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Abstract: A four stage social network trend mining framework, the IGCV (Identification, Grouping, Clustering and 

Visualisation) framework, is described. The framework extracts trends from social network data and then applies a 

sequence of techniques (“tools”) to this data to facilitate interpretation of the identified trends. Of particular note is the 

visualisation of trend migrations (changes) that feature within time stamped network data. The framework is illustrated 

using a sequence of four social networks extracted from the Cattle Tracing System (CTS) in operation in Great Britain, 

although it could equally well be applied to other forms of temporal data. The presented analysis of the IGCV framework 

indicates advantages, with respect to network trend mining, that can be gained; especially when the framework is 

applied to large real-world datasets. 
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1. Introduction 

The identification of trends has been an 

important activity in many application 

domains such as business intelligence, 

demography and epidemiology. Trend mining 

is concerned with the application of data 

mining techniques to extract trends from time 

stamped data collections (Kohavi et al., 2002; 

Lent et al., 1997). The work described in this 

paper is directed at trend mining within the 

context of social networks. Social networks 

are communities of interacting entities. Well 

known examples include web-based 

applications such as Facebook, Bebo and 

Flickr. However, other examples include 

business communities, file sharing systems 

and co-authoring frameworks. Social network 

mining is typically directed at identifying 

patterns and sub-communities (clusters) within 

the network data (Safaei et al., 2009; Xu et al., 

2008). The mining of social networks is 

usually conducted in the static context 

whereby data mining techniques are applied to 

a “snap shot” of the network of interest. Little 

work has been directed at applying data 

mining techniques to social network data in 

the dynamic context so as to discover, for 

example, trends in the network data. The 

problem domain, which is the focus of the 

work described is this paper, is therefore the 

identification of trends in dynamic social 

networks. We define trends in social networks 

in terms of the fluctuations of traffic between 

nodes, or groups of nodes, in such networks. 

The main issues associated with this form of 

trend mining, when applied to social network 

data, are: (i) the large amount of data that has 

to be processed, social network datasets tend 

to be substantial; and (ii) trend mining 

techniques typically generate large numbers of 

trends which are consequently difficult to 

analyse. 

To address these two issues we present an end-

to-end social network trend mining framework 

that takes as input a time stamped data set, 

describing the activity in a specific social 

network; and, as an end result, provides a 

visualisation of the most significant trends. 

The process is predicated on the assumption 

that end users are interested in the progress of 

trends, thus the manner in which trends change 

over time (migrate) or remain unchanged. We 

refer to this framework as the IGCV 

(Identification, Grouping, Clustering and 

Visualisation) framework. IGCV comprises 

four stages: 



1. Trend Identification: The application of 

frequent item set mining techniques to 

define and identify trends within social 

network data. 

2. Trend Grouping: The grouping, using a 

Self Organising Map (SOM) approach, of 

the large number of trends that are 

typically identified. 

3. Trend Clustering: Identification of 

“communities” of trend migrations, within 

the SOM groupings, using a hierarchical 

clustering mechanism based on the 

Newman method. 

4. Trend Visualisation: Visualisation of the 

trend migrations using a spring model to 

display, what are considered to be the 

most significant, trend migrations. 

The IGCV process is illustrated in Figure 1. 

Each of the four stages making up the 

framework is considered in further detail later 

in Sections 4, 5, 6 and 7 respectively. 

To illustrate, and evaluate, the above 

process we have used a social network 

extracted from the Cattle Tracing System 

(CTS) in operation in Great Britain. CTS 

includes a database that records cattle 

movements throughout Great Britain. By 

considering the holding areas (farms, 

markets, abattoirs, etc.) recorded in the CTS 

database as nodes, and the cattle movement 

between holding areas as the traffic (links) 

between nodes, a large scale social network 

may be derived. The derivation of this social 

network is discussed in further detail in 

Section 8 together with a discussion and 

evaluation of the operation of the IGCV 

framework with respect to this network. 

2. Related Work 

Trend mining has becoming a popular 

approach for the study of time series data so as 

to identify changes and relationships within 

the temporal patterns contained in the data. 

There are many examples of trend 

identification applications and tools in the 

literature. For example, Streibel (2008) used 

quantitative numeric financial data, and 

qualitative text corpi data extracted from 

business news articles, to forecast financial 

market trends. Google provides Google 

Trends
1
, a public web facility that supports the 

identification of trends associated with 

keyword search volume. Raza and Liyanage 

(2008) introduced a trend analysis approach to 

mine and monitor data for abnormalities and 

faults in industrial production processes. 

Somaraki et al. (2010) describe an application 

of trend mining in the field of diabetic 

retinopathy. 

