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Abstract. Techniques for identifying “banded patterns” in n-Dimensional (n-D)
zero-one data, so called Banded Pattern Mining (BPM), are considered. Previous
work directed at BPM has been in the context of 2-D data sets; the algorithms
typically operated by considering permutations which meant that extension to
n-D could not be easily realised. In the work presented in this paper banding is
directed at the n-D context. Instead of considering large numbers of permutations
the novel approach advocated in this paper is to determine banding scores asso-
ciated with individual indexes in individual dimensions which can then be used
to rearrange the indexes to achieve a “best” banding. Two variations of this ap-
proach are considered, an approximate approach (which provides for efficiency
gains) and an exact approach.
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1 Introduction

The work presented in this paper is concerned with techniques for identifying “banded
patterns” in n-Dimensional (n-D) binary valued data sets, data sets which comprise
only ones and zeroes. For ease of understanding, in this paper, the presence of a one is
conceptualised as a “dot” (a sphere in 3-D and a hypersphere in n-D, although the term
dot will be used regardless of the number of dimensions considered). The presence of a
zero is then indicated by the absence of a “dot”. The objective is to rearrange the indexes
in the individual dimensions so that the dots are arranged along the leading diagonal of
the matrix representing the data, or as close to the leading diagonal as possible.

Binary valued data occurs frequently in many real world application domains, ex-
amples include bioinformatics (gene mapping and probe mapping) [6, 16, 27], informa-
tion retrieval [10] and paleontology (sites and species occurrences) [7, 18]. The advan-
tages offered by banding data are fourfold:

1. The resulting banding may be of interest in its own right in that it tells us something
about the data; for example it shows us groupings (clusterings) of records that co-
occur.

2. Following on from (1) banding may enhance our interpretability of the data; pro-
viding insights that were not clear before.

3. It also allows for the visualisation of the data, which may enhance our understand-
ing of the data.
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4. It serves to compress the data, which may consequently enhance the operation of
algorithms that work with zero-one data.

The banding of zero-one data in 2-D has a long history; however the idea of Banded
Pattern Mining (BPM), as conceived of in this paper, was first proposed in [24, 26] (see
also [3, 20, 21]). This early work on BPM was focussed on the heuristically controlled
generation and testing of permutations. The generation of permutations is known to be
an NP-complete problem, thus the algorithms presented in [24] and [26] were not eas-
ily scalable, hence they were directed at 2-D data. The work presented in this paper is
directed at finding bandings in n-Dimensional (n-D) data using the concept of band-
ing scores, an idea first presented in [1, 2]. More specifically using a BPM algorithm
that uses the banding score concept to assign banding scores to individual indexes in
individual dimensions, and reordering the index dimensions accordingly. Two varia-
tions of this algorithm are considered, exact and approximate, founded on preliminary
work presented in [4, 5]. An overall measure of the quality of a banding featured in a
given dataset can then be obtained by combining and normalising the individual band-
ing scores to give a Global Banding Score (GBS).

The rest of this paper is structured as follows. Section 2 presents a brief background
review of some relevant work. Section 3 then gives the BPM formalism. Section 4
presents the proposed banding score calculation mechanism, while Section 5 presents
the BPM algorithms that utilise the proposed approximate and exact banding score
mechanisms. The evaluation of the proposed approaches is presented in Section 6. The
paper is concluded in Section 7 with a review of the main findings.

2 Related Work

The work presented in this paper is directed at effective banding mechanisms that oper-
ate with n-D zero-one data sets. Example applications include: network analysis [19],
co-occurrence analysis [18], VLSI chip design [22] and graph drawing [28]. In the case
of network analysis the objective is typically community detection. To apply banding
the network of interest needs to be represented in the form of an adjacency matrix. By
rearranging the rows and columns of the adjacency matrix a banding can be obtained
that features groupings of nodes which in turn will be indicative of communities. A
specific example can be found in [19] where an American football network data set
was used; the communities of interest were teams that frequently played each other. In
co-occurrence analysis the aims is the identification of entities that co-occur. A specific
example can be found in [18] where a paleontological application was considered; here
the aim was to match up Neolithic sites with fossil types. The application of banding
in the context of VLSI chip design is concerned with the “block alignment problem”,
where banding allows for the identification of “channels ” between the circuit compo-
nent blocks [22]. In the case of graph drawing we wish to minimise the number of “edge
cross overs”, this can also be identified using the banding concept [28].

