
Dynamic Rule Mining for
Argumentation Based Systems

Wardeh, M., Bench-Capon, T., Coenen, F.

The University of Liverpool

Liverpool L69 3BX, UK

Abstract

Argumentation has proved to be a very influential reasoning mechanism
particularly in the context of multi agent systems. In this paper we intro-
duce PADUA (Protocol for Argumentation Dialogue Using Association
Rules), a novel argumentation formalism that dynamically mines Associ-
ation Rules (ARs) from the case background as a means to: (i) generate
the arguments exchanged among dialogue participants, and (ii) repre-
sent each participant’s background domain knowledge, thus avoiding the
traditional knowledge base representations. Dialogue participants mine
ARs from their own case data and then use these rules as arguments and
counter arguments. This paper fully describes the PADUA formalism
and proposes a suite of dynamic ARM algorithms to provide support for
the argumentation process.
Keywords: Dynamic rule mining, argumentation.

1 Introduction

Argumentation is an increasingly influential reasoning mechanism, particularly
in the context of multi agent systems. One specific model of argumentation is
a Persuasion Dialogue [11] during which each participant tries to persuade the
other participant(s) of their own thesis, by offering arguments that support this
thesis. Despite the increasing use of argumentation in a variety of applications,
many of the studies in the literature give little importance to the background
knowledge the dialogue participants rely on in their efforts to persuade each
other. The focus has been on the protocols and the use of argumentation as
a means of communication rather than on the content to be communicated.
Typically some form of knowledge base is assumed to provide the participants
with the necessary domain knowledge. This knowledge base is used to produce
arguments according to some underlying argumentation model. (Note that
each participant’s knowledge base is similar, but not necessarily the same.)

The work described here does not assume that such a knowledge base has
been constructed. Instead arguments are mined directly from some set of
records providing examples relating to a particular domain. The repository
of background knowledge used by each participant is considered to be a bi-
nary valued data set where each record represents a previous case and each
column an attribute taken from the global set of attributes described by the
background knowledge. Given this formalism we can apply Association Rule

1



Mining (ARM) [1] techniques to the data set to discover relations between at-
tributes, expressed in the form of Association Rules (ARs), which in turn can
be used to support the argumentation process. This approach offers a number
of advantages over the knowledge based approach:
- It enjoys general applicability as it does not require the generation of spe-
cialised knowledge bases.
- It employs an automatic rule generation process using a “tried and tested”
data mining technique and consequently avoids the need for reference to a do-
main expert.
- The proposed approach avoids the need for any knowledge re-engineering be-
cause it works directly with the case data.
- The advocated method generates knowledge “on the fly” according to the
requirements of the participant in question (again because it operates with the
raw case data).
In addition the approach provides for a natural representation of the partici-
pants experience as a set of records, and the arguments as ARs. The advocated
approach also preserves the privacy of the information that each participant
“knows”, therefore it can be used in domains which involve sensitive data.

This paper introduces PADUA (Protocol for Argumentation Dialogue Us-
ing Association Rules); a novel argumentation formalism that implements the
approach advocated above using a “just in time” approach to ARM; i.e. par-
ticular groups of ARs, that conform to some particular requirement as dictated
by the PADUA protocol, are mined dynamically as required. The advantage
is that the system avoids the overheads associated with the generation of the
complete set of ARs represented in the case base. The PADUA system sup-
ports three different forms of dynamic ARM request:
1. Find a subset of rules that conform to a given set of constraints.
2. Distinguish a given rule by adding additional attributes.
3. Generalise a given rule by removing attributes.

The rest of this paper is organised as following: Section 2 gives some neces-
sary background information. Section 3 introduces the PADUA protocol and
its main components. Section 4 describes the dynamic ARM algorithms devel-
oped to support the PADUA protocol. In Section 5 an example of the PADUA
systems operation is presented together with some analysis and discussion. Fi-
nally some conclusions are drawn in 6.

