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Abstract—This paper proposes an improved version of the 

MERIT algorithm, dMERIT+, for mining all “erasable itemsets”. 

We first establish an algorithm MERIT+, a revised version of 

MERIT, which is then used as the foundation for dMERIT+. The 

proposed algorithm uses: a weight index, a hash table and the 

“difference” of Node Code Sets (dNC-Sets) to improve the mining 

time. A theorem is derived first to show that dNC-Sets can be 

used for mining erasable itemsets. The experimental results show 

that dMERIT+ is more effective than MERIT+ in terms of the 

runtime. 

Keywords- data mining; difference set; erasable itemsets. 

I.  INTRODUCTION 

Frequent itemset mining is a well-established element of data 

mining. Significant algorithms include: Apriori [1], Eclat [18], 

FP-Growth [5], FP-Growth* [7], BitTableFI [6], Index-

BitTableFI [15] and DBV-FI [16]. A variation of frequent 

itemset mining is Frequent Closed Itemset (FCI) mining [13, 

14], example of FCI algorithms include: CLOSET [12], 

CLOSET+ [19], CHARM and dCHARM [18] and DBV-

Miner [17].  
In 2009, Deng et al. [4] first presented the problem of 

mining “erasable itemsets”, an interesting variation of frequent 
itemset mining. The example application is a factory which 
produces many products created from a number of items 
(components), each product has some income (gain) associated 
with it. To produce all products requires a financial resource to 
buy and store all required items. However, in a financial crisis 
situation this factory has not enough money to purchase all 
necessary components as usual. In this context, this task is to 
find the itemsets (the sets of items) which can best be 
eliminated (erased) so as to minimize the loss to the factory’s 
gain. Managers can then utilize the knowledge of these erasable 
itemsets to make a new production plan. Simultaneously, in 
[4], Deng et al. also proposed the META (Mining Erasable 
iTemsets with the Anti-monotone property) algorithm, based 
on Apriori, to solve the problem of identifying all erasable 
itemsets. However, the runtime of this algorithm was slow 
because it scanned the dataset many times and used a naïve 
strategy for mining erasable itemsets. 

Consequently, in [3], Deng et al. proposed the VME 
(Vertical-format-based algorithm for Mining Erasable 
itemsets) algorithm which was faster than META [4]. 
However, VME still featured some significant disadvantages: 
(i) VME scans the input dataset twice (it is well established that 

the scanning of dataset requires considerable computer time 
and memory usage, ideally a single scan is desirable); (ii) VME 
uses a breadth-first-search strategy in which all erasable (k-1)-
itemsets will be used to create erasable k-itemsets however, 
classifying erasable (k-1)-itemsets with the same prefix means 
that the generation of erasable (k-2)-itemsets is computationally 
intensive; and (iii) VME stores each product’s gain in the form 

of a tuple, PID, Val, this leads to the duplication of data 

because a PID, Val pair can appear in many PID_Lists of 
different erasable itemsets. Thus the VME algorithm requires a 
lot of memory usage (PID = Product ID). 

MERIT (Fast Mining ERasable ITemsets) [2], is an 
alternative algorithm for mining erasable itemsets which uses 
“NC-Set structure” to reduce the memory usage (see Section 
2). However this algorithm still displayed some weaknesses 
(see Section 3). In this paper, we propose an improved version 
of MERIT, dMERIT+, which uses a weight index, a hash table 
of erasable 1-itemsets and the difference of NC-Sets to reduce 
the overall runtime and the memory usage. 

The rest of the paper is organized as follows. Section 2 
presents the basic concepts. Section 3 shows the discussions on 
MERIT algorithm. dMERIT+ algorithm is proposed in Section 
4 and an example of the process of dMERIT+ is presented in 
Section 5. Section 6 shows the results of experiments. Finally, 
the paper is concluded in Section 7 with a summary and some 
future research issues. 

II. BASIC CONCEPTS 

Let                   be a set of all items. Let    
               be a product dataset where each product 

           is represented by an Y, Val pair, where Y is a 

subset of I and Val is the gain associated with   . An example 

dataset is given in Table 1 (this dataset will be used 

throughout the rest of this paper).  