The concept of banded data has its origins in numerical analysis [8] where it has
been used in the context of the resolution of linear equations. The banding concept
is also related to the domain of reorderable matrixes, reorderable patterns and band-



Multi-Dimensional Banded Pattern Mining 3

width minimisation. Reorderable matrices are concerned with mechanisms for visualis-
ing (typically) 2-D tabular data so as to achieve a better understanding of the data [11,
12]. The idea of reorderable matrices dates back to the 19th century when Petrie, an En-
glish Egyptologist, applied a manual reordering technique to study archaeological data
[23, 25]. Since then a number of reordering methods have been proposed with respect to
a variety of applications. Of note with respect to the work presented in this paper is the
BC algorithm [24] which was originally proposed to support graph drawing. The BC
algorithm is directed at 2-D data and operates by finding permutations for both rows
and columns, such that non-zero entries are as close to each other as possible using
a barycentric measure describing the average position of dots in a given column/row.
The significance of the BC algorithm with respect to this paper is that it is used as a
comparator algorithm with which to evaluate the banding techniques presented.

Reorderable patterns are akin to reorderable matrices, however the idea is to reorder
columns and rows so as to reveals some (hidden) pattern of interests [9, 17], as opposed
to providing a means of facilitating data visualisation. As such the motivation for re-
orderable patterns can be argued to be the same as that for BPM; the distinction is that
the idea of reorderable patterns is concerned with any pre-prescribed pattern P that can
be revealed by reordering the columns and rows in a 2-D matrix not just banding (it
is also not necessarily directed at zero-one data). This can be viewed as a generalisa-
tion of the BPM problem in the sense that the patterns we are looking for in BPM are
comprised of dots arranged about the leading diagonal. P in this case would be the lo-
cations about the leading diagonal up to a certain distance away, however in the context
of the domain of reorderable patterns P can be any shape. The challenge of reorderable
patterns is finding a permutation by which the pattern P is revealed.

Bandwidth minimisation [14], [15] is concerned with the process of minimizing the
bandwidth of the non-zero entries of a sparse 2-D matrix by permuting (reordering)
its rows and columns such that the non-zero entries form a narrow “band ” that is as
close as possible to the leading diagonal. Bandwidth minimisation is clearly also akin
to the BPM. The distinction is that bandwidth minimisation is directed at the specific
objective of minimising bandwidth to aid further processing of (typically) 2-D matrices,
while BPM is directed at data analysis (a by-product of which happens to be bandwidth
minimisation and also visualisation).

There has been some limited previous work directed at Banded Pattern Mining
(BPM) as conceived of in this paper where BPM is defined as the identification of
hidden bandings in zero-one data sets. Of particular note in this context is the work of
Gemma et al. [19] who proposed the Minimum Banded Augmentation (MBA) algo-
rithm. The algorithm considers a series of column permutations to produce a number
of permuted matrices (ordered matrices). Each column permutation is considered to be
fixed whilst row permutations are conducted and evaluated. Two variations of the MBA
algorithms have been proposed [19]; the Minimum Banded Augmentation Fixed Per-
mutation (MBAFP ) algorithm and the Minimum Banded Augmentation Bi-directional
Fixed Permutation (MBABFP ) algorithm. Both algorithms featured the joint disadvan-
tages of: (i) being computationally expensive; and, as consequence and (ii) of being only
applicable to 2-D data. The significance of the MBAFP and MBABFP algorithms, with
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respect to the work presented in this paper, is that they were also used to compare the
operation of the considered BPM algorithms.

