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Abstract. The paper introduces the concept of Φ-data, data that is a
proxy for some underlying data that offers advantages of data privacy
and security while at the same time allowing particular data mining op-
erations without requiring data owner participation once the proxy has
been generated. The nature of the proxy representation is dependent on
the nature of the desired data mining to be undertaken. Secure collab-
orative clustering is considered where the Φ-data is in the form of a Super
Secure Chain Distance Matrices (SSCDM) encrypted using a proposed
Multi-User Order Preserving Encryption (MUOPE) scheme. SSCDMs
can be produced with respect to horizontal and vertical data partition-
ing. The DBSCAN clustering algorithm is adopted for illustrative and
evaluation purposes. The results indicate that the proposed solution is
efficient and produces comparable clustering configurations to those pro-
duced using an unencrypted, “standard”, algorithm; while maintaining
data privacy and security.

Keywords: Privacy Preserving Data Mining, Order Preserving and Ho-
momorphic Encryption, Φ-data, Super Secure Chain Distance Matrices.

1 Introduction

The resources facilitated through cloud computing have allowed for the delivery
of a great variety of services to businesses that would not otherwise be available.
One example, and that of interest with respect to this paper, is Data Mining as a
Services (DMaaS). The emergence of the potential for third party data analysis
using DMaaS has changed the way that data mining is traditionally conducted.
However, an issue of significant concern is data privacy and security, a legitimate
concern that has served to limit the uptake of DMaaS and which has instigated
the research domain of Privacy Preserving Data Mining (PPDM) [2].

Early work on PPDM adopted the idea of Secure Multi-Party Computation
(SMPC) which resolved data privacy concerns by precluding any form of data
sharing [8, 9, 12]. The idea was for the individual data owners to locally process



their data to produce local statistical characteristics describing their data which
could then be used as an input to computation protocols that securely com-
puted global characteristics. Although, to a certain extent, SMPC addressed the
problem of data confidentiality, the requirement for data owner participation,
as the data mining progressed, resulted in a significant computation and com-
munication overhead and a consequent drain on local resources. These, in turn,
effected scalability; thus rendering the approach infeasible for any form of large
scale collaborative data mining.

A more desirable PPDM solution, that does not feature the limitations of
SMPC, is to entirely outsource the data mining to a third party while maintain-
ing data privacy and security. The idea here is to modify that data either by
transforming it or encrypting it, in such a way that data mining activities can still
be applied effectively. However, many transformation methods have been shown
to adversely affect accuracy. Further, in the collaborative data mining context
[3, 4, 6], data owners are all required to transfer their data in the same manner,
which makes the solution vulnerable to breaches of privacy. A further criticism is
that it has been shown that the data distribution may be reconstructed from the
modified data [1]. Cryptography, in turn, provides a substantial guarantee for
data privacy. A potential solution is the use of Homomorphic Encryption (HE)
schemes that permit limited calculation over cyphertexts without compromising
security. Although HE schemes support primitive operations that go some way
to supporting data mining, they do not provide an entire solution. For example
they do not support record comparison. One mechanism whereby this can be ad-
dressed is with recourse to bespoke SMPC protocols, such as “Yao’s Millionaires
Problem” protocol as used in [12], or by recourse to data owners as in the case
of [15]; in either case undesired communication and/or computational overheads
are introduced.

This paper presents a solution to the above in the context of distributed/coll-
aborative data clustering using a third party data miner. More specifically the
paper proposes the idea of using a proxy for the real data, an idea referred to
as the “Φ-data” concept, where Φ data is a secure transform of the actual data
(not a modification of the data), that supports some specific form of secure data
mining that does not entail data owner participation once the proxy has been
constructed. The concept of Φ data can be implemented in a variety of ways.
In this paper it is illustrated using Super Secure Chain Distance Matrices (SS-
CDMs), a data proxy designed for secure collaborative data clustering using the
DBSCAN algorithm. The exemplar scenario is that of a number of data own-
ers who wish to produce collaboratively a cluster configuration without sharing
their data. A CDM is a 2D matrix M where one dimension represents the set
of records in a dataset (-1) and the other the set of attributes. Each cell Mi,j

holds the distance between the jth attribute value in ithe record and the value
of the same attribute in i + 1th record. A SCDM is then an encrypted CDM.
This paper also proposes an order preserving encryption scheme, Multi-User Or-
der Preserving Encryption (MUOPE), suited to encrypting CDMs. A SSCDM is
then the union set of two or more SCDMs. The SSCDM construction process is



facilitated by a Semi-honest Third Party (STP). Once complete it can be passed
to a third party data miner who can produce a cluster configuration without
requiring further data owner participation and without ever having had access
to the original datasets held by individual data owners.