 
 

Figure 1: Schematic for The IGCV Framework 

In the work described in this paper, we 

define trends in terms of the changing 

frequency of temporal patterns found in social 

network data which has been normalised into a 

set of binary valued attributes. Frequent 

patterns are sets of attributes that “frequently” 

co-occur within data according to some user 

specified frequency threshold (Agrawal et al., 

1993). Several researchers have proposed 

techniques for the mining of patterns in 

temporal data mining; this work includes the 

identification of sequential patterns (Agrawal 

and Srikant, 1995), frequent episodes 

(Mannila et al., 1997), emerging patterns 

(Dong and Li, 1999) and jumping and 

emerging patterns (Khan et al., 2010). There 

are also many established frequent pattern 

mining techniques; one of these, TFP, has 

                                                           
1
 http://www.google.com/intl/en/trends/about.html 



been extended with respect to the IGCV 

framework, so as to permit the identification 

of temporal frequent pattern trends. 

A social network is a representation of the 

link structure described by some social entity, 

and normally comprises nodes (actors) 

connected by one of more links (Wasserman 

and Faust, 2006). To analyze this structure, 

techniques have been proposed which map and 

measure the relationships and flows between 

nodes. In general social network mining can 

be applied in a static context, which ignores 

the temporal aspects of the network; or in a 

dynamic context, which takes temporal aspects 

into consideration. In the static context, we 

typically wish to: (i) find patterns that exist 

across the network, (ii) cluster (group) subsets 

of the networks, or (iii) build classifiers to 

categorize nodes and links. In the dynamic 

context, we typically wish to identify 

relationships between the nodes in the network 

by evaluating the spatio-temporal co-

occurrences of events (Lauw et al., 2005). The 

latter is thus the focus of the work described in 

this paper. There has been some related work, 

to that described in this paper, on social 

networks trend analysis. For example, Gloor et 

al. (2008) introduced a trend analysis 

algorithm to generate trends from Web 

resources. The algorithm calculated the values 

of temporal betweeness of online social 

network node and link structures to observe 

and predict trends concerning the popularity of 

concepts and topics such as brands, movies 

and politicians. There has been some work on 

the identification of trends in social networks 

in the context of online viral marketing 

(Richardson and Domingos, 2002) and stock 

market activities (Choudhury et al., 2008). 

Nevertheless, these systems tended to be 

directed at the online social network domain 

and generated trends in the static context. 

Conversely, the IGCV framework generates 

frequent patterns from unusual tabular social 

network data and collects trends from a 

sequence of time periods to identify dynamic 

changes in the data. 

The IGCV framework provides for the 

visualisation of trend changes in social 

network data using Visuset software 

(Nishikido et al., 2009) specifically developed 

for this purpose. A brief review of some 

related work on network visualisation is 

therefore also presented in this section. 

Kandogan (2001) developed a system to 

display multi-dimensional data on a two 

dimensional surface as a scatter plot. 

However, no indication is given of the inter 

relationships between data points. Visuset 

groups data into “islands”, data within an 

island is closely linked according to co-

relationship values. Visuset thus highlights the 

nature of the groupings that exist and how the 

data is correlated. Havre et al. (2002) 

described a technique for displaying thematic 

changes as river flows, so that changes of 

topics can be observed. However, unlike 

Visuset, the relationships between topics are 

not considered. Chen (2006) described a 

system to visualize a network so as to identify 

emerging trends. However, the network is 

displayed with respect to a specific time 

stamp, therefore changes in trends cannot be 

easily observed. Visuset displays trend 

transitions as an animation so as to 

demonstrate how trends change over a given 

period. Robertson et al. (2008) introduced a 

system to also show trends by animation. This 

method illustrated changes in the data in the 

form of traces, but changes are considered 

independently. In Visuset trends are correlated 

against one another so that observers can see 

how groups of trends change with time. 

3. Formalism and Definition 

The input to IGCV comprises a sequence of n 

time stamped data sets, D = {d1, d2, ..., dn}. 

Each data set comprises a binary valued table 

such that each record represents the traffic 

between a node pair in the social network of 

interest. The level of detail provided may vary 

between applications, nodes may be described 

in terms of a single attribute or a number of 

attributes. For example nodes may include 

information about the entity they represent, 

such as geographical location (for example 

post code, or easting and northing) and the 

nature of the attribute. In the case of the CTS 



application, described in more detail in Sub-

section 8.1, a number of node categories are 

identified (farms, markets, abattoirs, etc.). The 

quantity of traffic is defined in terms of a 

sequence of ranges. Additional traffic 

information may also be provided, for 

example in the case of the CTS application 

information concerning the nature of the cattle 

moved is included (breed type, gender, etc.). 

Thus, each record, in each dataset d1 to dn, 

comprises a subset of a global set of binary 

valued attributes A = {a1, a2, ..., am}. Note that 

the number of records in each dataset need not 

be constant across the collection. 

A pattern trend t is then defined in terms 

of the frequency of occurrence, over time, of 

the patterns within the input data. The trends 

are conceptualised as trend lines, one per 

pattern, representing a mapping of frequency 

of occurrence against time. 