TABLE I.  AN EXAMPLE DATASET  

Product Items Val ($) 

   a, b 1,000 

   a, b, c 200 

 3 b, c, e 150 

 4 b, d, e, f 50 

 5 c, d, e 100 

 6 d, e, f, h 200 
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Definition 1 (The erasable itemset). Let     be an 
itemset. The gain of itemset   is computed as: 

 

𝑔     ∑  𝑘  𝑉𝑎𝑙

 𝑃𝑘| 𝑋 ∩ 𝑃𝑘 𝐼𝑡𝑒 𝑠 ≠ ∅  

 (1) 

and   is an erasable itemset if: 

 
𝑔    𝒯 ×  𝜉 

(2) 

where 𝒯  ∑  𝑘  𝑉𝑎𝑙𝑃𝑘      is the total profit (for the factory) 

and 𝜉 is a threshold. 

The gain of itemset   is thus the sum of gains of the 
products which include at least one item in  . For the example 
dataset, 𝒯 = 1,700 dollars. Let   = {fh} and 𝜉 = 30%. The gain 
of   is 𝑔    =  4.Val + P6.Val = 250 dollars because  4 and P6 
include {f} or {h} or {fh} as items.   is called an erasable 
itemset because 𝑔    = 250 < 𝒯 × 𝜉  = 1,700 × 30% = 510 
dollars. 

In [2], Deng et al. presented the WPPC-tree, a tree of the 

form N.item-name, N.weight, N.childnodes, N.pre, N.post (see 
Fig. 1). The root of the WPPC-tree,  , has the  .item-name = 
“null” and  .weight = 0. The WPPC-tree is created by 
Algorithm 1, WPPC-tree construction, presented in [2]. For 

each node N in the WPPC-tree, the tuple N.pre, N.post: 

N.weight is called the WPP-code of N. A WPP-code   .pre, 

  .post:   .weight is an ancestor of another WPP-code 

  .pre,   .post:   .weight if and only if   .pre <   .pre and 

  .post >   .post. For example, Fig. 1 shows the complete 

WPPC-tree of the dataset presented in Table 1 in which only 
include the erasable 1-itemset. Two in-erasable 1-itemsets a 
and b thus are not exist in this figure. In Fig. 1, the WPP-code 

of the highlighted node    is 1,5:500 and the WPP-code of 

   is 6,3:100.    is an ancestor of    because   .pre = 1 < 
  .pre = 6 and   .post = 5 >   .post = 3. 

 
Figure 1.  The WPPC-tree for the example dataset with 𝜉 = 30% 

From the WPPC-tree an NC-Set is a list of WPP-codes 
associated with an erasable 1-itemset. Note that the NC-Set of a 
1-itemset is sorted in descending order of Ni.pre and the 
collection of erasable 1-itemsets    is sorted in descending 

order of frequency. For instance, the NC-Set of c is {5,4:250, 

7,6:200} and the NC-Set of d is {2,2:250, 6,3:100}.  

Assume that XA and XB are two erasable k-itemsets with 
the same prefix X.     and     are the NC-Sets of XA and XB 
respectively. The NC-Set   3 of XAB (A B: A is before B in 
  ) is determined by combining     and    . This 
combination is conducted according the following: (i) the 
WPP-codes in   3 are sorted in ascending order of Ni.pre, (ii) 
all WPP-codes in     are in   3 and (iii) the WPP-codes in 
    are in   3  if no WPP-code in     is its ancestor. For 
example, let XA = {c} and XB = {d}. The NC-Set of XAB = 

{cd} is {2,2:250, 5,4:250, 7,6:200}. 6,3:100 is excluded 

because 5,4:250 is one of its ancestor.  

The gain of k-itemset is then computed by summing the 
Ni.weights of WPP-codes in its NC-Set. For instance, the gain 
of {cd} is 250 + 250 + 200 = 700 dollars. 

