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Abstract—Over the years or even decades, researchers are
dealing with the problem of duplicate clusters or overlapping
clusters in a cluster set. Clusters overlap within each other just
as in the case of social networking groups, or grouping movies
by genre. In this paper, hierarchical form of clustering is used to
cluster user based on interaction which creates numerous clusters
with different sizes at different hierarchical level. In doing so,
many overlapping clusters are generated but duplicates are not
removed. Duplicity possesses a challenge for differentiation. Our
work here is two fold. Firstly, to cluster users with different
hierarchical levels to generate sets of clusters by level and
secondly, to find among the different cluster sets the optimal
one by simply using mean and standard deviation. The sense
of optimality is different for different requirements. Our work
shows that we can have a choice of picking the optimal set by
requirement.

1. INTRODUCTION

Clustering is an unsupervised learning where similar ob-
jects form groups in such a manner that the objects in a group
are mostly similar within the group than in any other group.
There are many examples of unsupervised learning. Take the
case of online world. Some examples are: group movies by
different parameters like genre, old and new, forming groups of
users in a social network by their interaction. In all these case
overlapping occurs. Social network such as Twitter is used to
generate clusters based on only interaction among individuals.
Here, interaction means that who has retweeted or replied to
whom only. By doing so, many overlapping groups or clusters
are generated. No consideration is given to real messages as
a whole. There are many approaches proposed in the past
regarding the generation of overlapping clusters [1], [2], [3],

(41, [5].

Here, an algorithm is proposed for generating clusters sets
which are overlapping, but our main focus is on finding the
stability of these clusters sets and choosing the most optimal
one. The clusters in an individual set are overlapping. A user
may be found in more than one cluster and since clustering
is done hierarchically somewhere cut has to be made to get
the optimum cluster set. The generation of clusters in a set is
given by level. Goldberg M K et al [6] compares two sets of
clusters that are overlapping. Duplicity among clusters makes
matter more complicated. Since, users interact with each other
there will be hierarchy of users starting from any one user
to form a cluster. The question arises is till which hierarchy
level should be chosen. If no level is chosen, then there will
be many clusters with numerous duplicates.

Finding duplicate cluster or the number of duplicate clus-
ters within a cluster set is one challenge and finding optimal
cluster set by different level, knowing that clusters within the
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cluster set might be overlapping, is another. The paper focuses
on the later part. Heise A et al [7] came up with a method to
detect duplicate clusters within a set.

2. RELATED WORK

Complexity of online networks can be guessed by its
structure where either the distance between community or
group clusters is very short or overlapping. Some [1], [2], [5]
are based on finding overlapping communities in an efficient
manner and also finding outliers that does not belong to any
community [2]. Moreover, [2] uses fuzzy technique to detect
communities. Gregory S [1] proposed an improved CONGA
algorithm based on ’local’ form of betweenness. Palla et al[3]
analyses statistical features of overlapping communities and
introduces an approach for complex systems and found that
overlaps are significant. Newman M E J [4] proposed a method
to detect community structure and if there exists any natural cut
into nonoverlapping communities. Wang X et al [5] proposed
a co-clustering method to group communities using the tags
information in messages. Goldberg M K et al [0] measures the
distance between two overlapping cluster sets by using three
different measures and assumed that each individual cluster
contains no duplicates.

Duplicity in clusters is major area of concern for data
quality. Detecting duplicates and cleaning is considered a
part of preprocessing data in data mining before putting into
different uses. Hassanzadeh et al [8] used several clustering
techniques to detect duplicity and also used Stringer system
for evaluating cluster quality. Banerjee et al [9] worked on
overlapping clusters where, some entities are allowed to be
member of more than one cluster. Our work is somewhat
similar here as duplicates are allowed in the clusters and
are not removed. Keeping interesting duplicates will enrich
information for finding localness of tweet user in our study
further. In a paper [10] stability of clusters is found out by
principle component analysis. The work is done on gene but
can be extended to any sort of data. Hennig C [11], [12] used
Jaccard coefficient to find stability between two cluster set.