3 BPM Formalism

The data spaces of interest comprise a set of dimensions DIM , where DIM = {Dim1,
. . . , Dimn}. The dimensions are not necessarily of equal size, and each dimension Dimi

comprises a sequence of k index values {ei1 , . . . , eik}. In 2-D we can conceive of the
dimensions as being columns and rows, and in 3-D as columns, rows and slices. Each
location may contain zero, one or more dots. The precise distribution of the dots de-
pends on the nature of the application domain. Each dot (hyper-sphere in n-D space)
will be represented by a set of coordinates: 〈c1, . . . , cn〉. The challenge is then to re-
arrange the indexes in the dimensions so that the dots are arranged along the leading
diagonal (or as close to it as possible) taking into consideration that individual locations
may hold multiple dots.

Fig. 1. 2-D multiple dots configuration featuring a banding

4 Calculation of banding Scores

The fundamental idea underpinning the BPM algorithms considered in this paper is the
concept of a banding score [1]. The idea is that given a dimension Dimi = {ei1 , . . . , eik}
we can calculate a weighting for each index eij ∈ Dimi according to the dots that fea-
ture at that index. To do this we sum the distances of the dots to the origin of a modified
data space defined by DIM ′ where DIM ′ is the set of dimensions in Dimi excluding
the current dimension to be rearranged. Thus if DIM = {Dim1, Dim2, Dim3, Dim4}
and we wish to rearrange the indexes in Dim2 then DIM ′ = {Dim1, Dim3, Dim4}.
In the case of a 2-D space, where DIM = {Dimx, Dimy}, this would mean calculat-
ing the banding sores for Dimx with respect to Dimy , and for Dimy with respect to
Dimx, which would mean simply summing the y (x) index values and normalising by
the maximum indexes taking into account the potential for multiple dots. Given a 2-D
space DIM = {Dimi, Dimj} the banding score for index p in dimension i, bsip , will be
calculated as shown in Equation 1.
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bsip =

∑i=|Index|
i=1 indexi ∈ Index×mi ∈M∑i=|Index|

i=1 (kj − i+ 1)×mi ∈M ′
(1)

where: (i) Index = {index1, index2, . . . , indexk} is a list of Dimj indexes for dots
that feature index p in Dimi; (ii) M = {m1,m2, . . . ,mk} is a list of the number of
dots at each location corresponding to list I; (iii) M ′ is a list similar to M but arranged
in descending order according to the number of dots at each location; and (iv) kj is the
size of Dimj . Referring to the example given in Figure 1 the list I for the first column
will be {1, 2} (note that the index numbering starts from 1, not 0), the associated list M
will be {2, 1} and the list M ′ will also be {2, 1}. Thus:

bsx1 =
(1× 2) + (2× 1)

(4× 2) + (3× 1)
=

4

11
= 0.363

Following on from this bsx2
= 0.692, bsx3

= 0.909 and bsx4
= 1.000. The same scores

would be obtained for the y dimension in Figure 1 because the banding is symmetrical
about the leading diagonal. The idea is then to reveal a “best” banding by arranging
the indexes, in ascending order from the origin, according to their associated banding
scores.

Translating the above to address n-D data, banding scores would be calculated as
shown in Equation 2 where: (i) C a list of locations in the modified data space (data
space of size n − 1 where n = |DIM |); (ii) Max is a list of maximum distances,
arranged in descending order such that |Max| = |C|; and (iii) M and M ′ are defined
in the same manner as before. The function dist() returns a distance to the origin of
the modified data space from the location of its argument expressed as a set of coor-
dinates of the form 〈c1, c2, . . . , cn−1〉 (n − 1 because the modified data space has one
dimension less than the original data space). Distance can be determined in a number of
manners but two obvious alternatives are Euclidean distance and Manhattan distance.
The derivation of the set Max is not as straightforward as it first seems and is therefore
discussed in further detail in Sub-section 5.1. Using Equation 2, banding scores can
be calculated for each dimension and used to iteratively rearrange the indexes in the
individual dimensions to reveal a banding.

bsip =

∑i=|C|
i=1 dist(ci ∈ C)×mi ∈M∑i=|Max|

i=1 (maxi ∈Max)×mi ∈M ′
(2)

The banding score concept can also be used to calculate a Global Banding Score
(GBS) for an entire banding configuration using Equation 3 where GBSi is the the
GBS for dimension i (Dimi).