2 Related Works

This section presents a review of previous work directed at collaborative secure
data clustering. The focus is on DBSCAN clustering; the clustering mechanism
used to illustrate the solution proposed in this paper. Generally, the main chal-
lenge in collaborative data clustering is that of maintaining data confidentiality
during processing without adversely affecting the calculation accuracy; thus in
the case of DBSCAN when calculating distances between records and when com-
paring such distances against a threshold ε. As noted in the introduction, the
proposed solutions can be categorised as being founded on either: (i) SMPC or
(ii) secure outsourcing to a third party who has the permissions to carry out the
required calculations. Both approaches are considered in further detail below.

The fundamental idea of SMPC is for the collaborating parties to jointly
compute functions concerning their data while maintaining the privacy of their
data. The nature of these functions, and the protocols used to calculate them,
depend on the nature of the application. There are a number of examples where
multiparty DBSCAN has been implemented using SMPC [8, 9, 12] where: (i)
distance between data records is calculated using either a “secure multi-party
scalar product” protocol or the homomorphic properties of a HE scheme, and
(ii) secure comparison was achieved using either “Yao’s Millionaires’ Problem”
protocol (YMPP) [18] or Cachin’s scheme [5]. However, the solutions presented in
[8, 9, 12] all entailed a significant computational overhead and consequently they
were only suited to two party collaborative data clustering. In terms of security,
involving data owners in the calculation of distances, and the comparison of
distances, gives rise to the potential for “overlapping attacks” where a non-honest
participant uses knowledge of their local data, and the computation results, to
identify intersections with the data held by other parties and then uses this
information to estimate records held by other parties. In the specific context of
SMPC-based DBSCAN clustering a further security risk is that the total number
of points within the ε-radius is revealed to all participants. Theses limitations
render SMPC-based solution inadequate for many instances of DMaaS.

The alternative solution is to outsource the data and data analysis to a third
party data miner. In this case privacy is preserved by modifying the data in
some way. Two well documented modification techniques are data perturbation
and encryption. The basic idea of data perturbation is to distort individual
values by adding additive or multiplicative noise, or by applying some form of
randomisation, so that the statistical characteristics of the data are retained.
From the literature a variety of perturbation methods have been proposed, both
two party [2] and multiparty [3, 4, 6]. However, it has been demonstrated that
the higher the level of security provided by the perturbation the worse the final



data mining result, this is especially the case where each party applies a local
perturbation method. This is why in [3] it was proposed that all parties use the
same perturbation method so that an acceptable accuracy is achieved. Whatever
the case, perturbation has two major disadvantages. The first is that the final
results are adversely affected. The second is that the original data distribution
can be reconstructed from the perturbed data [1]. Homomorphic Encryption
provides an effective alternative that does not feature these disadvantages. In
[15] a HE scheme was used to encrypt multiple source data before outsourcing
to a third party data miner who then utilised the HE properties to calculate
the required distances. However, the generated cyphers do not preserve the data
ordering, thus data owner participation was still required to determine whether
the distances were below or above the DBSCAN threshold ε value.

In [17] a mechanism is presented for applying DBSCAN in a secure dis-
tributed manner that combines the SMPC idea with the usage of a third party
data miner. The basic idea is for each party to first apply DBSCAN to their
local data and then to share the resulting boundary points and cluster labels us-
ing a third party data miner. The data miner’s role is then to determine global
boundary points which are then used by the individual data owner to update
their local clusters. However, the local boundary points are sent to the data
miner in plaintext form, which presents a security threat.

3 Paillier Homomorphic Encryption

Before considering the proposed secure DBSCAN clustering algorithm, and the
SSCDM concept, in detail, Paillier Homomorphic Encryption, utilised in the
context of the proposed MUOPE scheme, is briefly described in this section.
The Paillier encryption scheme [14] is an additive, probabilistic and asymmetric
HE scheme that encodes a plaintext value m to a cyphertext value c using the
equation c = gmrN (mod N2) where N is the Rivest-Shamir-Adleman (RSA)
modulus, g is a non-zero integer of order divisible by N ; and r is a random
number, r ∈ ZN , used to ensure the probabilistic feature of the scheme. The
scheme has an additive homomorphic feature that maps plaintext addition (+)
to cypher multiplication (⊗) as given in Eq. 1, where a, b ∈ ZN .