3. SCOPE OF THE WORK

In this paper, the work revolves around generating clusters
and finding optimal set of clusters by level. The problem
addressed is not only about generating overlapping clusters but
comparing cluster sets by certain hierarchical level. In a single
cluster set, at a particular level, there are numerous clusters
which are compared with each other to find the percentages
of similarity. At each level cluster size threshold is different.
Goldberg et al [3] worked on finding similarity between two



sets of overlapping clusters, but assumed that the individual
clusters do not contain duplicates. The work is different in the
sense, that in our single set there are numerous clusters that
have been compared first and then at each level, to pick the
optimal cluster set by level. Moreover, at each hierarchical level
there are clusters generated those of which contain duplicates.
In our case, clustering is simply based on hierarchy of users by
interaction. The main focus of the paper is to find the optimal
cluster set within many sets defined by hierarchical levels.

4. PROBLEM FORMULATION

The goal is to find the most optimal cluster set of clusters
with certain threshold like number of users per cluster and
level. In doing so, overlapping clusters are first generated
by hierarchical level. The cluster set will have application in
location estimation of user group for social networking sites.
A reasonable knowledge of location can provide advertisers
their target users for advertisements. Furthermore, twitter or
other social media conversations are the early warning system
during any natural disaster, outbreak of disease or emergency
related to crime or terrorist attacks. Thus, optimal cluster set
will also help in linking or building graph of connected users
and pin-pointing the affected user. Though, this part will be
for further study.

Problem—: Given number of users, create clusters of users
by hierarchy based on interaction among the users by finding
who has retweeted to whom.

Let U = {U,U,,Us, .., Uy, } be the set of users where m is
total number of users and U; is an individual user. The goal
is to create clusters of users. Each individual user is able to
form a cluster provided some other user has retweeted. Cluster
with only user is discarded. Suppose U={1,2,3,4,5,6,7,8,9,10}
where m=10. The figure 1 shows some of the clusters C,C5
and Cs3 with level 1.

(©) C3

Figure 1. (7, C2 and C3 by level 1 with target user 1,target user 2 and
target user 10 .

From now on, target user means the user at the root level
from where the process starts. Target user 1 1(a) gets retweet
and replied messages from user 4 and user 8 only who are
at base level and target user 2 1(b) gets from user 8 and
user 9 whereas target user 10 1(c) gets from user 5. The
base level users for cluster C are users 4 and 8, and for Cy

are users 8 and 9 and for C5 is 5. For the next level, level 1,
users for cluster Cy, Cs and Cj are users {2, 3,6, 7}, {6,7,10}
and {2} respectively. The process is repeated till the desired
hierarchical level is reached for the clusters or there are no
more users to add to the clusters.

So, clusters formed are C1 = {1,2,3,4,6,7,8}, C2 =
{2,6,7,8,9,10} and C3 = {10,5,2}. m number of clusters
are generated from which few are discarded with only one
user. This is called as a cluster set. For each level, a cluster
set is generated.

Problem— Given a set of clusters C,, with level [ and
number of users per cluster greater than threshold 7, find out
the most optimal set of clusters among all levels.

Given P,= {C1,C5,C5,Cy,..,Cy,} be a set of clusters
where C; is a cluster. Total number of clusters is C,,, at level
1, where [ is any real number. Threshold 7 is adjusted to top
5% of the clusters in a set P, .

So, we get, Q; = {D1, D2, D3, .., D, } where x is the total
number of clusters in the set ); and each cluster size is greater
than threshold 7. D; is an individual cluster. For all possible
combination of clusters k, let D;,D; be a pair of clusters where
t=1tox—1and j =14+ 1 to x.

Let S; be the set of users in cluster D; and S; be the set
of users in cluster D;. If S; N.S; = S,. Then, S, is the set
of duplicates or users common in both cluster Di and Dj.