GBS =

∑i=|DIM |
i=1 GBSi

|DIM |
(3)

The value for GBSi is then calculated using Equation 4. Note that each banding is
weighted according to its index location as we wish the diagonal around which our dots
are arranged to be from the origin of the data space of interest. This means we have to
normalise using ki(ki+1)

2 .
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GBSi =

∑p=ki

p=1 bsip × (ki − p+ 1)
ki(ki+1)

2

(4)

Thus, returning to the configuration given in Figure 1, using Equation 4, the value
for GBSx will be calculated as follow:

(0.363× 4) + (0.692× 3) + (0.909× 2) + (1.000× 1)
4(5)
2

=

1.452 + 2.076 + 1.812 + 1.000

10
= 0.634

The configuration is symmetrical about the leading diagonal, thus GBSy will also equal
0.634. The GBS for the entire configuration will then, using Equation 3, be:

0.634 + 0.634

2
= 0.634

Note that, with reference to Equation 4, if every cell in a given data space holds
exactly the same number of one or more dots, thus no banding at all, the GBSi for each
dimension i will be 1 and the GBS will also be 1. Thus we wish to minimise the GBS
value for a configuration to arrive at a best banding. (If the data space contains no dots
at all GBS will be 0.).

5 Banded Pattern Mining

The banding score concept, as described above, can be incorporated in BPM algorithms
in various ways. Two are presented in this section, Approximate BPM (ABPM) and
Exact BPM (EBPM). The first, as the name suggests, produces an approximate (but
arguably acceptable) banding while the second, again as the name suggests, produces
an exact banding; the advantage of the first is that it is more efficient. At a high level
both algorithms work in a similar manner as shown in Algorithm 1. The inputs (lines
1 to 2) are: (i) a dot data set D, comprising a set of tuples of the form 〈c1, c2, . . . 〉,
describing the location of each dot in the data space; and (ii) the set of dimensions
DIM = {Dim1, Dim2, . . . , Dimn} associated with D. The output is a rearranged data
set D that minimises the GBS value. The algorithm iteratively loops over the data
space. On each iteration the algorithm rearranges the indexes in the set of dimensions
DIM , using the banding score concept, to produce a revised set of dimensions DIM ′

(line 6). This revised set of dimensions is then used to rearrange D to give D′ (line 7). A
new GBS is then calculated (using Equations 3 and 4). Then, if the new GBS (GBSnew)
is worse than the current GBS (GBSsofar).The algorithm exits with the previously
stored configuration and GBS. Otherwise D, DIM and the value for GBSsofar are
updated (lines 12 to 14) and the algorithm repeats.

The ABPM variation of the BPM algorithm considers pairings of dimensions, cal-
culating banding scores using Equation 1. The advantage, over the EBPM variation, is
that the banding score calculation is much more efficient than when calculated using
Equation 2. For the ABPM variation, lines 6 to 8 in Algorithm 1 are replaced with the
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Algorithm 1 Generic BPM Algorithm
1: Input: D = Zero-one data matrix subscribing to DIM ,
2: DIM = {Dim1, Dim2, . . . , Dimn}
3: Output: Rearranged data space D that minimise GBS
4: GBSsofar = 1.0
5: loop
6: DIM ′ = The set of dimensions Dim rearranged using either approximate or exact BPM
7: D′ = The data set D rearranged according to DIM ′

8: GBSnew = The GBS for D′ calculated using Equations 3 and 4
9: if (GBSnew ≥ GBSsofar) then

