as Classification Association Rules
(CARs) [21], which collectively form the desired classifier. CARM algorithms
can be categorised according to how the pruning of low confidence CARs is
performed [12]: (i) two stage or (ii) integrated. In the two stage approach all
CARs are generated in the first stage and pruned in the second stage. Exam-
ples of this approach include Classification based on Multiple Association Rules
(CMAR) [21], and Classification Based on Associations (CBA) [22]. Using inte-
grated algorithms the classifier generation is accomplished in a single processing
step encompassing both rule generation and pruning. Examples of this latter
approach include Classification based on Predictive Association Rules (CPAR)
[33] and Total From Partial Classification (TFPC) [12].

2.2 Using Binary Classifiers to Solve Multi-class Classification
Problems

With the availability of many effective binary classification algorithms, the multi-
class classification problem can be addressed by utilising a “two-class” classi-
fiers; whereby the multi-class problem is decomposed into a binary classification
sub-problems addressed using individual binary classifiers. We can, from the
literature, identify three commonly referenced methods of using binary classi-
fiers to solve multi-class problems: (i) One-Versus-All (OVA) [28] (ii) All-Verses-
All (AVA) [30] (iii) Error-Correcting-Output-Codes (ECOC) [14]. Among these
ECOC has often been demonstrated to outperform “stand-alone” multi-class
classification algorithms [14, 29].

1The support of a rule describes the number of instances in the training data for
which the rule is found to apply [12].

2The confidence of the rule is the ratio of its support to the support for its antecedent
[12].



2.3 Using Ensemble Classifiers to Solve Multi-class Classification
Problems

The use of chains of binary classifiers can be viewed as a form of ensemble
classifier. An ensemble classification model is a composite model comprised of a
number of classifiers, typically referred to as “base classifiers” or “weak learners”,
built in order to obtain a better combined global model with more effective clas-
sification power than can be acquired from using a single (stand-alone) model.
Ensemble methods can be differentiated depending on the relationships between
classifiers forming the ensemble, two main types of ensemble can be identified:
(i) concurrent ensembles, such as Bagging [23], and (ii) sequential ensembles,
such as Boosting [15]. A more recent from of ensemble involves the creation of a
hierarchy of classifiers [18, 10, 32, 4, 19, 24]. A common structure adopted for hi-
erarchical classification is a binary tree constructed in either a bottom-up or top-
down manner [18, 7]. The top-down model operates in a “divide-and-conquer”
manner. The root node contains the entire class label set {c1, c2, ..., cn}. Starting
from the root, the set of class labels at each tree node is recursively divided, and
a classifier is trained to discriminate between the two subsets [18]. The process
continues until a set of leaf nodes is arrived at. In the bottom-up approach a
merging procedure, similar to agglomerative hierarchical clustering, is adopted.
At commencement records associate with each class represent the leaf nodes.
Nodes separated by the closest “distance” are merged to generate a new node to
be associated with a new meta-class [7], and so on until a root node representing
the entire class set is arrived at. In this paper an alternative form of generating
the desired hierarchies is proposed (see below).

3 Generation of the Hierarchical Model

In this section the generation of the suggested hierarchical model is described. As
noted in the introduction to this paper the proposed hierarchical model adopts
an ensemble approach founded on the idea of arranging the node classifiers using
a binary tree structure. The nature of the classifiers held at each node can be of
any form (in previous work the authors have experimented using decision tree
and naive bayes classifiers [3, 2]), however, with respect to the work described
in this paper (and for reasons that will become apparent later in this paper)
classifiers generated using Classification Association Rule Mining (CARM) were
used. The intuition behind using ensemble classifiers arranged in a hierarchi-
cal form is that it could result in better classification accuracy due to: (i) the
established observation that ensemble methods tend to improve classification
performance [17, 35, 25, 13], and (ii) smaller subsets of class labels are handled
at each hierarchy node thus better results might be produced.