2 Previous Work

2.1 Argumentation, Dialogue and Dialogue games

Argumentation is a form of nonmonotonic defeasible reasoning, in which partic-
ipants interact to decide whether to accept or reject a given statement. During
the process of argumentation, each participant forms and asserts arguments
that contradict or undermine arguments proposed by the other participant(s).
The basic idea behind this argumentational reasoning is that a statement is
acceptable if it can be argued successfully against attacking arguments.



Persuasion Dialogue is used to model this type of argumentation. The
literature includes plenty of examples of dialogical argumentation that fall into
several areas such as distributed planning [15], education [13], and modelling
legal reasoning (a survey can be found in [6]). In their well known typology
of dialogue types [14], Walton and Krabbe defined Persuasion Dialogue to be
initiated by a conflict in the participants’ points of view, the main goal of the
dialogue is to resolve this conflict by verbal means, while each participant tries
to persuade the other(s) of its own point of view. Their typology of dialogue
types classifies five other primary dialogue types, besides persuasion, which are
negotiation, information seeking, deliberation, enquiry and Eristic dialogue.
This categorisation is based upon: the information each participant has at the
commencement of the dialogue; the goals of each individual participant; and
the goals of the dialogue itself.

Formal dialogue games have been used successfully to model most of the
atomic dialogue types in the Walton and Krabbe typology including persuasion
[10, 12, 14]. Formal Dialogue Games are defined as interactions between two
or more players, where each player moves by making utterances, according to
a defined set of rules known as a Dialogue Game Protocol. Each move has
an identifying name associated with it and some statement which contributes
to the dialogue. Players keep on exchanging such moves until the dialogue
terminates, according to some termination rules. Dialogue games comprise the
following components [11]:
1. Commencement Rules: Rules that define the circumstances under which the
dialogue commences.
2. Locutions: Rules indicating what utterances are permitted at every stage of
the dialogue.
3. Combination Rules: Rules that describe the dialogical contexts under which
particular locutions are permitted or not, or obligatory or not.
4. Commitments: Rules that define the circumstances under which participants
express commitment to a proposition.
5. Termination Rules: Rules that define the circumstances under which the
dialogue ends.

2.2 Dynamic Association Rule Mining

The original objective of Dynamic ARM (D-ARM), also sometimes referred to
as On-line ARM, was to address the increasing computational requirements for
exploratory ARM (usually involving manual parameter tuning). Subsequently
D-ARM has been used in the context of dynamic data mining applications
where repeated ARM invocations are required to obtain different sets of rules
either with different content (attributes or consequents) or different thresholds.
The fundamental idea is to summarise the dataset so that all information re-
quired for future association rule mining is encoded in an appropriate data
structure that will facilitate fast interaction.

D-ARM was, arguably, first proposed by Amir et al. [4] who used a trie data
structure to store the data set and conducted experiments using the (sparse)



Reuters benchmark document set. Although Amir et al. allowed questions
such as “find all the ARs with a given support and confidence threshold” to be
answered, their system could not answer questions such as “find the association
rules that contain a given item set”. The approach by Amir et al. is essentially
not dissimilar to later approaches to ARM, such as TFP [7] and FP-growth [8],
that used an intermediate (summarising) data structure within the overall ARM
process (P-trees and FP-trees respectively) although these later approaches did
not explicitly considered the advantages with respect to D-ARM that their data
structures offered.

The term On-line ARM was introduced by Aggarwal and Yu in 1997 in a
technical report. In a subsequent publication, Aggarwal and Yu [2], the authors
state that “The idea of on-line mining is that an end user ought to be able
to query the database for association rules at differing values of support and
confidence without excessive I/O or commutation”. Aggarwal and Yu define an
adjacency lattice, where two nodes are adjacent if one is a superset of the other,
and use this structure for fast (on-line) rule generation. The lattice contains
only itemsets whose support is greater than some minimum and consequently
only ARs with support above this value can be generated. Hidber [9] also
generate a lattice but the user can influence its growth by reducing the support
threshold as the algorithm proceeds.