E(a+ b) = E(a)⊗ E(b) (mod N2) (1)

The decryption function decodes c to the original plaintext value m using Al-
gorithm 1 where: LCM is a Least Common Multiple function, L is a function
defined as L(x) = x−1

N , (N , g) is the public key and (λ, µ) is the secret key.

Algorithm 1 Paillier decrypt function

1: procedure Decrypt(c)
2: λ = LCM(p− 1, q − 1) . p and q are two prime numbers
3: µ = (L(gλ (mod N2)))−1 (mod N)
4: m = L(cλ (mod N2))µ (mod N)
5: Exit with m



4 The Multi-User Order Preserving Encryption
(MUOPE) Scheme

The CDM, generated by individual data owners and described further in Section
5 below, is essentially a set of linear equations that might support the undesirable
re-engineering of the original data distribution. Therefore, to prevent such re-
engineering, while still permitting comparison of distances, in this paper it is
proposed that CDMs are encrypted to give Secure CDMs (SCDMs) using a
bespoke encryption scheme, the MUOPE scheme.

The idea of the proposed MUOPE scheme is founded on the scheme presented
in [13] which was directed at encrypting data in such a way that the order of
data items was preserved; however the scheme was not applicable to data from
multiple sources. The main objective of the proposed MUOPE scheme is to
encrypt two or more SCDMs, that are to be combined into a single SSCDM,
in such a way that any data distribution that might exist in the generated
cyphertexts is entirely obscured. To this end, the concepts of message space
splitting and non-linear cypher space expansion were adopted so that the third
party data miner could have access to the ordering of distances between records
and not the original CDM distance values themselves.

In the proposed MUOPE scheme a Semi-honest Third Party (STP) is used to
act as a mediator between u participating parties (data owners), P = {p1, . . . , pu}.
The STPs role is to: (i) derive MUOPE encryption parameters and (ii) manage
the SSCDM generation process. The STP starts by determining the required
“interval” of message space M = [l, h) and the associated expanded “interval”
of cypher space C = [l′, h′) where h is the maximum interval boundary and l is
the minimum interval boundary in such a way that |C| � |M |. The STP then
randomly splits the message space into t consecutive intervals, where t is a ran-
dom number, to give M = {m1, . . . ,mt}, where mi = [li, hi); as demonstrated
in Figure 1. The message space interval boundaries are then sent to the data
owners.

c1 = [l′1, h′
1)

Cypher Space C

l′

ct = [l′t, h
′
t)

h′

. . . . . . ci = [l′i, h
′
i) . . . . . .

m1 = [l1, h1)
l

mt = [lt, ht)
h

Message Space M

. . . mi = [li, hi) . . .

Enci(x)Enc1(x)

Enct(x)

Fig. 1: Message and expanded cypher space splitting

To generate the cypher space intervals, the STP needs to know how many
distances fall into each interval. The STP does this by creating a list V comprised
of t items {v1, . . . , vt} where each item in a list will eventually hold a count of
the number of distances that fall in each interval. The STP populates V with a
random set of values and encrypts it using the Paillier encryption from Section 3.
Thus the STP is also responsible for generating Paillier public-private key pairs.
The Paillier encrypted list V ′ is then sent, together with the Paillier public key,



to the first data owner p1 who then updates V ′ with their data density, for
each interval, using the additive feature of the Paillier scheme. The updated list
V ′ is then sent in turn to the remaining data owners. The last party pu will
return V ′ to the STP who decrypts it and subtracts the original values used
to populate V . The results (the data density for each interval) is then used to
dimension the cypher space C to give C = {c1, . . . , ct}, in such a way that the
length of each interval ci is determined according to the density of the data in
the corresponding message space interval mi. The aim is to ensure that message
space intervals with a high “density” correspond to larger (expanded) cypher
space intervals, and vice versa. The cypher space boundaries are then sent to
the data owners. The intervals boundaries represent MUOPE encryption keys.