In order to group (divide) the input data D during the hierarchy generation
process, three different techniques are considered in this paper: (i) k-means clus-
tering, (ii) divisive hierarchical clustering, and (iii) data splitting. Among these
k-means is the most commonly used partitioning method where the records are



divided into k partitions (in our model k = 2 was used because of the binary na-
ture of our hierarchies). The divisive hierarchical clustering approach (top-down)
was used to generate a hierarchical decomposition of the given input data. The
process starts with all examples in one cluster, in each successive iteration, a
cluster is divided into smaller clusters until a “best” cluster configuration is
achieved (measured using cluster cohesion and separation measures). The data
splitting technique comprises a simple “cut” of the data into two groups so that
each contains a disjoint subset of the entire set of class labels. The idea behind
the use of clustering algorithms is, at each level and branch of the hierarchy, to
group the available class labels into two disjoint groups (clusters) so that the
classes within each group share some similar characteristics. Note that, using
clustering algorithms for dividing the input data, class labels are considered as
a “common” attribute.

The process for generating a hierarchical ensemble binary tree is then as
follows. Starting at the root of the hierarchy divide the input data into two
groups using one of the proposed clustering or splitting approaches (in acknowl-
edgement of the binary nature of our hierarchies, we refer to these groups as
the leftClassGroup and the RightClassGroup). Then learn a classifier to dis-
tinguish between the two class-groups (in this paper we are using a CARM
approach). The process continues recursively until we reach node classifiers that
can associate single class labels with records.

4 Operation of the Hierarchical Ensemble Classification
Model

Section 3 above explained the process for generating the proposed hierarchi-
cal model. After the model has been produced it is ready for usage. The most
straightforward mechanism with which to classify a new record is to identify a
single path leading through the hierarchy, as dictated by the node classifiers,
until a leaf node associated with a single class label is arrived at. In this paper
we refer to this as the“Most Confident Path” strategy as it operates by select-
ing the branch associated with the highest confidence value at each node. The
process is as follows. Starting at the root of the hierarchy, the node’s CARM
classifier classifies the new record as belonging to either the leftClassGroup
or the RightClassGroup class. This classification then dictates which branch
(left or right) that is followed next. The process proceeds in this manner until a
single class label is identified (at a leaf node). This will then be the label to be
associated with the record.

However, as already noted, a possible issue with the single path strategy is
that if a miss-classification occurs early on in the process their is no opportu-
nity for rectifying this situation later on in the process. To address this problem
we propose a multiple path strategy whereby more than one path can be fol-
lowed within the hierarchy according to a predefined confidence threshold σ,
(0 ≤ σ ≤ 100). Thus the confidence value Conf associated with class groups
(ConfN.leftClassGroup or ConfN.rightClassGroup) is used to indicate whether one



or two paths (due to the binary structure of our hierarchy) will be followed ac-
cording to the σ threshold. If the Conf value of the branch associated with the
highest confidence is less than σ both branches emanating from the node will be
explored further, otherwise the branch with the highest associated Conf value
will be selected.

A further issue that results when more than one path is followed through
the hierarchy is that more than one final candidate class label may be arrived
at, the question then is which class label to select? Two different approaches
are suggested to determining the final resulting class label: (i) best confidence
and (ii) best normalised accumulated confidence. Using the best confidence ap-
proach the “individual” confidence values associated with the identified candi-
date classes at the leaf nodes are used to select a final class label. When using
the best normalised accumulated confidence approach the “normalised accu-
mulated confidence” values associated with the paths that have been followed
are used to select a final class label. Thus we have two variations of the mul-
tiple class strategy: (i) multiple path with best confidence class label selection
(MultiPathBestConf) and (ii) multiple path with best normalised accumulated
class label selection (MultiPathNormalisedConf).

