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Abstract 

Purpose: To describe and evaluate an automated grading system for age-related macular 

degeneration (AMD) by color fundus photography. 

Methods: An automated “disease / no disease” grading system for AMD was developed 

based on image mining techniques. First, image pre-processing was performed to normalize 

color and non-uniform illumination of the fundus images, to define a region of interest, and to 

identify and remove pixels belonging to retinal vessels. To represent images for the 

prediction task, a graph based image representation using quadtrees was then adopted. 

Next, a graph mining technique was applied to the generated graphs to extract relevant 

features (in the form of frequent sub-graphs) from images of both AMD and healthy 

volunteers. Features of the training data were then fed into a classifier generator (Naïve 

Bayes and Support Vector Machines were used with respect to the evaluation presented 

later in this paper) for training purposes before employing the trained classifiers to classify 

new “unseen images”. 

Results: The algorithm was evaluated on two publically available fundus image datasets 

(ARIA and STARE) comprising 258 images (160 AMD and 98 normal). Ten-fold cross 

validation was used. The experiments produced a best specificity of 100% and a best 

sensitivity of 99.4% with an overall accuracy of 99.6%. Our approach outperformed previous 

approaches reported in the literature. 

Conclusions: The proposed technique has demonstrated a proof of concept for an 

automated AMD grading technique. It has the potential to be further developed as an 

automated grading tool for future whole scale AMD screening programs. 



Introduction 

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the 

developed world.1 It has a significant impact upon the activities of daily living and the quality 

of life of patients affected by AMD; it consequently poses a substantial socio-economical 

burden on society. The prevalence of AMD and its resulting visual impairment and blindness 

is expected to significantly increase given the world’s ageing population.2 There is mounting 

evidence that highlights the significance of early diagnosis and treatment to prevent 

progression to advanced AMD and eventual loss of vision.2,3 

The diagnosis of AMD is usually based on detecting its characteristic color fundus 

photographic features, such as drusen and pigment abnormality in the macula, using the 

Age-related Eye Diseases Study (AREDS) classification system and severity scale.4,5 With 

respect to the importance of the detection of features for the diagnosis of AMD, substantial 

work has been directed at applying image processing and content-based image retrieval 

techniques to support the diagnosis of AMD, for example the automated segmentation of 

drusen.6,7,8,9,10 However, performance of these segmentation-based techniques is still not 

sufficient for wide-scale clinical application, largely because of the fact that the underlying 

segmentation techniques are not robust enough for handling feature variations found in 

fundus images such as quality, color, illumination and so on. In fact, detection of lesions is 

merely a steppingstone for most medical applications; the objective is to extract useful 

clinical information for the follow-on decision-making process. The study described here was 

directed at systems for the automated diagnosis of AMD. Certainly a lesion detection based 

strategy would be a natural one to pursue, unfortunately this strategy has proved to be 

challenging and has yet to provide useful results, as noted in previous work on this aspect.11, 

12,13,14 

We advocate an alternative strategy, founded on the concept of image mining, to achieve an 

automated AMD classification system with a minimal need for segmentation. Image mining 



does not require a representation that is interpretable by human observers as long as image 

salient features are captured. Image mining based approach has been successful in 

categorizing Magnetic Resonance (MR) brain scan images,15 with a correct selection of 

image features, the approach was conjectured to performed well in classifying images based 

on their color information. In this paper we promote the use of spatial context information 

within images. Our previous work has highlighted the challenge of this strategy, including the 

representation of images so as to preserve spatial relationships and the selection of 

appropriate features.16 Here we propose, describe and evaluate a proof-of-concept image 

mining technique for disease/no-disease grading of AMD by color fundus photography.  

