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1

Introduction

1.1 Motivation Framework

Large-scale tra�c and communication networks, like e.g. the Internet, telephone
networks, or road tra�c systems often lack a central regulation for several rea-
sons: The size of the network may be too large, the networks may be dynam-
ically evolving over time, or the users of the network may be free to act ac-
cording to their private interests, without regard to the overall performance of
the system. Besides the lack of central regulation even cooperation among the
users may be impossible due to the fact that the users may not even know each
other. Networks with non-cooperative users have already been studied in the early
1950's in the context of road tra�c systems [7, 97]. Nowadays, modern computer
artifacts, like e.g. the Internet, are modeled as communication networks with
non-cooperative users. For such communication networks, combining ideas from
game theory and computer science has become increasingly important [29, 63,
82, 83, 86].

An environment, which lacks a central control unit due to its size or oper-
ational mode, can be modeled as a non-cooperative game [85]. Here, the users
are assumed to be sel�sh players that sel�shly choose their private strategies,
which in our environment correspond to paths (or probability distributions over
the paths) from their sources to their destinations. When routing their tra�c ac-
cording to the strategies chosen, the players will experience an expected latency
caused by the tra�c of all players sharing edges. Each player tries to minimize
its private cost, expressed in terms of its expected latency. This often contradicts
the goal of optimizing the social cost which measures the global performance of
the whole network. The degradation of the global performance due to the sel�sh
behavior of its players is often termed as price of anarchy [86] or coordination
ratio [67]. The theory of Nash equilibria [80, 81] provides us with an important
concept for environments of this kind: A Nash equilibrium is a state of the sys-
tem in which no player can decrease its private cost by unilaterally changing its
strategy. It has been shown by Nash that a Nash equilibrium exists under fairly
broad circumstances.



2 1 Introduction

The concept of Nash equilibria has become an important mathematical tool
in analyzing the behavior of sel�sh players in non-cooperative systems [86]. Many
algorithms have been developed to compute a Nash equilibrium in a general game
(see [76] for an overview). Although the theorem of Nash [80, 81] guarantees the
existence of a Nash equilibrium, the complexity of computing a Nash equilibrium
was open for a long time, even for 2-player games. Only recently, Chen and Deng
[15] settled the complexity of computing a Nash equilibrium for 2-player games.

1.2 Contribution

In this work, we study di�erent models for sel�sh routing in non-cooperative
networks. Our models di�er in the structure of the underlying network and the
information accessible to the players. We now give a high-level description for the
models considered in this thesis and for our contributions.

1.2.1 Routing Games on Parallel Links

In a routing game on parallel links a set of n players wishes to assign their tra�c
w1, . . . , wn to one of m parallel links connecting a single source node to a single
destination node. Each link has a certain capacity, that represents the rate at
which the link processes tra�c. So the latency for a link is the total tra�c through
this link divided by its capacity. A pure strategy for a player is some speci�c link,
while a mixed strategy is a probability distribution over its pure strategies. A
pure (resp. mixed) strategy pro�le speci�es a pure (resp. mixed) strategy for each
player. Each player chooses a strategy in order to minimize its private cost, which
is de�ned as its expected latency. A strategy pro�le is a Nash equilibrium if no
player can decrease its private cost by unilaterally changing its strategy.

Associated with a strategy pro�le, there is also a global objective function,
called social cost. For routing games on parallel links we consider two di�erent
social cost measures: makespan social cost and polynomial social cost. On the one
hand, makespan social cost is de�ned as the expected maximum latency on a
link [67]. On the other hand, polynomial social cost is de�ned as the sum of a
certain polynomial, evaluated at the incurred link loads [42]. The maximum ratio
between the maximum social cost of a Nash equilibrium and the minimum social
cost of a pure strategy pro�le is called price of anarchy.

In this dissertation, we present results concerning the computational complex-
ity of pure Nash equilibria. Furthermore, we prove a multitude of results that are
related to the price of anarchy in various sub-models.

1.2.2 Weighted Congestion Games

The class of congestion games has been introduced by Rosenthal [88]. In a con-
gestion game there is a set of resources and the strategy set of each player is a
subset of the power set of these resources. The latency on a resource is determined
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by a latency function in the number of players sharing this resource. Each player
aims to minimize its private cost, which is de�ned as the sum of the latencies
of its chosen resources. Milchtaich [77] considered weighted congestion games as
an extension to congestion games in which the players have weights and thus
di�erent in�uence on the latency of the resources. Weighted congestion games
provide us with a general framework for modeling any kind of non-cooperative
resource sharing problem. A typical resource sharing problem is that of routing.
In a routing game the strategy sets of the players correspond to paths in a net-
work. Routing games where the demand of the players cannot be split among
multiple paths are also called (weighted) network congestion games.

For weighted congestion games we use the total latency [92] as our social cost
measure. For the case of network congestion games, the total latency is a measure
for the weighted total travel time of the players. Given this social cost measure,
the price of anarchy is de�ned as before.

In this dissertation, we show exact values for the price of anarchy of weighted
and unweighted congestion games with polynomial latency functions. The given
values also hold for weighted and unweighted network congestion games.

1.2.3 Sel�sh Routing with Incomplete Information

In his seminal work, Harsanyi [58] introduced an elegant approach to study non-
cooperative games with incomplete information. In our work, we use this ap-
proach to de�ne a new sel�sh routing game with incomplete information that we
call Bayesian routing game. Here, each of n sel�sh players wishes to assign its
tra�c to one of m parallel links. Again, the rate at which links process tra�c
is given by their capacities. However, this time players do not know each other's
tra�c. Following Harsanyi's approach, we introduce, for each player, a set of pos-
sible types. In our model, each type of a player corresponds to some tra�c and
the players' uncertainty about each other's tra�c is described by a probability
distribution over all possible type pro�les.

In this dissertation, we prove results on the existence and computational com-
plexity of pure Bayesian Nash equilibria, we study structural properties of a cer-
tain class of mixed Bayesian Nash equilibria, and we prove bounds on the price
of anarchy for various social cost measures.

1.3 Related Models for Sel�sh Routing

The Wardrop model has already been studied in the 1950's in the context of road
tra�c systems by Wardrop [97] and by Beckmann, McGuire and Winsten [7].
Moreover, it was already discussed earlier by Pigou [87] in the 1920's. For a
survey of the early work on this model see [8]. In the Wardrop model, traf-
�c has to be sent through a shared network and tra�c is allowed to be split
into arbitrary pieces. In this environment, unregulated tra�c is modeled as net-
work �ow. Wardrop [97] introduced the concept of Wardrop equilibria to describe
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user behavior in this kind of tra�c networks. Given an arbitrary network with
edge latency functions, Wardrop equilibria have been classi�ed as �ows with all
�ow paths used between a given source-destination pair having equal latency. A
Wardrop equilibrium can be interpreted as a Nash equilibrium in a game with
in�nitely many players, each carrying an in�nitesimal amount of tra�c from a
source to a destination.

A lot of work (see [92, Sec. 1.2] for a brief survey) on this model has been
motivated by Braess's Paradox [13]. Inspired by the arisen interest in the price
of anarchy, Roughgarden and Tardos re-investigated the Wardrop model [89, 92].
Other recent work on the price of anarchy in the Wardrop model and its variations
include [18, 20, 24, 50, 75]. Recently, the convergence towards a Wardrop equi-
librium was studied by Fischer et al. [33, 34, 35]. Many results on the Wardrop
model have been collected in the book of Roughgarden [90].

Another model for sel�sh routing was �rst discussed by Orda et al. [84] and
further studied by Roughgarden [91] and Comminetti et al. [19]. In this model,
the number of players is �nite and each player controls a non-negligible amount
of �ow that can be split over di�erent paths. In contrast to the Wardrop model,
each player centrally controls its �ow share, seeking to minimize the total latency
of its �ow share.

1.4 Publications

The results presented in this thesis are published in parts as joint work in the
Proceedings of the International Colloquium on Automata, Languages, and Pro-
gramming (ICALP) [30, 45, 48], the Proceedings of the Italian Conference on
Theoretical Computer Science (ICTCS) [46], the Proceedings of the International
Symposium on Mathematical Foundations of Computer Science (MFCS) [31, 42],
the Proceedings of the International Symposium on Theoretical Aspects of Com-
puter Science (STACS) [4], the Proceedings of the Annual ACM Symposium on
Theory of Computing (STOC) [41], the Proceedings of the Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA) [49], Parallel Processing
Letters [44], and Theoretical Computer Science [47].

1.5 Organization

After a brief description of some basic notations, de�nitions and technical results
in Chapter 2, we formally introduce the considered models for sel�sh routing in
Chapter 3. In Chapter 4, we study routing games on parallel links. Chapter 5
holds our results for weighted congestion games and Chapter 6 comprises our
�ndings for Bayesian routing games.



2

Preliminaries

This section presents some basic notations, de�nitions and preliminary technical
results which are needed throughout this thesis.

2.1 Notation

For any integer k ≥ 1, denote [k] = {1, . . . , k} and [k]0 = {0, . . . , k}. Furthermore,
for any two integers `, k with 0 ≤ ` ≤ k, denote [`, k] = {`, . . . , k}.

For a vector v = (v1, . . . , vn), let v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and let
(v−i, v

′
i) = (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

For an event E in the sample space, denote by Pr(E) the probability of event
E happening.

For a random variable X with associated distribution P, denote by EP(X)
the the expectation of X.

2.2 Gamma Function

Denote Γ the Gamma function, that is, for any natural number N , Γ(N +1) = N !,
while for any arbitrary real number x > 0,

Γ(x) =
∫ ∞

t=0
txe−t dt.

The Gamma function is invertible, both Γ and its inverse Γ−1 are increasing. It
is well known (see e.g. Gonnet [55]) that

Γ−1(N) =
log(N)

log log(N)
· (1 + o(1)).

We will use the facts that Γ(x + 1) = x · Γ(x) for all x > 0 and that Γ(x) ≤ x for
all 1 ≤ x ≤ 3. For an introduction to the Gamma function we refer to [60].
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2.3 Falling Factorials, Stirling Numbers and Bell Numbers

For any pair of integers k ≥ 1 and t ≥ 1, the t'th falling factorial of k, denoted
as kt, is given by

kt = k · (k − 1) · . . . · (k − (t− 1)),

when k ≥ t. Otherwise (t ≥ k + 1), kt = 0.
For any pair of integers d ≥ 1 and t ∈ [d]0, the Stirling number of the second

kind [94], denoted as S(d, t), counts the number of partitions of a set with d
elements into exactly t blocks (non-empty subsets). In particular, S(d, 1) = 1.
Also, for all integers d ≥ 2, S(d, 2) = 2d−1 − 1. Stirling numbers of the second
kind satisfy the recurrence relation

S(d, t) =
∑

q∈[t,d]

(
d− 1
q − 1

)
· S(q − 1, t− 1)

for all integers d ≥ 2 and t ∈ [d] (see, e.g., [57, Table 265, Identity (6.15)]). It is
also known that for all integers d ≥ 2 and k ≥ 1, kd =

∑
t∈[d] S(d, t) · kt.

For any integer d ≥ 1, the Bell number of order d [10], denoted as Bd, counts
the number of partitions of a set with d elements into blocks. So, clearly, B0 = 1
and Bd =

∑
t∈[d] S(d, t).

2.4 Binomial Cost Function

De�nition 2.1. For any integer r ≥ 1, consider a probability vector p =
(p1, . . . , pr). Fix a function g(λ) : R → R. Then, the binomial function BF(p, g)
is given by

BF(p, g) =
∑

A⊆[r]

(∏
k∈A

pk ·
∏
k/∈A

(1− pk) · g(|A|)

)
.

Strictly speaking, De�nition 2.1 de�nes a functional. If all probabilities have
the same value p, then we (abuse notation to) write BF(p, r, g). Clearly, in this
case,

BF(p, r, g) =
∑

k∈[r]0

(
r

k

)
pk(1− p)r−kg(k) .

We show that when g is monomial, the binomial function takes a special form.

Proposition 2.2. For each integer d ≥ 1,

BF(p, r, λd) =
∑
t∈[d]

pt · S(d, t) · rt .
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Proof. By induction on r. For the basis case, let r = 1. Then, BF
(
p, 1, λd

)
=(

1
1

)
p11d = p and

∑
t∈[d] p

tS(d, t)1t = p1S(d, 1)11 = p, so that the claim follows.
Assume inductively that for some integer r ≥ 2, for each integer d ≥ 1,

BF(p, r − 1, λd) =
∑
t∈[d]

pt · S(d, t) · (r − 1)t .

For the induction step, we derive that

BF(p, r, λd)

=
∑

k∈[r]0

(
r

k

)
pk(1− p)r−kkd

=
∑
k∈[r]

(
r

k

)
pk(1− p)r−kkd

=
∑
k∈[r]

r

k

(
r − 1
k − 1

)
pk(1− p)r−kkd

= p · r ·
∑
k∈[r]

(
r − 1
k − 1

)
pk−1(1− p)r−kkd−1

= p · r ·
∑

k∈[r−1]0

(
r − 1

k

)
pk(1− p)r−1−k(k + 1)d−1

= p · r ·
∑

k∈[r−1]0

(
r − 1

k

)
pk(1− p)r−1−k

 ∑
q∈[d−1]0

(
d− 1

q

)
kq


= p · r ·

∑
q∈[d−1]0

(
d− 1

q

) ∑
k∈[r−1]0

(
r − 1

k

)
pk(1− p)r−1−kkq


= p · r ·

∑
q∈[d−1]0

(
d− 1

q

)
BF(p, r − 1, λq)

= p · r ·
(

d− 1
0

)
BF(p, r − 1, 1) + p · r ·

∑
q∈[d−1]

(
d− 1

q

)
BF(p, r − 1, λq)

= p · r + p · r ·
∑

q∈[d−1]

(
d− 1

q

)
BF(p, r − 1, λq)

= p · r + p · r ·
∑

q∈[d−1]

(
d− 1

q

)∑
t∈[q]

pt · S(q, t) · (r − 1)t


= p · r +

∑
q∈[d−1]

(
d− 1

q

)∑
t∈[q]

pt+1 · S(q, t) · rt+1


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= p · r +
∑

t∈[d−1]

pt+1 · rt+1 ·

 ∑
q∈[t,d−1]

(
d− 1

q

)
· S(q, t)


= p · r +

∑
t∈[2,d]

pt · rt ·

 ∑
q∈[t,d]

(
d− 1
q − 1

)
· S(q − 1, t− 1)


= p · r +

∑
t∈[2,d]

pt · rt · S(d, t)

=
∑
t∈[d]

pt · rt · S(d, t) ,

as needed.

Proposition 2.2 implies that for a constant probability vector and a monomial
function, the binomial function is a combinatorial sum of Stirling numbers of the
second kind.

It is known [45, Lemma 3] that in case g is convex, the binomial function does
not decrease when replacing all probabilities in the probability vector p by the

average probability p̃ =
P

i∈[r] pi

r .

Lemma 2.3 (Gairing et al. [45]). For a convex function g, BF(p, g) ≤
BF(p̃, r, g).



3

Models

We now introduce the considered models for sel�sh routing. First, we de�ne rout-
ing games on parallel links in Section 3.1. Afterwards, we introduce the class of
weighted congestion games in Section 3.2. Weighted congestion games provide us
with a general framework for modeling any kind of non-cooperative resource shar-
ing problem (including that of routing). In Section 3.3, we introduce Bayesian
routing games on parallel links. In this model, players have only incomplete in-
formation about each others tra�c.

Each model is introduced in a self-contained fashion. A reader, who is only
interested in one of the models, might skip the other two sections here.

3.1 Routing Games on Parallel Links

3.1.1 Instance

In a routing game on parallel links, we have a simple network consisting of a set of
m parallel links connecting a source node to a destination node. Each of n players
wishes to route a particular amount of tra�c along a (non-�xed) link from source
to destination. Assume throughout that n ≥ 2 and m ≥ 2. Associated with each
player i is a strategy set Si ⊆ [m], as the set of allowed links for player i. If
Si = [m] for all players i ∈ [n], then we have unrestricted strategy sets, otherwise
restricted strategy sets. Denote wi the tra�c of player i ∈ [n]. De�ne the n × 1
tra�c vector w in the natural way. In the model of identical players, all players'
tra�c is equal to 1. The players' tra�c may vary arbitrarily in the model of
arbitrary players. Without loss of generality assume that w1 ≥ . . . ≥ wn. Let
W =

∑
i∈[n] wi.

Denote cj > 0 the capacity of link j ∈ [m], representing the rate at which
the link processes tra�c. So, the latency for tra�c w through link j equals w/cj .
De�ne the m × 1 capacity vector c in the natural way. In the model of identical
links, all link capacities are equal to 1. Link capacities may vary arbitrarily in
the model of related links. Let C =

∑
j∈[m] cj .