To identify changes in trends (or lack of 

them) the number of time stamps is subdivided 

in e episodes
2
, each of equal length m, thus 

n=e x m. The size of m, and hence the number 

of episodes e, will be application dependent. 

However, with respect to the CTS application 

a granularity of one month was used and hence 

m was set at 12; consequently each episode 

represented a year (four experimental purposes 

CTS data for four episodes was obtained: 

2003, 2004, 2005 and 2006). Thus, a trend t 

comprises a set of values {v1, v2, ..., vn} where 

each value represents an occurrence count. 

The collection of trends, T, that we wish to 

analyse therefore comprises a sequence of sub-

collections {T1, T2, ..., Te} (where e is the 

number of episodes). 

4. Trend Identification 

As noted above, a trend is defined in terms of 

a sequence of occurrence counts for a given 

pattern in the input data. The patterns in this 

context are frequent item sets as popularised in 

association rule mining (Agrawal and Srikant, 

1994). More specific parallels can also be 

drawn with temporal association rule mining 

                                                           
2
 Some authors use the term epoch. 

(Harms and Deogun, 2004; Mannila et al., 

1997). To mine pattern trends an extended 

version of the TFP (Total From Partial) 

algorithm (Coenen et al., 2001; Coenen et al., 

2004) was used. TFP is an established 

frequent pattern mining algorithm 

distinguished by its use of two data structures: 

(i) a P-tree used to both encapsulate the input 

data and record a partial frequency count for 

each pattern, and (ii) a T-tree to store the 

identified patterns together with their total 

frequency counts. The T-tree is essentially a 

reverse set enumeration tree that allows fast 

look up. TFP follows an apriori style of 

operation to generate frequent items sets 

where by the antimonotone property of item 

sets is used to limit the search space. The well 

documented support framework is used, 

whereby a frequency count threshold (the 

support threshold) defines “interesting” 

patterns; typically the lower the support 

threshold the more patterns that are 

discovered. 

The TFP algorithm, in its original form, 

was not designed to address the temporal 

aspect of frequent pattern mining. For the 

purpose of the IGCV framework the TFP 

algorithm was therefore extended so that 

sequences of datasets could be processed, and 

the discovered frequent patterns stored, in a 

way that would allow for differentiation 

between individual time stamps and episodes. 

The resulting algorithm was called TM-TFP 

(Trend Mining TFP) which incorporated a 

TM-T-tree to store the desired patterns. 

Further details of the TM-TFP algorithm can 

be found in (Nohuddin et al., 2010a) and 

(Nohuddin et al., 2010b). The output from the 

TM-TFP algorithm is thus the collection of 

trends T = {T1, T2, ..., Te}. Experiments using 

a variety of network datasets (reported in 

(Nohuddin et al., 2011)) have indicated that a 

large number of trends are often identified. Of 

course, the number of patterns to be 

considered can be reduced by using a higher 

support threshold, but the established 

argument against this expedient is that 

potential interesting patterns may be missed. 

In the case of the CTS network, Table 1 

presents the number of patterns discovered 



using three different support thresholds (the 

first column gives the episode identifier). The 

large number of discovered trends was one of 

the main motivations for the IGCV 

framework, which incorporates a number of 

mechanisms to support the analysis of the 

discovered trends. These analysis mechanisms 

are discussed further in the following sections. 

Table 1: Number of trends identified using TM-

TFP for a sequence of four CTS network episodes 

and a range of support thresholds. 

Episode 

(year) 

Support Threshold 

0.5% 0.8% 1.0% 

2003 63,117 34,858 25,738 

2004 66,870 36,489 27,055 

2005 65,154 35,626 25,954 

2006 62,713 33,795 24,740 

5. Trend Grouping 

As noted in the previous section, a large 

number of trends are typically identified using 

TM-TFP. One mechanism, to support the 

desired trend analysis, incorporated into the 

IGCV framework was to group the discovered 

trends according to their distinguishing 

features. The intuition here was that end users 

were expected to be interested in particular 

types of trends, for example increasing or 

decreasing trends. To perform the grouping 

Self Organising Map (SOM) technology was 

adopted. 

SOMs, as first proposed by Kohonen 

(1995), provide a useful unsupervised 

technique whereby data can be grouped into a 

predefined i j grid so as to aid the 

interpretation of the data. SOMs have been 

utilised with respect to many applications, 

examples include: Geographic Information 

Systems (GIS) (Agrawal and Skupin, 2008), 

the exploration of document collections 

(Kohenen, 1997) and trajectory analysis 

(Schreck et al., 2009). SOMs may be viewed 

as a type of feed-forward, back propagation, 

neural network that comprises an input layer 

and an output layer (the i j grid). Each output 

node is connected to every input node. The 

SOM is “trained” using a training set. Each 

record in the training set is presented to the 

SOM in turn and the output nodes compete for 

each record. Once a record has been assigned 

to the “winning” node the network's 

weightings are adjusted to reflect the new 

position. At first the adjustments are relatively 

large, but as the training continues the 

adjustments become smaller. A feature of the 

adjustment is that adjacent nodes hold similar 

records, the greatest dissimilarity is between 

nodes at opposite corners of the grid. 