 



Methods 

a) Image Dataset 

The proposed automated AMD grading system was evaluated using two publically available 

fundus images datasets, ARIA (http://www.eyecharity.com/aria_online) and STARE 

(http://www.ces.clemson.edu/~ahoover/stare). The ARIA dataset comprises 161 images 

(101 AMD and 60 normal) acquired using a Zeiss FF450+ fundus camera at a 50° field with 

a resolution of 576x768 pixels. The STARE dataset comprises 97 images (59 AMD and 38 

normal) taken using a TOPCON TRV-50 fundus camera at a 35° field and with a resolution 

of 605x700 pixels. These two datasets were merged into a single dataset comprising 258 

images (160 AMD and 98 normal). An experienced, accredited grader at the Liverpool 

Ophthalmic Reading Center has reviewed all the AMD images and split them into three 

categories: early (14), intermediate (29) and advanced AMD (117) according to the AMD 

severity scale set out by the AREDS.4 More specifically, Early AMD (AREDS category 2) is 

characterized by many small drusen or a few intermediate-sized (63-124 um) drusen or 

retinal pigmentary abnormalities. Intermediate AMD (AREDS category 3) is characterized by 

at least one large (>125 um) drusen, numerous medium size drusen, or geographic atrophy 

that does not extend to the centre of the macula. Advanced AMD (AREDS category 4) can 

be either non-neovascular or neovascular. Advanced AMD is characterized by drusen and 

geographic atrophy extending to the centre of the macula. 

b) Image Mining Framework 

The proposed framework comprises five stages: Pre-processing, Image decomposition and 

graph representation, Weighted frequent sub-graph mining, Feature selection, and 

Classification. 

Pre-processing 



The objective of the pre-processing stage was to enhance the effectiveness of the 

classification system by first enhancing the images. The following steps were applied: 

i). A “mask image” backgroundI  was first defined as proposed in 17 by applying intensity 

thresholding and morphological operators to the original image I  (Fig. 1A): pixels within the 

circular fundus region of interest were marked as “1” while the rest as “0”, as shown in Fig. 

1B.  

ii). A new image, colorI  (Fig. 1C), was generated after color normalization of the original 

image I  by using a histogram specification approach.18 

iii). A common approach proposed by Foracchia et al 19 was then applied to colorI  to 

eliminate the illumination variation, as a result onilluminatiI  was generated, see Fig. 1D. 

iv). A new image, processedI  (Fig. 1E), was generated after applying a contrast enhancement 

technique called Contrast Limited Adaptive Histogram Equalization (CLAHE) 20 to onilluminatiI  

This was adopted because of its demonstrated superiority over other comparable 

techniques.21 

v). Blood vessels in the image processedI  were detected by an approach that used wavelet 

features and a supervised classification technique.22 The vessel pixels in vesselI  (Fig. 1F) and 

those pixels marked with a “0” (black) in backgroundI  (Fig. 1B) were not considered in the 

subsequent analysis. In this work localization and removal of the optic disc was deliberately 

omitted as it was observed from our previous experience that this process does not show 

benefit in terms of classification performance.23  

 

Image Partition / Decomposition 

One challenge of image mining is how to represent an image so as to maintain its structural 

information. Hierarchical trees are often used to represent images due to their ability to focus 



on the “interesting” parts of the input data, thus permitting an efficient representation of the 

problem and consequently improving the execution time.24 Therefore, in this work we used a 

quadtree representation, the most common hierarchical data structure used in relation to 

image decomposition. The decomposition commenced by splitting an image into four equal 

sized quadrants, with the root of the quad-tree representing the entire image. The splitting 

process continued by further decomposing each quadrant to generate further sub-quadrants, 

and terminated when a certain level of granularity (or a desired maximum level of 

decomposition maxD ) was reached or all sub-quadrants were homogeneous. A quadrant is 

homogeneous if it contains similar pixels values. In this study homogeneity was defined in 

terms of the similarity between the average intensity value of a quadrant and those of its 

sub-quadrants. If the difference of average intensities between a quadrant and any of its 

sub-quadrants divided by its average intensity is less than a predefined threshold, the 

quadrant is considered homogeneous. A threshold value of 10% was empirically chosen as 

the default setting in this study. Fig. 2 illustrates the decomposition process of a retinal 

image. 

