
An Efficient Algorithm for Mining Erasable Itemsets

Using the Difference of NC-Sets

Tuong Le

University of Food Industry

Ho Chi Minh City, Viet Nam
tuonglecung@gmail.com

Bay Vo
Ton Duc Thang University

Ho Chi Minh City, Viet Nam
bayvodinh@gmail.com

Frans Coenen
Department of Computer Science,

University of Liverpool, UK
coenen@liverpool.ac.uk

Abstract—This paper proposes an improved version of the

MERIT algorithm, dMERIT+, for mining all “erasable itemsets”.

We first establish an algorithm MERIT+, a revised version of

MERIT, which is then used as the foundation for dMERIT+. The

proposed algorithm uses: a weight index, a hash table and the

“difference” of Node Code Sets (dNC-Sets) to improve the mining

time. A theorem is derived first to show that dNC-Sets can be

used for mining erasable itemsets. The experimental results show

that dMERIT+ is more effective than MERIT+ in terms of the

runtime.

Keywords- data mining; difference set; erasable itemsets.

I. INTRODUCTION

Frequent itemset mining is a well-established element of data

mining. Significant algorithms include: Apriori [1], Eclat [18],

FP-Growth [5], FP-Growth* [7], BitTableFI [6], Index-

BitTableFI [15] and DBV-FI [16]. A variation of frequent

itemset mining is Frequent Closed Itemset (FCI) mining [13,

14], example of FCI algorithms include: CLOSET [12],

CLOSET+ [19], CHARM and dCHARM [18] and DBV-

Miner [17].
In 2009, Deng et al. [4] first presented the problem of

mining “erasable itemsets”, an interesting variation of frequent
itemset mining. The example application is a factory which
produces many products created from a number of items
(components), each product has some income (gain) associated
with it. To produce all products requires a financial resource to
buy and store all required items. However, in a financial crisis
situation this factory has not enough money to purchase all
necessary components as usual. In this context, this task is to
find the itemsets (the sets of items) which can best be
eliminated (erased) so as to minimize the loss to the factory’s
gain. Managers can then utilize the knowledge of these erasable
itemsets to make a new production plan. Simultaneously, in
[4], Deng et al. also proposed the META (Mining Erasable
iTemsets with the Anti-monotone property) algorithm, based
on Apriori, to solve the problem of identifying all erasable
itemsets. However, the runtime of this algorithm was slow
because it scanned the dataset many times and used a naïve
strategy for mining erasable itemsets.

Consequently, in [3], Deng et al. proposed the VME
(Vertical-format-based algorithm for Mining Erasable
itemsets) algorithm which was faster than META [4].
However, VME still featured some significant disadvantages:
(i) VME scans the input dataset twice (it is well established that

the scanning of dataset requires considerable computer time
and memory usage, ideally a single scan is desirable); (ii) VME
uses a breadth-first-search strategy in which all erasable (k-1)-
itemsets will be used to create erasable k-itemsets however,
classifying erasable (k-1)-itemsets with the same prefix means
that the generation of erasable (k-2)-itemsets is computationally
intensive; and (iii) VME stores each product’s gain in the form

of a tuple, PID, Val, this leads to the duplication of data

because a PID, Val pair can appear in many PID_Lists of
different erasable itemsets. Thus the VME algorithm requires a
lot of memory usage (PID = Product ID).

MERIT (Fast Mining ERasable ITemsets) [2], is an
alternative algorithm for mining erasable itemsets which uses
“NC-Set structure” to reduce the memory usage (see Section
2). However this algorithm still displayed some weaknesses
(see Section 3). In this paper, we propose an improved version
of MERIT, dMERIT+, which uses a weight index, a hash table
of erasable 1-itemsets and the difference of NC-Sets to reduce
the overall runtime and the memory usage.