An instance is described by a tuple 〈w, c〉. In case of identical players, we
replace w by n and in case of identical links, we replace c by m.
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3.1.2 Strategies and Strategy Pro�les

A pure strategy for player i is some speci�c link `i from its strategy set Si. A
mixed strategy for player i ∈ [n] is a probability distribution over pure strategies.
Thus, a mixed strategy is a probability distribution over the set of links.

A pure strategy pro�le is represented by an n-tuple L = (`1, . . . , `n) ∈ [m]n

while a mixed strategy pro�le is represented by an n×m probability matrix P of
nm probabilities pij , i ∈ [n] and j ∈ [m], where pij is the probability that player
i chooses link j. The support of player i ∈ [n] in the mixed strategy pro�le P,
denoted by supporti(P), is the set of links to which player i assigns its tra�c with
positive probability. Thus,

supporti(P) = {j ∈ [m] | pij > 0}.

If supporti(F) = [m], for a mixed strategy pro�le F and for all players i ∈ [n],
then we say that F is a fully mixed strategy pro�le. In other words, F is a fully
mixed strategy pro�le, if fij > 0 for all players i ∈ [n] and links j ∈ [m].

3.1.3 Load and Latency

Fix a mixed strategy pro�le P. Denote by δj(P) the expected load on link j ∈ [m].
Thus,

δj(P) =
∑
i∈[n]

pijwi.

In the same way, denote by δ−k
j (P) the expected load of all players i ∈ [n], i 6= k

on link j ∈ [m]. Thus,
δ−k
j (P) =

∑
i∈[n],i6=k

pijwi.

Denote by Λj(P) the expected latency on link j ∈ [m]. Clearly,

Λj(P) =
δj(P)

cj
.

The maximum expected latency Λ(P) is the maximum, over all links, of the ex-
pected latency Λj(P) on a link j ∈ [m], that is,

Λ(P) = max
j∈[m]

Λj(P).

3.1.4 Private Cost

For a pure strategy pro�le L = (`1, . . . , `n), the latency cost for player i, denoted
by λi(L), is

λi(L) =

∑
k∈[n]:`k=`i

wk

c`i

,
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that is, the latency cost for player i is the latency of the link it chooses.
Fix now a mixed strategy pro�le P. The expected latency cost for player i ∈ [n]

on link j ∈ Si, denoted by λij(P), is the expectation, over all random choices of
the remaining players, of the latency cost on link j given that player i assigns its
tra�c to link j ∈ Si. Thus,

λij(P) =
wi +

∑
k∈[n],k 6=i pkjwk

cj
=

(1− pij)wi + δj(P)
cj

.

For each player i ∈ [n], the minimum expected latency cost, denoted by λi(P), is
the minimum, over all links j ∈ Si, of the expected latency cost for player i on
link j. Thus,

λi(P) = min
j∈Si

λij(P) .

The private cost of player i ∈ [n], denoted by PCi(P), is the expected latency
of player i. Thus,

PCi(P) =
∑

j∈[m]

pij · λij(P).

Denote by IC(w, c,P) the maximum individual cost which is the maximum, over
all players, of the private costs. Thus,

IC(w, c,P) = max
i∈[n]

PCi(P).

3.1.5 Social Cost Measures

Associated with an instance 〈w, c〉 and mixed strategy pro�le P is the social
cost [67, Section 2]. For routing games on parallel links we consider two di�erent
social cost measures.

3.1.5.1 Makespan Social Cost

In their seminal work, Koutsoupias and Papadimitriou [67] introduced the follow-
ing social cost measure. Associated with an instance 〈w, c〉 and a mixed strategy
pro�le P is the makespan social cost, denoted by SCMSP(w, c,P), which is the
expectation, over all random choices of the players, of the maximum (over all
links) latency of tra�c through a link. Thus,

SCMSP(w, c,P) = EP

(
max
j∈[m]

∑
i∈[n]:`i=j wi

cj

)

=
∑

(`1,...,`n)∈[m]n

∏
k∈[n]

pk`k
·

(
max
j∈[m]

∑
i∈[n]:`i=j wi

cj

)
.

The displayed formulas for makespan social cost refer to a pure strategy pro�le
L = (`1, . . . , `n) drawn according to the probability distribution induced by the
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mixed strategy pro�le P. Note that SCMSP(w, c,P) reduces to the maximum
latency through a link in the case of pure strategies.

Associated with an instance 〈w, c〉 is the makespan optimum [67, Section 2],
denoted by OPTMSP(w, c), which is the least possible maximum (over all links)
latency of tra�c through a link. Thus,

OPTMSP(w, c) = min
L∈[m]n

SCMSP(w, c,L) .

Note, that the optimum refers to a pure strategy pro�le. Call a pure strategy
pro�le L with SCMSP(w, c,L) = OPTMSP(w, c) optimal.

3.1.5.2 Polynomial Social Cost

For the model of identical links, another social cost function was introduced by
Gairing et al. [42]. Let

πd(λ) =
∑

t∈[d]0

at · λt

be a polynomial of degree d > 0 with non-negative coe�cients. So at ≥ 0 for all
t ∈ [d]0 and ad > 0. Consider the model of identical links. Associated with an
instance 〈w,m〉, a polynomial cost function πd(λ) and a mixed strategy pro�leP is
the polynomial social cost, denoted by SCπd(λ)(w,m,P), which is the expectation
of the sum, over all links, of the polynomial cost function πd(λ) evaluated at the
incurred link loads. Thus, by linearity of expectation,

SCπd(λ)(w,m,P) = EP

∑
j∈[m]

πd

 ∑
k∈[n] : `k=j

wk


=
∑

j∈[m]

EP

πd

 ∑
k∈[n] : `k=j

wk


=
∑

j∈[m]

∑
A⊆[n]

(∏
i∈A

pij

)∏
i6∈A

(1− pij)

πd

 ∑
k∈[n] : `k=j

wk

 .

The displayed formulas for polynomial social cost refer to a pure strategy pro�le
L = (`1, . . . , `n) drawn according to the probability distribution induced by the
mixed strategy pro�le P. If we restrict to the polynomial cost function πd(λ) =
λd, then we write SCλd(w,m,P). Note that

SCπd(λ)(w,m,P) =
∑

0≤t≤d

at · SCλt(w,m,P) .

So, polynomial social cost is a linear combination (with non-negative coe�cients)
of monomial social costs.
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Associated with an instance 〈w,m〉 and a polynomial cost function πd(λ) is
the polynomial optimum, denoted by OPTπd(λ)(w,m), which is the least possible,
over all pure strategy pro�les, polynomial social cost. Thus,

OPTπd(λ)(w,m) = min
L∈[m]n

SCπd(λ)(w,m,L) .

A (pure) strategy pro�le L such that SCπd(λ)(w,m,L) = OPTπd(λ)(w,m) will be
called optimal (for the instance 〈w,m〉 and the polynomial cost function πd(λ)).
The monomial optimum is de�ned as the natural special case of polynomial op-
timum.

3.1.6 Nash Equilibria

We are interested in a special class of mixed strategy pro�les called Nash equi-
libria [80, 81] that we describe below. Say that a player i ∈ [n] is satis�ed in the
mixed strategy pro�le P, if λij(P) = λi(P) for all links j ∈ supporti(P), and
λij(P) ≥ λi(P) for all links j ∈ Si \ supporti(P). Thus, a satis�ed player has
no incentive to unilaterally deviate from its mixed strategy. A player i ∈ [n] is
unsatis�ed in the mixed strategy pro�le P if i is not satis�ed for in the mixed
strategy pro�le P.

The mixed strategy pro�le P is a Nash equilibrium [67, Section 2], if each
player i ∈ [n] is satis�ed. In other words P is a Nash equilibrium, if and only
if PCi(P) ≤ PCi(P−i, li) for all players i ∈ [n] and all links li ∈ Si. Thus, each
player assigns its tra�c with positive probability only to links (possibly more
than one of them) for which its expected latency cost is minimized. The fully
mixed Nash equilibrium [74], denoted by F, is a Nash equilibrium that is a fully
mixed strategy pro�le. We will often consider fully mixed Nash equilibrium for
routing games with unrestricted strategy sets on identical links. Here, the fully
mixed Nash equilibrium F uniquely exists and has probabilities fij = 1

m for all
players i ∈ [n] and links j ∈ [m] [74].

3.1.7 Price of Anarchy

Let ? ∈ {MSP, πd(λ)}. The price of anarchy (also known as coordination ratio [67,
Section 2]), denoted by PoA∗, is the supremum, over all instances 〈w, c〉 and Nash
equilibria P, of the ratio SC?(w,c,P)

OPT?(w,c) . Thus,

PoA? = sup
〈w,c〉,P

SC?(w, c,P)
OPT?(w, c)

.

Similarly, for the pure price of anarchy, denoted by pPoA∗, we take the supremum
over all instances 〈w, c〉 and pure Nash equilibria L. Thus,

pPoA? = sup
〈w,c〉,L

SC?(w, c,L)
OPT?(w, c)

.
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In the same way, the individual price of anarchy is the supremum, over all in-
stances 〈w, c〉 and Nash equilibria P, of the ratio

IC(w, c,P)
OPTMSP(w, c)

.

3.1.8 Sel�sh Steps and Nashi�cation

Given a pure strategy pro�le L = (`1, . . . , `n), a sel�sh step of player i ∈ [n] is a
deviation to a strategy pro�le (L−i, `

′
i) where PCi(L−i, `

′
i) < PCi(L) and `′i ∈ Si.

Such a sel�sh step is a greedy sel�sh step if there is no strategy `′′i ∈ Si for player
i such that PCi(L−i, `

′′
i ) < PCi(L−i, `

′
i).

For makespan social cost Fotakis et al. [37] showed that sel�sh steps can be
used for computing a pure Nash equilibrium with non-increased social cost. We
will use the term nashi�cation to denote the process of converting a pure strategy
pro�le into a pure Nash equilibrium with non-increased social cost.

3.2 Weighted Congestion Games

3.2.1 Instance

A weighted congestion game Γ is a tuple

Γ =
(
n, E, (wi)i∈[n], (Si)i∈[n], (fe)e∈E

)
.

Here, n is the number of players and E is the �nite set of resources. For every
player i ∈ [n], wi ∈ R+ is the weight and Si ⊆ 2E is the strategy set of player
i. Denote S = S1 × . . . × Sn and S−i = S1 × . . . × Si−1 × Si+1 . . . × Sn. For
every resource e ∈ E, the latency function fe : R+ → R+ describes the latency
on resource e. We consider polynomial latency functions with maximum degree d
and non-negative coe�cients, that is, for all resources e ∈ E, the latency function
is of the form fe(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all j ∈ [d]0.

In a (unweighted) congestion game, the weights of all players are equal to 1.
Thus, the latency on a resource only depends on the number of players choosing
this resource.

3.2.2 Strategies and Strategy Pro�les

A pure strategy for player i ∈ [n] is some speci�c si ∈ Si whereas a mixed strategy
Pi = (p(i, si))si∈Si is a probability distribution over Si, where p(i, si) denotes the
probability that player i chooses the pure strategy si.

A pure strategy pro�le is an n-tuple s = (s1, . . . , sn) ∈ S whereas a mixed
strategy pro�le P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies.
For a mixed strategy pro�le P denote by

p(s) =
∏
i∈[n]

p(i, si)

the probability that the players choose the pure strategy pro�le s = (s1, . . . , sn).
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3.2.3 Private Cost

Fix any pure strategy pro�le s, and denote by δe(s) =
∑

i∈[n]:e∈si
wi the load on

resource e ∈ E. The private cost of player i ∈ [n] in a pure strategy pro�le s is
de�ned by

PCi(s) =
∑
e∈si

fe (δe(s)) .

For a mixed strategy pro�le P, the private cost of player i ∈ [n] is

PCi(P) =
∑
s∈S

p(s) · PCi(s) .

3.2.4 Nash Equilibria

We are interested in a special class of (mixed) strategy pro�les called Nash equi-
libria [80, 81] that we describe here. Given a weighted congestion game and an
associated mixed strategy pro�le P, player i ∈ [n] is satis�ed if the player can not
improve its private cost by unilaterally changing its strategy. Otherwise, player
i is unsatis�ed. The mixed strategy pro�le P is a Nash equilibrium if and only if
all players i ∈ [n] are satis�ed, that is, PCi(P) ≤ PCi(P−i, si) for all i ∈ [n] and
si ∈ Si.

Note, that if this inequality holds for all pure strategies si ∈ Si of player
i, then it also holds for all mixed strategies over Si. Depending on the type of
strategy pro�le, we di�er between pure and mixed Nash equilibria.

3.2.5 Social Cost

Associated with a weighted congestion game Γ and a mixed strategy pro�le P
is the social cost SCTL(Γ,P) as a measure of social welfare. In particular we use
the expected total latency [92], that is,

SCTL(Γ,P) =
∑
s∈S

p(s)
∑
e∈E

δe(s) · fe(δe(s))

=
∑
s∈S

p(s)
∑
i∈[n]

∑
e∈si

wi · fe(δe(s))

=
∑
i∈[n]

wi · PCi(P).

The optimum associated with a weighted congestion game Γ is the least pos-
sible social cost, over all pure strategy pro�les s ∈ S. Thus,

OPTTL(Γ ) = min
s∈S

SCTL(Γ, s) .
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3.2.6 Price of Anarchy

The price of anarchy, also called coordination ratio and denoted by PoATL, is
the supremum, over all instances Γ and Nash equilibria P, of the ratio SCTL(Γ,P)

OPTTL(Γ ) .
Thus,

PoATL = sup
Γ,P

SCTL(Γ,P)
OPTTL(Γ )

3.2.7 Network Congestion Games

In a (weighted) network congestion game the set of resources E corresponds to
edges in a graph G = (V,E). For each player i ∈ [n] we have given an origin
destination pair (oi, di), where oi, di ∈ V . The strategy set Si of player i ∈ [n] is
then the set of simple paths connecting its origin oi to its destination di.

3.3 Bayesian Routing Games

3.3.1 Instance

A Bayesian routing game is a tuple Γ = (n, m, c, T,Ψ). Here, each of n players
wishes to assign a particular amount of tra�c to one of m parallel links connecting
a source node to a destination node. Assume throughout that n ≥ 2 and m ≥ 2.
Denote c = (c1, . . . , cm), where cj > 0 is the capacity of link j ∈ [m]. In the case
of identical links, all capacities equal 1. In this case, we write Γ = (n, m,1, T,Ψ).
Link capacities vary arbitrarily in the case of related links. For each player i ∈ [n],
there is a �nite set of possible types Ti. For each type t ∈ Ti, denote by w(t) the
tra�c of type t, w(t) ≥ 0. Denote T = T1 × . . .× Tn, the set of all possible type
pro�les. For each player i ∈ [n], de�ne τi = |Ti| as the number of types of player
i. De�ne τ =

∑
i∈[n] τi as the total number of types of the players. For simplicity,

we assume that the tra�c of all types of the players (w(ti))ti∈Ti,i∈[n] is encoded
in T , so we do not include them in the game tuple. We use the term type agent
(i, t) to refer to the type t ∈ Ti of player i ∈ [n].

There is a joint probability distribution Ψ = (Ψ(t1, . . . , tn))(t1,...,tn)∈T , called
type distribution, over the set of type pro�les T . Thus, Ψ is a function Ψ : T →
[0, 1] and

∑
(t1,...,tn)∈T Ψ(t1, . . . , tn) = 1. Denote by Ψ(i, t) the probability that

player i is of type t. So,

Ψ(i, t) =
∑

(t1,...,tn)∈T :ti=t

Ψ(t1, . . . , tn).

We say that Ψ is independent if

Ψ(t1, . . . , tn) =
∏
i∈[n]

Ψ(i, ti) for all (t1, . . . , tn) ∈ T,
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otherwise, Ψ is correlated. By the de�nition of conditional probability,

Ψ(t1, . . . , tk−1, tk+1, . . . , tn|tk = t) =
Ψ(t1, . . . , tk−1, t, tk+1, . . . , tn)

Ψ(k, t)
,

that is, the probability of a type pro�le (t1, . . . , tn) given that tk = t is the
probability of type pro�le (t1, . . . , tn) divided by the probability that player k is
of type t. Throughout we only consider instances where Ψ(k, t) > 0 for all players
k ∈ [n] and all types t ∈ Tk. Denote by W (i) the expected tra�c of player i ∈ [n].
Clearly,

W (i) =
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn) · w(ti)

=
∑
t∈Ti

Ψ(i, t) · w(t).

Furthermore, de�ne the expected total tra�c as

W =
∑
i∈[n]

W (i).

For any pair of players i, s ∈ [n] and for any type t ∈ Ti, de�ne W (s|ti = t) as
the conditional expected tra�c of player s, given that player i has type t. So,

W (s|ti = t) =
∑

(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)w(ts).

For the case of independent type distribution, we have W (s|ti = t) = W (s) for
all types t ∈ Ti of player i.