Comparing (S;,Sp) and (S;,S,). We get dip, =
Sim(S;, Sp) and di, = Sim(S;,S,) where di, and d, is
the percentage of duplicate users in the cluster pair of D; and
D; respectively. For all possible combinations k, di, and dy,
is calculated. Thus mean is given by
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and Co-efficient of Standard Deviation L, = T,/m, where
z=1,2.

Mean, standard deviation and co-efficient of standard de-
viation are calculated for all levels with threshold cluster size
7. These values are shown in the table II and table III.

5. THE PROPOSED ALGORITHM
A. Collection of Users By Retweets

In the first part, algorithm 1 detects, separates and selects
user identifier by target user in tweets. This will collect the
users that a user has re-tweeted or replied to. In the example
below user(i) has re-tweeted to user(x), user(z) and more.
Moreover, user(k) has re-tweeted to user (7), so is user(l)
and user(m).



Example 5.1: A user who has retweeted or replied to
whom

user (i) — user(x),user(z), ..user(..)

user(k) — user(i),user(j), ..user(..)
user(l) — user(i), .., user(..)
i),..user(..)

user(n) — user(k), .., user(..)

) (
) (
) (
user(m) — user(
) (
) (

user(o) — user(k), ..user(..)

Algorithm 1

INPUT: Data Corpus with user identifiers
OUTPUT: Collection of Re-Tweet users by target user

while Not end of line do
while for each target user do
read each line
split each line
find pattern ‘RT’ and ‘@’
collect each ReTweet user by target user
end while
8: end while
9: Return Collection of Re-Tweet ‘users’ by target user.

AN A S ol e

B. Directly Connected Users Through Retweets

From the output of the algorithm 1, all the user identifiers
are collected by target user. For each target user, the algorithm
2 will search for the users who have re-tweeted or replied to
this target user. In this way another corpus is generated that
gives the idea about the users who have directly connected to
the target user.

user ()
A

’ user (k) ‘ ’user(l) ‘ ’ user(m) ‘

Figure 2. Target user (i) with retweet user

Algorithm 2

INPUT: Collection of Re-Tweet user by target user
OUTPUT: Collection of Re-tweet user id directly linked by
target user

1: while next line is not null in the file do

2: while for each user do

3: search for those users who have Re-Tweeted the
target user

4: end while

5: end while

Starting from the first target user, the algorithm searches
the output file from the algorithm 1, the user who has re-
tweeted the target user, then next target user till we get a corpus
where we collected users who have re-tweeted a target user
directly, considering this level as base level. In figure 2, user(i)

is the target user and user(k), user(l) and user(m) has retweeted
or replied to user(i). So, all the three users here are directly
connected to user(i) and is at base level. Target user is at the
root level.

C. Collections of Users by Level and Calculating Stability

In the algorithm 3, level of users is introduced. In the base
level, the users who have re-tweeted to the target users are
collected only. Figure 3 shows the target user(i) forming a
cluster of size seven at level one. Line 1 : 12 in the algorithm 3
can be explained as follows. Starting from the base level and

Algorithm 3

INPUT: Target users with base level user i.e directly
connected user

OUTPUT:: Cluster set for different levels with mean, standard
deviation and co-efficient of standard deviation.

put target users with users in a Hash Set
while read Hash set do

set level = n

create hash set for each cluster

recursively collect all user till specified level is reached
or there is no more user connected search each user

A

6: if user (in level) match retweet user then

7: pick the user who has retweeted and add to hash
set

8: count = count + 1

9: end if

10: end while

11: level = n

12: pick k clusters by count > threshold
13: if cluster size > 7 then

14: for all possible combination of clusters do

15: find duplicate users

16: find percentage of duplicates in first and second
cluster of the combination pair

17: end for

18: if cluster size > 7 then

19: find within overall corpus and combinations

20: standard deviation, mean, co-efficient of standard
deviation

21: end if

22: end if

target user, users are grouped together who directly interact
with the level above it, forming a hierarchy of users. The
algorithm creates clusters by target user and when a given
level is reached for a particular target user or there are no more
users to collect, it switches to next target user, creating another
cluster till no more target user are there to create cluster. Line
13 : 22 in the algorithm 3 says that for each given level, cluster
size is chosen above certain threshold. Threshold is adjusted
approximately such that top five percent of the clusters in the
set are selected. Each cluster is compared with every other
cluster in the set giving the number of duplicates in percentage
for the first and second cluster in the pair respectively. For
each level, mean, standard deviation and coefficient of standard
deviation is calculated from these percentages.



user (1)

user(k)
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Figure 3. Target user(¢) forms a cluster of seven user at level 1.