The rest of the paper is organized as follows. Section 2
presents the basic concepts. Section 3 shows the discussions on
MERIT algorithm. dMERIT+ algorithm is proposed in Section
4 and an example of the process of dMERIT+ is presented in
Section 5. Section 6 shows the results of experiments. Finally,
the paper is concluded in Section 7 with a summary and some
future research issues.

II. BASIC CONCEPTS

Let be a set of all items. Let
 be a product dataset where each product

 is represented by an Y, Val pair, where Y is a

subset of I and Val is the gain associated with . An example

dataset is given in Table 1 (this dataset will be used

throughout the rest of this paper).

TABLE I. AN EXAMPLE DATASET

Product Items Val ($)

 a, b 1,000

 a, b, c 200

 3 b, c, e 150

 4 b, d, e, f 50

 5 c, d, e 100

 6 d, e, f, h 200

978-1-4799-0652-9/13/$31.00 ©2013 IEEE.

Definition 1 (The erasable itemset). Let be an
itemset. The gain of itemset is computed as:

𝑔 ∑ 𝑘 𝑉𝑎𝑙

 𝑃𝑘| 𝑋 ∩ 𝑃𝑘 𝐼𝑡𝑒 𝑠 ≠ ∅

 (1)

and is an erasable itemset if:

𝑔 𝒯 × 𝜉

(2)

where 𝒯 ∑ 𝑘 𝑉𝑎𝑙𝑃𝑘 is the total profit (for the factory)

and 𝜉 is a threshold.

The gain of itemset is thus the sum of gains of the
products which include at least one item in . For the example
dataset, 𝒯 = 1,700 dollars. Let = {fh} and 𝜉 = 30%. The gain
of is 𝑔 = 4.Val + P6.Val = 250 dollars because 4 and P6
include {f} or {h} or {fh} as items. is called an erasable
itemset because 𝑔 = 250 < 𝒯 × 𝜉 = 1,700 × 30% = 510
dollars.

In [2], Deng et al. presented the WPPC-tree, a tree of the

form N.item-name, N.weight, N.childnodes, N.pre, N.post (see
Fig. 1). The root of the WPPC-tree, , has the .item-name =
“null” and .weight = 0. The WPPC-tree is created by
Algorithm 1, WPPC-tree construction, presented in [2]. For

each node N in the WPPC-tree, the tuple N.pre, N.post:

N.weight is called the WPP-code of N. A WPP-code  .pre,

 .post: .weight is an ancestor of another WPP-code

 .pre, .post: .weight if and only if .pre < .pre and

 .post > .post. For example, Fig. 1 shows the complete

WPPC-tree of the dataset presented in Table 1 in which only
include the erasable 1-itemset. Two in-erasable 1-itemsets a
and b thus are not exist in this figure. In Fig. 1, the WPP-code

of the highlighted node is 1,5:500 and the WPP-code of

 is 6,3:100. is an ancestor of because .pre = 1 <
 .pre = 6 and .post = 5 > .post = 3.

Figure 1. The WPPC-tree for the example dataset with 𝜉 = 30%

From the WPPC-tree an NC-Set is a list of WPP-codes
associated with an erasable 1-itemset. Note that the NC-Set of a
1-itemset is sorted in descending order of Ni.pre and the
collection of erasable 1-itemsets is sorted in descending

order of frequency. For instance, the NC-Set of c is {5,4:250,

7,6:200} and the NC-Set of d is {2,2:250, 6,3:100}.

Assume that XA and XB are two erasable k-itemsets with
the same prefix X. and are the NC-Sets of XA and XB
respectively. The NC-Set 3 of XAB (A B: A is before B in
) is determined by combining and . This
combination is conducted according the following: (i) the
WPP-codes in 3 are sorted in ascending order of Ni.pre, (ii)
all WPP-codes in are in 3 and (iii) the WPP-codes in
 are in 3 if no WPP-code in is its ancestor. For
example, let XA = {c} and XB = {d}. The NC-Set of XAB =

{cd} is {2,2:250, 5,4:250, 7,6:200}. 6,3:100 is excluded

because 5,4:250 is one of its ancestor.