In the case of the CTS network the 

authors experimented with different 

mechanisms for training the SOM, including: 

(i) devising specific trends to be represented 

by individual nodes, (ii) generating a 

collection of all the mathematically possible 

trends and training the SOM using this set, and 

(iii) using some or all of the trends in the first 

epoch to be considered. The first required 

prior knowledge of the trend configurations of 

interest; which, it was conjectured, tended to 

defeat the objective of the trend mining 

process. The second mechanism, it was 

discovered, resulted in maps for which the 

majority of nodes were empty. The third 

option was therefore adopted; the SOM was 

trained using the trend lines associated with 

one of the episodes. The resulting proto-type 

map was then populated with data from the 

remaining e-1 episodes, to produce a sequence 

of e maps M = {M1, M2, ..., Me}. 

SOMs are often described as a 

visualisation technique. However, given a 

large and/or complex dataset, the number of 

items within each group (map node) may still 

be large. This was found to be the case with 

respect to the CTS application. One obvious 

solution is to increase the size of the grid, 

however this may result in an undesirable 

computational overhead and in many cases 

does not serve to resolve the situation as many 

of the map nodes remain empty (i.e. the items 

are consistently held in a small number of map 

nodes such that increasing the size of i and j 

has little or no effect). In the case of the CTS 

network a  node SOM was found to be 

the most effective as this gave a good 

decomposition while still ensuring 

computational tractability. 



6. Trend Migration Clustering 

The next stage in the IGCV process provides 

for further analysis of the trend data contained 

in the generated SOMs (one per episode). The 

motivation here was that, at least in the 

context of the CTS network, consultation with 

end users indicated that it would be of interest 

to know how particular trends (i.e. trends 

associated with a specific pattern) migrated 

across the collection of SOMs from a SOM 

(map)  to a SOM   (where ek and 

ek+1 are “episode stamps”). For this purpose, 

pairs of SOMs were viewed in terms of a 

second network containing potentially i j 

nodes and (i j)
2
 links (including “self links”). 

The nodes in this second network represent 

groupings of trends that display similar 

characteristics, as identified using the SOM 

analysis technique described above; nodes 

were labelled with the number of trends at the 

node in map  (i.e. the “from” map). The 

links then represented the migration of trends 

from  to  and were labelled with the 

number of migrating trends (i.e. a “traffic” 

value). The process of visualising such 

networks is discussed in the following section. 

It was also considered desirable to display 

“communities” within these networks, i.e. 

clusters of nodes which were “strongly” 

connected. A hierarchical clustering 

mechanism, founded on the Newman method 

(Newman, 2004) for identifying clusters in 

network data, was applied. Newman proceeds 

in the standard iterative manner on which 

hierarchical clustering algorithms are founded. 

The process starts with a number of clusters 

equivalent to the number of nodes. The two 

clusters (nodes) with the greatest “similarity” 

are then combined to form a merged cluster. 

The process continues until a “best” cluster 

configuration is arrived at or all nodes are 

merged into a single cluster. The overall 

process is typically conceptualised in the form 

of a dendrogram. Best similarity is defined in 

terms of the Q-value, this is a “modularity” 

value which is calculated as follows: 

Qi =  

where Qi is the Q-value associated with the 

current cluster i, n is the total number of nodes 

in the network, cii is the fraction of intra-

cluster (within cluster) links in cluster i over 

the total number of links in the network, and 

 is the fraction of links that end in the nodes 

in cluster i if the edges were attached at 

random. The value ai is calculated as follows: 

ai =  

where cij is the fraction of inter-cluster links, 

between the current cluster i and the cluster j, 

over the total number of links in the network.  

Thus, at each iteration, the Q-values for 

all possible cluster pairings are calculated and 

the pairing with the highest Q-value selected 

for merging. The process proceeds until a best 

cluster configuration is achieved. This is 

defined as the configuration with the highest 

overall Q-value. Generally speaking, if the Q-

value is above 0.3 then communities can be 

said to exist within the target network; the 

value of 0.3 was derived experimentally by 

Newman and Girvan (2004). Note that if all 

nodes are placed in one group the Q-value will 

be 0.0 (i.e. a very poor clustering). 

6.1 Worked Example of Hierarchical 

Clustering Using Newman 

Considering the example network presented in 

Figure 2, the Q value for this network at the 

start of the process, when each vertex is 

considered to represent a group, is (using data 

from Table 2): 

Q = -0.01- 0.01- 0.04 - 0.01 = -0.07 

Table 2: Start Condition 

i cii ai  Q 

A 0 0.1 0.01 -0.01 

B 0 0.1 0.01 -0.01 

C 0 0.2 0.04 -0.04 

D 0 0.1 0.01 -0.01 

We then have six potential joins AB, AC, 

AD, BC, BD and CD; giving rise to six 

potential configurations. Calculating the Q-

value for each configuration (Table 3) gives a 

best Q-value of 0.04, this therefore represents 



the first join and we have the configuration 

{AB, C, D}. 