Starting with the MultiPathBestConf approach, Algorithm 1 presents the
suggested procedure. The algorithm is similar to the kind of algorithm that
might be used to realise the single path strategy (not included in this paper)
except with respect to the use of the σ threshold to decide whether to follow a
single path or both paths emanating from a node. At the end of the algorithm
a list L, which holds all the identified potential class labels with their associ-
ated confidence values for the given case, is processed to select the class label c
with the highest confidence value. The procedure MultiPathBestConf(R,N)
is called recursively as the process progresses. On each recursion the CARM
classifier held at the current node is used to produce a confidence value (line 8),
with respect to R for the leftClassGroup and the rightClassGroup. We then
follow one or two paths according the relative nature of the confidence values
returned using the CARM classifier at the current node and the σ threshold.
Whenever the size of a class group considered at a node is equal to one (lines 11
and 23), indicating that the group comprises a single class label, the class label
and associated confidence value are added to L (lines 12 and 24). At the end of
the process (line 35) L is processed to identify the class label with the highest
associated confidence value.

With respect to the above it should be recalled that a classifier generated
using a CARM algorithm comprises a set of CARs whereby the CARs are typ-
ically ordered according to confidence value. CARs with the highest confidence
are listed first. If two CARs have the same confidence usually the more general
rule (that with the smallest antecedent) will appear first, with more specific
rules appearing later3. Typically the classifier will also include a default rule to
be fired when no other rule fits the given example, which will return the most

3Some authors argue that the more specific rule should be listed first, this remains
an open question.



Algorithm 1 MultiPathBestConf approach
1: INPUT
2: R a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: OUTPUT
5: c the predicted class label of the input record R

6: L the set of class labels, together with their associated confidence values, maintained as the
procedure progresses, set to {} at start

7: START PROCEDURE MultiPathBestConf(R,N)
8: C = Class label set for R with the associated confidence values (Conf) generated using classifier

held at node N (C = {N.leftClassGroup,N.rightClassGroup})
9: if ( (Conf(N.leftClassGroup) > Conf(N.rightClassGroup) ) then
10: if (Conf(N.leftClassGroup) > σ) then
11: if (|N.leftClassGroup| == 1) then
12: Add class label ci (c ∈ N.leftClassGroup) to class list L with Confci
13: else
14: MultiPathBestConf(R,N.leftBranch)
15: end if
16: else
17: MultiPathBestConf(R,N.leftBranch)
18: MultiPathBestConf(R,N.rightBranch)
19: end if
20:
21: else
22: if (Conf(N.rightClassGroup) > σ) then
23: if (|N.rightClassGroup| == 1) then
24: Add class label ci(c ∈ N.rightClassGroup) to class list L with Confci
25: else
26: MultiPathBestConf(R,N.rightBranch)
27: end if
28: else
29: MultiPathBestConf(R,N.leftBranch)
30: MultiPathBestConf(R,N.rightBranch)
31: end if
32:
33: end if
34: END PROCEDURE MultiPathBestConf(R,N)

35: Process L and select class label c with highest confidence

frequently occurring class label in the original training set. Given a new record to
be classified, the first rule whose antecedent matches the record (or the default
rule) is used to classify the record. However, our multi-path strategy requires
that we have confidence values for both branches emanating from a node. Thus
the CARM classifiers used were modified so that, where possible, the confidence
values associated with both branches were returned by finding the first rule in
the rule base with respect to both classes (where such rules existed).

Algorithm 2 presents the MultiPathNormalisedConf approach. The main
difference between the Multiple Path Best Confidence approach and Multiple
Path Best Normalised Accumulated Confidence approach is that all confidence
values are stored with respect to each path followed (not just the confidence
values at the leaf nodes). Consequently a weighting may be derived for each
candidate class. We refer to this weighting as a the Normalised Accumulated
Confidence (NormalisedAccumulatedConf) value. In order to achieve this goal
two additional parameters (in addition to the parameters in Algorithm 1) are



Algorithm 2 MultiPathNormalisedConf approach
1: INPUT
2: R a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: AccumConf the Accumulated summation of the Confidence Value in the followed path (initially

0.0)
5: ConfCount Confidence counter keeping the number of confidence values in the followed path
6: OUTPUT
7: c the predicted class label of the input record R

8: L the set of class labels, together with their associated normalised accumulated confidence
values, maintained as the procedure progresses, set to {} at start