The gain of k-itemset is then computed by summing the
Ni.weights of WPP-codes in its NC-Set. For instance, the gain
of {cd} is 250 + 250 + 200 = 700 dollars.

III. THE DISCUSSIONS ON MERIT ALGORITHM

The MERIT algorithm for mining erasable itemsets proposed

in [2] is an effective algorithm. However, this algorithm

cannot find all erasable itemsets because of the following

issues:

1. The mining_E procedure [2] checks all the subset (k-1)-

itemsets of a k-itemsets are erasable or not to determine

be inerasable. However, MERIT uses the deep-first-search

strategy so there are not enough the available (k-1)-itemsets

in results (the temporary results in this step). Therefore, this

check is always false where k > 2 and all erasable k-

itemsets (k > 2) is always inerasable;

2. The mining_E procedure [2] enlarges the equivalence

classes of therefore the results of MERIT does not

include all erasable itemsets (although it does introduce

efficiency gains).

To address the above issues we implemented an algorithm
by removing the lines 7, 13, 15 and 16 in mining_E procedure
of MERIT, called MERIT+, to mining erasable itemsets fully.

Besides, MERIT algorithm featured a number of weaknesses:

1. It stores the weight value of each WPP-code which can

appear in many erasable itemsets’ NC-Sets, therefore,

leading to much duplication;

2. It does not provide effective mechanisms for: (a) searching

for a specific 1-itemset in an erasable 1-itemsets and (b)

determining whether an erasable 1-itemset is before or after

other erasable 1-itemset;

3. It uses a strategy whereby an itemset ’s NC-Set is the

subset of an itemset ’s NC-Set if .

To overcome the above weaknesses of MERIT (and also
MERIT+), dMERIT+ algorithm is proposed and described in
the following section.

IV. DMERIT+ ALGORITHM

This section introduces the dMERIT+ algorithm starting with

some definitions.
Definition 2 (The weight index). Let be the WPPC-tree.

We define , a weight index:

null

c, 200 e, 500

c, 250

d, 100

d, 250

f, 250

h, 200

(1,5)

(2,2) (5,4)

(3,1) (6,3)

(4,0)

(7,6)

(0,7)

𝑁

𝑁

 [.pre] = .weight

(3)

where is the node in the WPPC-tree.

The weight index for the WPPC-tree given in Fig. 1 is
presented in Table 2. Using the weight index, we propose a

new WPP-code structure N.pre, N.post, called WPP′-code,
which helps the proposed algorithm reduce the required
memory usage and easily determine the weight of the
individual WPP′-code based on .

TABLE II. THE WEIGHT INDEX FOR THE EXAMPLE DATASET WITH 𝜉 =

30%

Pre 0 1 2 3 4 5 6 7

Weight 0 500 250 250 200 250 100 200

Definition 3 (The hash table of erasable 1-itemsets). Let

 be the erasable 1-itemsets. We define , a hash table of
erasable 1-itemsets.

 𝑒 =
(4)

where 𝑒 is an erasable 1-itemset.

Once the hash table of erasable 1-itemsets has been
generated, we can:

1. Determine whether a 1-itemset 𝑒 is in or not by

considering whether this 1-itemset exists in or not. If 𝑒

exists in dMERIT+ can also easily extract the

information associated with 𝑒 by “hashing” into the table

to get the index of 𝑒 in (denoted by j) and accessing the

element at position j in ;

2. Compare two erasable 1-itemsets 𝑒 and 𝑒 in the order of

appearance in by comparing 𝑒 and 𝑒 . If

 𝑒 𝑒 means then 𝑒 𝑒 and reverse.