For the next join, there are three possible 

configurations: {ABC, D}, {ABD, C} and 

{AB, CD}. Calculating the Q-value for each of 

these configurations (Table 3) gives a best Q-

value of 0.28, so this is the second join and we 

have the configuration {AB, CD}. 

For the third iteration, we combine all the 

vertices and get a Q-value of 0.0. The 

discovered maximal value for Q is then 0.28 

and hence the configuration associated with 

this value, {AB, CD}, is selected as the best 

grouping (clustering). The dendrogram for the 

example is given in Figure 3. The identified 

clustering (communities) are then displayed as 

“islands” in the following stage in the IGCV 

framework. This will be described in the 

following section. 

 
 

Figure 2: Four Node Example Network 

 
Figure 3: Dendrogram for Hierarchical 

Clustering Example (Note: the heights of the 

dendrogram “branches” are not significant) 

7. Trend Visualisation and Animation using 

Visuset 

IGCV provides two forms of visualisation 

which are integrated into a single software 

system called Visuset: 

1. Visualisation of trend migration between 

two successive SOMs. 

2. Animation of the trend migration between 

three successive SOMs. 

In each case the visualisation (animation) 

includes the trend migration communities 

discovered, using Newman, as described 

above. The communities are depicted as 

“islands” demarcated by a “shoreline” (for 

aesthetic purposes the islands are also 

contoured, although no meaning should be 

attached to these contours). The visualisation 

process is described in Sub-section 7.1, and 

the animation in Sub-section 7.2, below. 

Table 3: First Iteration

Groups Internal Links  

1 2 3 c11 c22 c33 a1 a2 a3    Q 

AB C D 0.4 0 0 0.4 0.4 0.2 0.16 0.16 0.04 0.04 

AC B D 0 0 0 0.6 0.2 0.2 0.36 0.04 0.04 -0.44 

AD B C 0 0 0 0.4 0.2 0.4 0.16 0.04 0.16 -0.36 

BC A D 0 0.2 0 0.6 0.2 0.2 0.36 0.04 0.04 -0.24 

BD A C 0 0 0 0.4 0.2 0.4 0.16 0.04 0.16 -0.36 

CD A B 0 0.4 0 0.6 0.2 0.2 0.36 0.04 0.04 -0.04 

Table 4: Second Iteration 

Groups Internal Links  

1 2 C11 C22 a1 a2 a1
2
 a2

2
 Q 

ABC D 0.6 0 0.8 0.2 0.64 0.04 -0.08 

ABD C 0.4 0 0.6 0.4 0.36 0.16 -0.12 

AB CD 0.4 0.4 0.4 0.6 0.16 0.36 0.28 



7.1 Visualisation of Trend Migration 

For the visualisation, Visuset locates nodes in 

a 2-D “drawing area” using the Spring Model 

(Sugiyama and Misue, 1995). The spring 

model for drawing graphs in 2-D space is 

designed to locate nodes in the space in a 

manner that is both aesthetically pleasing and 

limits the number of edges that cross over one 

another. The graph to be depicted is 

conceptualised in terms of a physical system 

where the edges represent springs and the 

nodes inanimate objects connected by springs. 

Nodes connected by “strong springs” therefore 

attract one another while nodes connected by 

“weak springs” repulse one another. The 

graphs are drawn following an iterative 

process. Nodes are initially located within the 

2D space using some set of (random) default 

locations (usually defined in terms of an x and 

y coordinate system) and, as the process 

proceeds, pairs of nodes connected by strong 

springs are “pulled” together. In the context of 

IGCV the spring value was defined in terms of 

a correlation coefficient (C): 

Cij =  

where Cij is the correlation coefficient between 

a node i in SOM  and a node j in SOM 

 (note that i and j can represent the same 

node but in two different maps), X is the 

number of trends that have moved from node i 

to j and  ) is the number of 

trends at node i (j) in SOM  ). A 

migration is considered “interesting”, and thus 

highlighted by Visuset, if C is above a 

specified minimum relationship threshold 

(Min-Rel). With respect to the CTS network 

we have discovered that a threshold of 0.2 is a 

good working Min-Rel value; although 

Visuset does allow users to specify, and 

experiment with, whatever Min-Rel value they 

like. The Min-Rel value is also used to prune 

links and nodes; any link whose C-value is 

below the Min-Rel value is not depicted in the 

visualisation, similarly any node that has no 

links with a C-value above Min-Rel is not 

depicted. 

The Visuset spring model algorithm (a 

simplified version) proceeds as follows: 

Set drawing area size constants, SIZEX and 

SIZEY. 