9: START PROCEDURE MultiPathNormalisedConf(R,N,AccumConf,ConfCount)
10: C = Class label set for R with the associated confidence values (Conf) generated using classifier

held at node N (C = {N.leftClassGroup,N.rightClassGroup})
11: if (Conf(N.leftClassGroup) > Conf(N.rightClassGroup) ) then
12: leftAccumConf = Conf(N.leftClassGroup) + AccumConf
13: leftConfCount = ConfCount + 1
14: if (Conf(N.leftClassGroup) > σ) then
15: if (|N.leftClassGroup| == 1) then
16: leftNormalisedAccumConf = leftAccumConf/leftConfCount
17: Add class label ci (c ∈ N.leftClassGroup) to class list L with the
18: leftNormalisedAccumConf.
19: else
20: MultiPathBestConf(R,N.leftBranch, leftAccumConf, leftConfCount)
21: end if
22: else
23: if (Conf(N.rightClassGroup) != Null) then
24: rightAccumConf = Conf(N.rightClassGroup) + AccumConf
25: rightConfCount = ConfCount+ 1
26: else
27: rightAccumConf = AccumConf
28: end if
29: MultiPathBestConf(R,N.rightBranch, rightAccumConf, rightConfCount)
30: MultiPathBestConf(R,N.leftBranch, leftAccumConf, leftConfCount)
31: end if
32: else
33: rightAccumConf = Conf(N.rightClassGroup) + AccumConf
34: rightConfCount = ConfCount + 1
35: if (Conf(N.rightClassGroup) > σ) then
36: if (|N.rightClassGroup| == 1) then
37: rightNormalisedAccumConf = rightAccumConf/rightConfCount
38: Add class label ci (c ∈ N.rightClassGroup) to class list L with the
39: rightNormalisedAccumConf.
40: else
41: MultiPathBestConf(R,N.rightBranch, rightAccumConf, rightConfCount)
42: end if
43: else
44: if (Conf(N.leftClassGroup) != Null) then
45: leftAccumConf = Conf(N.leftClassGroup) + AccumConf
46: leftConfCount = ConfCount+ 1
47: else
48: leftAccumConf = AccumConf
49: end if
50: MultiPathBestConf(R,N.rightBranch, rightAccumConf, rightConfCount)
51: MultiPathBestConf(R,N.leftBranch, leftAccumConf, leftConfCount)
52: end if
53: end if
54: END PROCEDURE MultiPathNormalisedConf(R,N,AccumConf,ConfCount)

55: Process L and select class label c with highest normalised accumulated confidence value



used: AccumConf and ConfCount, where the AccumConf is used to store the
summation of the confidence values for the path followed, while ConfCount is
used to store the number of confidence values for the path followed (so that the fi-
nal accumulated confidence can be normalised). More specifically, the normalised
accumulated confidence value, which will be associated with each candidate class
label, is calculated as:

NormalisedAccumConf = AccumConf ÷ Confcount (1)

where 0 ≤ NormalisedConf ≤ 100.

As mentioned above our CARM classifiers were modified to return the con-
fidence values associated with both class labels represented by each node. How-
ever, in some cases it was not possible to identify both confidence values. In
this case only the single identified confidence value was used when calculating
the NormalisedAccumulatedConfidence for a specific path (See Algorithm 2,
Lines 23-27 and 44-48).

5 Experimental Evaluation

In this section we present an overview of the experimental set up used to eval-
uate the proposed binary tree hierarchical ensemble classification model and
the results obtained. Fourteen different data sets (with various numbers of class
labels) taken from the UCI data repository [5] were used, pre-processed using
LUCS-KDD-DN software [11]. Ten-fold Cross Validation (TCV) was adopted
throughout. The evaluation measures used were average accuracy and average
AUC (Area Under the receiver operating Curve). Both average accuracy and
AUC results are presented here, but for simplicity we will discuss the results in
terms of average accuracy.