Thus using the hash table reduces the runtime of dMERIT+
compared to MERIT+ (and consequently MERIT)

Definition 4 (dNC-Set). Let with its NC-Set
and with its NC-Set be two itemsets with the
same prefix . Assume that = { |
 so that is ancestor of }. The dNC-Set of
 and denoted by is defined as
follow:

dNC(XAB) = \
(5)

Theorem 1: Assume that we have 𝑔 , the gain of .
The gain of , 𝑔 , is computed as follow:

𝑔 𝑔 + ∑ 𝑒

 𝑒 𝑠𝑡 𝑑𝑁𝐶 𝑋𝐴

(6)

where 𝑒 is the element at position 𝑒 in .

Proof: According to definition 7 in [2], =

  \ =  . So,
𝑔 = 𝑔 + ∑ 𝑒  𝑒 𝑠𝑡 𝑑𝑁𝐶 𝑋𝐴 , Theorem 1

is proved.

From the above, we propose the dMERIT+ algorithm as
presented in Fig. 2.

Input: A product dataset and a threshold 𝜉

Output: , the set of all erasable itemsets

1.Construct_WPPC_tree(, 𝜉) to generate ,

 , and 𝒯
2.GenerateNC-Sets(,)

3.

4.if .size > 1 then

5. mining_ E()

6.return

Procedure Construct_WPPC_tree(, 𝜉)

1.scan once to find , their gains, their

frequency and the total gain of the factory(𝒯)
2.sort in frequency descending order

3.create , the hash table of

4.create the root of a WPPC-tree, , and label

it as ‘null’

5.for each

6. remove inerasable 1-itemsets

7. sort its erasable 1-itemsets in frequency

descending order

8. insert_tree(,)

9.scan WPPC-tree to generate pre and post and

10.return , , and 𝒯

Procedure insert_tree(,)

1. while (is not null) do

2. The first items of

3. \

4. if has a child such that .item-name =

 then

5. .Weight = .Weight + .Val

6. else

7. create a new node

8. .Weight .Val

9. .Childnodes =

10. insert_tree(,)

11.end while

Procedure GenerateNC-Sets(,)

1. .Post and .Pre

2.pos = [.item-name]

3.add to [pos].NC-Sets // by definition 3

4.for each Child in .ChildNodes

5. GenerateNC-Sets(Child)

Procedure mining_E()

1.for k 1 to .size do

2. 𝑒 𝑡 

3. for j (k+1) to .size do

4. let 𝑒 and 𝑒 be the last item of

 [k].Items and [j].Items respectively

5. if [𝑒] < [𝑒] then // by definition 3

6. EI.Items [k].Items + {𝑒 }

7. (EI.NC-Sets and Gain) dNC-

Set([k] NC-Sets, [j].NC-Sets)

8. EI.Gain = [k] Gain + Gain

9. else

10. EI.Items [j].Items + {𝑒 }

11. (EI.NC-Sets and Gain) dNC-

Set([j] NC-Sets, [k].NC-Sets)

12. EI.Gain = [j] Gain+ Gain

13. if (EI.Gain 𝜉 × 𝒯)
14. add EI to 𝑒 𝑡

15. add EI to

16. if .size > 1 then

17. mining_E()

Function dNC-Set(,)

1. 3  and Gain 0

2.for each

3. flag = 0

4. for each

5. if is ancestor of then flag = 1 and

break

6. if(flag == 0)

7. insert to 3

8. Gain = Gain + W[.Pre] // by theorem 1

and definition 2

9. return 3 and Gain

Figure 2. dMERIT+ algorithm

V. THE EXAMPLE

Considering the example data set given in Table 1, 𝜉 = 30%

and the dMERIT+ algorithm (Fig. 2). First, dMERIT+ calls

the Construct_WPPC_tree procedure to create the WPPC_tree

 (see Fig. 1), the erasable 1-itemsets , the hash table of

erasable 1-itemsets (see Table. 2) and the total gain for the

factory 𝒯. The GenerateNC-Sets procedure was used to create

 ’s associated NC-Sets. The mining_E procedure is then

called with as a parameter all so as to identify the complete

set of erasable itemsets (Fig. 3).
We also ran MERIT+ on the example data set with 𝜉 =

30%, then we obtained the erasable itemsets and confirmed that
both algorithms find the same set of erasable itemsets although
in different ways.