10: break
11: else
12: D = D′

13: DIM = DIM ′

14: GBSsofar = GBSnew

15: end if
16: end loop
17: Exit with D and GBS

Algorithm 2 The ABPM Variation
1: for i = 1 to i = |DIM | − 1 do
2: for j = i+ 1 to j = |DIM | and j 6= i do
3: for p = 1 to p = |Ki| do
4: bsijp = Banding score for index p in Dimi calculated w.r.t. Dimj using

Equation 1
5: end for
6: DIM ′ = Dimi rearranged according to bsij values
7: D′ = D rearranged according to DIM ′i
8: end for
9: end for

pseudo code given in Algorithm 2. With reference to Algorithm 2, ABPM operates by
considering all possible dimension pairings ij. For each pairing the banding score bsijp
for each index p in dimension Dimi is calculated with respect to Dimj (line 4). The cal-
culated banding score values are then used to rearrange the indexes in dimension Dimi

(line 6) and consequently the data space D (line 8).

For the EBPM variation lines 6 to 7 in Algorithm 1 are replaced with the pseudo
code given in Algorithm 3. As in the case of the ABPM variation, the EBPM algorithm
iteratively loops over the data space calculating banding scores for each index p in each
dimension Dimi. For each dimension, the bsip values are used to rearrange the indexes
in the dimension (line 6 in Algorithm 1) which is then used to reconfigure D. Inspection
of Algorithm 1 indicates that Equation 2 is called repeatedly and on each occasion a set
Max will be generated. It therefore makes sense to generate a collection of Max sets
in advance and store these in a Maximum set Table (an M-Table). Each row in this table
will represent one of the n dimensions to be rearranged. The length of each row will be
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equivalent to the largest number of dots associated with a single index in the dimension
associated with the row.

Algorithm 3 The EBPM Variation
1: for i = 1 to i = |DIM | do
2: for p = 1 to p = ki do
3: bsip = Banding score for index p in Dimi calculated using Equation 2
4: end for
5: DIM ′ = Dimi rearranged according to bsi values
6: D′ = D rearranged according to DIM ′i
7: end for

5.1 Generation of the set Max

In the foregoing, Equation 2 requires a set Max, a set of maximum distances of poten-
tial dot locations to the origin. The size of the set max depends on the number of dot
locations to be considered (the size of the set C in Equation 2). The calculation of the
longest possible distance from the origin to a dot within a n-D space is straight forward
as the maximum coordinates are known. The second most longest distance is harder,
especially where the ND space under consideration is not symetrical. Similarly with
the third longest distance and so on. Other than for the maximum distance there will be
a number of candidates locations that will give the nth most longest distance.

An algorithm for populating the set Max is thus given in Algorithm 4 (the Max-
imum Distance Calculation, or MDC, algorithm). The inputs to the algorithm are: (i)
the number of maximum values to be returned (thus the size of the desired set Max)
and (ii) the dimension sizes (n−1 because we exclude the current dimension for which
banding scores are being calculated). The output is a list of maximum distances in de-
scending order. On start up the location loc1, which will feature the maximum distance,
is identified and stored in the set Loc (line 5). The associated distance dist1 is then cal-
culated and stored in the set Dist (line 7). The algorithm then continues, in an iterative
manner, according to the numV alues input parameter. On each iteration the longest
distance in Dist is extracted and added to the list Max (lines 9 and 10). This distance
is then pruned from the set Dist (line 11) and the associated location pruned from the
set Loc (line 12). The algorithm then (lines 13 to 18) calculates a new set of locations,
to be added to Loc, by iteratively subtracting 1 from each coordinate associated with
Locj in turn (locj = 〈c − 1, c2, . . . , cn−1〉) and thus creating new location adjacent
to locj . If not already in Loc each new location loc is appended to the set NewLoc.
The algorithm then used the set NewLoc to calculate a new set of distances NewDist
(lines 20 to 24). The sets NewLoc and NewDist are then appended to the existing
sets Loc and Dist and the process repeated until there are no more maximum distances
to calculate. Note that the function dist() in Algorithm 4 is the same as that used in
Equation 2.
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Algorithm 4 Maximum Distance Calculation (MDC) Algorithm
1: Input: numV alues = The size of the desired set Max,