On receiving the MUOPE encryption keys, from the STP, the data owners
encrypt their individual CDMs to give SCDMs, the process for this is discussed
in Section 5 below. The encryption is conducted as indicated by Eq. 2, where:
i represents the ID number of an “interval” within which a distance dist is
contained; li and hi are the boundaries for the ith message space interval; and
l′i and h′i are the boundaries for the ith cypher space interval. The variable δi
is a random number sampled from the range 0 to Sens × Scale where Sens is
defined, as in [11], as the data sensitivity value that represents the minimum
distance between plaintext values.

Scale =
(l′i − h′i)
(li − hi)

, Enc(dist) = l′i + (Scale× (dist− li)) + δi (2)

The STP then commences the SSCDM generation process. How this is done
depends on whether we have horizontally or vertically partitioned data and is
described in Section 5. Once the SSCDM has been calculated, the STP passes
this on to the third party data miner. The STPs role is now complete.

5 The Super Secure Chain Distance Matrix (SSCDM)

A SCDM is a mechanism for realising the envisioned Φ-data concept in the con-
text of collaborative data clustering, specifically DBSCAN clustering. A SCDM
allows for secure data comparison in the absence of the original data. A Super
SCDM (SSCDM) is then a combination of a number of SCDMs generated by
individual data owners. In the following subsections the SSCDM generation pro-
cess is given in further detail. The generation of SCDM is presented in Subsection
5.1. This is followed, Subsections 5.2 and 5.3, with discussion of the “binding”
process to give SSCDM given either horizontally or vertically partitioned data.

5.1 The Secure Chain Distance Matrix (SCDM)

A CDM is a 2D matrix that holds the distances (differences) between each
attribute value within a record i and the corresponding attribute value in the
following record i+ 1 according to whatever ordering is featured in the dataset
D. The matrix thus measures (|R|− 1)×|A|, where |R| is the number of records



in D and |A| is the size of the attribute set A. A SCDM is then an encrypted
CDM. The SCDM is generated in two steps: (i) CDM calculation and (ii) CDM
encryption to arrive at a SCDM. Algorithm 2 gives the CDM calculation process.
The algorithm commences by dimensioning the desired CDM (line 2) which is
then populated (lines 3 to 5) by calculating the distances between the values for
attributes in the ith and i+ 1th data records (line 5).

Algorithm 2 Chain Distance Matrix Calculation

1: procedure CDMCalculation(D)
2: CDM = ∅ array of |R| − 1 rows and |A| column
3: for i = 1 to i = |R| − 1 do
4: for j = 1 to j = |A| do
5: CDM[i,j] = D[i,j] −D[i+1,j]

6: Exit with CDM

The next step is to encrypt the calculated CDM to give a SCDM. To this
end the MUOPE scheme presented in Section 4 was used. The key feature of the
resulting SCDM is that a third party has access to the distance value ordering,
but not the actual distance values. In addition, the chain feature of SCDMs
allows a number of SCDMs to be “bound” to form a SSCDM that then permits
similarity calculations between data records, possibly owned by different parties,
without involving the data owners. The similarity between a record rx and a
record ry (where x < y), is calculated according to Eq. 3. In the case of x = y
the distance will clearly be 0.

Sim(SCDM, rx, ry) =

j=|A|∑
j=1

i=(y−1)∑
i=x

|SCDM[i,j]| (3)

5.2 SSCDM for Horizontal Data Partitioning

Horizontally distributed data is where each partition conforms to the same set
of attributes A, but features different records; in other words the global dataset
D has been partitioned by dividing it up “horizontally”. To “bind” two SCDMs,
SCDMi and SCDMi+1, representing horizontally partitioned data, belonging
to two data owners pi and pi+1 respectively, an additional “pivot” record, with
|A| attributes, needs to be inserted between the two SCDMs, recording the dif-
ferences between attribute values in the last record in Di owned by Pi, and the
first record in Di+1 owned by Pi+1. The process is as shown in Algorithm 3.
The inputs to the process are the two SCDMs (SCDMi and SCDMi+1) and
the global SSCDM accumulated so far. The algorithm commences with the STP
randomly generating a record, R = {r1, r2, . . . , r|A|} and encrypting this using
the MUOPE scheme (line 2); this is then sent to pi and pi+1. Data owner pi
calculates the distances between the MUOPE cypher of the last record in its
dataset and the content of R to give a record C1 (line 3); whilst data owner
pi+1 calculates the distances between the content of R and the MUOPE cypher
of the first record in its dataset to give a record C2 (line 4). Both C1 and C2



are returned to the STP who calculates the pivot record, pivot = C1 + C2. The
pivot record is then used to bind SCDMi and SCDMi+1 (line 6) and append
this to the SSCDM so far. The process repeats with SCDMi+1 and SCDMi+2

and continues until the entire SSCDM has been generated.