The objectives of the evaluation were as follows:

1. To compare the operation of the three considered class grouping mechanisms:
(i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting.

2. To compare the use of the single and multiple path strategies for hierarchical
ensemble classification and the two proposed class label selection methods
associated with the latter.

3. To compare the operation of the proposed binary tree hierarchical ensem-
ble classification model with stand-alone classification and with alternative
established ensemble methods (namely bagging).

The results with respect to the first two objectives are given in Tables 1 and
2. Table 1 gives the TCV classification accuracy values obtained, and Table 2
the AUC results obtained. The results with respect to the third objective are
given in Table 3. The results in the context of the above evaluation objectives
are discuss in Sub-sections 5.1, 5.2 and 5.3 below.



Table 1. Average Accuracy for the fourteen evaluation datasets using the three dif-
ferent proposed Hierarchical Ensemble Classification strategies.

Data set Classes
Single Path Multi. Path Strat. Multi. Path Strat. best

Stratrgy best Conf. Norm. Accum. Conf.
K-means DS HC K-means DS HC K-means DS HC

WaveForm 3 58.92 57.02 61.62 59.02 57.12 61.58 59.02 57.44 61.58
Wine 3 78.99 78.59 84.28 78.99 78.59 84.28 78.99 78.59 84.28

Nursery 5 84.41 86.81 53.07 82.53 86.81 53.12 80.28 86.81 53.06
Heart 5 53.76 52.39 53.35 53.76 52.39 53.35 53.76 52.39 53.35

PageBlocks 5 90.79 89.77 73.73 90.79 89.77 73.88 91.17 89.77 73.75
Dermatology 6 74.92 60.28 71.39 75.73 60.28 71.16 77.34 60.28 71.16

Glass 7 48.46 61.56 52.19 48.46 61.56 51.24 48.93 61.56 51.71
Zoo 7 88.00 85.00 85.00 88.00 85.00 85.00 88.00 85.00 85.00
Ecoli 8 65.15 66.57 52.17 64.55 66.57 51.86 64.85 66.57 52.17
Led 10 54.78 45.53 35.16 52.16 41.38 35.38 52.13 41.53 37.94

PenDigits 10 61.12 42.68 50.74 61.12 43.89 50.41 60.86 40.12 50.43
Soybean 15 79.01 88.97 57.36 79.01 88.43 56.82 79.01 88.43 56.83

ChessKRVK 18 32.99 28.13 22.50 32.16 26.58 22.48 31.06 27.28 22.20
LetRecog 26 29.58 33.12 21.54 29.17 29.13 21.67 27.87 27.39 21.57

Mean 64.35 62.60 55.29 63.96 61.96 55.16 63.81 61.65 55.36

Table 2. Average AUC for the fourteen evaluation datasets using the three different
proposed Hierarchical Ensemble Classification strategies.

Data set Classes
Single Path Multi. Path Strat. Multi. Path Strat. best

Stratrgy best Conf. Norm. Accum. Conf.
K-means DS HC K-means DS HC K-means DS HC

WaveForm 3 0.59 0.58 0.61 0.59 0.58 0.61 0.59 0.58 0.61
Wine 3 0.81 0.76 0.86 0.81 0.76 0.86 0.81 0.76 0.86

Nursery 5 0.43 0.43 0.27 0.42 0.43 0.27 0.40 0.43 0.27
Heart 5 0.24 0.20 0.23 0.24 0.20 0.23 0.24 0.20 0.23

PageBlocks 5 0.24 0.20 0.25 0.24 0.20 0.23 0.35 0.20 0.26
Dermatology 6 0.64 0.46 0.66 0.65 0.46 0.66 0.68 0.46 0.66

Glass 7 0.29 0.31 0.30 0.29 0.31 0.30 0.29 0.31 0.30
Zoo 7 0.52 0.49 0.49 0.52 0.49 0.49 0.52 0.49 0.49
Ecoli 8 0.28 0.20 0.21 0.28 0.20 0.20 0.28 0.20 0.21
Led 10 0.55 0.45 0.35 0.52 0.41 0.35 0.52 0.41 0.38