III. THE DISCUSSIONS ON MERIT ALGORITHM 

The MERIT algorithm for mining erasable itemsets proposed 

in [2] is an effective algorithm. However, this algorithm 

cannot find all erasable itemsets because of the following 

issues: 

1.  The mining_E procedure [2] checks all the subset (k-1)-

itemsets of a k-itemsets   are erasable or not to determine   

be inerasable. However, MERIT uses the deep-first-search 

strategy so there are not enough the available (k-1)-itemsets 

in results (the temporary results in this step). Therefore, this 

check is always false where k > 2 and all erasable k-

itemsets (k > 2) is always inerasable; 

2. The mining_E procedure [2] enlarges the equivalence 

classes of        therefore the results of MERIT does not 

include all erasable itemsets (although it does introduce 

efficiency gains). 

To address the above issues we implemented an algorithm 
by removing the lines 7, 13, 15 and 16 in mining_E procedure 
of MERIT, called MERIT+, to mining erasable itemsets fully. 

Besides, MERIT algorithm featured a number of weaknesses:  

1. It stores the weight value of each WPP-code which can 

appear in many erasable itemsets’ NC-Sets, therefore, 

leading to much duplication;  

2. It does not provide effective mechanisms for: (a) searching 

for a specific 1-itemset in an erasable 1-itemsets    and (b) 

determining whether an erasable 1-itemset is before or after 

other erasable 1-itemset; 

3. It uses a strategy whereby an itemset  ’s NC-Set is the 

subset of an itemset  ’s NC-Set if    .  

To overcome the above weaknesses of MERIT (and also 
MERIT+), dMERIT+ algorithm is proposed and described in 
the following section. 

IV. DMERIT+ ALGORITHM 

This section introduces the dMERIT+ algorithm starting with 

some definitions. 
Definition 2 (The weight index). Let   be the WPPC-tree. 

We define  , a weight index:  

null 

c, 200 e, 500 

c, 250 

d, 100 

d, 250 

f, 250 

h, 200 

(1,5) 

(2,2) (5,4) 

(3,1) (6,3) 

(4,0) 

(7,6) 

(0,7) 

𝑁  

𝑁  



 
 [  .pre] =   .weight 

(3) 

where      is the node in the WPPC-tree.  

The weight index for the WPPC-tree given in Fig. 1 is 
presented in Table 2. Using the weight index, we propose a 

new WPP-code structure N.pre, N.post, called WPP′-code, 
which helps the proposed algorithm reduce the required 
memory usage and easily determine the weight of the 
individual WPP′-code based on  .  

TABLE II.  THE WEIGHT INDEX   FOR THE EXAMPLE DATASET WITH 𝜉 = 

30% 

Pre  0 1 2 3 4 5 6 7 

Weight 0 500 250 250 200 250 100 200 

 
Definition 3 (The hash table of erasable 1-itemsets). Let 

   be the erasable 1-itemsets. We define   , a hash table of 
erasable 1-itemsets. 

 

   𝑒   =   
(4) 

where 𝑒     is an erasable 1-itemset. 

Once the hash table of erasable 1-itemsets has been 
generated, we can:  

1. Determine whether a 1-itemset 𝑒 is in    or not by 

considering whether this 1-itemset exists in    or not. If 𝑒  

exists in    dMERIT+ can also easily extract the 

information associated with 𝑒  by “hashing” into the table 

to get the index of 𝑒  in    (denoted by j) and accessing the 

element at position j in   ;  

2. Compare two erasable 1-itemsets 𝑒  and 𝑒  in the order of 

appearance in    by comparing    𝑒   and    𝑒  . If 

   𝑒      𝑒   means then 𝑒  𝑒  and reverse. 

Thus using the hash table reduces the runtime of dMERIT+ 
compared to MERIT+ (and consequently MERIT) 

Definition 4 (dNC-Set). Let    with its NC-Set        
and    with its NC-Set        be two itemsets with the 
same prefix  . Assume that         = {           | 
            so that     is ancestor of   }. The dNC-Set of 
       and        denoted by          is defined as 
follow: 

 

dNC(XAB) =        \         
(5) 

Theorem 1: Assume that we have 𝑔    , the gain of   . 
The gain of    , 𝑔     , is computed as follow: 

 

𝑔       𝑔    + ∑     𝑒 

  𝑒   𝑠𝑡   𝑑𝑁𝐶 𝑋𝐴  

 
(6) 

where     𝑒  is the element at position   𝑒 in  . 