A special instance of our Bayesian routing game in which each player has
only a single type is a complete information routing game. For such a game, we
write ΓCI = (n, m, c, T, 1). Here, the set T contains only one type vector t that
is used with probability 1. Complete information routing games are exactly the
games introduced in Section 3.1. However, in order to emphasize the connection
to Bayesian routing games, we call them di�erently here.

3.3.2 Strategies and Strategy Pro�les

A pure strategy σi for player i ∈ [n] is a mapping of the set of possible types Ti

to the set of links [m]. So, σi is a function σi : Ti → [m]. Denote as Σi the set of
all possible pure strategies for player i ∈ [n]. Denote Σ = Σ1× . . .×Σn. A mixed
strategy Pi = (p(i, σi))σi∈Σi for player i ∈ [n] is a probability distribution over
Σi. Here, p(i, σi) denotes the probability that player i chooses the pure strategy
σi.

The support of player i ∈ [n] in the mixed strategy pro�le P, denoted by
supporti(P), is the set of links to which player i assigns at least one type t ∈ Ti

with positive probability, that is,
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supporti(P) = {j ∈ [m] | ∃σi ∈ Σi,∃t ∈ Ti with p(i, σi) > 0 and σi(t) = j}.

Similarly, the support of any type t ∈ Ti of player i ∈ [n] is de�ned by

supportt(P) = {j ∈ [m] | ∃σi ∈ Σi with p(i, σi) > 0 and σi(t) = j}.

Note that

supporti(P) =
⋃
t∈Ti

supportt(P).

A pure strategy pro�le σ is an n-tuple (σ1, . . . , σn) ∈ Σ. Call σ normal if σi(t) =
σi(t′) for all types t, t′ ∈ Ti and for all players i ∈ [n]. So, each player i ∈ [n] does
not distinguish among its types in a normal pure strategy pro�le.

A mixed strategy pro�le P = (P1, . . . , Pn) is an n-tuple of mixed strategies.
Call a mixed strategy pro�le F = (F1, . . . , Fn) fully mixed if each player assigns
strictly positive probability to each of its pure strategies, that is, f(i, σi) > 0 for
all players i ∈ [n] and all strategies σi ∈ Σi. Notice that supporti(F) = [m] for
all players i ∈ [n] and supportt(F) = [m] for all players i ∈ [n] and types t ∈ Ti.

3.3.3 Private Cost

3.3.3.1 Pure Strategy Pro�les

Fix any type distribution Ψ and a pure strategy pro�le σ = (σ1, . . . , σn). The
expected load on link j ∈ [m], denoted by δj(σ,Ψ), is de�ned by

δj(σ,Ψ) =
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn)
∑
i∈[n]:

σi(ti)=j

w(ti).

In the same way, denote by δ−k
j (σ, (Ψ|tk = t)) the conditional expected load of

all players i ∈ [n] other than k on link j ∈ [m] given that tk = t. So,

δ−k
j (σ, (Ψ|tk = t)) =

∑
(t1,...,tn)∈T :

tk=t

Ψ(t1, . . . , tk−1, tk+1, . . . , tn|tk = t)
∑

i∈[n]\{k}:
σi(ti)=j

w(ti).

Denote by λj
(i,t)(σ,Ψ) the private cost of type agent (i, t) when its tra�c is

assigned to link j ∈ [m]. So,

λj
(i,t)(σ,Ψ) =

δ−i
j (σ, (Ψ|ti = t)) + w(t)

cj
.

Denote by v(i,t)(σ,Ψ) the conditional private cost of player i ∈ [n], given that
player i is of type t; this is also the private cost of type agent (i, t); so,

v(i,t)(σ,Ψ) = λ
σi(t)
(i,t) (σ,Ψ).

Note that v(i,t)(σ,Ψ) does not depend on the other types t′ ∈ Ti \{t} of player i.
Finally, denote by PCi(σ,Ψ) the private cost of player i. Clearly,

PCi(σ,Ψ) =
∑
t∈Ti

Ψ(i, t) · v(i,t)(σ,Ψ).
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3.3.3.2 Mixed Strategy Pro�les

Fix any type distribution Ψ and a mixed strategy pro�le P. The expected load
on link j ∈ [m], denoted by δj(P,Ψ), is de�ned by

δj(P,Ψ) =
∑
σ∈Σ

∏
i∈[n]

p(i, σi) · δj(σ,Ψ)

In the same way, denote by δ−k
j (P, (Ψ|tk = t)) the conditional expected load of

all players i ∈ [n] other than k on link j ∈ [m] given that tk = t. So,

δ−k
j (P, (Ψ|tk = t)) =

∑
σ∈Σ

∏
i∈[n]

p(i, σi) · δ−k
j (σ, (Ψ|tk = t)).

For the case of an independent type distribution Ψ, we get that for all types
t, t′ ∈ Tk, δ−k

j (P, (Ψ|tk = t)) = δ−k
j (P, (Ψ|tk = t′)). Therefore, to simplify

notation, we write in this case δ−k
j (P,Ψ).

Denote by λj
(i,t)(P,Ψ) the private cost of type agent (i, t) when its tra�c is

assigned to link j ∈ [m]. So,

λj
(i,t)(P,Ψ) =

δ−i
j (P, (Ψ|ti = t)) + w(t)

cj
.

Denote by v(i,t)(P,Ψ) the conditional private cost of player i ∈ [n], given that
player i is of type t; this is also the private cost of type agent (i, t); so,

v(i,t)(P,Ψ) =
∑

σi∈Σi

p(i, σi) · λσi(t)
(i,t) (P,Ψ).

Note that v(i,t)(P,Ψ) does not depend on the other types t′ ∈ Ti \ {t} of player
i ∈ [n]. Finally, denote by PCi(P,Ψ) the private cost of player i ∈ [n]. Clearly,

PCi(P,Ψ) =
∑
t∈Ti

Ψ(i, t) · v(i,t)(P,Ψ).

3.3.4 Bayesian Nash Equilibria

A strategy pro�le P is a Bayesian Nash equilibrium, if no player has an incentive
to deviate from its (mixed) strategy, that is, no player can possibly decrease
its private cost when other players are sticking to their strategies. Formally, the
mixed strategy pro�le P = (P1, . . . , Pn) is a Bayesian Nash equilibrium if

PCi(P,Ψ) ≤ PCi(P′,Ψ)

for all mixed strategy pro�les P′ = (P1, . . . , P
′
i , . . . , Pn) and for all players i ∈ [n].

Moreover, since v(i,t)(P,Ψ) does not depend on the other types t′ ∈ Ti \ {t} of
player i, the above condition is equivalent to



20 3 Models

v(i,t)(P,Ψ) ≤ v(i,t)(P
′,Ψ)

for all mixed strategy pro�les P′ = (P1, . . . , P
′
i , . . . , Pn) and for all players i ∈ [n]

and types t ∈ Ti. Note that P is a Bayesian Nash equilibrium if and only if for
all players i ∈ [n] and types t ∈ Ti,

v(i,t)(P,Ψ) = λj
(i,t)(P,Ψ), for j ∈ supportt(P), and

v(i,t)(P,Ψ) ≤ λj
(i,t)(P,Ψ), for j 6∈ supportt(P).

We refer to these conditions as the Bayesian Nash equilibrium conditions.

3.3.5 Social Cost and Price of Anarchy

Associated with a Bayesian routing game Γ = (n, m, c, T,Ψ) and a mixed strat-
egy pro�le P is the social cost as a measure of social welfare. We consider three
di�erent measures for social cost:

• the makespan social cost, which is the expectation over all player choices and
type pro�les, of the maximum latency on a link. So,

SCMSP(Γ,P)

=
∑

(σ1,...,σn)∈Σ

∏
i∈[n]

p(i, σi)
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn) · max
j∈[m]


1
cj

∑
i∈[n],

σi(ti)=j

w(ti)


=

∑
(t1,...,tn)∈T

Ψ(t1, . . . , tn)
∑

(σ1,...,σn)∈Σ

∏
i∈[n]

p(i, σi) · max
j∈[m]


1
cj

∑
i∈[n],

σi(ti)=j

w(ti)

 ;

• the sum of private costs,

SCSUM(Γ,P) =
∑
i∈[n]

PCi(P,Ψ);

• the maximum of private costs,

SCMAX(Γ,P) = max
i∈[n]

PCi(P,Ψ).

Let ∗ ∈ {MSP,SUM,MAX}. Denote the corresponding optimum social cost by
OPT∗(Γ ) = minP SC∗(Γ,P). The price of anarchy PoA∗ is the supremum, over
all instances Γ and Bayesian Nash equilibria P, of the ratio SC∗(Γ,P)

OPT∗(Γ ) , that is,

PoA∗ = sup
Γ,P

SC∗(Γ,P)
OPT∗(Γ )

.
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3.3.6 Weighted Bayesian Congestion Games

A generalization of Bayesian routing games are weighted Bayesian congestion
games with linear latency functions. In a congestion game [88], each player i ∈ [n]
can assign its tra�c to a subset si of the resources out of a given set Si ⊆ 2[m]

of subsets of resources. The latency function of resource e ∈ [m] is given by an
arbitrary, non-decreasing linear cost function ge(x) = aex + be. For a Bayesian
congestion game, a pure strategy pro�le σ is de�ned by σ = (σ1, . . . , σn) with
σi : Ti → Si for all i ∈ [n]. Thus, a pure strategy of player i ∈ [n] maps each type
t ∈ Ti to a set of resources, while for a Bayesian routing game a pure strategy of
player i ∈ [n] maps each type t ∈ Ti to a single link.

For a pure strategy pro�le σ, the conditional expected load of all players i ∈ [n]
other than k, on resource e ∈ [m] given that tk = t is then

δ−k
e (σ, (Ψ|tk = t)) =

∑
(t1,...,tn)∈T :

tk=t

Ψ(t1, . . . , tk−1, tk+1, . . . , tn|tk = t)
∑

i∈[n]\{k}:
e∈σi(ti)

w(ti),

whereas the conditional private cost of player i, given that player i is of type
t ∈ Ti is then de�ned by

v(i,t)(σ,Ψ) =
∑

e∈σi(t)

ge(δ−i
e (σ, (Ψ|ti = t)) + w(t)).
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Sel�sh Routing on Parallel Links

4.1 Introduction

In this chapter, we consider routing games on parallel links. Such games have
been formally introduced in Section 3.1. Here, n non-cooperative players wish to
route their tra�c w1, . . . , wn through a simple network of m parallel links with
capacities c1, . . . , cm. In the model of identical players, all players have equal
tra�c. The players' tra�c may be di�erent in the model of arbitrary players. In
the model of identical links, all links have equal capacity. Link capacities may
vary arbitrarily in the model of related links.

Each player is allowed to route its tra�c along links from its strategy set. If the
strategy set of each player consists of all links, then we have unrestricted strategy
sets, otherwise restricted strategy sets. We assume unrestricted strategy sets, if we
do not explicitly state the contrary. A pure strategy for a player is some speci�c
link from its strategy set, while a mixed strategy is a probability distribution over
pure strategies. Each player utilizes a (mixed) strategy, trying to minimize its
private cost, which is de�ned as its expected latency. A strategy pro�le speci�es a
strategy for each player. Such a strategy pro�le is a Nash equilibrium, if no player
can improve its expected latency by unilaterally changing its strategy. Depending
on the employed player strategies, we distinguish between pure and mixed Nash
equilibria. We also consider fully mixed Nash equilibria, where each player uses
each link with strictly positive probability.

Associated with a strategy pro�le is also a global objective function, called
social cost. In this chapter we consider two di�erent de�nitions of social cost. The
�rst one, called makespan social cost, is de�ned as the expected maximum latency
on a link. The second one, called polynomial social cost, is the sum (over all links)
of a certain polynomial cost function evaluated at the incurred link loads. The
maximum ratio between the maximum social cost of a Nash equilibrium and the
minimum social cost of a pure strategy pro�le is called price of anarchy.

4.1.1 Summary of Results

We present a multitude of results for routing games on parallel links. Our results
are partitioned into two groups. The �rst one consists of results that are con-
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cerned with the computational complexity of pure Nash equilibria. The second
one comprises our �ndings that are related to the price of anarchy.

4.1.1.1 Computation of Pure Nash Equilibria

It is easy to see (cf. Fotakis et al. [37]) that any sel�sh step decreases the lexico-
graphical ordering of the link latencies. This implies that any sequence of sel�sh
steps eventually reaches a pure Nash equilibrium. However, this does not say
anything about the length of such a sequence. For the model of identical links,
we obtain to following results:

• The length of a sequence of sel�sh steps is at most 2n−1, if the players always
deviate to their best link (Theorem 4.2).

• It is NP-complete to decide, whether a given pure strategy pro�le can be
transformed into a pure Nash equilibrium within at most k sel�sh steps (The-
orem 4.4).

• There exists an algorithm, called NashifyIdentical, that transforms a given
strategy pro�le into a pure Nash equilibrium in O(n log n) time using at most
n sel�sh steps (Theorem 4.5). The algorithm does not increase makespan social
cost.

• Combining the PTAS of Hochbaum and Shmoys [61] for scheduling n jobs on
m identical machines with NashifyIdentical yields a PTAS for computing
a pure Nash equilibrium with minimum makespan social cost (Theorem 4.6).

4.1.1.2 Price of Anarchy

Makespan Social Cost

For the case that social cost is de�ned as the expected maximum latency on a
link, we prove a comprehensive collection of bounds on the pure price of anarchy
for the case of unrestricted and restricted strategy sets.
For the case that strategy sets are unrestricted, we obtain the following:

• We introduce a structural parameter ρ that speci�es the relation between
the largest player tra�c and the link capacities. For the model of arbitrary
players and related links, we use ρ to prove an upper bound on the pure
price of anarchy (Theorem 4.10). This upper bound is tight up to an additive
constant (Theorem 4.16).

• As a corollary to Theorem 4.10 we get that, for the model of arbitrary players
and related links, the pure price of anarchy is upper bounded by Γ−1(m)
(Corollary 4.14). This upper bound is asymptotically tight (Theorem 4.17).

For the case that strategy sets are restricted, we prove:

• For the model of identical players with restricted strategy sets and related
links, the pure price of anarchy is upper bounded by Γ−1(n)+1 (Theorem 4.33).
This upper bound is tight up to an additive constant, if n = m (Theorem 4.32).
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• For the model of arbitrary players with restricted strategy sets and identical
links, the pure price of anarchy is upper bounded by Γ−1(m) (Theorem 4.35).
This upper bound is tight up to an additive constant (Theorem 4.32).

• For the model of arbitrary players with restricted strategy sets and related
links, the pure price of anarchy is upper bounded by m (Theorem 4.38) and
lower bounded by m− 1 (Theorem 4.37).

Polynomial Social Cost

For the case that social cost is de�ned as the expectation of the sum (over all links)
of a certain polynomial cost function of degree d > 0, we prove a comprehensive
collection of bounds on the price of anarchy. In particular, we show:

• For the model of identical players and two identical links, the fully mixed Nash
equilibrium maximizes polynomial social cost (Theorem 4.42).

• For the model of identical players and identical links, the fully mixed Nash

equilibrium maximizes polynomial social cost up to the factor
(
1 + 1

n−1

)d

(Theorem 4.44).
• For the model of identical players and identical links, the price of anarchy is

upper bounded by Bd; here, Bd is the Bell number of order d. Our analysis �rst
shows that Bd is an upper bound on the price of anarchy, if the polynomial cost
function is the d'th power (Theorem 4.48). As a corollary we get that the same
upper bound also holds for general polynomial cost functions (Corollary 4.49).

• For the model of identical players and two identical links, the price of anarchy
is upper bounded by 2d−2

(
1 +

(
1
n

)d−1
)
, if the polynomial cost function is

the d'th power (Theorem 4.50). Moreover, this upper bound is tight for the
sub-case of two players. As a corollary we get that the same upper bound also
holds for general polynomial cost functions (Corollary 4.51).

4.1.2 Related Work

Koutsoupias and Papadimitriou [67] introduced and studied a model for sel�sh
routing on parallel links. They de�ned makespan social cost as their social cost
measure and showed the �rst results on the price of anarchy.

The price of anarchy for makespan social cost, was further studied by Mavron-
icolas and Spirakis [74]. In this work, they also introduced and analyzed fully
mixed Nash equilibria. In the fully mixed Nash equilibrium, each player assigns
its tra�c to each link with strictly positive probability.