Throughout the decomposition process the tree data structure was continuously appended 

to (it is constructed dynamically). Each identified sub-region was represented as a “node” in 

the tree data structure, whilst the relationship between each sub-region and its parent was 

represented by the edges. The RGB (Red, Green and Blue) color model was used to extract 

pixel intensity values, hence three trees were generated initially (one for each channel) and 

merged on completion. 

 
Weighted Frequent Sub-graph Mining 

On completion of image decomposition the input image set was represented as a collection 

of trees, see Fig. 3. Each tree was defined as follows: ),,,,( uLLEVT EV=  where V  and E  

are sets of vertices and edges respectively, VL  and EL  were sets of labels for vertices and 



edges respectively, while u  defined a label mapping function. To extract frequent sub-trees 

(image features) for classification, a weighted frequent sub-graph (WFSG) mining algorithm 

was used.25 Further details of WFSG were presented in Appendix A.  

The number of features discovered by the WFSG mining algorithm was determined by two 

thresholds, σ  and λ ; where σ  denotes the minimum node support threshold while λ  

denotes the minimum edge weight threshold. Relatively low σ  and λ  values are required in 

order to extract a sufficient number of features. However, setting threshold values too low 

may result in large numbers of features, of which many may be redundant and/or ineffective 

in terms of the desired classification task, as well as adding to the computational cost. Thus, 

a feature selection process was applied to the discovered features. 

 
Feature Selection / Reduction 
 
Feature selection is often a desirable process in classification applications as this will serve 

to improve both the computational efficiency and the classification performance by reducing 

the data dimensions to only the most appropriate features. For this study, a feature ranking 

mechanism was employed that used linear Support Vector Machine (SVM) weights to rank 

features.26 To generate the weights (to be used for the ranking) the L2-regularized SVM with 

the L2-loss function (provided in the LIBLINEAR library 27 which can be downloaded in 28) 

was employed to rank the set of identified features generated from the previous stage. The 

resulting list of features was sorted in descending order according to their individual weights 

(discriminative power). This process allowed us to select the top K  features for the 

subsequent classification task, consequently the size of the feature space ( h ) was reduced 

by a factor of Kh − . Again K  is a free parameter and its value was tuned for the best 

classification performance. 

Classifier training and classification 

Two different classification techniques were used, Naïve Bayes 29,30 and SVM.28 Naïve 

Bayes was selected because: (i) it has been shown to work well and is comparable to other 



techniques,29 and (ii) it does not require user defined parameters. SVM was selected 

because it is recognized as one of the most effective classification methods in machine 

learning. For the SVM, the LibSVM 28 library was used. A C-Support Vector Classification 

(SVC) formulation of SVM, with a radial basis function (RBF) kernel 

)||||exp()( 2
jijik xxxx −−=− γ , was employed to generate the SVM classifier. The optimal 

parameters, such as the soft margin C  for C-SVC and the γ  parameter of the RBF kernel, 

were determined using the associated grid search strategy.28 

Evaluation 

The proposed system was evaluated in order to investigate its performance by varying four 

parameter values: (i) Depth of decomposition ( maxD ), (ii) Minimum node support threshold 

(σ ), (iii) Minimum edge weight threshold ( λ ), and (iv) Number of features selected (K ). All 

our experiments were conducted using Ten-fold Cross Validation (TCV). On each TCV 

iteration one tenth of the data was used as the test set while the remainder was used as the 

training set. Comparisons were also made with related work reported in the literature. The 

authors have only been able to identified four instances of previous work on retinal image 

AMD classification by other research groups: (i) Chaum et al,11 (ii) Barriga et al,12 (iii) 

Brandon and Hoover,13 and (iv) Agurto et al.14  

Metrics  

Three commonly used metrics were used to evaluate performance: sensitivity, specificity 

and accuracy, and their corresponding 95% confidence intervals (CIs) were also 

calculated according to the Wilson score method.31 Sensitivity (resp. specificity) is a 

measure of the effectiveness in identifying positive (resp. negative) cases, while accuracy is 

a metric to indicate the overall classification performance. These metrics are defined as 

follows: 



cases positive ofnumber   totalthe
positive as classifiedcorrectly  (AMD) cases positive ofnumber  the(Se) =ysensitivit  

cases negative ofnumber   totalthe
negative as classifiedcorrectly  (normal) cases negative ofnumber  the(Sp) =yspecificit  

cases ofnumber   totalthe
classifiedcorrectly  cases ofnumber  the(Acc) =accuracy  