Algorithm 3 Horizontal binding process

1: procedure HorizontalBinding(SCDMi, SCDMi+1, SSCDM)
2: R = {r1, . . . , r|A|} . Encrypted using MUOPE
3: C1 = Distances between last record in Di and R
4: C2 = Distances between R and first record in Di+1

5: Pivot = C1 + C2

6: SSCDM = concatenate(SSCDM,SCDMi, P ivot, SCDMi+1)
7: Exit with SSCDM

5.3 SSCDM for Vertical Data Partitioning

Vertically distributed data is where each partition features the same set of
records but a specific sub-set of attributes from a global set of attributes A;
the global dataset has been partitioned by being divided up “vertically”. The
binding process for vertically partitioned data is as shown in Algorithm 4. The
inputs are: a SCDM, SCDMi belonging to data owner pi, and the SSCDM so
far. On start up the SSCDM so far will simply be SCDM1, belonging to data
owner p1. The algorithm operates by simply appending records to one another,
(line 2), there is no need for a pivot record. As before, the process will continue
until the entire SSCDM has been generated.

Algorithm 4 Vertical binding process

1: procedure VerticalBinding(SCDMi, SSCDM)
2: SSCDM = concatenate(SSCDM,SCDMi)
3: Exit with SSCDM

6 Secure DBSCAN (SDBSCAN)

The SDBSCAN clustering is conducted by the third party data miner following a
processes very similar to the standard DBSCAN [7]. The pseudo code is given in
Algorithm 5. The inputs are the SSCDM received from the STP and the desired
density parameters, MinPts and ε′, that are agreed by the participating parties.
The ε value is encrypted using the proposed MUOPE scheme to give ε′ so that the
third party data miner does not have the real radius value. The algorithm uses
a “virtual” dataset V R where the indexes refer to the data held by data owners,
thus V R = {vr1, vr2, . . . , vr|SSCDM |+1}. The order of the data indexes matches
the order used to bind the SCDMs. For example, indexes 0 to |SCDM1 +1| rep-
resent the p1 virtual dataset. The algorithm commences by creating the ordered
set V R, creating an empty set of clusters C and setting the number of clusters
so far to 1 (line 2). The set V R is then processed. For each “virtual” record



vri ∈ V R that has not been previously assigned to a cluster, is “unclustered”,
the set S is determined. The set S is the ε-neighbourhood of vri and comprises
the set of record IDs in V R whose distance from vri is less than or equals to ε′.
The set is determined by calling the RegionQuery procedure (line 5) where the
SSCDM is used to determine the overall distances between records (see Eq. 3).
If the number of records in S is greater than MinPts the density requirement
is satisfied thus vri is marked as “clustered” and considered to represent a new
cluster Ck (lines 6 to 8). This cluster is then expanded by considering the points
in S using the ExpandCluster procedure called in line 9. The inputs to the
ExpandCluster procedure are: the cluster Ck so far, the set S, SSCDM and the
density parameters MinPts and ε′. The ExpandCluster procedure is a recur-
sive procedure. For each record in S which has not been previously clustered we
add the record to Ck and then determine the ε-neighbourhood S2 for the record.
If the size of S2 is greater than MinPts we call the ExpandCluster procedure
again and so on until all the “virtual” records in V R are processed at which
point the algorithm will exit with the cluster configuration C. For the purpose
of data privacy each participating party will receive their own data clustering
results.

7 Experimental Evaluation

This section reports on the evaluation of the Φ-data concept in the context of
MUOPE and SSCDM as implemented with respect to SDBSCAN. The objec-
tives of the evaluation were to consider the proposed approach in terms: (i) data
owners participation, (ii) clustering efficiency, (iii) clustering accuracy, (iv) se-
curity and (v) scalability. Two different types of data were used, synthetic data
and data from the UCI machine learning repository [10].