Tight bounds on the price of anarchy for makespan social cost were given
by Czumaj and Vöcking [23] and Koutsoupias et al. [66]. They showed that
the price of anarchy is Θ( log m

log log m) [23, 66] for the model of identical links and

Θ( log m
log log log m) [23] for the model of related links. Also for the model of related

links, but restricting to pure Nash equilibria, Czumaj and Vöcking [23] showed
two upper bounds of Γ−1(m) + 1 = O( log m

log log m) and O(log( cmax
cmin

)) on the pure
price of anarchy.
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Independently of our work, Awerbuch et al. [6] also studied makespan social
cost for the case of restricted strategy sets. Awerbuch et al. [6] focused on the
model of arbitrary players and identical links, for which they proved that the
price of anarchy is O

(
log m

log log m

)
for pure Nash equilibria and Θ

(
log m

log log log m

)
for

all (mixed) Nash equilibria. Suri et al. [95] studied a variant of the model of
parallel links with restricted strategy sets where the social cost is de�ned as the
total latency. For this variant, Suri et al. [95] provided some constant bounds on
the price of anarchy. Elsässer et al. [25] studied a further restriction of the model
of parallel links with restricted strategy sets, called interaction graphs, where all
sets of allowed links for the players have size 2. The results of Elsässer et al. [25]
for their model include bounds on price of anarchy for makespan social cost. In
particular, Elsässer et al. [25] proved that Ω

(
log m

log log m

)
is still a lower bound on

price of anarchy for the case of identical players and identical links in the more
restricted model of interaction graphs.

Gairing et al. [42] and Lücking et al. [71] studied the pure price of anarchy for
polynomial social cost. For identical links, Gairing et al. [42] proved that the pure
price of anarchy is exactly (2d−1)d

(d−1)(2d−2)d−1 (d−1
d )d, if the polynomial cost function

is the d'th power. For the special case of d = 2, this result was shown by Lücking
et al. [71]; here, the pure price of anarchy is 9

8 .
The fully mixed Nash equilibrium conjecture, which states that the fully mixed

Nash equilibrium has worst social cost among all Nash equilibria, was motivated
by some results from Mavronicolas and Spirakis [74] and explicitly formulated by
Gairing et al. [47]. The conjecture has been proved for several particular case by
Fotakis et al. [37], Gairing et al. [45, 47] and Lücking et al. [71, 72]. Fischer and
Vöcking [36] presented a counterexample to the fully mixed Nash equilibrium
conjecture for the case of identical links and makespan social cost.

It has been �rst observed by Fotakis et al. [37] that for the model of related
links, Graham's LPT scheduling algorithm [56] can be used to compute a pure
Nash equilibrium in polynomial time. On the other hand, Fotakis et al. [37]
showed that the problem of computing a pure Nash equilibrium with minimum
(or maximum, respectively) makespan social cost is NP-hard. Fotakis et al. [37]
also showed that any sequence of sel�sh steps converges towards a pure Nash
equilibrium. Even-Dar et al. [26] studied the length of such sequences under
di�erent policies to choose the deviating player, and Goldberg [54] considered
the expected length of such a sequence when a random policy is applied.

Sel�sh routing on parallel links is closely connected to multiprocessor schedul-
ing. Here, pure Nash equilibria and sequences of sel�sh steps translate to local
optima and sequences of local improvements. A schedule is said to be jump op-
timal if no job on a processor with maximum load can improve by moving to
another processor [93]. Obviously, the set of pure Nash equilibria is a subset of
the set of jump optimal schedules. Thus, for this model the strict upper bound
2 − 2/(m + 1) on the ratio between best and worst makespan of jump optimal
schedules [32, 93] also holds for pure Nash equilibria. Algorithms for computing a
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jump optimal schedule from any given schedule have been proposed in [14, 32, 93].
The fastest algorithm has been given by Schuurman and Vredeveld [93]. It always
moves the job with maximum weight from a makespan processor to a processor
with minimum load, using O(n) moves. However, in all algorithms the resulting
jump optimal schedule is not necessarily a Nash equilibrium.

Libman and Orda [68, 69], Czumaj et al. [22] and Gairing et al. [45] con-
sidered sel�sh routing games on parallel links with more general latency func-
tions. Libman and Orda [68, 69] allow for arbitrary increasing latency functions,
while Gairing et al. [45] restrict to convex (and increasing) latency functions.
Czumaj et al. [22] present a thorough study for the case of general continuous
non-decreasing latency functions, with emphasis on delay functions from queuing
theory.

Many results for routing games on parallel links have also been collected in
the surveys of Czumaj [21], Feldmann et al. [31] and Koutsoupias [65].

4.1.3 Organization

The rest of this chapter is organized as follows. Section 4.2 deals with the case
of identical links, whereas the results quoted in Section 4.3 hold for related links.
Section 4.4 studies the case of restricted strategy sets. Our results for polynomial
social cost are presented in Section 4.5. We conclude in Section 4.6.

4.2 Identical Links

In this section, we consider routing games on identical links. Here, we are in-
terested in the problem of computing a pure Nash equilibrium. Basically, two
di�erent approaches can be found in the literature.

The �rst approach is to directly compute a pure Nash equilibrium. Fotakis
et al. [37] showed that the LPT algorithm, �rst explored by Graham [56], yields
some pure Nash equilibrium.

The second approach is to convert a given pure strategy pro�le into a pure
Nash equilibrium without increasing the social cost. This conversion process is
called nashi�cation. Since sel�sh steps do not increase makespan social cost and
any sequence of sel�sh steps eventually reaches a pure Nash equilibrium, sel�sh
steps seem to be suitable for nashi�cation.

However, our results in Section 4.2.1 and Section 4.2.2 will show, that we
can't use them uncoordinated. Section 4.2.1 deals with sequences of sel�sh steps,
whereas in Section 4.2.2 we present a nashi�cation algorithm.

4.2.1 Sequences of Sel�sh Steps

In this section, we establish bounds on the maximum length of sequences of greedy
sel�sh steps. Recall, that in a greedy sel�sh step, the deviating player chooses its
best alternative. Afterwards, we consider the problem of deciding whether a given
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pure strategy pro�le can be transformed into a pure Nash equilibrium within a
given number of sel�sh steps.

As discussed above, performing greedy sel�sh steps will eventually convert
any pure strategy pro�le into a pure Nash equilibrium. However, this may take
exponential time, even for identical links, as shown in Theorem 4.2 and Theo-
rem 4.3.

The following lemma is crucial for proving the upper bound in Theorem 4.2.

Lemma 4.1. Consider the model of arbitrary players and identical links. Then
a greedy sel�sh step of an unsatis�ed player i with tra�c wi makes no player k
with tra�c wk ≥ wi unsatis�ed.

Proof. We prove a more general result in Lemma 4.7.

Theorem 4.2. Consider the model of arbitrary players and identical links. Then,
for any instance 〈w,m〉, the length of a sequence of greedy sel�sh steps is at most
2n − 1.

Proof. Without loss of generality assume w1 ≥ w2 ≥ · · · ≥ wn. Let 1 ≤ i ≤ n.
We prove by induction on i that player i can make at most 2i−1 greedy sel�sh
steps.

Since w1 is the largest tra�c, and because of Lemma 4.1, player 1 can make
at most one greedy sel�sh step. This proves the claim for i = 1. So assume i ≥ 2.
Due to Lemma 4.1 player i can only become unsatis�ed by a move of a player with
larger tra�c. By induction hypothesis, the number of greedy sel�sh steps made
by players 1, . . . , i − 1 is at most

∑i−1
k=1 2k−1 = 2i−1 − 1. This shows that player

i can become unsatis�ed at most 2i−1 − 1 times. Since after a greedy sel�sh step
player i becomes satis�ed and since player i can be unsatis�ed at the beginning,
player i can make at most 2i−1 greedy sel�sh steps.
Summing up over all players, the total number of greedy sel�sh steps is at most∑n

i=1 2i−1 = 2n − 1. This completes the proof of the theorem.

A corresponding lower bound on the maximum length of a sequence of greedy
sel�sh steps was independently given by Feldmann et al. [31] and Even-Dar et al.
[26]. We include the latter, since it strictly dominates the former:

Theorem 4.3 (Even-Dar et al. [26]). Consider the model of arbitrary players
and identical links. Then, there exists an instance and associated pure strategy
pro�le for which the maximum length of a sequence of greedy sel�sh steps is at
least (

n
m−1

)m−1

2(m− 1)!
.

Instead of the maximum length one may ask about the minimum length of a
sequence of sel�sh steps. In particular, one may consider whether a given pure
strategy pro�le can be transformed into a pure Nash equilibrium with at most k
sel�sh steps. We address this question with the following decision problem:
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NASHIFY

INSTANCE: A problem instance 〈w, c〉, an associated pure strategy
pro�le L, and a positive integer k.

QUESTION: Is there a sequence of at most k sel�sh steps that trans-
forms L into a pure Nash equilibrium?

If k is not part of the input, then the problem is called k-NASHIFY.

In order to prove that NASHIFY is NP-complete, we will employ a polynomial
time reduction from PARTITION. PARTITION already appeared in the original
list of 21 NP-complete problems, presented by Karp [64]. In the notation of
Garey and Johnson [52], PARTITION is de�ned as follows:

PARTITION

INSTANCE: A �nite set A of items, a size s(ai) ∈ N for each item
ai ∈ A, i ∈ [|A|].

QUESTION: Is there a subset A′ ⊆ A such that
∑

a∈A′ s(a) =∑
a∈A\A′ s(a) ?

We are now ready to establish NP-completeness for NASHIFY.

Theorem 4.4. NASHIFY is NP-complete, even for the case of two identical
links.

Proof. Clearly, NASHIFY is in NP since it is solvable in polynomial-time by
a non-deterministic algorithm. We now prove NP-hardness by reduction from
PARTITION, that is, we employ a polynomial-time transformation from PARTI-

TION to NASHIFY. Consider any arbitrary instance of PARTITION with k ≥ 2
items (an instance of partition with one items is a trivial no instance), and let
S =

∑
a∈A s(a). From this instance construct an instance of NASHIFY as follows:

• There are n = 5k players with weights

wi =
{

s(ai) if i ∈ [k],
1
4k if k + 1 ≤ i ≤ 5k.

• There are m = 2 identical links.
• The pure strategy pro�le L is de�ned as follows: All players i ∈ [3k] are

assigned to link 1 and players 3k + 1, . . . , 5k are assigned to link 2.

Clearly, this is a polynomial time transformation. We prove that this is a
transformation from PARTITION to NASHIFY.

(1.) The instance of PARTITION is positive:
Thus, there exists a subset A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a).

Since either |A′| ≤ k
2 or |A \A′| ≤ k

2 , assume, without loss of generality, that
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|A′| ≤ k
2 . Clearly, each player i ∈ [3k] assigned to link 1 is unsatis�ed in

the constructed pure strategy pro�le L. Furthermore, transferring all players
that correspond to an element a ∈ A′ from link 1 to link 2 (in any order) is a
sequence of at most k

2 < k sel�sh steps. For the resulting strategy pro�le L′

we have
Λ1(L′) = Λ2(L′) =

S

2
+

1
2
.

This implies that L′ is a pure Nash equilibrium so that NASHIFY is positive.
(2.) The instance of NASHIFY is positive:

Thus, there exists a sequence of at most k sel�sh steps that transforms the
pure strategy pro�le L in the constructed instance of NASHIFY to a pure Nash
equilibrium L′. Assume that in L′ players corresponding to a subset A′ ⊆ A
are assigned to link j1, players corresponding to the subset A \ A′ ⊆ A are
assigned to link j2, while the sums of tra�c of players with tra�c 1

4k that
reside in link j1 and link j2 are x and 1− x, respectively. Thus, the latencies
of the links are Λj1(L

′) =
∑

a∈A′ s(a)+x and Λj2(L
′) =

∑
a∈A\A′ s(a)+1−x.

Without loss of generality, assume, that
∑

a∈A′ s(a) ≥
∑

a∈A\A′ s(a).
We show that this implies

∑
a∈A′ s(a)−

∑
a∈A\A′ s(a) = 0. Assume otherwise∑

a∈A′ s(a)−
∑

a∈A\A′ s(a) > 0. Since the tra�c of players in A is integer, this
implies

∑
a∈A′ s(a)−

∑
a∈A\A′ s(a) ≥ 1. Since NASHIFY is positive, we made

at most k sel�sh steps with the players having small tra�c; thus, 1
4 ≤ x ≤ 3

4 .
It follows that

Λj1(L
′)− Λj2(L

′) =
∑
a∈A′

s(a) + x−
∑

a∈A\A′

s(a)− 1 + x

≥ 2x

≥ 1
2
.

This implies that all remaining players with tra�c 1
4k ≤

1
8 on link j1

are unsatis�ed, a contradiction to the fact that NASHIFY is positive. So∑
a∈A′ s(a)−

∑
a∈A\A′ s(a) = 0 which implies that PARTITION is positive.

This completes our reduction.

We remark that NASHIFY is NP-complete in the strong sense (cf. [52, Section
4.2]) if m is part of the input. Thus, there is no pseudopolynomial-time algorithm
for NASHIFY (unless P = NP). In contrast, there is a natural pseudopolynomial-
time algorithm for k-NASHIFY, which exhaustively searches all sequences of k
sel�sh steps; since a sel�sh step involves a (unsatis�ed) player and a link for
a total of at most mn choices, this algorithm can be implemented to run in
Θ((mn)k) time.

4.2.2 Nashi�cation

We provide a polynomial-time algorithm to convert any pure strategy pro�le
into a pure Nash equilibrium with non-increased social cost. We call our algo-
rithm NashifyIdentical. NashifyIdentical solves NASHIFY when n sel�sh
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steps are allowed. Together with the PTAS for scheduling n jobs on m identical
machines [61] this yields a PTAS for computing a best pure Nash equilibrium.

NashifyIdentical(L)
Input: A pure strategy pro�le L of n players with tra�c w1, . . . , wn.
Output: A pure strategy pro�le L′ that is a Nash equilibrium.
1: Sort the players' tra�c in non-increasing order so that w1 ≥ . . . ≥ wn.
2: for i← 1 to n do

3: if player i is unsatis�ed then

4: let player i perform a greedy sel�sh step;
5: end if

6: end for

7: return the resulting strategy pro�le L′

Fig. 4.1. The algorithm NashifyIdentical

The algorithm NashifyIdentical sorts the players' tra�c in non-increasing
order so that w1 ≥ . . . ≥ wn. Then the algorithm examines the players in order
of non-increasing tra�c. For each player i we let player i perform a greedy sel�sh
step, if i is unsatis�ed.

Theorem 4.5. Given an instance 〈w,m〉 and an associated pure strategy pro�le
L = 〈l1, . . . , ln〉, algorithm NashifyIdentical(L) computes a pure Nash equi-
librium L′ with social cost SCMSP(w,m,L′) ≤ SCMSP(w,m,L) using at most n
greedy sel�sh steps and O(n log n) time.

Proof. Clearly, SCMSP(w,m,L′) ≤ SCMSP(w,m,L), since sel�sh steps do not
increase social cost. Furthermore, after every iteration the player that changed
its strategy is satis�ed and stays satis�ed in subsequent iterations by Lemma 4.1.
Thus L′ is a Nash equilibrium.

The running time of algorithm NashifyIdentical is O(n log n) for sorting
the n player by their tra�c, O(m log m) for constructing a heap holding all link
latencies in the pure strategy pro�le L, and O(log m) for updating the heap
in each of the n iterations of the algorithm. Thus, the total running time is
O(n log n + m log m + n log m). The interesting case is when m ≤ n (since oth-
erwise, a single player can be assigned to each link, achieving an optimal Nash
equilibrium). Thus, in the interesting case, the total running time of NashifyI-
dentical is O(n log n).

Since it is possible to compute a pure Nash equilibrium in polynomial time,
one may want to go one step further and ask, whether a pure Nash equilibrium
with minimum makespan social cost can also be computed in polynomial time.
Fotakis et al. [37] showed that this problem isNP-complete. The next logical step
is to ask for an approximation algorithm to perform this task. Here, the strong
connection between multiprocessor scheduling and routing on parallel links proves
useful.
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Since NashifyIdentical does not increase makespan social cost, we can
combine any approximation algorithm for the corresponding scheduling prob-
lem with NashifyIdentical. Hochbaum and Shmoys [61] presented a PTAS

for scheduling n jobs on m identical machines. Running this PTAS on an in-
stance 〈w,m〉 yields a pure strategy pro�le L such that SCMSP(w,m,L) ≤
(1 + ε) OPTMSP(w,m). On the other hand, applying the algorithm Nashify-

Identical on L yields a Nash equilibrium L′ such that SCMSP(w,m,L′) ≤
SCMSP(w,m,L). Thus, SCMSP(w,m,L′) ≤ (1+ε)OPTMSP(w,m). It follows that:

Theorem 4.6. There exists a PTAS for computing a pure Nash equilibrium with
minimum makespan social cost, in the model of identical links.

4.3 Related Links

In this section, we consider routing games on parallel related links. In Section 4.3.1
we show that results from Section 4.2.2 can be generalized to the model of related
links. Section 4.3.2 holds our results that are related to the price of anarchy for
makespan social cost.