6. THE EXPERIMENT

Data is collected from online data repository'. The tweets
are provided with latitude and longitude by user and separated
by tab. In the tweets the users identifiers are amalgamated with
the tweets. If some user has re-tweeted then ‘RT’ is specified
in the tweet with identifiers. There are many tweets which are
provided with user identifiers starting with ‘@’. The dataset
covers each of the 48 states of US and the District of Columbia

[13].

Generally, it is assumed that a user will reply to another
user if they are close or within certain home distance range.
It is also understood that not all user are in close range who
have replied. The data is of 56 MB with 9477 users. With the
target users, only the other user identifiers are filtered out from
the tweets. The user identifiers are collected by target user.

As discussed in the algorithms, users are grouped by target
user at the root level. Each user, a target user at root level,
forms a cluster, by adding users, till the specified level is
reached or there are no more users to add to the cluster. Single
user clusters are discarded. At the starting levels, clusters do
not have much duplicity as cluster size is small but moving
up the level, as more users are added, chances of getting
duplicates increases. As level increases, more and more users
are added to the root target user. It is possible, if no limitation
of level is introduced, there will be more clusters which are
duplicates of each other. So, lower level provide us with
numerous small cluster set with very few duplicates and the
higher level provide us with many duplicates. Since, level is
there, it is challenging to find out the most optimal cluster
set within different levels. The table I below shows some
fragment of the data generated at level 11. Total number of
clusters selected at this level is 350 (Table II and Table III).
Take for example, from table I, the zeroth and the first cluster
in the pair, the size of zeroth cluster is 1298 and first cluster
is 1345. Number of common users in both the cluster is 998.
This comes out to be 76.88% and 74.200% similarity with the
zeroth and first cluster in the pair respectively.

7. ANALYSIS AND OBSERVATION

Total number of clusters generated is around 7123 for
each level after discarding the single user clusters. Each user
generates a cluster at each level. For example, say for level 5,
starting from a user, a target user, a cluster is formed. For the
cluster, maximum level reached would be level 5 here. Clusters
are generated for level 5 till 11. For each level, only top 5% of

! http://www.ark.cs.cmu.edu/GeoTwitter

the clusters are considered. Threshold size of the clusters in the
cluster set is set accordingly. Standard deviation is a measure
of each dimension, independent of other dimensions, in a data
set. Since, data set generated is of percentages similar of all
possible combinations of threshold clusters, standard deviation
would provide the measure of how data is spread out for each
set independently.

In the graph below in figure 4 and table II, at level 5,
mean is 0.38 with standard deviation of 3.73 and co-efficient
of standard deviation is 9.8. Since the original values are
all percentages, mean of 0.38 means that there are only few
duplicates in each cluster. In fact, most of the clusters do
not have any duplicates and mostly the percentages are all
zeros. So, it gives the mean less one. This is explained by
the coefficient of standard deviation where deviation is 980%.
Generally, if standard deviation and co-efficient of standard
deviation is low then the data is stable and also the cluster
set. At level 11, table II, where cluster size is greater than
1150, mean is 24.972 and standard deviation is of 10.868
and coefficient of standard deviation is 0.4352. Since mean is
around 25, it means that most of the clusters will have around
this percentage of duplicity. In other way, 25% of duplicity
holds for almost all the pair of clusters. Standard deviation is
10.8685 which is very close to 10.497 for level 10 in table
II. From level 10 to 11 standard deviation does not increases
sharply. Moreover, till level 8, table II and III, co-efficient
of standard deviation is very high. Thus, level 10 is the best
solution or optimal cluster set. Level 10 is the most optimal
cluster, which can be used further for finding the localness of
tweet user. Since the values of different measures in the table
II and table II do not vary much, it can be guessed that the
cluster sizes are not too far from each other. Figure 4 and
figure 5 shows the chart of different measures by levels.
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Figure 4. Measures by level for 1st one in cluster pair combination set
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Figure 5.