When considering the memory usage associated with both
algorithms the following can be observed:

1. The memory usage can be determined by summing either:

(i) the memory to store erasable itemsets, their new NC-

Sets, the set of WPP′-codes N.pre, N.post, and the weight

index (dMERIT+) or (ii) the memory to store erasable

itemsets and their NC-Sets (MERIT+);

2. N.pre, N.post, N.weight, the item identifier and the gain of

an erasable itemset are represented in an integer format

which requires 4 bytes in memory.

Figure 3. The complete set of erasable itemsets identified by applying

dMERIT+ to the example data set with 𝜉 = 30%

We count the number of items included in the dMERIT+’s

output (see Fig. 3) which is 63. In addition, dMERIT+ also

requires an array with 7 elements as the weight index.

Therefore, the memory usage required by dMERIT+ is

(63+7)×4= 280 bytes. Meanwhile, the erasable itemsets and

their NC-Sets of MERIT+ algorithm require 112, the number

of items. Hence, the memory usage required by MERIT+ is

112×4= 448 bytes.
Thus the example shows that the memory usage for

dMERIT+ is less than the memory usage for MERIT+.

VI. EXPERIMENTAL RESULTS

Both MERIT+ and dMERIT+ were encoded using C# 2012 on

an ASUS laptop with Intel core i3-3110M 2.4GHz and 4GBs

of RAM. We used the Mushroom, Pumsb and T10I4D100K

datasets downloaded from http://fimi.cs.helsinki.fi/data/ but

adding a column indicating the “profit” for each product. The

profit of each product was generated using a function

Rand(100, 50), where the mean value is 100 and the variance

is 50. Some statistics concerning these datasets are shown in

Table 3.

TABLE III. THE FEATURES OF THE PRODUCT DATASETS

Dataset #Products #Items

Mushroom 8,124 120

Pumsb 49,046 7,117

T10I4D100K 100,000 870

The objectives of the experiments were to compare the

runtime and the memory usage of both MERIT+ (described in

Section 3) and dMERIT+ (described Section 4). Note that:

1. Runtime in this context is the period between the start of

the input to the end of the output.

{}

c×{5,4, 7,6}

450

d×{2,3, 6,3}

350

e×{1,5}

500

f×{3,1}

250

h×{4,0}

200

ed×{}
500

ef×{}
500

eh×{}
500

edf×{}

500

edh×{}

500

edfh×{}

500

efh×{}

500

df×{}

350

dh×{}

350

dfh×{}
350

fh×{}

250

2. Memory usage was determined as described at the end of

Section 5.

Figs. 4 to 6 show the recorded runtimes when MERIT+ and

dMERIT+ were applied to the three datasets. From the tables

it can be seen that dMERIT+ outperforms MERIT+ in terms of

the runtime, especially with respect to datasets which have a

large number of items (Fig. 4 and Fig. 6).

Figure 4. The runtime of MERIT+ and dMERIT+ on Pumsb dataset

Figure 5. The runtime of MERIT+ and dMERIT+ on Mushroom dataset

Figure 6. The runtime of MERIT+ and dMERIT+ on T10I4D100K dataset

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented MERIT+, a revised version of

MERIT algorithm for mining erasable itemsets fully. We then

proposed dMERIT+, the main contribution of this paper, an

advanced algorithm that uses the weight index, the hash table

of erasable 1-itemsets and the dNC-Sets to reduce the runtime

and memory usage associated with both MERIT and MERIT+.