Results 

For the experiments on the effect of combinations of different parameter values (e.g. maxD , σ , 

λ  and K ), our results are shown in Table 1- 3 for maxD  values of 5, 6 and 7 respectively. For 

each maxD , a range of σ values from 10 to 90% was used (incremented in steps of 10), while 

a range of λ  values from 20% to 80% (incremented in steps of 20) was used. In Table 1-3 

only results corresponding to σ  values from 10 to 50% are shown. Table 1 – 3 show that the 

SVM classifier produced better results than the Naïve Bayes one with respect to all three 

maxD  values. For 5max =D , the best accuracy using the SVM classifier was 89.3% (sensitivity 

92.8%; specificity 83.5%) while for the Naïve Bayes it was 76.1% (sensitivity 80.7%; 

specificity 68.1%). Note that as σ  and λ  were increased the number of features decreased, 

and consequently the accuracy reduced for both classifiers. The same trends may be 

observed for 6max =D and 7  as well.  

Overall, for the Naïve Bayes classifiers a best accuracy of 79.0% was achieved with 

6max =D , %10=σ  and %40=λ . For the SVM classifiers, a best accuracy of 99.6% was 

observed with settings for 6max =D  and 7. These all occurred when %10=σ  or %20  while 

λ  varied from between 20% to 60%. The associated sensitivity value is 99.4% (95% CI, 

96.6% to 99.9%) and the specificity value is 100% (95% CI, 96.2% to 100%). A sub-

analysis has showed that with the SVM approach the sensitivity in detection of early, 

intermediate and advanced AMD is 100% (95% CI, 78.5% to 100%), 96.6% (95% CI, 

82.8% to 99.4%) and 100% (95% CI, 96.8% to 100%) respectively.  



Discussion 

This study is a proof of concept that demonstrates the feasibility of image-mining based 

classification for automated AMD disease / no disease grading. We have employed two 

classifier generation techniques, SVM and Naïve Bayes. Our experiments, using two public 

retinal image databases, produced highly accurate results using SVM classification, with a 

best accuracy of 99.6% (sensitivity: 99.4%; specificity: 100%). Our SVM approach has also 

showed promising results in detection of early, intermediate and advanced AMD. The only 

misclassification of an intermediate AMD image is due to its very poor quality where almost 

half of the image is in black. This implies that the use of our technique would not miss any 

patients who need urgent care.  

Our comparative study  demonstrated clearly that the proposed framework 

outperforms the previous work.11,12,13,14 Our results, and those previously reported in 

the literature, are presented in Table 4. In our comparison both the SVM and the Naïve 

Bayes classifiers were tested with σ  = 10%, λ  = 20% and Dmax = 7. The SVM 

approach yielded better results than the Naïve Bayes classifier and the previous 

approaches in terms of sensitivity, specificity and accuracy. Brandon and Hoover 

used the STARE dataset,13 while the others used data sets that are not publicly 

available. Table 4 features some missing values because these were not reported in 

the literature and could not be derived by the authors. The results recorded by Barriga 

et al.12 included only sensitivity (75%) and specificity (50%). On the other hand, the 

method of Chaum et al. was applied in a multi-class setting and hence only accuracy 