2.3 T-trees

As noted above, for D-ARM to operate successfully a summarising structure is
required. In the work described here a T-tree (Total support tree) [7] is used.
A T-tree is a “reverse” set enumeration tree data structure; Set enumeration
trees impose an ordering on items and then enumerate the itemsets according
to this ordering and T-trees are reverse in the sense that nodes are organized
using reverse lexicographic ordering; the reason behind this reverse ordering is
that T-tree differs from typical set enumeration trees in that the nodes at the
same level at any sub-branch of the tree are organized as into 1D arrays so that
array indexes represent column numbers, hence ”reverse” version of the tree
enables direct indexing based on the attribute (column) number.

An example of the T-tree structure is given in Figure 1. In the figure
each record in the data set includes the items set x or y, these are the class
attributes for the cases and are what the competing PADUA players will wish
to establish. It should also be noted that each branch of the T-tree contains
the itemsets rooted at a particular end itemset, thus all itemsets involving
the class x (y) are contained in one branch of the T-tree (other branches are
required for calculating individual AR confidence values). The implementation
of this structure is illustrated in Figure 2, where each node in the T-tree is
implemented as an object comprised of a support value and a reference to an
array of child T-tree nodes.



Fig. 1. Example T-tree

Fig.2. Example T-tree Implementation

The advantages offered by the T-tree structure are as follows:
1. Reduced storage requirements compared to those required by more tradi-
tional T-tree structures.
2. Fast look up facilities (by indexing from level to level)
3. Computational advantages because the frequent itemsets with particular
consequence (classes) are stored in a single branch of the tree.

These advantages all serve to support D-ARM in general and the requirements
for D-ARM supported argumentation in particular. Note that each PADUA
player has its own T-tree (set of supported itemsets from which ARs can be
obtained) generated from the player’s individual case base.



3 PADUA Protocol

3.1 Dialogue Scenario

The proponent starts the dialogue by proposing some AR (R : P → Q), which
premises (P ) match the case, and the conclusion (Q) justifies the agent’s po-
sition. Then the opponent has to play a legal move (see Sub-section 3.4) that
would undermine the initial rule proposed by the proponent: four of these
moves involve some new rule. This is mined from the player’s background
database, and represents an attack on the original rule. The turn then goes
back to the proponent which has to reply appropriately to the last move. The
game continues until one player has no adequate reply. Then this player loses
the game, and the other player wins. In fact this is the ’cannot argue any
further’ situation, and PADUA disallows playing rules that are weaker than
previously played ones, which guarantees the dialogues’s coherency.

3.2 PADUA Framework

The formal PADUA framework, Argumentation Dialogue Framework (ADF ),
is defined as follows:

ADF =< P,Attr, I,M,R,Conf, playedMoves, play > (1)

Where P : denotes the players of the dialogue game. Attr: denotes the whole set
of attributes in the entire framework. I: denotes the instance argued about. M :
denotes the set of possible (legal) moves. R: denotes the set of rules that gov-
ern the game. Conf : denotes the confidence threshold, all the association rules
proposed within this framework must satisfy this threshold. playedMoves: de-
notes the set of moves played in the dialogue so far, this set of played moves
represents the commitment store of the dialogue system under discussion. Fi-
nally, play: is a function that maps players to some legal move.

3.3 PAUDA Players

Each player in a PADUA game (∀p ∈ P = Pro,Opp.)is defined as a dialogical
agent [3]:

∀p ∈ P : p =< namep, Attrp, Gp,Σp, >>p> (2)

where: (i) namep is the player (agent) name, ∀p ∈ P then name(p) ∈ {pro, opp}
(ii) Attrp is the set of attributes the player can understand (knows about), (iii)
Gp: is the set of goals (class attributes) the player tries to achieve, Gp is defined
as a subset of the attributes set Attrp, i.e. Gp is the set of class attributes this
player tries to demonstrate to be true, (iv) Σp: is the set of potential dynamic
ARs the player can mine or has mined from its T-tree and (v) >>p: represents
the preferences order over Σp, a definition of this preference relationship is
suggested as >>p: Σp × Σp → {true, false}, but the exact implementation
of this relation may differ from player to player. Σp is defined as follows:



∀p ∈ P : Σp =< Tp, Rp,Drp >; where (i) Tp is the T-Tree representing the
background data set, Rp is the set of association rules previously mined by this
player and kept in store (thus Rp = {r : r =< Prem,Conc, Conf >} where r
is AR) and (iii) Drp is a function that maps between legal moves and suitable
rules (Drp : Tp × M → R, where R is the set of all possible association rules).

3.4 PAUDA Legal Moves and Game Rules

The set (M) describes the six possible PADUA moves (M) that a player (p ∈ P )
can play. The confidence measurement is used to compare the strength of the
rules introduced by these moves, mainly because it’s been implemented exces-
sively in literature. PADUA moves are defined as follows.:
1. Propose Rule: Propose a new rule with a confidence higher than a given con-
fidence threshold, the permises of this rule should be present in the instance
under consideration.
2. Distinguish: Undermine the current rule proposed by the other player by
adding a new attribute(s) satisfied by the instance, such that the confidence of
the proposed rule is reduced below a confidence threshold.
3. Unwanted Consequences: Indicate that certain attributes in the consequent
of the current rule are not present in the current instance.
4. Counter Rule: Propose a new rule, with a confidence value in excess of the
previously proposed rule, that contradicts the consequent of the previous rule.
The permises of the new rule should be present in the instance under consid-
eration.
5. Increase Confidence: Add some new attribute, satisfied by the given in-
stance, to the current rule so that the overall confidence rises.
6. Withdraw Unwanted Consequences: Remove unwanted attributes from the
previously proposed rule while maintaining an appropriate level of confidence.

Not all of the above moves are “legal” moves at every stage of the game. The
legal moves each player (p ∈ P ) can play are determined by the following set
of rules:
1. Commencement Rules: The dialogue always starts with a Propose Rule
move played by the proponent.
2. Locutions and Combination Rules: Table 1 lists the possible moves that
each player can play in respons to a move played by the other player. The next
move column lists the legal moves according to desirability, according to one
plausible strategy.
3. Termination Rules: The dialogue ends when a player can not find a suitable
rule in its own data set to respond to a move played by the other player.



Move Label Next

Move

1 Propose Rule 3, 2, 4
2 Distinguish 3, 5, 1
3 Unwanted Cons. 6, 1
4 Counter Rule 3, 2, 1
5 Increase Conf. 3, 2, 4
6 Withdraw Unwanted Cons. 3, 2, 4

Table 1. Possible Moves

4 Dynamic Association Rules Generation

The basic idea behind the PADUA approach is to mine ARs dynamically as
needed according to: (i) desired minimum confidence, (ii) a specified conse-
quent and (iii) a set of candidate attributes for the antecedent (a subset of the
attributes represented by the current case). ARs are generated as required by
traversing the T-Trees in such a way so that only the rules that match the
content selection criteria of some move m ∈ M are generated. Three dynamic
AR retrieval algorithms were developed to support the PADUA protocol:
1. Algorithm A: Find a rule that conform to a given set of constraints.
2. Algorithm B: Distinguish a given rule by adding additional attributes.
3. Algorithm C: Revise a given rule by removing attributes.

Algorithm A (Fig 3) is used to find a new rule (moves 1, 2, 5 and 6) given (i)
a current instance (I), (ii) a desired class attribute (c ∈ Gp) and (iii) a desired
confidence threshold. The algorithm attempts to minimise the number of at-
tributes in the rule. The algorithm operates by generating candidate itemsets,
using the input values, in a level-wise manner; starting with the 2-itemset level
in the T-tree(one attribute from the case and the class attribute). For every
generated itemset (S = (A∪ c)), the T-tree is traversed for the node represent-
ing this itemset, if such a node exists, rules of the form (P → Q ∪ c)such that
(P ∪ Q = A), are generated, the algorithm returns the first rule that satisfies
the given confidence threshold, otherwise the generation process continues until
the entire T-tree has been processed.