7.1 Data Owner Participation

Individual data owner participation was measured in terms of the runtimes (ms)
required to: (i) generate CDMs (CDM Gen.), (ii) encrypt CDMs (CDM Enc)
and (iii) calculate the data density required to dimension the MUOPE cypher
space (Dens Cal). Experiments were conducted using a sequence of ten synthetic
datasets increasing in size from 1000 to 10, 000 records, in steps of 1, 000; the
number of attributes (|A|) was kept constant at 125. The results are presented
in Figure 2. Inspection of the figure indicates that, as was expected, time com-
plexity increases in a linear manner as the number of records (|R|) increases. For
example, in the case of the |R| = 1K dataset, the recorded runtimes for CDM
Gen and Dens Cal are both 163ms, while for the 10K dataset the recorded run
times were 445ms and 493ms respectively. The time complexity for CDM Gen
is O(|R| − 1 × |A|). The CDM Enc is slightly higher; the 1K required 0.5sec
which increased to 2.4sec for 10K. What is noteworthy is that, regardless of the
number of records considered, the run times are not significantly high; hence
the amount of data owner participation can be argued to be minimal. Recall



Algorithm 5 Secure DBSCAN clustering algorithm

1: procedure SDBSCAN( SSCDM , MinPts, ε′)
2: C = ∅, V R =list of record IDs, k = 1
3: for ∀ vri ∈ V R do
4: if vri is Unclustered then
5: S = RegionQuery(vri, ε

′, SSCDM)
6: if |S| > MinPts then
7: mark vri as clustered
8: Ck = vri (new cluster)
9: Ck = ExpandCluster(Ck,S, SSCDM ,ε′,MinPts)

10: C = C ∪ Ck
11: k = k + 1

12: Exit with C
13: procedure expandCluster(C,S, SSCDM ,ε′,MinPts)
14: for ∀ vri ∈ S do
15: if vri is Unclustered then
16: mark vri as clustered
17: C = C ∪ vri
18: S2 = RegionQuery(vri, ε

′, SSCDM)
19: if |S2| > MinPts then
20: C = ExpandCluster(C,S2, SSCDM ,ε′,MinPts)

21: Exit with C
22: procedure RegionQuery(Index, ε′, SSCDM)
23: Nε = ∅
24: for ∀ vrj ∈ V R do
25: distance = Sim(SSCDM, Index, j) . (Eq. 3)

26: if distance ≤ ε′ then
27: Nε.add(j)

28: Exit with Nε
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Fig. 2: Time required (ms) for data owner participation in term of number of
records in a data owner’s local dataset

that once the SSCDM has been generated no further data owner participation is
required other than instructing the third party data miner to undertake specific
clustering exercises.

7.2 Clustering Efficiency

A comparison of the runtimes required to cluster data using standard (unen-
crypted) DBSCAN and the proposed SDBSCAN is given in columns 6 and 9 of
Table 1 which gives clustering outcomes using fifteen UCI datasets [10]. Note



that runtimes for standard DBSCAN are reported in milliseconds (ms), while
runtimes for SDBSCAN are reported in seconds (sec). The MinPts and ε values
reported in the table are randomly selected; in practice these are prescribed by
the data owners. From the table, it can be seen that reported runtimes were
larger for SDBSCAN than in the case of the standard approach. The difference
is due to the utilisation of SSCDMs. Note that the bigger the dataset the larger
the SSCDM, hence the greater the time required to process the SSCDM to de-
termine record similarity. However, inspection of the recorded results indicates
that usage of SSCDMs did not introduce an unreasonable overhead.

DataSet MinPts ε
Standard DBSCAN Secure DBSCAN

Num. Sil. Exec. Time Num. Sil. Exec. Time
Clus. Coef. (ms) Clus. Coef. (sec)

1. Arrhythmia 2 600 6 0.472 187.16 6 0.472 367.24
2. Banknote Auth. 2 3 7 0.922 686.37 7 0.922 254.25
3. Blood Trans. 2 10 27 0.971 54.20 33 0.976 4.73
4. Breast Cancer 2 5 4 0.678 61.64 1 0.485 9.60
5. Breast Tissue 2 100 3 0.628 3.93 3 0.628 0.27
6. Chronic kidney 2 70 19 0.970 57.36 19 0.970 12.64
7. Dermatology 2 10 16 0.853 19.46 15 0.881 5.86
8. Ecoli 2 60 1 -1 .000 45.81 1 -1 .000 4.58
9. Ind. Liver Patient 3 40 7 0.789 120.48 7 0.789 25.53
10. Iris 5 2 2 0.722 11.89 2 0.722 0.33
11. Libras Move. 5 5 11 0.715 61.75 11 0.715 120.62
12. Lung Cancer 2 20 1 0.053 0.32 1 0.053 0.01
13. Parkinsons 3 10 5 0.829 14.84 5 0.829 4.06
14. Pima Disease 5 20 4 0.691 221.87 4 0.691 30.15
15. Seeds 5 1 7 0.852 16.90 7 0.852 1.43