Measure by level for 2nd one in cluster pair combination set




Cluster Number(2) Cluster Number (j) Size (ith Cluster) Size (jth Cluster) Number of Common Users Percentage similar(ith Cluster) Percentage similar(jth Cluster)
0 1 1298 1345 998 76.8875 74.2007
0 2 1298 1204 688 53.0046 57.1429
0 3 1298 1181 621 47.8428 52.5826
0 4 1298 1253 593 45.6857 47.3264
0 5 1298 1193 592 45.6086 49.6228
0 349 1298 1318 184 14.1757 13.9605
1 2 1345 1204 790 58.7361 65.6146
348 349 1476 1318 1076 72.8997 81.6389
Table T. CLUSTERS AT LEVEL 11 SHOWING CLUSTER SIZE OF DIFFERENT CLUSTERS( 0,1,2, 3,4, 3, .., 348, 349) AND PERCENTAGES SIMILAR, BY
COMPARING WITH EACH ITH CLUSTER AND JTH CLUSTER RESPECTIVELY.
Level 5. Level 6. Level 7. Level 8. Level 9. Level 10. Level 11.
cluster size cluster size cluster size cluster size cluster size cluster size cluster size
>190 Number > Number of >400 Number >560 Number >745 Number >950 Number >1150
of cluster=344 cluster=355 of cluster=355 of cluster=355 of cluster=354 of cluster=344 Number of
cluster=350
Mean 0.38 0.68932 1.55 4.62 9.63 16.308 24.972
Standard deviation 3.73 4.58446 5.79 7.75 9.096 10.497 10.8685
Coefficient of standard devia- | 9.8 6.65 3.73 1.67 0.94439 0.64 0.4352
tion
Table II. MEAN, STANDARD DEVIATION AND CO-EFFICIENT OF STANDARD DEVIATION BY DIFFERENT LEVELS, CLUSTER SIZE AND TOTAL NUMBER OF
CLUSTER IN A SET FOR THE FIRST ONE IN THE CLUSTER PAIR.
Level 5. Level 6. Level 7. Level 8. Level 9. Level 10. Level 11.
cluster size cluster size cluster size cluster size cluster size cluster size cluster size
>190 Number > Number of >400 Number >560 Number >745 Number >950 Number >1150
of cluster=344 cluster=355 of cluster=355 of cluster=355 of cluster=354 of cluster=344 Number of
cluster=350
Mean 0.376 0.686 1.546 4.6 9.564 16.2514 24.89
Standard deviation 3.698 4.544 5.77 7.71 9.047 10.461 10.83
Coefficient of standard devia- | 9.79 6.62 3.732 1.67 0.945 0.6437 0.4351
tion
Table IIT. MEAN, STANDARD DEVIATION AND CO-EFFICIENT OF STANDARD DEVIATION BY DIFFERENT LEVELS, CLUSTER SIZE AND TOTAL NUMBER OF

CLUSTER IN A SET FOR THE SECOND ONE IN THE CLUSTER PAIR.

8. CONCLUSION

The optimal cluster set will be used to cluster the tweets
by users and target user to find the localness of tweet by user.
Optimality of cluster set provide us with clusters which can
be considered as set having duplicity not to many or not to

scarc

e. Too many duplicity will have information very similar

to the other clusters and differentiation between the two will
be difficult and on the other hand small clusters having very
less duplicity will have very little information, since the cluster
of users can be used to cluster the tweets too. Moreover, for
further study, if duplicity is there among a pair of clusters,

users

can be provided with different weights for appearing at

different level among the pair. It will also be interesting to find
among the cluster set a user who is present among how many
clusters and at which level and how it is linked.
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