Algorithm B (Fig 4) is used to distinguish an input rule r = (P → Q).
The algorithm operates as follows: (i) generate the candidate itemsets (P ∪
Q ∪ ai) where (ai ∈ I/(P ∪ Q)), (ii) search the T-tree subbranches for the
node representing this itemset, (iii) if such a node exists generate a rule of the
form ŕ = ((P ∪ ai) → Q) if the rule confidence is lower than the input rule
confidence return the rule, otherwise traverse through the subtree which root
is the candidate itemset for a rule of the form ´́r = (Ṕ → Q́) that satisfies the
conditions listed in the algorithm.



Algorithm A (inputs: instance I, class c,
input T-Tree T ,confidence threshold conf)

begin
∀s(ai ∪ c : ai ∈ I) ∈possible frequent 2-itemset
if node(s) ∈ T
generate rule rdist(ai ∪ P → Q)
if r.confidence ≥ conf
return r

else
level = 2
while (no rules found) and (level ¡ T.max-level)
∀s(a1, . . . , alevel ∪ c : ai ∈ I) ∈

possible frequent(level+1)-itemset
if node(s) ∈ T
if ∃ association rule r(P → Q):
c ∈ Q and (P ∪ Q = s) and r.confidence ≥ conf
return r

else
Level++

end

Fig.3. Algorithm A - Propose New Rules.

Algorithm B (inputs: rule r(P → Q), instance I,
class c,input T-Tree T ,
confidence threshold conf)

begin
Isub = I/(P ∪ Q)
∀ possible frequent itemset
s(ai ∪ P ∪ Q) : ai ∈ Isub

if node(s) ∈ T
generate rule rdist(P ∪ ai → c)
if rdist.confidence ≥ r.confidence
return rdist

else
traverse the sub T-Tree T (s)
for every child node n ∈ T (s)
if ∃ association rule rdist(Ṕ → Q́):
c ∈ Q́ and (Ṕ ∪ Q́ = n) and (Ṕ ⊆ I)
and (rdist.confidence ≤ conf)
return rdist

end

Fig.4. Algorithm B - Distinguish Rule.

In order to withdraw some unwanted consequences (X) from an input rule
(r = P → Q ∪ X), Algorithm C (Fig 5) tries first to produce a rule (ŕ =
P → Q). If such a rule satisfies the confidence threshold, then the algorithm
returns this rule, otherwise, the candidate itemsets are generated and rules are
produced and tested in a very similar manner to Algorithm B to produce the



rule (´́r = P → Q ∪ Y ) where (X ∩ Y = φ). A player (p ∈ P ) may apply
Algorithm C, both as a defender or attacker of some thesis under discussion.
Algorithm C therefore takes the status of the player into consideration, so that
if the player is defending its point of view the algorithm search for rules which
confidence is equal or higher than the input rule. On the other hand, if the
player is attacking its opponent’s thesis, then the returned rules confidence
must not be higher than the confidence of the input rule.

Algorithm C (inputs: rule r(P → Q ∪ X), instance I,
class c,input T-Tree T ,
confidence threshold conf ,player role role)

begin
if (node(P ∪ Q) ∈ T )
generate rule rwith(P → Q)
if (role = defender) and

(rwith.confidence ≥ r.confidence)
return rwith

else
if (role = opponent) and

(rwith.confidence ≤ r.confidence)
return rwith

else
Isub = I/(P ∪ Q)
∀s(ai ∪ P ∪ Q : ai ∈ Isub) ∈
possible frequent itemset
if node(s) ∈ T
∀ association rule rwith(P → Q ∪ ai)
if (role = defender) and