1. For all pair of nodes, allocate an ideal 

distance, IDISTij, where i and j are node 

numbers. In the current implementation: 

if a pair has a link, the distance is set as 

200 pixels; otherwise it is set to 500 

pixels. 

2. Set initial coordinates for all nodes. All 

nodes are “queued” in sequence, 

according to their node number, from the 

top-left of the drawing area to the 

bottom-right. 

3. For all node pairs determine the actual 

pixel distance RDISTij (where i and j are 

node numbers).  

4. For all nodes, recalculate the coordinates 

using equations 4 and 5 where:  

( ) is the x (y) coordinate of Nodei, 

n is the number of nodes to be depicted, 

K is the spring constant, and dxij (dyij) is 

the absolute value of  -  

(  - ). 

5. If dxij + dyij is below a specified 

threshold (in terms of a number of 

pixels), or if some maximal number of 

iterations is reached, exit. 

6. Go to Step 4. 

 

 

For the current version of Visuset SIZEX 

= 1280 pixels and SIZEY = 880 pixels, and the 

spring constant was set to 0.2. It should also 

be noted that the selected values for the ideal 

distances, spring constant K, are related to the 

values chosen for SIZEX and SIZEY and the 

number of nodes and links in the system to be 

visualised. The stopping threshold can be set 

at any value, but from experimentation we 



have found that the number of nodes (as a 

pixel value) provides good operational results. 

Using Visuset it is also possible to disable the 

spring model so that the user can manually 

position nodes (and, if applicable, also change 

the size of individual islands at the same time). 

Further details concerning the background and 

development of Visuset can be found in 

(Nishikido et al., 2009). 

In the current implementation of Visuset 

nodes are depicted as: single nodes (i.e. self 

links where the “migration” is from and to the 

same node), node pairs linked by an edge, 

chains of nodes linked by a sequence of edges, 

or more complex sub-graphs (islands). The 

size (diameter) of the nodes indicates the 

number of elements represented by that node 

in  (the size of nodes at  could 

equally well have been used, or some 

interpolation between  and ). 

7.2 Animation of Trend Migration 

The animation mechanism, provided by 

Visuset, can be applied to pairs of 

visualisations (as described above) to illustrate 

the migration of trends over three episodes 

(SOMs). We refer to each visualisation as a 

mapping of the nodes in a SOM  to a 

SOM . At the start of an animation the 

display will be identical to the first 

visualisation (Map 1) and will move to a 

configuration similar to the second 

visualisation (Map 2), although nodes will not 

necessarily be in the same display location. 

Thus the animations show how subsequent 

mappings change and consequently how the 

trend “communities” change. As the animation 

progresses the correlation coefficient (C-

values) are linearly incremented or 

decremented from the value for the first map 

to that of the second map. Thus, as the 

animation progresses, the links, nature of the 

islands, and overall number of nodes will 

change. For example if the correlation 

coefficient for a node in Map 1 is 0.3 and in 

Map 2 is 0.1 (assuming a threshold of 0.2) the 

node will “disappear” half way through the 

animation. Alternatively, if the correlation 

coefficient for a node in Map 1 is 0.1 and in 

Map 2 is 0.5 (again assuming a threshold of 

0.2) the node will “appear” a quarter of the 

way through the animation. Nodes that 

disappear and appear are highlighted in white 

and pink respectively (nodes that persist are 

coloured yellow). 

7.3 Worked Example of C-value Calculation 

 
Figure 4: Three Node Example network 

showing Trend Migrations from T1 to T2 

Figure 4 shows the migration of trends 

through a three node network. The left hand 

network shows the state at time one (T1) and 

the right hand network at time two (T2). The 

nodes in each case are labelled with the 

number of trends held at the node at these 

times. The middle network (in Figure 4) 

shows the number of trends that have migrated 

to and from the nodes in the network from 

time T1 to time T2. Table 5 summarises this 

migration. The calculation of the C-values 

(correlation coefficients) for this network is 

given in Table 6. If we use a Min-Rel 

threshold of 0.2 (as advocated by our 

experiments) five of the migrations remain, as 

illustrated in Figure 5 (in the figure the arcs 

are labeled with the relevant C-values). 

Table 5: Trend Migration Summary for 

Example Network Given in Figure 4 
T2 

Node 

ID 

T1 Node ID 
Total 

1 2 3 

1 4 2 2 8 

2 0 6 4 10 

3 1 2 9 12 

Total 5 10 15 30 



 
Figure 5: Three Node Example Network with Irrelevant links removed 

Table 6: C-Value calculation for Example Network given in Figure 4 

T2 

Node 

ID 

T 

Node ID 

Trends 

at T1 

(P) 

Trends 

at T2 

(Q) 

Trends 

Moved 

(X) 
  

X 

 

 

1 1 5 8 4 40 6.32456 0.63246 

1 2 5 10 0 50 7.07107 0 

1 3 5 12 1 60 7.74597 0.1291 

2 1 10 8 2 80 8.94427 0.22361 

2 2 10 10 6 100 10.00000 0.60000 

2 3 10 12 2 120 10.95445 0.18257 

3 1 15 8 2 120 10.95445 0.18257 

3 2 15 10 4 150 12.24745 0.3266 

3 3 15 12 9 180 13.41641 0.67082 

8. Demonstration 

Although the ICGV framework can be applied 

to social network data in general this section 

will demonstrate the operation of IGCV using 

the CTS network introduced earlier. Some 

further detail concerning the CTS network is 

first presented in Sub-section 8.1. Then, in the 

following sections, the operation of IGCV is 

illustrated in terms of its four component 

stages as described in the foregoing. 