4.3.1 Nashi�cation

We now consider the problem of computing a pure Nash equilibrium for the model
of related links. Again, Graham's LPT algorithm [56] can be used to compute
such a pure Nash equilibrium directly [37]. For related links, the makespan social
cost of the Nash equilibrium computed by LPT approximates the makespan social
cost of a pure Nash equilibrium with minimum social cost by a factor between
1.52 and 1.67 [40].

In this section we are interested in a nashi�cation algorithm, that is, given
a pure strategy pro�le, we want to compute a pure Nash equilibrium with non-
increased makespan social cost. Sel�sh steps can also be used to compute a pure
Nash equilibrium, since sel�sh steps do not increase makespan social cost and
every sequence of sel�sh steps eventually reaches a pure Nash equilibrium. How-
ever, it is unknown whether sel�sh steps can be used to implement nashi�cation
in polynomial time. Feldmann et al. [30] chose a di�erent approach not only based
on sel�sh steps. Their algorithm relies on the following crucial observation:

Lemma 4.7. Consider the model of arbitrary players and related links. Then, for
any pure strategy pro�le, a greedy sel�sh step of an unsatis�ed player i ∈ [n] with
weight wi from a link j ∈ [m] to a link k ∈ [m] with cj ≤ ck makes no satis�ed
player s ∈ [n] with weight ws ≥ wi unsatis�ed.

Proof. Let L and L′ be the pure strategy pro�les before and after the greedy
sel�sh step of player i. By way of contradiction assume that some player s with
tra�c ws ≥ wi becomes unsatis�ed due to this sel�sh step, and let player s be
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assigned to link q. Since only the loads on link j and k change due to the greedy
sel�sh step of player i we have to show that player s cannot improve by moving
to link j or if q = k that s does not become unsatis�ed due to the arrival of
player i. We proceed by case study:

• Assume �rst, q 6= k. As player s is satis�ed in L,

δk(L) + ws

ck
≥ δq(L)

cq
.

Player i improves by moving to link k, thus,

δj(L)
cj

>
δk(L) + wi

ck
=

δk(L′)
ck

.

It follows
δj(L′) + ws

cj
=

δj(L)− wi + ws

cj

>
δk(L) + wi

ck
+

ws − wi

cj

=
δk(L) + ws

ck
− ws − wi

ck
+

ws − wi

cj

≥ δq(L)
cq

+ (ws − wi)
(

1
cj
− 1

ck

)
≥ δq(L′)

cq
.

The last inequality holds since ck ≥ cj , ws ≥ wi and δq(L′) = δq(L). Thus, in
L′, player s cannot improve by moving to link j.

• Now assume that q = k. Since player i performs a greedy sel�sh step from link
j to link k, for all links r ∈ [m],

δk(L) + wi

ck
≤ δr(L) + wi

cr
.

Because of δj(L)−wi+ws

cj
≥ δj(L)

cj
> δk(L)+wi

ck
, player s cannot improve by moving

to link j. Since player i performed a greedy sel�sh step, for all links r ∈
[m] \ {j}, we have,

δk(L′)
ck

=
δk(L) + wi

ck

≤ δr(L) + wi

cr

≤ δr(L) + ws

cr

=
δr(L′) + ws

cr

and therefore player s cannot improve by moving to any link r 6= j.
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The algorithm of Feldmann et al. [30], call it NashifyRelated, works in two
phases. In the �rst phase, given an instance 〈w, c〉 and an associated pure strategy
pro�le L, it �lls up links with small capacities with players with small tra�c as
close to SCMSP(w, c,L) as possible (but without exceeding SCMSP(w, c,L)), and
it collects all these players in a set U . In the second phase, the algorithm performs
greedy sel�sh steps for unsatis�ed players in U in non-increasing order of their
tra�c. Lemma 4.7 allows to show that this procedure results in a pure Nash
equilibrium. Implementing the algorithm in a proper way, we get:

Theorem 4.8 (Feldmann et al. [30]). Consider the model of arbitrary play-
ers and related links. Then for any instance 〈w, c〉 and associated pure strategy
pro�le L, a Nash equilibrium L′ can be computed from L with SCMSP(w, c,L′) ≤
SCMSP(w, c,L) using at most O(m2n) time.

Hochbaum and Shmoys [62] presented a PTAS for scheduling n jobs on m
related machines. Using the same arguments as in Section 4.2.2, we can combine
this PTAS with NashifyRelated to get a PTAS for computing a pure Nash
equilibrium with minimum makespan social cost.

Theorem 4.9 (Feldmann et al. [30]). There exists a PTAS for computing a
pure Nash equilibrium with minimum makespan social cost, in the model of related
links.

4.3.2 Price of Anarchy

In this section we state results on the price of anarchy and the individual price
of anarchy for the case of related links and makespan social cost.

In this scenario, the �rst results on the price of anarchy were give by Koutsou-
pias and Papadimitriou [67]. For the special case of 2 links, they showed that the
price of anarchy is the golden ratio. For the general case, Czumaj and Vöcking [23]
proved that the price of anarchy is Θ( log m

log log log m). To show this asymptotically
tight upper bound, they �rst provided upper bounds on the maximum expected
latency Λ(P) on a link in a mixed Nash equilibrium P. A Cherno� bound then
gives the upper bound on the price of anarchy. The upper bounds on Λ(P), given
by Czumaj and Vöcking [23], depend on the number of links m and the fraction
of the largest and the smallest link capacity. However, not only the capacities,
but the relation between the players' tra�c and the capacities determine the
(individual) price of anarchy.

To take this relation into account, we introduce a structural parameter ρ. We
denote

M1 = {j ∈ [m] | w1 ≤ cj · OPTMSP(w, c)}.

UsingM1, we de�ne

ρ =

∑
j∈M1

cj

C
. (4.1)
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In other words, ρ is the ratio between the sum of link capacities of links to which
the largest tra�c can be assigned causing latency at most OPTMSP(w, c) and the
sum of all link capacities.

With the help of ρ we are able to prove an upper bound of Γ−1(1
ρ) on the

individual price of anarchy (Theorem 4.10). Since w1
c1
≤ OPTMSP(w, c) and

C =
∑

j∈[m] cj ≤ m · c1, it follows that ρ ≥ 1
m . Using this, we can upper

bound the maximum expected latency on a link in a mixed Nash equilibrium
by Λ(P) ≤ Γ−1(m) · OPTMSP(w, c) (Corollary 4.12), which slightly improves
the best known upper bound of (Γ−1(m) + 1) · OPTMSP(w, c) by Czumaj and
Vöcking [23] and thus leads to an improvement of the upper bound on the
price of anarchy. Furthermore, it follows that the individual coordination ra-
tio is upper bounded by Γ−1(m) (Corollary 4.13). For pure Nash equilibria L, we
have SCMSP(w, c,L) = IC(w, c,L). It follows that the pure price of anarchy for
makespan social cost is upper bounded by Γ−1(m) (Corollary 4.14).

We close this section with two lower bounds on the individual price of anarchy.
These lower bounds show that the upper bound from Theorem 4.10 is tight up
to an additive constant for all m (Theorem 4.16), whereas the upper bound from
Corollary 4.13 is only tight for large m (Theorem 4.17).

Theorem 4.10. Consider the model of arbitrary players and related links. Then
for any instance 〈w, c〉 and associated Nash equilibrium P,

IC(w, c,P)
OPTMSP(w, c)

<


3
2 +

√
1
ρ −

3
4 if 1

3 ≤ ρ ≤ 1,

2 + 3

√
1
ρ − 2 if 1

37 ≤ ρ < 1
3 ,

Γ−1
(

1
ρ

)
if ρ < 1

37 .

Proof. Consider an arbitrary instance 〈w, c〉 with associated mixed Nash equi-
librium P such that

IC(w, c,P) = k · OPTMSP(w, c)

for some k ∈ R+. Furthermore, let L be a pure strategy pro�le with optimum
makespan social cost; thus, SCMSP(w, c,L) = OPTMSP(w, c). Note that there
always exists such a pure strategy pro�le. We proceed as follows. In part (1.) and
(2.) we prove a lower bound on the total amount of tra�c that is necessary for
the Nash equilibrium P. In part (3.) we then use this lower bound to prove an
upper bound on k for each of the three cases. We continue with the details of the
formal proof.

(1.) Let j1 be the maximum index of a link inM1, that is,M1 = [j1]. Let i1 ∈ [n]
be a player and let s1 ∈M1 be a link with pi1s1 > 0 and

λi1s1(P) =
δ−i1
s1

(P) + wi1

cs1

= IC(w, c,P).

Since P is a Nash equilibrium, we have for all links j ∈M1,
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IC(w, c,P) =
δ−i1
s1

(P) + wi1

cs1

≤
δ−i1
j (P) + wi1

cj

≤
δ−i1
j (P) + w1

cj
. (4.2)

Furthermore, by de�nition ofM1, we have for all links j ∈M1,

w1

cj
≤ OPTMSP(w, c). (4.3)

This implies that w1 ≤ cj · OPTMSP(w, c) for all j ∈M1, and thus

k · OPTMSP(w, c) ≤ IC(w, c,P)
(4.2)

≤
δ−i1
j (P) + w1

cj

(4.3)

≤
δ−i1
j (P) + cj · OPTMSP(w, c)

cj

=
δ−i1
j (P)

cj
+ OPTMSP(w, c),

or equivalently

δ−i1
j (P) ≥ (k − 1) · cj · OPTMSP(w, c).

Therefore, for all j ∈M1,

δj(P) = δ−i1
j (P) + pi1j · wi1

≥ δ−i1
j (P)

≥ (k − 1) · cj · OPTMSP(w, c). (4.4)

Summing up all expected loads δj(P) on links in M1, the total expected
tra�c of links inM1 is

∑
j∈M1

δj(P)
(4.4)

≥ (k − 1) ·
∑

j∈M1

cj · OPTMSP(w, c)

(4.1)
= (k − 1) · ρ · C · OPTMSP(w, c). (4.5)

(2.) We prove an inductive claim:

Lemma 4.11. For all integers l with 2 ≤ l ≤ dke − 1, there is a set of links
Ml = [jl] \ [jl−1] such that
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(a)the total capacity of links inMl is at least:

∑
j∈Ml

cj ≥ ρ · C · (k − 2) ·
l−1∏
j=2

(k − j),

(b)the expected load on each link j inMl is at least:

δj(P) ≥ (k − l) · cj · OPTMSP(w, c),

(c)the total expected load on links inMl is at least:

∑
j∈Ml

δj(P) ≥ ρ · C · (k − 2) ·
l∏

j=2

(k − j) · OPTMSP(w, c),

(d)the di�erence between the total expected load on links inM1∪· · ·∪Ml = [jl]
in the mixed Nash equilibrium P and the maximum total expected load on
the same links in the optimum strategy pro�le L is at least:

∑
j∈[jl]

δj(P)−
∑
j∈[jl]

δj(L) ≥ ρ · C · (k − 2) ·
l∏

j=2

(k − j) · OPTMSP(w, c).

Proof. We will �rst show that the claim holds for l = 2. Let wi2 be the small-
est tra�c of a player i2 who chooses a link inM1 with positive probability,
and let s2 ∈ M1 be a link inM1 with pi2s2 > 0. In the pure strategy pro�le
L (with optimum social cost) at most∑

j∈M1

δj(L) ≤ OPTMSP(w, c) ·
∑

j∈M1

cj

(4.1)
= ρ · C · OPTMSP(w, c) (4.6)

total load can be assigned to links in M1. Therefore, in L the remaining
expected load which is greater or equal to∑

j∈M1

δj(P)−
∑

j∈M1

δj(L)
(4.6)

≥
∑

j∈M1

δj(P)− ρ · C · OPTMSP(w, c)

(4.5)

≥ ρ · C · (k − 2) · OPTMSP(w, c) (4.7)

is assigned to links not in M1. This implies that there exists a set of links
M2 = [j2] \ [j1], j2 minimal, with total capacity at least

∑
j∈M2

cj ≥
∑

j∈M1
δj(P)−

∑
j∈M1

δj(L)
OPTMSP(w, c)

(4.7)

≥ ρ · C · (k − 2), (4.8)
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proving (a). Moreover, since P is a Nash equilibrium, for all links j ∈M2,

(k − 1) · OPTMSP(w, c)
(4.4)

≤ δs2(P)
cs2

≤
δ−i2
s2

(P) + wi2

cs2

≤
δ−i2
j (P) + wi2

cj
. (4.9)

By construction ofM2 there exists a player assigned in P with positive prob-
ability to a link in M1 which is assigned to a link j ∈ [m] \ [j2 − 1] in the
optimum strategy pro�le L. This player has tra�c at least wi2 . Thus, for all
j ∈M2,

wi2

cj
≤ OPTMSP(w, c). (4.10)

So, for all j ∈M2,

(k − 1) · OPTMSP(w, c)
(4.9)

≤
δ−i2
j (P) + wi2

cj

(4.10)

≤
δ−i2
j (P)

cj
+ OPTMSP(w, c),

or equivalently

δ−i2
j (P) ≥ (k − 2) · cj · OPTMSP(w, c).

Therefore, for all j ∈M2,

δj(P) = δ−i2
j (P) + pi2j · wi2

≥ δ−i2
j (P)

≥ (k − 2) · cj · OPTMSP(w, c), (4.11)

proving (b). Summing up all expected tra�c δj(P) on links inM2, the total
expected tra�c of links inM2 is

∑
j∈M2

δj(P)
(4.11)

≥ (k − 2) · OPTMSP(w, c) ·
∑

j∈M2

cj

(4.8)

≥ (k − 2) · OPTMSP(w, c) · ρ · C · (k − 2)
= ρ · C · (k − 2)2 · OPTMSP(w, c).

proving (c). In the optimum strategy pro�le L at most expected tra�c



4.3 Related Links 39∑
j∈[j2]

δj(L) ≤ OPTMSP(w, c) ·
∑

j∈[j2]

cj (4.12)

can be assigned to links inM1∪M2 = [j2]. So the remaining expected tra�c
on links inM1 ∪M2 which has to be assigned to other links in the optimal
Nash equilibrium is at least∑
j∈[j2]

δj(P)−
∑

j∈[j2]

δj(L)

(4.12)

≥
∑

j∈M1

δj(P) +
∑

j∈M2

δj(P)− OPTMSP(w, c) ·
∑

j∈[j2]

cj

(4.4)(4.11)

≥

(k − 1) ·
∑

j∈M1

cj + (k − 2) ·
∑

j∈M2

cj −
∑

j∈[j2]

cj

 · OPTMSP(w, c)

=

(k − 2) ·
∑

j∈M1

cj + (k − 3) ·
∑

j∈M2

cj

 · OPTMSP(w, c)

(4.1)(4.8)

≥ ((k − 2) · ρ · C + (k − 3) · (k − 2) · ρ · C) · OPTMSP(w, c)
= ρ · C · (k − 2)2 · OPTMSP(w, c),

proving (d). This completes the proof of the claim for l = 2.
Now, assume inductively that for some integer l ≥ 3 the claim holds for all
integers not exceeding (l − 1). We will prove the claim for l.
Let wil be the smallest tra�c of a player il who assigns its tra�c to a link in
M1 ∪ · · · ∪Ml−1 with positive probability, and let sl ∈M1 ∪ · · · ∪Ml−1 be
a link with pilsl

> 0. By induction hypothesis we have∑
j∈[jl−1]

δj(P)−
∑

j∈[jl−1]

δj(L)

≥ ρ · C · (k − 2) ·
l−1∏
j=2

(k − j) · OPTMSP(w, c). (4.13)

This implies that there exists a set of linksMl = [jl]\ [jl−1], jl minimal, with
total capacity at least

∑
j∈Ml

cj ≥
∑

j∈[jl−1] δj(P)−
∑

j∈[jl−1] δj(L)

OPTMSP(w, c)

(4.13)

≥ ρ · C · (k − 2) ·
l−1∏
j=2

(k − j), (4.14)

proving (a). Moreover, since P is a Nash equilibrium, for all links j ∈Ml,
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(k − (l − 1)) · OPTMSP(w, c) ≤ δsl
(P)
csl

≤
δ−il
sl

(P) + wil

csl

≤
δ−il
j (P) + wil

cj
. (4.15)

By construction of Ml, there exists a player assigned in P with positive
probability to a link in [jl−1] which is assigned to a link j ∈ [m] \ [jl − 1] in
the optimum strategy pro�le L. This player has tra�c at least wil . Thus, for
all j ∈Ml,

wil

cj
≤ OPTMSP(w, c). (4.16)

So, for all j ∈Ml,

(k − (l − 1)) · OPTMSP(w, c)
(4.15)

≤
δ−il
j (P) + wil

cj

(4.16)

≤
δ−il
j (P)

cj
+ OPTMSP(w, c),

or equivalently
δ−il
j (P) ≥ (k − l) · cj · OPTMSP(w, c).