(rwith.confidence ≥ r.confidence)
return rwith

else
if (role = opponent) and

(rwith.confidence ≤ r.confidence)
return rwith

else
traverse the sub T-Tree T (s)
for every child node n ∈ T (s)
if ∃ association rule rwith(Ṕ → Q́):
c ∈ Q́ and (Ṕ ∪ Q́ = n) and (Ṕ ⊆ I)
if (role = defender) and

(rwith.confidence ≥ r.confidence)
return rwith

else
if (role = attacker) and

(rwith.confidence ≤ r.confidence)
return rwith

end

Fig.5. Algorithm C - Withdraw Unwanted Consequences



Instance: [adoption-budget-resolution=y, physician-fee-freeze=y.

religious-groups-in-schools=n, el-salvador-aid=y,

superfund-right-to-sue=y, immigration=y, export-act-south-africa=y.]

(1) proponent Propose Rule

{physician-fee-freeze=y}->{className = democrat} 92.94%

(2) opponent Distinguish

{physician-fee-freeze=y, export-act-south-africa=y}->

{className = democrat, immigration=y} 53.33%

(3) proponent Propose Rule

{physician-fee-freeze=y, el-salvador-aid=y}->{className =

democrat} 92.68%

(4) opponent Counter Rule

{religious-groups-in-schools=n}->{className = republican} 93.33%

(5) proponent Distinguish

{adoption-budget-resolution=y, religious-groups-in-schools=n}->

{synfuels-corporation-cutback=y, className = republican} 37.17%

(6) opponent Unwanted Consequences

{synfuels-corporation-cutback=y} not in the case

(7) proponent Propose Rule

{physician-fee-freeze=y, immigration=y}->{className = democrat}

93.75%

...

(12) opponent Propose Rule

{adoption-budget-resolution=y, religious-groups-in-schools=n}->

{className = republican} 96.0%

(13) proponent Distinguish

{adoption-budget-resolution=y,religious-groups-in-schools=n,

export-act-south-africa=y}->{className = republican} 50.0%

(14) opponent all moves fail

proponent wins --> class = democrat

Fig.6. Example Dialogue

5 Experimentation and Analysis

The dynamic AR algorithms (figures 3, 4, 5) were tested using the congressional
voting records data set [5]. This dataset includes votes for each of the U.S.
House of Representatives members of Congress (in the 1984 US congressional
elections) on the 16 key votes identified by the CQA. The congressional voting
records database contains 435 instances, among which 45.2% are Democrats



and 54.8% are Republicans. The dataset, original comprising 17 binary at-
tributes (including the class attribute) was normalised to 34 unique numeri-
cal attributes (numbered from 1 - 34) each corresponding to certain attribute
value. The last two values (33 and 34) represents the two classes Republican and
Democrat respectively). This dataset was horizontally divided into two equal
size datasets, each of which was assigned to a player in PADUA framework.
A T-tree was built for each player using a 10% support threshold, a minimum
support threshold of 75% was adopted.

In the dialogue shown in (Figure 6) the two players (the proponent and the
opponent) used the protocol rules discussed earlier (Sub-section 2.6), where
the moves to be played are determined by the content of the moves played
last. In the example the proponent (pro) starts the dialogue game by putting
forward rule (1) ({physician-fee-freeze =y} -> {className = democrat}
92.94%), to establish that the given case falls under class Democrat, in the next
move the opponent (opp) distinguishes the previous rule by adding the attribute
(export-act-south-africa=y) to its premises, which causes the confidence to
drop below the acceptable threshold. The dialogue continues with rules being
proposed, distinguished and rejected for having unacceptable consequences, un-
til step (12) where opp proposes a counter rule concluding that the class of the
example case is Republican, with 96.0% confidence, but pro successfully dis-
tinguishes this rule in the following move (13). At this point the opponent has
no valid moves to play, and thus the proponent wins this game, and persuades
the opponent that the example case represents a Democrat candidate.