Table 1: Cluster Configuration for Standard and Secure DBSCAN (differing
results highlighted in bold font)

7.3 Clustering Accuracy

Clustering accuracy was measured by comparing the clustering configurations
obtained using SDBSCAN with those obtained using standard DBSCAN. The in-
tuition was that the secure algorithm should produce comparable configurations
to those produced using the standard algorithm; if so the secure algorithm could
be said to be operating correctly. The measure used was the established Silhou-
ette Coefficient (Sil. Coef.) [16]; a value between −1 and 1, the closer the values
is to 1 the better the clustering. The Sil. Coef. values obtained are presented in
columns 5 and 8 of Table 1, and the number of generated clusters in Columns
4 and 7. From the table, it can be seen that the cluster configurations produced
using the proposed SDBSCAN were the same in 12 out of 15 cases, and slightly
different in three cases (Blood Trans., Breast Cancer and Dermatology). It is
interesting to note that in two of these three cases (Blood Trans. and Dermatol-
ogy) SDBSCAN produced better Sil. Coef. values. The reason for the differences



was because the proposed MUOPE scheme produced different cyphertexts for
the same plaintext value, which meant that “equality” was not supported; thus
if a dataset had many identical values these would result in different cyphertexts
which in turn would effect the nature of the clustering (sometimes in a posi-
tive manner). This feature of the MUOPE scheme was introduced to hide data
value frequency so as to prevent statistical attacks that can be instigated when
attackers have knowledge of the data distribution (frequency).

7.4 Security Analysis

Security was evaluated by identifying the potential attacks that may threaten
the proposed secure data clustering. In the proposed solution, data preservation
relies on the Φ data concept and the security of the MUOPE scheme used to en-
crypt the SSCDMs. The concept of Φ data, prevents the data from being confided
(in any form) to a third party data miner or shared with any other participants.
Therefore, the Φ data concept precludes any form of attack directed at the actual
data, including the overlapping attack possible with respect to other solutions
(see Section 2). The only data proxy received by the third party data miner is
the SSCDM; there is no further data owner involvement. Hence, the only poten-
tial form of attack is Cyphertexts Only Attacks (COAs) that may occur if an
adversary somehow has access to a SSCDM. As a countermeasure to COAs the
proposed MUOPE was designed to reduce information leakage in cyphertexts
by avoiding the deterministic feature that is usually used in COAs. More specif-
ically the MUOPE scheme uses an encryption function that generates different
cyphertexts for the same plaintext values on each occasion that the encryption
function is applied; this feature makes inferences using COAs harder. COAs are
more likely to succeed when attackers have a background knowledge of the data
distribution, or frequency, of the original data values. Knowledge associated with
the ordering features of some order preserving encryption schemes might allow
an adversary to infer the ranges containing dense data. Alternatively, frequency
analysis could allow attackers to highlight cyphertexts with the same frequency
as plaintexts (if such plaintexts were available) and then identify cyphertexts
that have the same frequency. However, this will not be possible in the case
of the MUOPE scheme, which incorporates message space splitting, non-linear
cypher space expansion and a one-to-many encryption function, that serves to
obscure the statistical features of the generated cyphertexts.

7.5 Scalability

The scalability of the proposed SDBSCAN approach, founded on the concept of
Φ data realised using SSCDMs, encrypted using the proposed MUOPE scheme,
was evaluated by considering the effect on time complexity as the number of
data owners (participants) increased. In the proposed approach data owner col-
laboration occurs when generating: (i) MUOPE encryption keys (Key Gen.) and
(ii) SSCDMs (Super SCDM Gen.). For the evaluation a sequence of experiments
was conducted where the number of participants was increased from 10 to 100
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Fig. 3: Runtime to generate OPE keys and construct SSCDMs as the number of
participants (data owners) increases

in steps of 5 (for completeness experiments using two and four participants were
also conducted). A synthetic dataset, comprised of 7000 records and 125 at-
tributes, was equally distributed across the parties in each case. The recorded
total runtime results are presented in Figure 3. From the figure it can be seen that
the overall time required to generate the encryption keys was negligible; even in
the 100 participants case the recorded runtime was 1, 213ms. The scalability, as
demonstrated by the reported results, indicates that the MUOPE scheme has
potential benefits for many other forms of DMaaS and collaborative PPDM.