(88%) was reported.11 In their evaluation, 12 AMD images were classified as 

“unknown” and excluded from the accuracy calculation. If this number was included 

as miss-classifications, the accuracy would drop to 75%. Brandon and Hoover only 

reported the accuracy (90%) and specificity (89%),13 however, we were able to 

calculate the sensitivity value (90%). Their evaluation was applied not only to AMD 

screening (AMD vs. non-AMD) but also to the grade (severity) of the detected AMD. To 



obtain an overall sensitivity value we summed the total number of AMD images 

(irrespective of their AMD grades) and counted the number of these images that were 

correctly classified. The most recent work by Agurto et al. reported detection of AMD 

with sensitivity (specificity) of 94% (50%) and 90% (50%) for two databases, 

respectively.14 The accuracy results can be derived from their reported results of 

sensitivity and specificity and they were lower than 80%. In contrast to these 

approaches our new system can achieve a sensitivity similar to the others but a 

substantially higher specificity. In clinical practice this improvement would reduce many 

unnecessary referrals due to false alarms. The evidence from automated disease/no-

disease grading of Diabetic Retinopathy (DR) research has shown that the introduction of 

such systems, even with specificity as low as about 50%, still can lead to cost-effectiveness 

and reduced overall workload.32 Our technique can provide comparable sensitivity and much 

higher specificity; as such our technique represents a considerable advance. Moreover, our 

technique has the potential to provide patients with the results at the point of service. 

It will be able to work without intra- and inter-observer grading variability, tiredness of 

human graders, and the need for regular training and certification that are required 

with respect to the human graders employed in manual grading programs.  

All the studies, including ours, only use a relatively small number of images (<500 images) 

that may not be well representative of the population to be screened to address such a 

challenging problem due to the nature of medical imaging research. As presented above, 

the widths of the 95% CI in the detection of early and intermediate AMD are larger 

than 10% which implies that a larger sample size is needed in order to narrow this 

down. This limitation suggests that the proposed technique should be further 

validated by considering large-scale studies before it can be introduced into clinical 

practice. We envisage that the sample size of such studies has to be carefully 

considered in order to establish the scalability and generality of the proposed 

technique and to precisely estimate the level of expected sensitivity. According to 



Buderer,33 the sample size is dependent on disease prevalence, expected sensitivity 

and specificity, and the corresponding width of the CI. For instance, if the prevalence 

of any AMD is about 10% in the screened population, and the expected sensitivity and 

specificity is to be ≥ 90% and ≥ 95% respectively. A minimum sample size of about 

350 is required to confirm sensitivity larger than 90% when the width of the 95% CI is 

5%. If the prevalence is 1%, and all the other requirements are the same as above, 

then the sample size will becomes about 3500. The latter case may reflect the need for 

a substantially large sample size for the validation of the program with respect to the 

detection of subgroups of AMD (e.g. advanced AMD). However, the above results are 

not necessarily conclusive, the actual required sample size in any future study will 

have to be determined by the specific application and its performance requirements 

(i.e., the sample size needed by a validation study for screening people aged over 65 

years would be smaller than that for screening people aged over 50 years for the 

same level of performance). Another important factor with respect to any future 

validation study is how to establish the reference standard for grading that is crucial 

for training and validation of the automated grading system. To this end we believe 

that the proposed strategies developed for automated DR grading can be readily 

adapted. In addition some additional components require further development for the 

current system to become a standalone automated grading systems. For example, image 

quality is an important factor with respect to the detection of lesions and subsequent 

diagnosis; an automated image quality assessment mechanism is therefore desirable. It is 

also expected that further development will make it possible to automatically assess disease 

severity scales.  

In our research we also noted that, due to the nature of image mining techniques, the image 

representation used for the classification is no longer interpretable by human observers. It 

would be desirable, with respect to its acceptance and practical use, to allow the model to 

also be clinically interpretable. This may provide a better way for clinicians to interpret 



fundus photography and allow clinicians to focus on spatial patterns. This has become a 

research topic in itself. On the other hand, our argument is that the most important feature of 

a prediction system like ours is its ability to make correct predictions. No system will be 

clinically useful if it is transparent to understanding but performs badly. As described above 

our technique involves graph-mining and feature selection processes in the classifier training 

phase which may require substantial computing and storage resources when dealing with 

large datasets, this may be a potential weakness of our technique. However, it is envisaged 

that with current technical advances in computing this would not be a key issue with respect 

to scalability and performance. 