8.1 Cattle Movement Database 

The Cattle Tracing System (CTS) in operation 

in Great Britain records all the movements of 

cattle registered within or imported into Great 

Britain. The database is maintained by the 

Department for Environment, Food and Rural 

Affairs (DEFRA). Cattle movements can be 

“one-off” movements to final destinations, or 

movements between intermediate locations. 

Movement types include: (i) cattle imports, (ii) 

movements between locations, (iii) 

movements in terms of births and (iv) 

movements in terms of deaths. The CTS was 

introduced in September 1998, and updated in 

2001 to support disease control activities. 

Currently the CTS database holds some 155 

Gbytes of data. 

The CTS database comprises a number of 

tables, the most significant of which are the 

animal, location and movement tables. For the 

demonstration reported in this section the data 

from 2003 to 2006 was extracted to make up 4 

episodes (2003, 2004, 2005 and 2006) each 

comprising 12 (one month) time stamps. The 

data was stored in a single data warehouse 

such that each record represented a single 

cattle movement instance associated with a 

particular year (episode) and month (time 

stamp). The number of CTS records 

represented in each data episode was about 

400,000. Each record in the warehouse 

comprised: (i) a time stamp (month and year), 

(ii) the number of cattle moved, (iii) the breed, 

(iv) the sender's location in terms of easting 



and northing grid values, (v) the “type” of the 

sender's location, (vi) the receiver's location in 

terms of easting and northing grid values, and 

(vii) the “type” of the receiver's location. If 

two different breeds of cattle were moved at 

the same time from the same sender location 

to the same receiver location this would 

generate two records in the warehouse. The 

maximum number of cattle moved (link value) 

between any pair of locations for a single time 

stamp was approximately 40 animals. Sender 

location eastings and northings were grouped 

into grid squares measuring 100km per 

location area. The sequence of cattle 

movement networks extracted from the CTS 

data thus comprised, on average, some 

150,000 nodes and 300,000 links per network. 

8.2 Cattle Movement Trend Mining 

IGCV commences with the identification of 

trends using the TM-TFP algorithm. For 

experimental purposes three support threshold 

values of 0.5%, 0.8% and 1% were used. 

Some examples of the nature of the frequent 

patterns discovered, in the context of the CTS 

social network, are presented in Table 7. 

Using a support threshold of 0.5%, the number 

of identified trends discovered over the four 

episodes (2003, 2004, 2005 and 2006) were 

63117, 66870, 65154 and 62713. For example: 

node 34 describes trends where the number of 

cattle movements increases slightly in March, 

June and October; nodes 44 and 54 both 

describe trends where the number of cattle 

movements is considerably higher in spring 

and autumn; and so on.  

The analysis of the prototype map 

indicates, as might be expected, that 

hierarchies of patterns, comprising collections 

of sub-sets of a “parent” pattern, tend to 

appear in the same clusters. Recall also that 

the proximity between SOM nodes indicates 

the similarity between them; the greatest 

dissimilarity is thus between nodes at opposite 

ends of the diagonals. Once the initial 

prototype map had been generated a sequence 

of trend line maps was produced, one for each 

episode. Figure 7 gives the map for the 2003 

trend lines. Note that in Figures 7 and 8 each 

node has been annotated with the number of 

trends in the “cluster”, and that nodes with 

“darker” trend lines indicate a greater number 

of lines within that cluster.        

 

Table 7: Example trend patterns obtained from the 2003 CTS data episode 
Pattern Trends 