With respect to the overall time required to generate a SSCDM the results
reported in Figure 3(b) show that, as expected, the time required will increase
linearly with the number of participants. Recall that the usage of SSCDMs al-
lows collaborative data clustering to be implemented without requiring extensive
communication between participants when calculating distances between data
points as in the case of [8, 9, 12]. From the figure it can also be seen that vertical
partitioning produced the best performance because we are simply “bolting” one
SCDM to another.

8 Conclusion and Future Work

This paper has proposed a novel solution for third party privacy preserving col-
laborative data clustering using the concept of Φ-data and SSCDMs encrypted
using MUOPE. The Φ-data concept obviates the need for any form of data shar-
ing between data owners and/or a third party data miner. The proposed ap-
proach offers three main advantages. Firstly, the SSCDM proxy representation
allows multiple data sources to be compared without data owner involvement or
any communication overhead. Secondly, the MUOPE scheme encrypts SSCDMs,
in such a way that protection against Cyphertexts Only Attacks (COAs) is pro-
vided (other forms of attack are precluded). Thirdly, the secure data clustering
is entirely delegated to a third party data miner (over encrypted data), no data
owner participation is required. The accuracy of the clustering produced using
the SDBSCAN approach was shown to be compatible with those produced us-
ing standard DBSCAN, whilst the time complexity was not significantly greater.
It was also shown that the proposed approach was readily scalable. For future
work, the authors intend to investigate the utility of SSCDMs with respect to
alternative clustering algorithms and other data mining techniques.



References

1. Aggarwal, C.C., Philip, S.Y.: A general survey of privacy-preserving data mining
models and algorithms. In: Privacy-preserving data mining, pp. 11–52. Springer
(2008)

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2),
439–450 (May 2000)

3. Anikin, I.V., Gazimov, R.M.: Privacy preserving DBSCAN clustering algorithm for
vertically partitioned data in distributed systems. In: IEEE International Siberian
Conference on Control and Communications. pp. 1–4. IEEE (2017)

4. Bhaduri, K., Stefanski, M.D., Srivastava, A.N.: Privacy-preserving outlier detection
through random nonlinear data distortion. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 41(1), 260–272 (2011)

5. Cachin, C.: Efficient private bidding and auctions with an oblivious third party.
In: Proceedings of the 6th ACM conference on Computer and communications
security. pp. 120–127. ACM (1999)

6. Chen, K., Liu, L.: Privacy-preserving multiparty collaborative mining with geo-
metric data perturbation. IEEE Transactions on Parallel and Distributed Systems
20(12), 1764–1776 (2009)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd. vol. 96, pp.
226–231 (1996)

8. Jiang, D., Xue, A., Ju, S., Chen, W., Ma, H.: Privacy-preserving DBSCAN on
horizontally partitioned data. In: IEEE International Symposium on Medicine and
Education. pp. 1067–1072. IEEE (2008)

9. Kumar, K.A., Rangan, C.P.: Privacy preserving DBSCAN algorithm for clustering.
In: International Conference on Advanced Data Mining and Applications. pp. 57–
68. Springer (2007)

10. Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

11. Liu, D., Wang, S.: Nonlinear order preserving index for encrypted database query
in service cloud environments. Concurrency and Computation: Practice and Ex-
perience 25(13), 1967–1984 (2013)

12. Liu, J., Xiong, L., Luo, J., Huang, J.Z.: Privacy preserving distributed DBSCAN
clustering. Trans. Data Privacy 6(1), 69–85 (Apr 2013)

13. Liu, Z., Chen, X., Yang, J., Jia, C., You, I.: New order preserving encryption model
for outsourced databases in cloud environments. Journal of Network and Computer
Applications 59, 198–207 (2016)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238. Springer (1999)

15. Rahman, M.S., Basu, A., Kiyomoto, S.: Towards outsourced privacy-preserving
multiparty DBSCAN. In: 22nd IEEE Pacific Rim International Symposium on
Dependable Computing. pp. 225–226. IEEE (2017)

16. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics 20, 53–65
(November 1987)

17. Tong, Q., Li, X., Yuan, B.: Efficient distributed clustering using boundary infor-
mation. Neurocomputing 275, 2355 – 2366 (2018)

18. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science. pp. 160–164. IEEE (1982)