Over past decades some newly emerging imaging techniques, such as fundus 

autofluorescence (FAF) and optical coherence tomography (OCT), have become available 

and showed potential for AMD screening. FAF imaging is a noninvasive imaging technique 

that allows assessment of the integrity of the retinal pigment epithelium cells.34 Although it 

has demonstrated potential for the analysis of distribution patterns of drusen and 

quantification of geographic atrophy, and as a prognostic tool to predict development of AMD, 

extensive work is warranted to investigate its use for AMD screening. The advent of OCT 

has revolutionized diagnosis and treatment of retinal disease.35 OCT is a noncontact, 

noninvasive, high-resolution imaging technique that allows cross-sectional images of the 

retina to be obtained in almost real time and more importantly allows further quantitative 

analysis of features of the retina.36,37,38,39 It has been extensively used in the guidelines for 

follow-up and retreatment of patients with AMD.40 It appears to be a very promising 

technique to support AMD screening. However, OCT imaging may not show hemorrhaging, 

and may miss some abnormalities due to the large gap (or undetected region) between 

adjacent B-scans. Cost effectiveness may also be an issue, as OCT devices are much more 

expensive than standard color fundus cameras. It should also be noted that the current AMD 

severity scale was developed and validated as part of a large scale study (AREDS) using 

color fundus photograph,4 effort would be needed to investigate the mapping of this scale 



between the new emerging techniques and color fundus photography. Therefore it is 

believed that both FAF and OCT will help further establish the clinical validation for 

AMD screening, but may not be feasible for AMD screening alone. A combination of 

different diagnostic imaging techniques such as OCT, FAF and color fundus may be 

an optimal solution with respect to future automated screening purposes. Whatever 

the case our technique is a generic approach which can be extended to any of the above. 

Although the proposed approach has confirmed the technical feasibility of an automated 

AMD grading system, to the best of our knowledge no such programs exist currently. As 

suggested by Karnon et al,41 the major concern for AMD screening is the significant 

uncertainty about their cost effectiveness, although annual screening from age 60 years 

onwards appeared to be beneficial at the time of their study. We noted that this conclusion 

was made without considering the potential benefit of using automated grading systems as 

at that time automated grading was merely at early stage proof-of concept and no sufficient 

detail was available for evaluation. Lessons and experience accumulated in DR screening 

and in particular recent development of automated grading could provide more insight into 

best practice. As an example, although specificity as high as ours is not achieved in 

automated disease / no-disease DR grading, models that combines automated and manual 

grading have demonstrated cost-effectiveness and a reduced overall workload. 32 If there 

had been an automated AMD grading system with similar performance, the cost-

effectiveness of AMD screening would be much improved compared to that observed in 

2008.41 Together with other advances in therapeutic treatment, there would be more weight 

to support AMD screening. Certainly introduction of a new screening system is a rather 

complicated process, not only because of the need to satisfy well-established screening 

criteria,42 but also with respect to various political, economic and ethical hurdles.43 An 

alternative use for an automated AMD screening system, of the form proposed here, is as a 

“second opinion” generator.32 We envisage that our approach has great potential for the 

above activities and lays a foundation for future research and the implementation of an 



automated screening system. In addition, the principle and methodology that we 

propose here may also be adapted for accurate analysis of disease progression, 

which is important for monitoring disease development and timely treatment.  

In conclusion, this study has demonstrated a powerful image-mining based technique for 

automated AMD grading whose superior performance warrants further development in order 

to translate this technique into clinical practice as an automated AMD grading tool. 