{2 year old  Animal Age  5 year old,  Breed = 

Friesian, Breed Type = dairy, Receiver Location 

Type = Slaughter House (Red Meat)} 

{2765, 2211, 2562, 3279, 0, 1307, 2004, 1906, 

2593, 3315, 3391, 3152} 

{Gender = female, 2 year old  Animal Age  5 

year old, Breed = Friesian, Breed Type = dairy, 

Receiver Location Type = Slaughter House (Red 

Meat)} 

{2741, 2193, 2541, 3251, 0, 1295, 1995, 1896, 

2581, 3299, 3384, 3145} 

{Gender = female, Breed = Simmental Cross, 

Breed Type = beef and dairy, Receiver Location 

Type = Slaughter House (Red Meat)} 

{4050, 3322, 3175, 3690, 2777, 2722, 2972, 

2494, 3082, 3823, 3951, 3717} 

{Breed Type = beef, Sender Area = 13, easting 

(200001-300000) and northing (100001-200000), 

Receiver Location Type = Slaughter House (Red 

Meat)} 

{1786, 1593, 1553, 1736, 1410, 1291, 1541, 

1369, 1839, 2000, 1772, 1694} 

{Animal Age  1 year old, Breed Type = beef, 

Sender Area = 14, easting (300001-400000) and 

northing (100001-200000), Receiver Location 

Type = Agricultural Holding, Number Cattle 

Moved  5} 

{2098, 1925, 2854, 3051, 3364, 2705, 2793, 

2469, 3018, 3189, 3031, 2336} 



 
Figure 6: CTS prototype map generated using 2003 episode} 

 

8.4 Cattle Movement Trend Migration 

Visualisation and Animation 

Using the IGCV framework, once we have 

generated a sequence of SOM maps, we can 

perform some analysis. With respect to the 

CTS application we were particularly 

interested in how trends change with time 

(from one episode to the next). If we consider 

the maps for episode 2003 and 2004, presented 

in Figures 7 and 8 respectively, we wish to 

determine how trends move from one map to 

another; we are also interested in identifying 

“communities” of migrating trends. Using 

Visuset we can generate “plots” of the form 

shown in Figures 9 and 10. Figure 9 shows the 

migration of trends from episode 2003 to 

episode 2004, while Figure 10 shows the 

migration of trends from 2004 to 2005. In both 

cases the Min-Rel threshold was set to 0.2 

 

Figure 7: CTS Map for 2003 episode 



Figure 8: CTS Map for 2004 episode 

Inspection of Figure 9 shows that the plot 

displays 45 nodes out of a total of 100, thus 

only 45 nodes included links with a C-value 

greater than 0.2 (and are therefore deemed 

interesting). The circular pattern in which the 

nodes are arranged on completion of the 

spring model algorithm is typical of the 

display produced (initially all nodes are placed 

along a diagonal). Several islands are 

displayed, determined using the Newman 

method described above, including a large 

island comprising eight nodes. The nodes are 

annotated with an identifier (the “from” SOM 

node number) and the arcs with their C-value 

number. From the map we can see that there 

are a relatively large number, 30 in all, of self-

links; excluding self-links there are only 18 

links indicating that, with respect to the 2003 

and 2004 episodes, the trends are fairly 

constant. However, we can deduce that (for 

example) trends are migrating from node 34 to 

node 44, and from node 44 to 54. From Figure 

6, we can observe that the nodes hold a fairly 

similar shape of trend line which has 

consistent numbers of cattle movement 

throughout the 12 month time stamps. 

Figure 9: Visuset visualisation (map) 

indicating movement of trends from episode 

2003 to episode 2004 

Figure 10: Visuset visualisatipon (map) 

indicating movement of trends from episode 

2004 to episode 2005 



Figure 10 shows the migration of trends 

from episode 2004 to episode 2005. 

Comparing this map with the previous, 2003-

2004, map we can see that more “islands” 

have appeared indicating more trend migration 

communities. We can, for example, notice that 

whereas between 2003 and 2004 trends were 

migrating from node 44 to 54, in 2004 to 2005 

there was no such migration. To give one 

more example, in 2003 and 2004 trends 

migrated from node 31 to 21, and then in 2004 

to 2005 they moved back from node 21 to 31. 

We can also note that node 34 is not displayed 

in the 2004-2005 map because the C-values 

for its associated links are all below the Min-

Rel threshold value of 0.2 (in the 2003-2004 

map the C-value displayed for node 34 was 

only 0.2 so this is not surprising). When the 

animation provided with Visuset is run 

(although this cannot be illustrated here) we 

can see that node 34 disappears half way 

through the animation, thus indicating that the 

C-value is about 1.9. 

9. Conclusion 

The IGCV trend mining framework has been 

described. The framework comprises four 

distinct stages: Identification, Grouping, 

Clustering and Visualisation. During the 

identification stage trends are identified and 

extracted. To facilitate interpretation, during 

the grouping stage trends that display similar 

features are collected together. To further 

facilitate interpretation, during the clustering 

stage, the migration of trends is considered 

and “communities” of trend migrations 

identified. These trend migrations are then 

presented, using visualisation software 

(Visuset), in the final visualisation stage. 

Detail concerning each of these four stages has 

been presented. The single most significant 

contribution of the paper is the visualisation 

mechanism and its associate techniques. The 

operation of the framework was illustrated 

using a sequence of networks extracted from 

the Cattle Tracking System (CTS) in operation 

in Great Britain. However, although the 

framework is directed at the identification, 

extraction and analysis of trends in social 

networks, it could equally well be applied to 

other forms of temporal data such as 

temporally stamped graph data or longitudinal 

data.  
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