DimSizes = {k1, k2, . . . kn−1} (The sizes of the dimensions to be considered)
2: Output: Max = The desired set of maximum distances
3: Max = ∅
4: loc1 = 〈k1, k2, . . . kn−1〉
5: Loc = {loc1} (Running list of locations)
6: dist1 = dist(loc1)
7: Dist = {dist1} (Running list of distances)
8: for i = 1 to i = numV alues do
9: j = getLongestDistIndex(Dist)

10: Max = Max ∪Distj
11: Dist = Dist− distj (Prune distj from Dist)
12: Loc = Loc− locj (Prune locj from Loc)
13: NewLoc = ∅
14: for q = 1 to q = |DimSizes| do
15: loc = locj with ci replaced with ci − 1
16: if loc 6∈ Loc) then
17: NewLoc = NewLoc ∪ loc
18: end if
19: end for
20: NewDist = ∅
21: for q = 1 to q = |NewLoc| do
22: dist = dist(newLocq ∈ NewLoc)
23: NewDist = NewDist ∪ dist
24: end for
25: Loc = Loc ∪NewLoc
26: Dist = Dist ∪NewDist
27: end for

6 Evaluation

This section presents the evaluation of the BPM algorithms considered in this paper.
All the reported experiments were conducted using either: (i) 2-D data sets available
within the UCI data mining repository [13] or (ii) 5-D data sets extracted from the
Great Britain (GB) Cattle Tracking System (CTS). The latter was selected because it
can be interpreted in the context of five dimensions. The objectives of the evaluation was
firstly to compare the operation, in terms of the overall GBS and runtime (seconds), of
the ABPM and EBPM algorithms, using both the Euclidean and Manhattan variations
of the latter, in the context of n-D data sets (specifically 5-D data sets); and secondly to
compare the operation, using an independent Average Band Width (ABW) measure as
well as the overall GBS obtained, and runtime (in seconds), of the best BPM algorithm
from (1) with the previously proposed BC and MBA algorithms.
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Table 1. Comparison of BPM algorithms in terms of GBS, best results in bold font.

County Year
Num.

ABPM
EBPM

Recs. Euclid. Manhat.

Aberdeenshire

2003 24000 0.9066 0.8502 0.8615
2004 24000 0.9096 0.8381 0.8584
2005 24000 0.9265 0.8364 0.8551
2006 24000 0.9119 0.8408 0.8846

Cornwall

2003 24000 0.8666 0.8112 0.8499
2004 24000 0.8972 0.8322 0.8611
2005 24000 0.8668 0.8244 0.8345
2006 24000 0.8995 0.8382 0.8675

Lancashire

2003 24000 0.8984 0.8112 0.8562
2004 24000 0.9121 0.8443 0.8617
2005 24000 0.8839 0.8276 0.8377
2006 24000 0.9001 0.8452 0.8457

Norfolk

2003 24000 0.9016 0.8463 0.8685
2004 24000 0.8991 0.8529 0.8740
2005 24000 0.9166 0.8267 0.8605
2006 24000 0.9151 0.8533 0.8786

Average 24000 0.9007 0.8362 0.8597

6.1 Comparison of BPM algorithms (ABPM and EBPM)

This section presents the results obtained with respect to the comparison of the BPM
algorithms, founded on the banding score concept considered in this paper. The compar-
ison was conducted by considering GBS and runtime. For the evaluation the operation
of ABPM was compared with the operation of EBPM with either Euclidean or Manhat-
tan distance calculation and with or without the use of M-Tables. The evaluation was
conducted using the 16 5-D data sets extracted from the CTS database, each comprised
of 24,000 records. The results with respect to the final GBS obtained are given in Table
1 and with respect to runtime (seconds) in Table 2. From Table 1 it can be observed that
in all cases (as expected) the EBPM algorithm (both variations) produced better band-
ings than the ABPM algorithm. In addition Euclidean EBPM produced better bandings
than Manhattan EBPM. The reason being that Euclidean distance measurement is more
precise than Manhattan distance measurement and consequently Euclidean EBPM pro-
duced better bandings.