Proof: According to definition 7 in [2],         = 

              \        =               . So, 
𝑔      = 𝑔    + ∑     𝑒   𝑒   𝑠𝑡   𝑑𝑁𝐶 𝑋𝐴  , Theorem 1 

is proved. 

From the above, we propose the dMERIT+ algorithm as 
presented in Fig. 2. 

Input: A product dataset    and a threshold 𝜉 

Output:  , the set of all erasable itemsets 

1.Construct_WPPC_tree(  , 𝜉) to generate  , 

  ,    and 𝒯 
2.GenerateNC-Sets( ,   ) 

3.     

4.if   .size > 1 then  

5.  mining_ E(  ) 

6.return   

 

Procedure Construct_WPPC_tree(  , 𝜉)  

1.scan    once to find   , their gains, their 

frequency and the total gain of the factory(𝒯) 
2.sort    in frequency descending order 

3.create   , the hash table of    

4.create the root of a WPPC-tree,  , and label 

it as ‘null’ 

5.for each      

6.  remove inerasable 1-itemsets 

7.  sort its erasable 1-itemsets in frequency 

descending order 

8.  insert_tree( ,  ) 

9.scan WPPC-tree to generate pre and post and 

   

10.return  ,   ,    and 𝒯 
 

Procedure insert_tree( ,  ) 

1. while (  is not null) do  

2.      The first items of   

3.      \    

4.  if   has a child   such that  .item-name = 

   then  

5.    .Weight =  .Weight +  .Val 

6.  else 

7.   create a new node   

8.    .Weight   .Val 

9.    .Childnodes =   

10. insert_tree( ,  ) 

11.end while 

 

Procedure GenerateNC-Sets( ,   ) 

1.     .Post and  .Pre 

2.pos =   [ .item-name] 

3.add     to   [pos].NC-Sets // by definition 3 

4.for each Child in  .ChildNodes 

5.  GenerateNC-Sets(Child) 

 

Procedure mining_E(  ) 



1.for k   1 to   .size do  

2.     𝑒 𝑡    

3.  for j   (k+1) to   .size do  

4.   let 𝑒  and 𝑒  be the last item of 

  [k].Items and   [j].Items respectively 

5.   if   [𝑒 ] <   [𝑒 ] then // by definition 3 

6.    EI.Items    [k].Items + {𝑒 } 

7.    (EI.NC-Sets and Gain)   dNC-

Set(  [k] NC-Sets,   [j].NC-Sets)  

8.    EI.Gain =   [k] Gain + Gain 

9.   else 

10.   EI.Items    [j].Items + {𝑒 } 

11.   (EI.NC-Sets and Gain)   dNC-

Set(  [j] NC-Sets,   [k].NC-Sets) 

12.   EI.Gain =   [j] Gain+ Gain 

13.  if (EI.Gain   𝜉 × 𝒯) 
14.   add EI to    𝑒 𝑡 

15.   add EI to   

16. if       .size > 1 then  

17.  mining_E(      ) 

 

Function dNC-Set(   ,    ) 

1.  3    and Gain   0 

2.for each         

3. flag = 0 

4. for each         

5.  if     is ancestor of     then flag = 1 and 

break 

6.  if(flag == 0) 

7.   insert     to   3 

8.   Gain = Gain + W[   .Pre] // by theorem 1 

and definition 2 

9. return   3 and Gain 

Figure 2.  dMERIT+ algorithm 

V. THE EXAMPLE 

Considering the example data set given in Table 1, 𝜉 = 30% 

and the dMERIT+ algorithm (Fig. 2). First, dMERIT+ calls 

the Construct_WPPC_tree procedure to create the WPPC_tree 

  (see Fig. 1), the erasable 1-itemsets   , the hash table of 

erasable 1-itemsets    (see Table. 2) and the total gain for the 

factory 𝒯. The GenerateNC-Sets procedure was used to create 

  ’s associated NC-Sets. The mining_E procedure is then 

called with    as a parameter all so as to identify the complete 

set of erasable itemsets (Fig. 3). 
We also ran MERIT+ on the example data set with 𝜉  = 

30%, then we obtained the erasable itemsets and confirmed that 
both algorithms find the same set of erasable itemsets although 
in different ways.  