The experimental results demonstrated that dMERIT+ is more

efficient than MERIT+ (and naturally MERIT).
For future work we will initially focus on mining erasable

closed itemsets. In the longer term, inspired by work on,
mining frequent itemsets in incremental datasets [8-11], we
study how to mine erasable itemsets in this setting.

REFERENCES

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules.
VLDB’94, 487-499, 1994.

[2] Deng, Z.H., Xu, X.R.: Fast mining erasable itemsets using NC_sets.
Expert Systems with Applications 39(4), 4453–4463, 2012.

[3] Deng, Z.H., Xu, X.R.: An efficient algorithm for mining erasable
itemsets. ADMA’10, 214-225, 2010.

[4] Deng, Z., Fang, G., Wang, Z., Xu, X.: Mining erasable itemsets.
ICMLC’09, 67–73, 2009.

[5] Dong, J., Han, M.: BitTable-FI: An efficient mining frequent itemsets
algorithm. Knowledge Based Systems, 20(4), 329–335, 2007.

[6] Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using
fp-trees. IEEE Transactions on Knowledge and Data Engineering,
17(10), 1347–1362, 2005.

[7] Han J., Pei J., Yin Y.: Mining frequent patterns without candidate
generation. SIGMOD’00, 1–12, 2000.

[8] Hong, T.P., Wang, C.Y., Tao, Y.H.: A new incremental data mining
algorithm using pre-large itemsets. Intelligent Data Analysis 5(2), 111-
129, 2001.

[9] Le, T.P., Hong, T.P., Vo, B., Le, B.: Incremental mining frequent
itemsets based on the trie structure and the prelarge itemsets. GRC’11,
369-373, 2011.

[10] Le, T.P., Vo, B., Hong, T.P., Le, B.: An efficient incremental mining
approach based on IT-tree. RIVF’12, 57-61, 2012.

[11] Lin, C.W., Hong, T.P, Lu, W.H.: Using the structure of prelarge trees to
incrementally mine frequent itemsets. New Generation Computing
28(1), 5-20, 2010.

[12] Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining
frequent closed itemsets. SIGMOD workshop on researchissues in data
mining and knowledge discovery, 11–20, 2000.

[13] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent
Closed Itemsets for Association Rules. ICDT’12, 398 – 416, 1999.

[14] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of
Association Rules using Closed Itemset Lattices. Information Systems
24(1), 25 – 46, 1999.

[15] Song, W., Yang, B., Xu, Z.: Index-BitTableFI: An improved algorithm
formining frequent itemsets. Knowledge Based Systems, 21(6), 507–
513, 2008.

[16] Vo, B., Hong, T.P., Le, B.: Dynamic bit vectors: An efficient approach
for mining frequent itemsets. Scientific Research and Essays, 6(25),
5358-5368, 2011.

[17] Vo, B., Hong, T.P., Le, B.: DBV-Miner: A dynamic bit-vector approach
for fast mining frequent closed itemsets. Expert Systems with
Applications 39(8), 7196-7206, 2012.

[18] Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets
and their lattice structure. IEEE Transactions on Knowledge and Data
Engineering, 17(4), 462–478, 2005.

[19] Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the best strategies
for mining frequent closed itemsets. SIGKDD’03, 236–245, 2003.

0

200

400

600

800

1000

1200

1400

1600

0.0045 0.0050 0.0055 0.0060 0.0065

MERIT+

dMERIT+

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(%)

0

5

10

15

20

25

30

35

40

1 1.5 2 2.5 3

MERIT+

dMERIT+

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(%)

0

20

40

60

80

100

120

0.150 0.155 0.160 0.165 0.170

MERIT+

dMERIT+

R
u

n
ti

m
e

(s
ec

o
n

d
s)

(%)

http://dblp.uni-trier.de/pers/hd/w/Wang:Ching=Yao.html
http://dblp.uni-trier.de/pers/hd/t/Tao:Yu=Hui.html
http://dblp.uni-trier.de/pers/hd/l/Lu:Wen=Hsiang.html