Therefore, for all j ∈Ml,

δj(P) = δ−il
j (P) + pilj · wil

≥ δ−il
j (P)

≥ (k − l) · cj · OPTMSP(w, c), (4.17)

proving (b). Summing up all expected tra�c δj(P) on links inMl, the total
expected tra�c of links inMl is∑

j∈Ml

δj(P)
(4.17)

≥ (k − l) · OPTMSP(w, c) ·
∑

j∈Ml

cj

(4.14)

≥ ρ · C · (k − 2) ·
l∏

j=2

(k − j) · OPTMSP(w, c),

proving (c). In the optimum strategy pro�le L at most tra�c∑
j∈[jl]

δj(L) ≤ OPTMSP(w, c) ·
∑
j∈[jl]

cj (4.18)
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can be assigned to links inM1 ∪ · · · ∪Ml = [jl]. So the remaining expected
tra�c on links in M1 ∪ · · · ∪Ml which has to be assigned to other links in
the optimal solution is at least∑

j∈[jl]

δj(P)−
∑
j∈[jl]

δj(L)

=
∑

j∈[jl−1]

δj(P)−
∑

j∈[jl−1]

δj(L) +
∑

j∈Ml

δj(P)−
∑

j∈Ml

δj(L)

(4.17)(4.18)

≥
∑

j∈[jl−1]

δj(P)−
∑

j∈[jl−1]

δj(L)

+(k − l) ·
∑

j∈Ml

cj · OPTMSP(w, c)−
∑

j∈Ml

cj · OPTMSP(w, c)

(4.13)

≥ ρ · C · (k − 2) ·
l−1∏
j=2

(k − j) · OPTMSP(w, c)

+(k − l − 1) ·
∑

j∈Ml

cj · OPTMSP(w, c)

(4.14)

≥ ρ · C · (k − 2) ·
l−1∏
j=2

(k − j) · OPTMSP(w, c)

+(k − l − 1) · ρ · C · (k − 2) ·
l−1∏
j=2

(k − j) · OPTMSP(w, c)

= (k − l) · ρ · C · (k − 2) ·
l−1∏
j=2

(k − j) · OPTMSP(w, c)

= ρ · C · (k − 2) ·
l∏

j=2

(k − j) · OPTMSP(w, c),

proving (d). This completes the proof of the inductive claim.

(3.) Summing up the lower bounds on the expected loads over all links we get
the lower bound

∑
j∈[m] δj(P) < W on the total tra�c W that is necessary

for a Nash equilibrium P with IC(w, c,P) = k. Note that the strict inequality
follows from the fact that we have at least one player with expected latency
k. Using this lower bound, we now prove the upper bounds for the three
cases of the theorem by showing that a larger upper bound implies W

C >
OPTMSP(w, c), a contradiction. Note that Γ−1(1

ρ) is also an upper bound on
the ratio for ρ ≥ 1

37 . However, in the ranges 1
3 ≤ ρ ≤ 1 and 1

37 ≤ ρ < 1
3 the

given upper bounds are better. Now consider the three cases of the theorem:

(I) 1
3 ≤ ρ ≤ 1: Assume k ≥ 3

2 +
√

1
ρ −

3
4 . This implies k ≥ 2 in the given range

of ρ. Then
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W >
∑

j∈M1

δj(P) +
∑

j∈M2

δj(P)

≥ ρ · C · OPTMSP(w, c) ·
(
(k − 1) + (k − 2)2

)
= ρ · C · OPTMSP(w, c) ·

(
k2 − 3 · k + 3

)
≥ ρ · C · OPTMSP(w, c)

·

((
3
2

+
√

1
ρ
− 3

4

)2

− 3 ·
(

3
2

+
√

1
ρ
− 3

4

)
+ 3

)
= ρ · C · OPTMSP(w, c)

·
(

9
4

+ 3 ·
√

1
ρ
− 3

4
+

1
ρ
− 3

4
− 9

2
− 3 ·

√
1
ρ
− 3

4
+ 3
)

= ρ · C · OPTMSP(w, c) ·
(

1
ρ

)
= C · OPTMSP(w, c).

(II) 1
37 ≤ ρ < 1

3 : Assume k ≥ 2 + 3

√
1
ρ − 2. This implies k > 3 in the given

range of ρ. Then,

W >
∑

j∈M1

δj(P) +
∑

j∈M2

δj(P) +
∑

j∈M3

δj(P)

≥ ρ · C · OPTMSP(w, c) ·
(
(k − 1) + (k − 2)2 + (k − 2)2(k − 3)

)
= ρ · C · OPTMSP(w, c) ·

(
k − 1 + (k − 2)3

)
k>3
> ρ · C · OPTMSP(w, c) ·

(
2 + (k − 2)3

)
≥ ρ · C · OPTMSP(w, c) ·

(
2 +

1
ρ
− 2
)

= C · OPTMSP(w, c).

(III) ρ < 1
37 : Assume k ≥ Γ−1(1

ρ). Using the facts that Γ(x + 1) = x · Γ(x) for
all x ∈ R and Γ(x) ≤ x for all 1 ≤ x ≤ 3, we get

W >
∑

j∈Mbkc−2

δj(P) +
∑

j∈Mbkc−1

δj(P)

≥ ρ · C · OPTMSP(w, c) · (k − 2) ·

bkc−2∏
j=2

(k − j) +
bkc−1∏
j=2

(k − j)


> ρ · C · OPTMSP(w, c) · (k − 2) ·

bkc−1∏
j=3

(k − j) +
bkc−1∏
j=2

(k − j)


≥ ρ · C · OPTMSP(w, c) · (k − 2) · (Γ(k − 2) + Γ(k − 1))
= ρ · C · OPTMSP(w, c) · (k − 2) · (Γ(k − 2) + (k − 2) · Γ(k − 2))
= ρ · C · OPTMSP(w, c) · (k − 2) · ((k − 1) · Γ(k − 2))
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= ρ · C · OPTMSP(w, c) · Γ(k)

≥ ρ · C · OPTMSP(w, c) · Γ
(

Γ−1

(
1
ρ

))
= C · OPTMSP(w, c).

In each of the cases we have W
C > OPTMSP(w, c). This is a contradiction to

the fact that W
C ≤ OPTMSP(w, c).

This completes the proof of the theorem.

Since w1
c1
≤ OPTMSP(w, c), we have ρ ≥ c1

C ≥
1
m . Furthermore, IC(w, c,P) ≥

Λ(P) holds for every strategy pro�le P. Thus, from Theorem 4.10 we get the
following corollaries:

Corollary 4.12. Consider the model of arbitrary players and related links. Then
for any instance 〈w, c〉 and associated Nash equilibrium P, the maximum expected
latency Λ(P) is bounded from above by

Λ(P) ≤ Γ−1

(
1
ρ

)
· OPTMSP(w, c) ≤ Γ−1 (m) · OPTMSP(w, c).

Corollary 4.13. Consider the model of arbitrary players and related links. Then
for any instance 〈w, c〉 and associated Nash equilibrium P,

IC(w, c,P)
OPTMSP(w, c)

≤ Γ−1(m).

Corollary 4.14. Consider the model of arbitrary players and related links. Then
for any instance 〈w, c〉 and associated Nash equilibrium P,

pPoAMSP ≤ Γ−1(m).

We now introduce a pure strategy pro�le in Example 4.3.1 for which we show
in Lemma 4.15 that it is a pure Nash equilibrium with certain properties. The
pure Nash equilibrium will be used in Theorem 4.16 and Theorem 4.17 to prove
that the upper bounds of Γ−1(1

ρ) and Γ−1(m) are tight.

Example 4.3.1 Let k ∈ N, and consider the following instance 〈w, c〉 with as-
sociated pure strategy pro�le L.

• There are k di�erent classes of players:
� Class U1: |U1| = k players with tra�c 2k−1

� Class Ui: |Ui| = 2i−1 · (k− 1)
∏

j=1,...,i−1(k− j) players with tra�c 2k−i

for all 2 ≤ i ≤ k.
• There are k + 1 di�erent classes of links:

� Class P0: One link with capacity 2k−1.
� Class P1: |P1| = |U1| − 1 links with capacity 2k−1.
� Class Pi: |Pi| = |Ui| links with capacity 2k−i for all 2 ≤ i ≤ k.
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1

Fig. 4.2. Instance and associated strategy pro�le L from Example 4.3.1

• Consider the following strategy pro�le L:
� Class P0: All players in U1 are assigned to this link.
� Class Pi: On each link in Pi there are 2(k− i) players from Ui+1, respec-

tively, for all 1 ≤ i ≤ k − 1.
� Class Pk: The links from Pk remain empty.

Lemma 4.15. Consider the instance 〈w, c〉 and associated pure strategy pro�le
L given in Example 4.3.1. Then

(a) OPTMSP(w, c) = 1, and
(b) the strategy pro�le L is a pure Nash equilibrium with SCMSP(w, c,L) = k.

Proof. We will prove (a) and (b) separately.

(a) In an optimum strategy pro�le the player with largest tra�c must be assigned
to some link. Thus,

OPTMSP(w, c) ≥ w1

c1
= 1.

Now, consider the pure strategy pro�le L′ that assigns one player from U1 to
each link in P0∪P1 and one player from Ui to each link in Pi for all 2 ≤ i ≤ k.
Then for all links j ∈ [m], we have δj(L

′)
cj

= 1, so that

OPTMSP(w, c) ≤ SCMSP(w, c,L′) = max
j∈[m]

δj(L′)
cj

= 1.

It follows that OPTMSP(w, c) = 1.
(b) Clearly, SCMSP(w, c,L) = k. We now show, that L is a Nash equilibrium. In

the pure strategy pro�le L the latency of each link j ∈ Pi where i ∈ [k]0 is

Λj(L) =
δj(L)

cj
= k − i. (4.19)
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By way of contradiction, assume that the pure strategy pro�le L is not a
Nash equilibrium. Then, there exists some player s with tra�c ws that is not
satis�ed in L. Assume that player s can improve by moving from some link
j1 ∈ Pi1 to some other link j2 ∈ Pi2 . Thus,

δj1(L)
cj1

>
δj2(L) + ws

cj2

. (4.20)

By (4.19) it must hold that i1 < i2. We proceed by case analysis:
First assume i1 = 0: Then ws = 2k−1 and

k
(4.19)
=

δj1(L)
cj1

(4.20)
>

δj2(L) + ws

cj2

(4.19)
= (k − i2) +

2k−1

2k−i2

= (k − i2) + 2i2−1

i2≥1
≥ (k − i2) + i2

= k,

a contradiction.
Now assume i1 ≥ 1: Then ws = 2k−i1−1 and

k − i1
(4.19)
=

δj1(L)
cj1

(4.20)
>

δj2(L) + ws

cj2

(4.19)
= (k − i2) +

2k−i1−1

2k−i2

= (k − i2) + 2i2−i1−1

i2−i1≥1
≥ (k − i2) + i2 − i1

= k − i1,

a contradiction. It follows that L is a pure Nash equilibrium.

This completes the proof of the lemma.

We are now ready to prove two lower bounds on the individual price of anarchy.
Our lower bounds hold for the case of pure Nash equilibria.

Theorem 4.16. For each k ∈ N there exists an instance 〈w, c〉 and an associated
pure Nash equilibrium L with

k =
IC(w, c,L)

OPTMSP(w, c)
≥ Γ−1

(
1
ρ

)
− 1.
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Proof. Consider the instance 〈w, c〉 from Example 4.3.1 with associated pure
strategy pro�le L. By Lemma 4.15, L is a pure Nash equilibrium for 〈w, c〉,
OPTMSP(w, c) = 1 and IC(w, c,L) = SCMSP(w, c,L) = k. We now prove that
Γ−1(1

ρ)− 1 is a lower bound on k. We have

ρ =
|P0 ∪ P1| · 2k−1

|P0 ∪ P1| · 2k−1 +
∑

i∈[2,k] |Pi| · 2k−i
.

This implies

1
ρ

=
1

|P0 ∪ P1| · 2k−1
·

|P0 ∪ P1| · 2k−1 +
∑

i∈[2,k]

|Pi| · 2k−i


=

1
k · 2k−1

·

k · 2k−1 +
∑

i∈[2,k]

2i−1 · (k − 1)
∏

j∈[i−1]

(k − j)

 · 2k−i


=

1
k · 2k−1

·

k · 2k−1 + 2k−1 · (k − 1)
∑

i∈[2,k]=2

∏
j∈[i−1]

(k − j)


< 1 +

∑
i∈[2,k]

∏
j∈[i−1]

(k − j)

< 1 + (k − 1) · (k − 1)!
= 1 + k!− (k − 1)!

k≥1
≤ k!
= Γ(k + 1).

This yields k ≥ Γ−1
(

1
ρ

)
− 1, which completes the proof of the theorem.

Theorem 4.17. For each k ∈ N there exists an instance 〈w, c〉 and an associated
pure Nash equilibrium L with

k =
IC(w, c,L)

OPTMSP(w, c)
≥ Γ−1(m) · (1 + o(1)).

Proof. Consider the instance 〈w, c〉 from Example 4.3.1 with associated pure
strategy pro�le L. By Lemma 4.15, L is a pure Nash equilibrium for 〈w, c〉,
OPTMSP(w, c) = 1 and IC(w, c,L) = SCMSP(w, c,L) = k. Moreover, we have

m =
∑

i∈[k]0

|Pi| = k + (k − 1) ·
∑

i∈[2,k]

2i−1 ·
∏

j∈[i−1]

(k − j)

= k + (k − 1) · 2k−1 · (k − 1)! ·

1 +
∑

i∈[2,k−1]

1
2k−i

· 1
(k − i)!


≤ k + (k − 1) · 2k · (k − 1)!
≤ 2k · k!
≤ α · kk,
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for a constant α ∈ R+. We de�ne

r = α · kk.

Since

log(r) = k · log(k) + log(α)
= k · log(k) · (1 + o(1))

and

log(log(r)) = log(k) + log(log(k)) + o(1)
= log(k) · (1 + o(1)),

this implies

Γ−1(m) ≤ Γ−1(r)

=
log(r)

log(log(r))
· (1 + o(1))

= k · (1 + o(1)).

This completes the proof of the claim.

4.4 Restricted Strategy Sets

For all our results so far we have assumed that the strategy sets of the players
are unrestricted. We will now drop this assumption and consider routing games
on parallel links with restricted strategy sets. Here, each player i ∈ [n] is only
allowed to assigned its tra�c to links in its strategy set Si, where Si ⊆ [m]. In
Section 4.4.1 we study the problem of computing a pure Nash equilibrium, while
Section 4.4.2 deals with the pure price of anarchy.

4.4.1 Computation of Pure Nash Equilibria

For the model arbitrary players with restricted strategy sets and related links it
is not known whether a pure Nash equilibrium can be computed in polynomial
time. However, for the case of identical players, a result of Milchtaich [77] implies
the existence of a polynomial-time algorithm to perform this task.

Furthermore, for the model of arbitrary players with restricted strategy sets
and identical links, Gairing et al. [41] presented a polynomial-time algorithm,
called Nashify-Restricted, to compute a pure Nash equilibrium.

In the following, we will present Nashify-Restricted, which combines ideas
from blocking �ows and the generic Preflow-Push algorithm [3]. Here, we
assume that all players' tra�c is integer. In Section 4.4.1.1, we will �rst show,
how to represent a pure strategy pro�le by a residual network. Afterwards, in
Section 4.4.1.2, we introduce a blocking �ow algorithm, called Unsplittable-

Blocking-Flow. In Section 4.4.1.3, we show how Unsplittable-Blocking-

Flow can be used to convert a given strategy pro�le into a pure Nash equilibrium
with non-increased makespan social cost.
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4.4.1.1 Residual Network Representation

We introduce a residual network GL representing a pure strategy pro�le L.

De�nition 4.18. Given a pure strategy pro�le L = (`1, . . . , `n), we de�ne a di-
rected bipartite graph GL = (V,EL), where V = M ∪ U such that each link
is represented by a node in M and each player is represented by a node in U .
Furthermore, EL = E1

L ∪ E2
L with

E1
L = {(u, v) : u ∈M,v ∈ U, u = `v} , and

E2
L = {(u, v) : u ∈ U, v ∈M,v ∈ Su \ {`u}} .

For an arbitrary integer w, we use the graph GL from De�nition 4.18 to de�ne
a graph GL(w) where V remains the same, but from EL we now only consider
edges EL(w) = EL \ {(u, v) : u ∈ U, v ∈ V,wu > w}. This implies that players u
with wu > w remain assigned to their links. We use GL for GL(w) whenever w
is clear from context.

4.4.1.2 Unsplittable Blocking Flow

We now introduce a blocking �ow algorithm, called Unsplittable-Blocking-
Flow, which will be extensively used by our Nashi�cation algorithm in Sec-
tion 4.4.1.3. Unsplittable-Blocking-Flow combines ideas from blocking
�ows with the idea of pushing players without splitting them.