6.2 Comparison with Previous Work (BC and MBA)

This section reports on the experiments conducted to compare the operation of the pro-
posed BPM algorithm with the previously proposed the BC algorithm [24] and the two
variations of MBA algorithm, MBABFP and MBAFP [21]. The comparison was con-
ducted in terms of efficiency (runtime measured in seconds) and effectiveness. Although
the BPM algorithms considered in this paper seek to minimise a GBS, the BC and
MBA algorithms operated in a different manner. The BC algorithm sought to maximise
a Mean Row Moment (MRM) value, while the MBA algorithms sought to maximise
an accuracy value. An independent measure was thus used for the comparison. More
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Table 2. Comparison of BPM algorithms in terms of runtime (seconds), best results in bold font.

County ABPM
EBPM

With M-Table Without M-Table
Euclid. Manhat. Euclid. Manhat.

Aberdeenshire

26.33 36.85 30.27 75.41 63.61
25.85 36.08 29.18 78.20 66.97
22.35 34.42 28.42 75.31 60.93
27.67 33.66 30.08 76.48 64.16

Cornwall

25.20 32.33 28.20 74.13 65.22
26.75 38.86 30.84 73.13 63.38
24.58 34.58 29.36 77.75 69.08
23.49 36.38 30.31 72.20 67.45

Lancashire

22.47 39.21 28.01 79.59 63.03
26.69 35.47 31.48 74.31 66.47
25.45 32.25 28.94 69.16 59.34
22.69 32.83 28.77 75.78 67.31

Norfolk

26.91 34.42 31.79 76.48 66.55
22.91 35.70 27.72 73.88 62.52
25.45 32.20 45.17 75.40 63.47
24.99 33.07 29.78 69.22 61.55

Average 24.99 34.89 30.48 74.78 64.44

specifically the Average Band Width (ABW) measure was devised; the normalised av-
erage distance of dots from the diagonal measured according to the distances of the
normals from the diagonal to each dot. ABW is calculated using Equation 5, where: D
is the set of dots (with each dot defined in terms of a set of cartesian coordinates) and
maxABW is the maximum possible ABW value given a particular data matrix size.

ABW =

∑i=|D|
i=1 distance di from leading diagonal

|D| ×maxABW
(5)

For the evaluation the operation of only the EBPM algorithm was compared with
BC, MBAFP and MBABFP (because in 2-D both variations of the EBPM algorithm
and ABPM operate in the same manner, it is only in higher dimensions that there oper-
ation differs). Note also that because BC, MBAFP and MBABFP were only designed to
operate in 2-D the comparison was conducted using 2-D data sets taken from the UCI
Machine learning repository processed so as to produce binary valued equivalents. In
each case the attributes represented the x-dimension and the records the y-dimension.
The results obtained are presented in Tables 3 and 4. Table 3 shows the effectiveness
results obtained in terms of GBS and the independent ABW measure. From the table it
can be observed that the EBPM algorithm produce better bandings, in terms of GBS and
the independent ABW measure, than the other banding algorithms considered (best re-
sult highlighted in bold font). From Table 4 it can also be observed that the BC, MBAFP

and MBABFP algorithms all require considerably more processing time than the pro-
posed EBPM algorithm. For completeness Figure 2 shows the Lympography data set,
before banding, and after banding using the EBPM algorithm.
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Table 3. 2D banding evaluation results in terms of ABW and GBS, for the five banding mecha-
nisms considered (best results in bold font)

Datasets # # Before Banding EBPM MBAFP MBABFP BC
Recs Cols ABW GBS ABW GBS ABW GBS ABW GBS ABW GBS