6 Conclusions

In this paper we have described a novel application of D-ARM to support ar-
gumentation, specifically dialogue games. The PADUA system (Dynamic Rule
Mining for Argumentation Based Systems) is described. PADUA uses D-ARM
to obtain ARs in a “just in time” manner that avoids generating all ARs with
a confidence value above a given threshold. ARs are generated by interact-
ing with the T-tree data structure that supports fast interaction times. Three
specific D-ARM algorithms are described to either: (i) find a subset of rules
that conforms to a given set of constraints, or (ii) distinguish a given rule by
adding additional attributes or (iii) revise a given rule by removing attributes.
The operation of the system is illustrated with an example taken from Con-
gressional Voting benchmark data set. the approach introduced in this paper
enjoy certain advantages when compared with other D-ARM techniques in the
literature, specially regarding the generation of argumentation rules, mainly
answering questions like ”find the association rules that contain a given item
set“, ”mine association rules with specific conclusions“. . . etc. another impor-
tant advantage of the suggested techniques is that rules of various confidence
thresholds can be mined from the auxiliary T-tree.



References

[1] R. Aggrawal, T. Imielinski, and A. N. Swami (1993). Association rules
between sets of items in large databases. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pp 207-216.

[2] C.C. Aggarwal and P.S. Yu (1998). Online Generation of Association
Rules.Proc. i4th International Conference on Data Engineering (ICDE’98),
IEEE, pp 402-411.

[3] L. Amgoud and S. Parsons (2001). Agent dialogues with conflicting prefer-
ences. Proc. 8th International Workshop on Agent Theories, Architectures
and Languages, pp 1-15.

[4] A. Amir, R. Feldman and R. Kashi (1997). A New and Versatile Method
for Association Generation. Proc. 1st Conf. Principles of Data Mining and
Knowledge Discovery (PKDD), Springer LNCS, pp 221-231.

[5] C.L. Blake and C.J. Merz (1998). UCI Repository of machine learning
databases http://www.ics.uci.edu/ mlearn/MLRepository.html, Irvine,
CA: University of California, Department of Information and Computer
Science.

[6] T.J.M. Bench-Capon and H. Prakken (2006).Argumentation. In Lodder,
A.R. and Oskamp, A. (Eds),Information Technology and Lawyers: Ad-
vanced technology in the legal domain, from challenges to daily routine,
Springer Verlag, pp 61-80.

[7] F. Coenen, P. Leng and G. Goulbourne (2004).Tree Structures for Mining
Association Rules. Journal of Data Mining and Knowledge Discovery, Vol
8, No 1, pp25-51.

[8] J. Han, J. Pei and Y. Yiwen (2000).Mining Frequent Patterns Without
Candidate Generation. Proceedings ACM-SIGMOD International Confer-
ence on Management of Data, ACM Press, pp1-12.

[9] C. Hidber (1999). Online association rule mining. Proc ACM SIGMOD
international conference on Management of data, pp 145-156.

[10] P. Mcburney and S. Parsons (2001). Representing epistemic uncertainty
by means of dialectical argumentation, In Annals of Mathematics and
Artificial Intelligence 32, 125-169.

[11] P. Mcburney and S. Parsons (2002). Games That Agents Play: A Formal
Framework for Dialogues between Autonomous Agents. In Jo. of logic,
language and information, 11(3), pp 315-334.

[12] H. Prakken (2000).On dialogue systems with speech acts, arguments, and
counterarguments. Proc, 7th European Workshop on Logic in Artificial
Intelligence (JELIA 2000), Springer-Verlag, pp 224-238.



[13] E. Sklar and S. Parsons (2004).Towards the Application of Argumentation-
Based Dialogues for Education. Proc. 3rd International Joint Conf. on
Autonomous Agents and Multiagent Systems, Vol 3, pp 1420-1421.

[14] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. SUNY Press, (1995), Albany, NY,
USA.

[15] Y. Tang and S. Parsons (2005). Argumentation-based dialogues for delib-
eration. Proc. 4th Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, pp 552-559.