To control our blocking �ow algorithm we use two integer parameters a and
w. Here, w will be used to refer to a certain tra�c size, and a will be determined
by binary search. For every integer a and tra�c size w we partition the set of
links M into three subsets:

M− = {j ∈M | δj(L) ≤ a}
M0 = {j ∈M | a + 1 ≤ δj(L) ≤ a + w}
M+ = {j ∈M | δj(L) ≥ a + w + 1}

In this setting, we do not have a dedicated source or sink. However, at each time
nodes in M+ and M− can be interpreted as source and sink nodes, respectively.
Note, that those sets change over time.

Roughly speaking, algorithm Unsplittable-Blocking-Flow shifts players
so that the latencies of links from M− are never decreased, the latencies of links
from M+ are never increased, and links from M0 remain in M0. Our algorithm
is controlled by a height function h : V → N0 with h(j) = distGL

(j,M−) for all
j ∈ V . We call an edge (u, v) admissible, if h(u) = h(v) + 1. In an admissible
path, all edges are admissible. For each node j ∈ V with 0 < h(j) < ∞, de�ne
Suc(j) to be the set of successors of node j; this is the set of nodes to which j
has an admissible edge, so that

Suc(j) = {i ∈ V : (j, i) ∈ EL and h(j) = h(i) + 1} .
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Note that Suc(j) also de�nes the set of admissible edges leaving j. Let suc(j) be
the �rst node in a list implementation of the set Suc(j). We proceed to de�ne:

De�nition 4.19. A link j ∈ M with 0 < h(j) < ∞ is called helpful if δj(L) ≥
a + 1 + wsuc(j).

Lemma 4.20 (Gairing et al. [41]). Let v0 be a helpful link of minimum height.
Then there exists a sequence v0, . . . , vr, where v2i ∈ M for all 0 ≤ i ≤ r/2 and
v2i+1 ∈ U for all 0 ≤ i < r/2 such that:

(1) (vi, vi+1) ∈ EL and h(vi) = h(vi+1) + 1.
(2) δv0(L) ≥ a + 1 + wsuc(v0).
(3) a + 1 ≤ δv2i(L) + wsuc(v2i−2) − wsuc(v2i) ≤ a + w,∀0 < i < r/2.
(4) δvr(L) + wsuc(vr−2) ≤ a + w.

We are now ready to present the algorithm Unsplittable-Blocking-Flow.
The algorithm is depicted in Figure 4.3. Initially, the height function h is com-
puted as the distance in GL of each node to the set M− of nodes. Then, the
algorithm proceeds in phases. In each phase �rst the minimum height d = h(v)
of a node v ∈ M+ is computed. Inside each phase, we do not update the height
function, but we successively choose a helpful link v of minimum height and we
push players along the helpful path induced by v and adjust the pure strategy
pro�le accordingly. In order to update GL we have to change the direction of two
arcs for each player push. The phase ends when there exists no further admissible
path from an node v ∈M+ with h(v) = d to some node in M−. Before the new
phase starts, we recompute h, and we check whether we need to start a new phase
or not. Unsplittable-Blocking-Flow stops when either M− = ∅ or for all
v ∈M+ we have h(v) =∞.

Unsplittable-Blocking-Flow(L, a, w)
Input: pure strategy pro�le L

positive integers a, w
Output: pure strategy pro�le L′

1: compute h;
2: while M− 6= ∅ and ∃v ∈M+ : h(v) <∞ do

3: d← minv∈M+(h(v));
4: while ∃ admissible path from v ∈M+, h(v) = d to M− do

5: choose helpful link v of minimum height;
6: push players along helpful path de�ned by v;
7: update L, GL;
8: end while

9: recompute h;
10: end while

11: return L;

Fig. 4.3. Unsplittable-Blocking-Flow

Gairing et al. [41] showed that a call to Unsplittable-Blocking-Flow

does not increase the load on any link in M+, does not decrease the load on any
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link in M−, and that links in M0 remain in M0 (Lemma 4.21). This implies that
Unsplittable-Blocking-Flow does not increase the maximum load and not
decreases the minimum load on a link (Corollary 4.22). Furthermore, they showed
properties on the pure strategy pro�le computed by Unsplittable-Blocking-
Flow (Lemma 4.23) and the running time of Unsplittable-Blocking-Flow
(Theorem 4.24).

Lemma 4.21 (Gairing et al. [41]). Let L′ be the pure strategy pro�le computed
by Unsplittable-Blocking-Flow(L, a, w). Then,

(1) δj(L′) ≥ δj(L) for each link j ∈M−(L).
(2) a + 1 ≤ δj(L′) ≤ a + w for each link j ∈M0(L).
(3) δj(L′) ≤ δj(L) for each node j ∈M+(L).

Corollary 4.22 (Gairing et al. [41]). Let L′ be the pure strategy pro�le com-
puted by Unsplittable-Blocking-Flow(L, a, w). Then,

max
j∈[m]

δj(L′) ≤ max
j∈[m]

δj(L), and

min
j∈[m]

δj(L′) ≥ min
j∈[m]

δj(L).

Lemma 4.23 (Gairing et al. [41]). For the pure strategy pro�le L′=(`′1, . . . , `
′
n)

computed by Unsplittable-Blocking-Flow(L, a, w) one of the following con-
ditions holds:

(1) M−(L′) = ∅.
(2) M+(L′) = ∅.
(3) There exists some set of links B ⊂ [m] such that

a) δj(L′) ≥ a + 1 for all j ∈ B, and
b) δj(L′) ≤ a + w for all j ∈ [m] \B, and
c) `′i ∈ B ⇒ Si ⊆ B for all i ∈ [n] with wi ≤ w .

Theorem 4.24 (Gairing et al. [41]). Unsplittable-Blocking-Flow can
be implemented to run in O(mA) time, where A =

∑
i∈[n] |Si|.

4.4.1.3 Nashi�cation

We now describe how Unsplittable-Blocking-Flow can be used to convert
any pure strategy pro�le into a pure Nash equilibrium with non-increased social
cost.

Our Nashi�cation algorithm, called Nashify-Restricted, �rst �nds a pure
strategy pro�le satisfying all players with tra�c w1 by recursively applying
Unsplittable-Blocking-Flow. In this recursive procedure, called Recur-

siveUBF, we make extensive use of Lemma 4.23.
We then �x the pure strategy pro�le of all players with tra�c w1 and pro-

ceed with the next smaller tra�c while making sure that all �xed players stay
satis�ed. To make sure that all �xed players stay satis�ed, we introduce lower
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and upper bounds on the load of the links, such that the load of each link
is always in its bounds, the lower bound only increases and the upper bound
only decreases. This is done until all players are satis�ed. In order to achieve
this, Nashify-Restricted makes extensive use of algorithm Unsplittable-

Blocking-Flow.
We now proceed with a detailed description of our Nashi�cation algorithm.

In the following, we denote w = wi for some player i ∈ [n].

RecursiveUBF. We �rst turn our attention to RecursiveUBF, which is de-
picted in Figure 4.4. If l ≤ δj(L) ≤ u + w for all links j ∈ B prior to a call

RecursiveUBF(B,L(B), [l, u], w)
Input: A set of links B, a pure strategy pro�le L(B), an interval [l, u] and a tra�c size w.
Output: A a pure strategy pro�le L′(B).
1: a← d(l + u)/2e;
2: if a = u then

3: return L(B)
4: end if

5: L′(B)← Unsplittable-Blocking-Flow(L(B), a, w);
6: if M−(L′) = ∅ and M+(L′) 6= ∅ then
7: L(B)← RecursiveUBF(B,L(B), [a, u], w);
8: else if M−(L′) 6= ∅ and M+(L′) = ∅ then
9: L(B)← RecursiveUBF(B,L(B), [l, a], w);
10: else if M−(L′) 6= ∅ and M+(L′) 6= ∅ then
11: split B (according to Lemma 4.23 (3)) into sets B′ and B′;
12: L(B′)← RecursiveUBF(B′,L(B′), [a, u], w);
13: L(B′)← RecursiveUBF(B′,L(B′), [l, a], w);
14: L(B)← L(B′) ∪ L(B′);
15: end if

16: return L(B);

Fig. 4.4. RecursiveUBF

to RecursiveUBF(B,L(B), [l, u], w), then it computes a pure strategy pro�le,
where no player with tra�c w that is assigned to some link in B can improve by
moving to some other link in B. By a series of calls toUnsplittable-Blocking-
Flow(L(B), a, w) we compute a pure strategy pro�le where M− and M+ are
either both empty or both non-empty. Parameter a is chosen by binary search
a ∈ [l, u], a ∈ N, as follows: If Unsplittable-Blocking-Flow returns a pure
strategy pro�le with M− = ∅ and M+ 6= ∅, then we increase a. On the other
hand, if Unsplittable-Blocking-Flow returns a pure strategy pro�le with
M− 6= ∅ and M+ = ∅, then we decrease a.

If after the binary search, M− = ∅ and M+ = ∅, then we have computed
a pure strategy pro�le where all players with tra�c at least w are satis�ed. If
neither M− = ∅ nor M+ = ∅ it follows that condition (3) from Lemma 4.23
holds. De�ne B′ as the set of links still reachable from M+ and let B′ be the
complement of B′ in B. In this case we split our instance into two parts. One
part with all links in B′ and all players that are currently assigned to a link in



52 4 Sel�sh Routing on Parallel Links

B′, the other part holds the complement. Whenever B is split into B′ and B′,
condition (3) from Lemma 4.23 implies that no player v with wv ≤ w, assigned
to a link in B′, has a link from B′ in its strategy set.

We recursively proceed with the binary search on a in both parts of the in-
stance. For the part that corresponds to B′, we increase a, while in the other
part we decrease a. The recursive splitting of B (line 11) de�nes a partition of
the links into sets B1, . . . , Bp. At the end, all parts B1, . . . , Bp are put together
to form L(B).

For each Bk, k ∈ [p], de�ne a lower bound Low(Bk) on the load of all links
from Bk as the last value for a after the binary search on a in Bk. This implies:

Lemma 4.25 (Gairing et al. [41]). If l ≤ δj(L) ≤ u + w for all j ∈ B prior
to a call to RecursiveUBF, then RecursiveUBF(B,L(B), [l, u], w) returns a
pure strategy pro�le L′(B) of players in B, a partition of B into p sets B1, . . . , Bp

for some p, and (implicit) numbers Low(Bk) for k ∈ [p], such that:

(1) u ≥ Low(B1) > . . . > Low(Bp) ≥ l for all k ∈ [p].
(2) Low(Bk) ≤ δj ≤ Low(Bk) + w for all j ∈ Bk and for all k ∈ [p].
(3) No player u with wu ≤ w assigned to a link in Bk has a link from B` in its

strategy set, if ` > k.

By the postconditions of Lemma 4.25 all players with tra�c w are satis�ed in
the pure strategy pro�le computed by RecursiveUBF. In order to keep these
players satis�ed, we have to ensure that in further computations the lower bounds
only increase and the upper bounds only decrease. We denote the upper bound
by Up(Bk) for all links from Bk, and in coincidence with (2) we set Up(Bk) =
Low(Bk) + w.

Nashify-Restricted. We are ready to present algorithmNashify-Restricted

that converts any given pure strategy pro�le L into a pure Nash equilibrium L′

with non-increased social cost. Let w̃1 > . . . > w̃r be all di�erent player traf-
�c from w1, . . . , wn. The idea is to compute a sequence of pure strategy pro�les
L0, . . . ,Lr such that L0 = L, Lr = L′ and such that for all pure strategy pro�les
Li with 1 ≤ i ≤ r, all players u with wu ≥ w̃i are satis�ed. We call the compu-
tation of Li from Li−1 stage i. The aim in stage i is to compute a pure strategy
pro�le Li from Li−1 such that in Li all players u with wu ≥ w̃i are satis�ed.

Figure 4.5 shows the high-level structure of our Nashi�cation algorithm. It
�rst uses the procedure RecursiveUBF to compute a pure strategy pro�le L1,
where all players with tra�c w̃1 are satis�ed. Afterwards we iteratively satisfy
players with tra�c w̃2, . . . , w̃r making sure that players with larger tra�c remain
satis�ed (lines 2-6). We do this by executing Sweep over the sets of active links.
In the following, we de�ne what we mean by sets of active links, and we describe
how a Sweep over these sets of active links is executed.

Lemma 4.25 implies that after stage 1, all players with tra�c w̃1 are satis�ed.
Furthermore, the links are partitioned into p1 sets B1, . . . , Bp1 with Up(Bk) =
Low(Bk) + w̃1 for all k ∈ [p1], and no player u with wu ≤ w̃1, that is assigned to
a link from Bk can be assigned to a link from B` when k < `.
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Nashify-Restricted(L0)
. stage 1:

1: L1 ←RecursiveUBF([m],L0, [0, maxj δj(L0)], ew1)
. stages 2,. . . , r:

2: for i← 2 to r do

3: while there are sets of active links do
4: execute Sweep over the active links;
5: end while

. Li is the current pure strategy pro�le:
6: end for

7: return Lr

Fig. 4.5. Nashify-Restricted

We now describe stage i > 1 (lines 2-6 in Figure 4.5). The lower bound on the
load of a link only increases and the upper bound only decreases. This implies
that �xed players remain satis�ed. At the beginning of stage i, we have a pure
strategy pro�le Li−1, where the links are partitioned into pi−1 sets B1, . . . , Bpi−1

with Up(Bk) = Low(Bk)+w̃i−1, for all k ∈ [pi−1], and no player u, that is assigned
to a link from Bk can be assigned to a link from B` when k < `.

During each stage i, we always maintain a pure strategy pro�le where the
links are partitioned into q sets C1, . . . , Cq for some q. They are ordered such
that Up(Ck) > Up(Ck+1) and Low(Ck) ≥ Low(Ck+1) for all k with 1 ≤ k < q.

...
...... wi−1

wi

x+1CxC yCx−1C y+1C

Cx Cx+1 Cy

Cx Cx+1 Cy

~

~

Low(     ) Low(     )

Up(     )Up(        )
Up(     )

Low(        )

Fig. 4.6. Sets of active links in stage i at the beginning of a sweep

At the beginning of a Sweep, we have three classes of sets (see Figure 4.6):

• Some sets of links Ck, 1 ≤ k < x, have not been considered yet and ful�ll
Up(Ck)− Low(Ck) = w̃i−1.

• Moreover, some sets of links Ck, q ≥ k > y, have been done in stage i already
and ful�ll Up(Ck)− Low(Ck) = w̃i.

• Finally, we have sets Cx, . . . , Cy of active links, with w̃i < Up(Ck)−Low(Ck) ≤
w̃i−1 and Low(Ck) = Low(Cy) for all k ∈ [x, y].
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Initially, Cj = Bj for all 1 ≤ j ≤ pi−1, the links from Cpi−1 are active, and
the remaining links have not been considered. During a Sweep, the number of
partitions q may change. We will see in Lemma 4.28 that at the beginning of
each Sweep, the sweep property introduced below holds:

De�nition 4.26 (Sweep Property during stage i).

(1) There is a partition of the links into q sets C1, . . . , Cq for some q with
Low(C1) ≥ . . . ≥ Low(Cq) and Up(C1) > . . . > Up(Cq).

(2) If link j ∈ Ck, then Low(Ck) ≤ δj ≤ Up(Ck).
(3) No player u with wu ≤ w̃i that is assigned to a link in Ck has a link from C`

in its strategy set Su, if ` > k.
(4) There exist integers x, y with 1 ≤ x ≤ y ≤ q and

a) Up(Ck)− Low(Ck) = w̃i−1 for 1 ≤ k < x,
b) Up(Ck)− Low(Ck) = w̃i for y < k ≤ q, and
c) w̃i < Up(Ck)− Low(Ck) ≤ w̃i−1 and Low(Ck) = Low(Cy) for all x ≤ k ≤

y.

We use the de�nition of sweep property to de�ne active links.

De�nition 4.27. Let x, y be as in De�nition 4.26. Then, a link j ∈ Ck, x ≤ k ≤
y, is called active and a link j ∈ Ck, y < k ≤ p, is called done in stage i.

A Sweep is shown in Figure 4.7 and works on active links as follows: At the
beginning of Sweep, the sweep property holds. The aim of Sweep is to process
links in Cy such that they do not have to be considered again in this stage, or
to make all links in Cx−1 active by increasing the lower bound of all active links
to Low(Cx−1). In order to preserve the structure of our pure strategy pro�le, we
choose a = min{Up(Cy) − w̃i, Low(Cx−1)}. We insert all sets into a list L such
that L = [Cx, . . . , Cy]. Then, as long as there are at least two sets in L, we do the
following: We extract the �rst element, say D1, of L and apply Unsplittable-
Blocking-Flow to the sub-instance de�ned by the set D1. Unsplittable-
Blocking-Flow(L(D1), a, w̃i) returns a pure strategy pro�le L′, where one of
the following conditions holds:

1. M+(L′) = ∅: In this case, all links in D1 have load at most a + w̃i, and
Corollary 4.22 implies that this property is preserved. Let D2 be the next
element in L. Before the call, Up(D1) > Up(D2) > a + w̃i was true. After
the call, the loads of all links in D1 are bounded by a + w̃i. So, by setting
Up(D1) ← Up(D2), we get a new upper bound on the loads of the links in
D1, and we ful�ll the requirement that upper bounds can be only decreased.
D1 and D2 are merged, and the union of both sets is inserted into L. This
way, the number of sets in the list is decreased by 1.