Adult 48842 97 0.4487 0.3662 0.3318 0.1294 0.4116 0.2869 0.3617 0.2539 0.3394 0.4005
ChessKRv 28056 58 0.4444 0.3473 0.2208 0.1791 0.3816 0.3699 0.3246 0.2832 0.3240 0.3997
LetRecognition 20000 106 0.4125 0.3325 0.2885 0.1682 0.3407 0.2751 0.3152 0.2632 0.3246 0.3965
PenDigits 10992 89 0.4276 0.3453 0.2197 0.2064 0.3318 0.2775 0.2872 0.2874 0.3276 0.4005
Waveform 5000 101 0.4372 0.3402 0.2414 0.2091 0.3774 0.2958 0.2951 0.3215 0.2833 0.3702
Mushroom 8124 90 0.4297 0.3473 0.2638 0.1774 0.3866 0.3284 0.3845 0.3018 0.3297 0.3448
Annealing 898 73 0.4433 0.4133 0.3630 0.1218 0.4389 0.3300 0.3779 0.3162 0.3826 0.2977
HorseColic 368 85 0.4009 0.3857 0.3205 0.2367 0.4001 0.3801 0.3881 0.3760 0.3353 0.2904
Heart 303 52 0.4346 0.4318 0.3016 0.1502 0.4142 0.3387 0.3338 0.2833 0.3423 0.2651
Wine 178 68 0.4430 0.4564 0.2027 0.2785 0.3645 0.3970 0.3061 0.4015 0.3384 0.2561
Hepatitis 155 56 0.4438 0.4619 0.2957 0.2063 0.3032 0.4240 0.2962 0.4279 0.3438 0.2629
Lympography 148 59 0.3356 0.4581 0.2826 0.2487 0.2887 0.4359 0.2804 0.4540 0.3324 0.2738

Average 10255 78 0.4251 0.3905 0.2777 0.1927 0.3699 0.3449 0.3292 0.3308 0.3336 0.3299

Table 4. Run-time (RT) Results (seconds) Using UCI data sets.

Data sets # # runtime (secs)
Rows Cols EBPM BC MBABFP MBAFP

Adult 48842 97 76.74 175.84 185.95 140.95
ChessKRvK 28056 58 11.46 23.27 27.90 27.81
LetRecognition 20000 106 10.28 26.38 24.54 21.31
PenDigits 10992 89 02.81 10.12 12.94 11.85
Waveform 5000 101 0.88 02.28 03.05 02.41
Mushroom 8124 90 02.24 08.47 09.07 08.14
Annealing 898 73 0.05 0.22 0.26 0.20
HorseColic 368 85 0.02 0.09 0.20 0.12
Heart 303 52 0.02 0.08 0.12 0.11
Wine 178 68 0.01 0.09 0.09 0.06
Hepatitis 155 56 0.01 0.08 0.06 0.06
Lympography 148 59 0.01 0.08 0.08 0.06

Average 10255 78 08.71 20.58 28.72 17.76

7 Conclusion

A number of BPM algorithms have been presented. More specifically two alternative
banding algorithms were considered, ABPM and EBPM. Four variation of EBPM were
considered, using Euclidean and Manhattan distance calculation, and with and without
the use of M-Tables. The presented evaluation established the following main findings.
The proposed BPM algorithms outperformed the previously proposed BC, MBAFP and
MBABFP algorithms, with respect to 2-D UCI data sets, in terms of: (i) efficiency, (ii)
the GBSs obtained and (iii) an independent ABW measure. There is no difference in
the operation of ABPM and EBPM in 2-D. In higher dimensions (5-D data sets were
considered) the ABPM algorithm offered the advantage that it was more efficient than
EBPM although the quality of the bandings produced were not as good as those pro-
duced using EBPM. In the context of EBPM the Euclidean variation produced the best
quality bandings while the Manhattan variation was slightly faster. Use of M-Tables,
to reduce the required amount of banding score calculation, was also found to be ben-
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(a) (b)

Fig. 2. Lympography rata set, before (a) and after (b) banding using EBPM

eficial. For future work the authors intend to investigate multi-core variations of the
algorithms that can be used with respect to platforms such as the Hadoop distributed
file store and data processing platform.
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