 



Appendix A Weighted Frequent Sub-graph Mining (WFSM) 

Let },,,{ 11 ngggGD = be n  graphs representing an image dataset of n images (one graph 

for each image). In the context of the WFSM algorithm used 25, each node has a weight 

defined by the average color intensity value of the region (quadrant) represented by the 

node. A weight is also assigned to each edge, edge weights are defined as the difference 

between the average intensity of the child node and that of its parent. The WFSM algorithm 

extracts frequent sub-tree (image features) for classification purpose. More specifically, a 

sub-graph, sg , is considered frequent (important) if it satisfies the following two conditions: (i) 

σ≥× )sup()( sgsgNwr , and (ii) λ≥)(sgEwr , where wrN  denotes the node weighting, )sup(sg  

denotes the support (i.e. frequency) of sg , and σ  denotes the minimum node support 

threshold; wrE  denotes the edge weighting, and λ  denotes the minimum edge weight 

threshold. The weightings wrN  and wrE  are computed as follows: 
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where || sgΔ  denotes the number of graphs in which sg  occurs in the graph dataset G , G  

is the number of graphs in the graph dataset G , while )(gwnode  and )(gwedge  are the 

average weights of nodes and edges in g  respectively. For full details interested readers 

should refer to Jiang and Coenen. 25 



The output of the WFSM algorithm is then a set of weighted frequent sub-trees (WFSTs). In 

order to allow the application of existing classification algorithms to the identified WFSTs, 

feature vectors were built from them. The identified set of WFSTs was first used to define a 

feature space. Each image was then represented by a single feature vector comprised of 

some subset of the WFSTs in the feature space. In this manner the input set can be 

translated into a two dimensional binary-valued table of size kn× , of which the number of 

rows, n , represents the number of images and k  the number of identified WFSTs. An 

additional class label column will be added for the training data.
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Figure Legends 

 

Figure 1. Illustration of pre-processing steps. A) Original image; B) Image mask; C) Image 

after color normalization; D) Image after illumination normalization; E) Image after contrast 

enhancement; F) The identified blood vessels. 

Figure 2. Illustration of image decomposition using the quadtree technique. 

Figure 3. Illustration of the quadtree data structure. 
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Figure 2. Illustration of image decomposition using the quadtree technique. 

 



 

 

Figure 3. Illustration of the quadtree data structure. 
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Tables 

Table 1. Classification results with Dmax=5. 

minFreq 
σ (%) 

minRatio 
λ (%) 

SVM Naïve Bayes 

Feature 
size K 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

Feature 
size K 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

10 20 1000 97.0 33.7 73.4 50 80.7 68.1 76.1 

 40 200 92.8 83.5 89.3 50 78.3 72.1 76.1 

 60 200 95.8 25.6 69.7 50 75.2 60.1 69.6 

 80 50 89.9 40.7 71.6 50 82.5 43.6 68.1 

20 20 200 92.8 50.8 77.2 50 75.3 66.1 71.9 

 40 200 92.8 50.8 77.2 50 75.3 66.1 71.9 

 60 200 95.8 24.6 69.3 50 74.7 60.1 69.3 

 80 50 89.9 40.7 71.6 50 82.5 43.6 68.1 

30 20 200 95.8 28.6 70.8 100 72.2 62.2 68.5 

 40 200 95.8 28.6 70.8 100 72.2 62.2 68.5 

 60 200 95.8 25.6 69.7 50 75.2 60.1 69.6 

 80 50 89.9 40.7 71.6 50 82.5 43.6 68.1 

40 20 50 87.8 38.8 69.5 50 76.5 51.9 67.4

 40 50 87.8 38.8 69.5 50 76.5 51.9 67.4 

 60 50 87.8 38.8 69.5 50 76.5 51.9 67.4 

 80 50 89.9 40.7 71.6 50 82.5 43.6 68.1 

50 20 100 94.0 29.7 70.0 50 79.4 42.7 65.8 

 40 100 94.0 29.7 70.0 50 79.4 42.7 65.8 

 60 100 94.0 29.7 70.0 50 79.4 42.7 65.8 

 80 50 89.9 40.7 71.6 50 82.5 43.6 68.1 



Table 2. Classification results with Dmax=6. 

minFreq 
σ (%) 

minRatio 
λ (%) 

SVM Naïve Bayes 

Feature 
size K 

Se 
 (%) 

Sp 
 (%) 

Acc 
(%) 

Feature 
size K 

Se 
 (%) 

Sp 
 (%) 

Acc 
(%) 