When considering the memory usage associated with both 
algorithms the following can be observed: 

1. The memory usage can be determined by summing either: 

(i) the memory to store erasable itemsets, their new NC-

Sets, the set of WPP′-codes N.pre, N.post, and the weight 

index (dMERIT+) or (ii) the memory to store erasable 

itemsets and their NC-Sets (MERIT+); 

2. N.pre, N.post, N.weight, the item identifier and the gain of 

an erasable itemset are represented in an integer format 

which requires 4 bytes in memory.  

 
Figure 3.  The complete set of erasable itemsets identified by applying 

dMERIT+ to the example data set with 𝜉 = 30% 

We count the number of items included in the dMERIT+’s 

output (see Fig. 3) which is 63. In addition, dMERIT+ also 

requires an array with 7 elements as the weight index. 

Therefore, the memory usage required by dMERIT+ is 

(63+7)×4= 280 bytes. Meanwhile, the erasable itemsets and 

their NC-Sets of MERIT+ algorithm require 112, the number 

of items. Hence, the memory usage required by MERIT+ is 

112×4= 448 bytes.  
Thus the example shows that the memory usage for 

dMERIT+ is less than the memory usage for MERIT+. 

VI. EXPERIMENTAL RESULTS 

Both MERIT+ and dMERIT+ were encoded using C# 2012 on 

an ASUS laptop with Intel core i3-3110M 2.4GHz and 4GBs 

of RAM. We used the Mushroom, Pumsb and T10I4D100K 

datasets downloaded from http://fimi.cs.helsinki.fi/data/ but 

adding a column indicating the “profit” for each product. The 

profit of each product was generated using a function 

Rand(100, 50), where the mean value is 100 and the variance 

is 50. Some statistics concerning these datasets are shown in 

Table 3. 

TABLE III.  THE FEATURES OF THE PRODUCT DATASETS 

Dataset #Products #Items 

Mushroom 8,124 120 

Pumsb 49,046 7,117 

T10I4D100K 100,000 870 

The objectives of the experiments were to compare the 

runtime and the memory usage of both MERIT+ (described in 

Section 3) and dMERIT+ (described Section 4). Note that:  

1. Runtime in this context is the period between the start of 

the input to the end of the output. 

{} 

c×{5,4, 7,6} 

450 

d×{2,3, 6,3} 

350 

e×{1,5} 

500 

f×{3,1} 

250 

h×{4,0} 

200 

ed×{} 
500 

ef×{} 
500 

eh×{} 
500 

edf×{} 

500 

edh×{} 

500 

edfh×{} 

500 

efh×{} 

500 

df×{} 

350 

dh×{} 

350 

dfh×{} 
350 

fh×{} 

250 



2. Memory usage was determined as described at the end of 

Section 5. 

Figs. 4 to 6 show the recorded runtimes when MERIT+ and 

dMERIT+ were applied to the three datasets. From the tables 

it can be seen that dMERIT+ outperforms MERIT+ in terms of 

the runtime, especially with respect to datasets which have a 

large number of items (Fig. 4 and Fig. 6). 

 

 

Figure 4.  The runtime of MERIT+ and dMERIT+ on Pumsb dataset 

 

Figure 5.  The runtime of MERIT+ and dMERIT+ on Mushroom dataset 

 
Figure 6.  The runtime of MERIT+ and dMERIT+ on T10I4D100K dataset  

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented MERIT+, a revised version of 

MERIT algorithm for mining erasable itemsets fully. We then 

proposed dMERIT+, the main contribution of this paper, an 

advanced algorithm that uses the weight index, the hash table 

of erasable 1-itemsets and the dNC-Sets to reduce the runtime 

and memory usage associated with both MERIT and MERIT+. 

The experimental results demonstrated that dMERIT+ is more 

efficient than MERIT+ (and naturally MERIT).  
For future work we will initially focus on mining erasable 

closed itemsets. In the longer term, inspired by work on, 
mining frequent itemsets in incremental datasets [8-11], we 
study how to mine erasable itemsets in this setting. 
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