PenDigits 10 0.61 0.42 0.51 0.61 0.43 0.50 0.60 0.40 0.50
Soybean 15 0.76 0.89 0.52 0.76 0.89 0.52 0.76 0.89 0.52

ChessKRVK 18 0.18 0.14 0.11 0.17 0.13 0.11 0.17 0.13 0.11
LetRecog 26 0.30 0.33 0.22 0.29 0.29 0.22 0.28 0.27 0.22

Mean 0.46 0.42 0.40 0.46 0.41 0.40 0.46 0.41 0.40



5.1 Comparison of Class grouping Mechanisms

As already noted, three techniques were considered for grouping classes at the
nodes in the hierarchies: (i) k-means, (ii) data splitting and (iii) divisive hi-
erarchical clustering, indicated by the column headings “K-means”, “DS” and
“HC” respectively in Tables 1 and 2. Figure 1 shows a comparison between all
the suggested strategies in terms of average accuracy. From the figure it can
be observed that the best method for class distribution between nodes during
the hierarchical model generation was k-means grouping, the second best was
data splitting, while hierarchical clustering produced the worst results. Accord-
ing to the results presented in Table 1, it can be seen that by using the k-means
clustering algorithm to divide classes between nodes within the hierarchy, a best
classification accuracy was obtained for seven of the fourteen datasets considered
in the evaluation (Heart, Page Blocks, Dermatology, Zoo, Led, Pen Digits, Chess
KRvK). While using data splitting produced a best classification accuracy with
respect to five of the datasets (Nursery, Glass, Ecoli, Soybean, Letter Recogni-
tion). Using Hierarchical clustering a best classification accuracy was obtained
for only two of the datasets considered (Wine, Wave Form).
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Fig. 1. Comparison between Single-Path and Multi-Path strategies with respect to the
different grouping mechanisms (in terms of average accuracy).

5.2 Comparison of Strategies

With respect to the three proposed hierarchical ensemble classification strategies
(Single path, Multiple path with best confidence class label selection and Mul-
tiple path with best normalised accumulative confidence class label selection) it
is interesting to note that their is little difference between the operation of the



strategies. Figure 1 shows three sets of bar charts, one for each strategy, with
respect to the mean accuracy values obtained. With reference to the figure it can
be seen that the Single-path (the most confident path) strategy produced the
best overall result (using k-means grouping). Out of the two multi-path strategies
the best confidence approach tended to produce the best performance.

Regarding the Multiple Path strategies a threshold of σ = 70.0 was used.
A range of alternative σ values were evaluated and it was demonstrated that
σ = 70.0 produced the best results.

From the results presented in Table 1 it can be observed that for six datasets
(Wine, Nursery, Heart, Glass, Zoo, and Ecoli) the same classification accuracy
was obtained regardless of which strategy was adopted. For another six datasets
(Wave Form, Led, Pen Digits, Soybean, Chess KRvK, and Letter Recognition)
the single path strategy produced the best classification accuracy, although for
one dataset (Pen Digits) the same result was produced as for the multi-path
best confidence strategy. For two of the datasets (Page Blocks, and Dermatol-
ogy) the multi-path normalised accumulated confidence strategy produced the
best classification accuracy. The reason behind the weakness of the multi-path
strategies is that, in some cases, it was not possible to identify both confidence
values for a given node branches. Consequently the unknown confidence values
affected the results of multi-path strategies tending it to less value than initially
anticipated.

Table 3. Accuracy and AUC Comparison between “stand-alone” CARM, a conven-
tional Bagging ensemble, and the best hierarchical ensemble classification strategy from
Sub-setion 5.2

Data set Classes
CARM Bagging Best Hier.