10 20 1000 99.4 100.0 99.6 50 80.2 73.6 77.6 

 40 1000 98.3 96.0 97.4 50 80.1 77.2 79.0 

 60 1000 93.4 42.7 74.6 50 76.5 67.0 73.0 

 80 200 93.3 39.9 73.5 50 78.3 47.9 66.9 

20 20 1000 99.4 100.0 99.6 50 79.5 72.5 76.8 

 40 1000 99.4 100.0 99.6 50 79.5 72.5 76.8 

 60 1000 93.4 42.7 74.6 50 76.5 67.0 73.0 

 80 200 93.3 39.9 73.5 50 78.3 47.9 66.9 

30 20 1000 92.8 49.9 76.9 100 74.1 66.0 71.1 

 40 1000 92.8 49.9 76.9 100 74.1 66.0 71.1 

 60 1000 93.4 42.7 74.6 50 76.5 67.0 73.0 

 80 200 93.3 39.9 73.5 50 78.3 47.9 66.9

40 20 400 95.3 55.2 80.3 50 75.5 57.7 68.9 

 40 400 95.3 55.2 80.3 50 75.5 57.7 68.9 

 60 400 95.3 55.2 80.3 50 75.5 57.7 68.9 

 80 200 93.3 39.9 73.5 50 78.3 47.9 66.9 

50 20 200 92.3 54.9 78.4 100 78.4 53.9 69.3 

 40 200 92.3 54.9 78.4 100 78.4 53.9 69.3 

 60 200 92.3 54.9 78.4 100 78.4 53.9 69.3 

 80 200 93.3 39.9 73.5 50 78.3 47.9 66.9 
 



Table 3. Classification results with Dmax=7. 

minFreq 
σ (%) 

minRatio 
λ (%) 

SVM Naïve Bayes 

Feature 
size K 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

Feature 
size K 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

10 20 4000 99.4 100.0 99.6 1000 79.5 77.5 78.7 

 40 4000 99.4 100.0 99.6 1000 78.3 77.3 77.9 

 60 1000 99.4 100.0 99.6 100 75.8 74.5 75.4 

 80 1000 95.8 21.5 68.1 50 81.4 58.2 72.8 

20 20 1000 99.4 100.0 99.6 1000 77.7 77.5 77.6 

 40 1000 99.4 100.0 99.6 1000 77.7 77.5 77.6 

 60 1000 99.4 100.0 99.6 100 75.8 74.5 75.4 

 80 1000 95.8 21.5 68.1 50 81.4 58.2 72.8 

30 20 4000 95.3 75.6 87.9 50 78.2 73.3 76.4 

 40 4000 95.3 75.6 87.9 50 78.2 73.3 76.4 

 60 1000 99.4 100.0 99.6 100 75.8 74.5 75.4 

 80 1000 95.8 21.5 68.1 50 81.4 58.2 72.8

40 20 1000 97.6 97.8 97.7 50 75.9 70.2 73.8 

 40 1000 97.6 97.8 97.7 50 75.9 70.2 73.8 

 60 1000 97.6 97.8 97.7 50 75.9 70.2 73.8 

 80 1000 95.8 21.5 68.1 50 81.4 58.2 72.8 

50 20 1000 95.3 51.0 78.7 100 81.4 61.2 73.9 

 40 1000 95.3 51.0 78.7 100 81.4 61.2 73.9 

 60 1000 95.3 51.0 78.7 100 81.4 61.2 73.9 

 80 1000 95.8 21.5 68.1 50 81.4 58.2 72.8 
 



Table 4. Comparison of results of our proposed approaches with those from previous work. 

Approach Dataset size Sensitivity Specificity Accuracy

Brandon and Hoover13 97 90 89 90 

Chaum et al.11 395 N/A N/A 88 

Barriga et al.12  100 75 50 N/A 

Agurto et al.14 

392 (Rist Database) 
90 60 79 

94 50 78 

395 (UTHSCSA Database)
90 60 76 

90 50 76 

Proposed Bayes approach 258 79.5 77.5 78.7 

Proposed SVM approach 258 99.4 100 99.6 

 