Esemb. Class.
Acc. AUC Acc. AUC Acc. AUC

WaveForm 3 60.04 0.60 60.76 0.61 61.62 0.61
Wine 3 71.88 0.74 61.48 0.61 84.28 0.86

Nursery 5 73.94 0.36 73.94 0.36 86.81 0.43
Heart 5 51.70 0.20 45.49 0.24 53.76 0.24

PageBlocks 5 89.99 0.21 89.95 0.21 91.17 0.35
Dermatology 6 77.00 0.66 72.12 0.62 77.34 0.68

Glass 7 65.05 0.43 53.30 0.31 61.56 0.31
Zoo 7 94.00 0.59 83.00 0.46 88.00 0.52
Ecoli 8 49.98 0.12 37.90 0.07 66.57 0.28
Led 10 67.28 0.67 67.09 0.67 54.78 0.55

PenDigits 10 75.99 0.76 77.09 0.77 61.12 0.61
Soybean 15 84.01 0.86 73.15 0.77 88.97 0.89

ChessKRVK 18 17.64 0.07 17.43 0.06 32.99 0.18
LetRecog 26 30.91 0.31 30.72 0.31 33.12 0.33

Mean 64.96 0.47 60.24 0.43 67.11 0.49



5.3 Comparison of Hierarchical Ensemble Classification with
Conventional approaches

Table 3 presents the results obtained using a “stand alone” CARM and Bagging
together with the best results from Tables 1 and 2. The proposed hierarchical
ensemble classification was compared with CARM because we wanted to com-
pare the operation of the proposed ensemble approach with the operation of
the more traditional stand-alone form of classification; CARM was used for this
purpose because the classifiers held at the individual nodes in our tree ensem-
bles were also generated in this manner (clearly we could also have compared
with alternative forms of stand alone classification). We compared with bagging
because we also wanted to compare the operation of our hierarchical ensemble
classification with an alternative form of ensemble. From Table 3 it can be seen
that the proposed hierarchical techniques can significantly improve the classifi-
cation accuracy with respect to ten of the fourteen datasets considered (Wave
Form, Wine, Nursery, Heart, Page Blocks, Dermatology, Ecoli, Soybean, Chess
KRvK, and Letter Recognition). In the remaining four cases, the stand-alone
CARM classifier produced the best result for three of the datasets (Glass, Zoo,
and Led), while the Bagging ensemble classifier produced the best result for only
one dataset (Pen Digits).

6 Conclusion and Future Work

In this paper hierarchical classification using a binary tree structure, for solv-
ing multi-class problems, has been considered. To generate such a hierarchical
model three different techniques to distribute class labels between nodes within
the hierarchy were proposed: (i) k-means, (ii) data splitting, and (iii) hierarchical
clustering. CARM classifiers were used at each hierarchical node. By utilising the
confidence values generated by CARM classifiers two approaches were proposed:
(i) Single-Path, and (ii) Multi-Path. The later one coupled with two alterna-
tives to determining the final resulting class label: Best Confidence and Best
Normalised Accumulated Confidence. The conjecture here was that a criticism
of hierarchical classification ensembles is that a miss-classification made early
on in the hierarchy cannot be rectified later on and that this might hinder the
effectiveness of the operation of such classifiers.

From the reported experimental results, presented in this paper, it was demon-
strated that the proposed hierarchical classification model tends to perform bet-
ter than stand-alone classifiers and other forms of ensemble classifier such as
bagging, with respect to some datasets considered in the evaluation; especially
data sets that featured a large number of class labels.

Although best overall result was obtained using the proposed Single-path
strategy (the most confident path) the Multi-path strategy coupled with either
best confidence or best normalised accumulated confidence improved the classi-
fication accuracy with respect to some datasets considered in the evaluation. An
issue with Multiple Path strategies is that the confidence values that were used
to determine wether one or two paths emanating from a node will be followed,



can not be always obtained. Consequently, in many cases, it was not possible to
follow more than one path even if this might have been desirable.

With respect to future work the authors intend to investigate alternative
forms of hierarchical ensembles using more sophisticated structures than the
binary tree structures considered in this paper, such as Directed Acyclic Graph
(DAG). The idea is that by using DAGs many paths can be followed because of
the many possible combinations of class labels at each level.
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