2. M−(L′) = ∅ and M+(L′) 6= ∅: In this case, all links in D1 have load at least
a, and Corollary 4.22 implies that this property is preserved. Thus, we are
allowed to set Low(D1) ← a. We are done with D1 during this execution of
Sweep.
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Require: L = [Cx, . . . , Cy] is a list of the sets of active links
1: a← min{Up(Cy)− ewi, Low(Cx−1)};
2: while |L| ≥ 2 do

3: D1 ← ExtractFirst(L);
4: L′ ← Unsplittable-Blocking-Flow(L(D1), a, ewi) ;
5: if M+(L′) = ∅ then
6: D2 ← ExtractFirst(L);
7: Up(D1)← Up(D2);
8: D1 ← D1 ∪D2; Insert(D1,L);
9: else if M−(L′) = ∅ and M+(L′) 6= ∅ then
10: Low(D1)← a and output: "links in D1 are done in this sweep";
11: else if M−(L′) 6= ∅ and M+(L′) 6= ∅ then
12: split D1 (according to Lemma 4.23 (3)) into sets D′

1 and D′
1;

13: Low(D′
1)← a and output: "links in D′

1 are done in this sweep";
14: D2 ← ExtractFirst(L);
15: Up(D′

1)← Up(D2);
16: D1 ← D′

1 ∪D2; Insert(D1,L);
17: end if

18: end while

. Di�erent handling of last set
19: D1 ← ExtractFirst(L);
20: if a = Up(D1)− ewi then

21: RecursiveUBF(D1,L(D1), [Low(D1), a], ewi) and output: "links in D1 are done in

stage i";
22: else
23: L′ ← Unsplittable-Blocking-Flow(L(D1), a, ewi);
24: if M−(L′) = ∅ then
25: Low(D1)← a and output: "links in D1 are done in this sweep";
26: else if M−(L′) 6= ∅ and M+(L′) = ∅ then
27: Up(D1)← a + ewi;
28: RecursiveUBF(D1,L

′(D1), [Low(D1), a], ewi) and output: "links in D1 are done

in stage i";
29: else if M−(L′) 6= ∅ and M+(L′) 6= ∅ then
30: split D1 (according to Lemma 4.23 (3)) into sets D′

1 and D′
1;

31: Low(D′
1)← a and output: "links in D′

1 are done in this sweep";
32: Up(D′

1)← a + ewi;
33: RecursiveUBF(D′

1,L
′(D′

1), [Low(D′
1), a], ewi) and output: "links in D′

1 are done

in stage i";
34: end if

35: end if

Fig. 4.7. Sweep over the sets of active links

3. M−(L′) 6= ∅ and M+(L′) 6= ∅: In this case, we split D1 according to condition
(3) from Lemma 4.23 into sets D′

1 and D′
1. Condition (3c) implies, that no

player that is assigned to a link in D′
1 can be assigned to a link in D′

1. Since
the load on each link in D′

1 is at least a, we can set Low(D′
1)← a. The load

of each link in D′
1 is at most a + w̃i. Thus, since the upper bound of the next

element, say D2, in L is Up(D2) > a + w̃i, we again can extract D2 from L,
set Up(D′

1) ← Up(D2), merge D′
1 and D2, and insert it in L. We are done

with D′
1 during this execution of Sweep.
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So, in each case, the number of sets in list L is decreased by 1. Now, we
consider the case that there is only one set, say D1, in L. This case has to be
handled di�erently.

If a = Up(D1)−w̃i, then we simply apply RecursiveUBF to the sub-instance
de�ned by D1 in the interval [Low(D1), a] with tra�c size w̃i. Otherwise, we ap-
ply Unsplittable-Blocking-Flow to the sub-instance de�ned by the set D1.
Unsplittable-Blocking-Flow(L(D1), a, w̃i) returns a pure strategy pro�le
L′ where one of the following conditions holds.

1. M−(L′) = ∅: Here, we set Low(D1)← a.
2. M−(L′) 6= ∅ and M+(L′) = ∅: In this case, we set Up(D1) ← a + w̃i and

apply RecursiveUBF to the sub-instance de�ned by D1 in the interval
[Low(D1), a] with tra�c size w̃i.

3. M−(L′) 6= ∅ and M+(L′) 6= ∅: Here, we split D1 according to condition (3)
from Lemma 4.23 into sets D′

1 and D′
1. For D′

1 we set Low(D′
1)← a and for D′

1

we set Up(D′
1)← a + w̃i and we apply RecursiveUBF to the sub-instance

de�ned by D′
1 in the interval [Low(D′

1), a] with tra�c size w̃i.

After each sweep, by renumbering the partitions, we get a new pure strategy
pro�le that again has the same structure as in De�nition 4.26. This completes
the description of Sweep. Gairing et al. [41] proved:

Lemma 4.28 (Gairing et al. [41]). The sweep property holds at the beginning
of each execution of Sweep. Moreover, in each execution, either a non-empty set
of links is added to the set of active links, or some non-empty set of links is done
in the current stage.

Lemma 4.29 (Gairing et al. [41]). After stage i, every player u with tra�c
wu ≥ w̃i is satis�ed.

Theorem 4.30 (Gairing et al. [41]). Consider the model of arbitrary players
with restricted strategy sets and identical links. Given an instance 〈w,m〉 and an
associated pure strategy pro�le L, Nashify-Restricted(L) computes a Nash
equilibrium with non-increased makespan social cost in polynomial time.

Remark 4.31. The algorithm Unsplittable-Blocking-Flow has been proved
useful also for the problem of scheduling unrelated parallel machines with the
objective to minimize makespan. For this problem, we were able to provide a
combinatorial 2-approximation algorithm [51], which is simpler and faster than
previously known algorithms. For the approximation algorithm, the procedure
Unsplittable-Blocking-Flow is an essential element.

4.4.2 Price of Anarchy

In this section we present a comprehensive collection of bounds on the pure price
of anarchy for the model of restricted strategy sets and makespan social cost.
Independently of our work, Awerbuch et al. [6] also have studied makespan social
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cost for the model of restricted strategy sets. They focused on the case of arbitrary
players and identical links, for which they proved that the pure price of anarchy
is Θ( log m

log log m). Awerbuch et al. [6] also consider mixed Nash equilibria. Here, they

showed that the price of anarchy is Θ( log m
log log log m).

We structure our results on the pure price of anarchy in this model as follows.
In Section 4.4.2.1 we prove a lower bound of Γ−1(m)−2 that holds for the case of
identical players and identical links (Theorem 4.4.2.1). This lower bound serves
also as a lower bound for the more general cases of arbitrary players or related
links (or of both). Section 4.4.2.2 shows an upper bound of Γ−1(n)+1 for the case
of identical players and related links (Theorem 4.33). Section 4.4.2.3 states that
for arbitrary players and identical links the pure price of anarchy is upper bounded
by Θ( log m

log log m) (Theorem 4.35). We stress that Theorem 4.35 is the only result
that can be found in (or even follows from) Awerbuch et al. [6]. Section 4.4.2.4
studies the general model of arbitrary players and related links. Here, we show
that the pure price of anarchy lies in between m − 1 and m (Theorem 4.37 and
Theorem 4.38). For our upper bounds in Section 4.4.2.2 and Section 4.4.2.3, we
use similar techniques as in [23].

4.4.2.1 Identical Players and Identical Links

We start by proving a lower bound on the pure price of anarchy. This lower bound
holds for the model of identical players with restricted strategy sets and identical
links.

Theorem 4.32. Consider the model of identical players with restricted strategy
sets and identical links. Then,

pPoAMSP > Γ−1(m)− 2 = Ω

(
log m

log log m

)
.

Proof. Consider an instance 〈n, m〉 with n identical players with restricted strat-
egy sets and m identical links. We construct the strategy sets of the players as
follows. Fix some su�ciently large integer p (to be determined later).

• Partition the set of links into p + 1 disjoint subsetsM0,M1, . . . ,Mp with:
� |M0| = 1.
� For each integer l, where 1 ≤ l ≤ p, |Ml| = (p− 1) ·

∏
j∈[l−1](p− j).

Note that since |M0| ≤ |M1| < . . . < |Mp| the partition implies that m <
(p+1) · |Mp| = (p+1)(p−1)(p−1)! < (p+1)! = Γ(p+2). So, p > Γ−1(m)−2.

• Partition the set of players into p disjoint subsets U0,U1, . . . ,Up−1 with:
� For each integer k, where 0 ≤ k ≤ p− 1, |Uk| = (p− k) · |Mk|.
� The strategy set of each player in Uk isMk ∪Mk+1.

We now construct a pure Nash equilibrium L and an optimal strategy pro�le Q
such that SCMSP(n, m,L) = p and SCMSP(n, m,Q) = 1.

• Construct a pure strategy pro�le L as follows.
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� All p players from the set U0 are assigned to the single link inM0.
� For each integer k, where 1 ≤ k ≤ p−1, p−k players from Uk are assigned

to each link inMk. (Note that no player is assigned to any link inMp.)
By the construction of L, the latency on each link in the set Ml, where
0 ≤ l ≤ p, is p − l. Thus, for each integer l, where 0 ≤ l ≤ p − 1, no player
assigned to a link in the set Ml can decrease its private cost by switching
either to a di�erent link from the setMl or to a link from the setMl+1. So,
all players are satis�ed in L and L is a Nash equilibrium with

SCMSP(n, m,L) = max
j∈[m]

Λj(L)

= max
0≤l≤p

(p− l)

= p .

• Note that |M0| + |M1| = p and |U0| = p. Note also that for each integer k,
1 ≤ k ≤ p− 1,

|Uk| = (p− k) · |Mk|
= (p− k) (p− 1) ·

∏
j∈[k−1]

(p− j)

= (p− 1) ·
∏
j∈[k]

(p− j)

= |Mk+1| .

So, it is possible to assign each player in U0 to a distinct link in M0 ∪M1,
and to assign each player in Uk, where 1 ≤ k ≤ p − 1, to a distinct link in
Mk+1. Call Q the resulting pure strategy pro�le. Then, SCMSP(n, m,Q) = 1
and Q is optimal. So, OPTMSP(n, m) = 1.

It follows that

pPoAMSP ≥
SCMSP(n, m,L)
OPTMSP(n, m)

= p

> Γ−1(m)− 2

= Ω

(
log m

log log m

)
,

as needed.

Theorem 4.32 implies that Ω
(

log m
log log m

)
is a lower bound on the pure price of

anarchy for the more general cases of arbitrary players or related links (or of
both).

4.4.2.2 Identical Players and Related Links

We proceed with an upper bound on the pure price of anarchy for the model of
identical players with restricted strategy sets and related links.
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Theorem 4.33. Consider the model of identical players with restricted strategy
sets and related links. Then,

pPoAMSP ≤ Γ−1(n) + 1 = O

(
log n

log log n

)
.

Proof. Consider any arbitrary instance 〈n, c〉 with an associated pure Nash equi-
librium L such that

k · OPTMSP(n, c) ≤ SCMSP(n, c,L) < (k + 1) · OPTMSP(n, c)

for some integer k ∈ N, and an optimal strategy pro�le Q. To prove an upper
bound on the price of anarchy, it su�ces to prove an upper bound on k + 1. To
do so, we will prove a lower bound (as a function of k) on the number of players
that are necessary for such a Nash equilibrium L. We will then use this lower
bound to prove an upper bound of O

(
log n

log log n

)
on k + 1. We continue with the

details of the formal proof.
Consider now a link j ∈ [m] with cj < 1

OPTMSP(n,c) . Note that in the optimal
strategy pro�le Q, no player is assigned to link j (since otherwise 1

cj
≤ Λj(Q) ≤

OPTMSP(n, c), or cj ≥ 1
OPTMSP(n,c)). If, in addition, Λj(L) < SCMSP(n, c,L),

then link j can be eliminated (together with all players assigned to it in L)
with no change to SCMSP(n, c,L) and no increase to OPTMSP(n, c). So, assume,
without loss of generality, that for each link j ∈ [m], either cj ≥ 1

OPTMSP(n,c) or
Λj(L) = SCMSP(n, c,L).

De�neM0 as the set of links j ∈ [m] with latency

Λj(L) ≥ k · OPTMSP(n, c) .

Clearly,M0 6= ∅. By de�nition of latency, this implies that∑
j∈M0

δj(L) ≥ k · OPTMSP(n, c) ·
∑

j∈M0

cj .

We prove an inductive claim:

Lemma 4.34. For each l ∈ [k − 1], there is a set of linksMl with
Ml ∩ (M0 ∪ . . . ∪Ml−1) = ∅ such that:

(1)
∑

j∈Ml
cj ≥ (k − 1) ·

∏
j∈[l−1](k − j) ·

∑
j∈M0

cj.
(2) For each link j ∈Ml, Λj(L) ≥ (k − l) · OPTMSP(n, c).
(3)
∑

j∈Ml
δj(L) ≥ (k − 1) ·

∏
j∈[l](k − j) · OPTMSP(n, c) ·

∑
j∈M0

cj.
(4) There are at least (k − 1) ·

∏
j∈[l](k − j) · OPTMSP(n, c) ·

∑
j∈M0

cj players
assigned by L to links in M0 ∪ . . . ∪ Ml whose strategy sets include links
outsideM0 ∪ . . . ∪Ml.

Proof. By (strong) induction on l. For the sake of shortening the proof, we merge
the proof for the basis case (where l = 1) into the proof for the induction step;
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thus, the case l = 1 will be treated separately (where needed) along the proof of
the induction step.

Assume inductively that for some integer l ≥ 1, the claim holds for all integers
not exceeding (l− 1). Notice that if l = 1, the induction hypothesis is empty. We
will prove the claim for l.

Assume �rst that l = 1. Recall that∑
j∈M0

δj(L) ≥ k · OPTMSP(n, c) ·
∑

j∈M0

cj .

In the optimal strategy pro�le Q, Λj(Q) ≤ OPTMSP(n, c) for each link j ∈
[m]. By de�nition of latency, this implies that

∑
j∈M0

δj(Q) ≤ OPTMSP(n, c) ·∑
j∈M0

cj . It follows that there are at least

k · OPTMSP(n, c) ·
∑

j∈M0

cj − OPTMSP(n, c) ·
∑

j∈M0

cj

= (k − 1) · OPTMSP(n, c) ·
∑

j∈M0

cj

excess players assigned by L to links in M0 whose strategy sets include links
outsideM0.

Assume now that l > 1. By induction hypothesis (condition (4)), there are at
least (k − 1) ·

∏
j∈[l−1](k − j) · OPTMSP(n, c) ·

∑
j∈M0

cj excess players assigned
by L to links in M0 ∪ . . . ∪ Ml−1 whose strategy sets include links outside
M0 ∪ . . . ∪Ml−1.

De�neMl as the set of all links outsideM0∪ . . .∪Ml−1 that are included
in the strategy sets of such excess players; so,Ml∩(M0∪ . . .∪Ml−1) = ∅.

Clearly, in Q, all these excess players are assigned to links inMl, so that∑
j∈Ml

δj(Q) ≥ (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj .

We now prove the four claimed properties for the setMl.

• Clearly, ∑
j∈Ml

cj =
∑

j∈Ml

δj(Q)
Λj(Q)

≥
∑

j∈Ml
δj(Q)

OPTMSP(n, c)

≥
(k − 1) ·

∏
j∈[l−1](k − j) · OPTMSP(n, c) ·

∑
j∈M0

cj

OPTMSP(n, c)

= (k − 1) ·
∏

j∈[l−1]

(k − j) ·
∑

j∈M0

cj ,

which proves (1).
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• To prove (2), consider any link j ∈Ml. Since j 6∈ M0, it follows that Λj(L) <
k · OPTMSP(n, c). Since SCMSP(n, c) ≥ k · OPTMSP(n, c), this implies that
Λj(L) < SCMSP(n, c). Therefore, cj ≥ 1

OPTMSP(n,c) .
If l = 1, there is some link j′ ∈ M0 to which L assigns some excess player.
So, assume l > 1. Recall that in the optimal strategy pro�le Q, Λj(Q) ≤
OPTMSP(n, c) for each link j ∈ Ml. By de�nition of latency, this implies
that

∑
j∈Ml−1

δj(Q) ≤ OPTMSP(n, c) ·
∑

j∈Ml−1
cj . By induction hypothesis

(condition (3)),∑
j∈Ml−1

δj(L) ≥ (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj .

It follows that there is some excess player assigned to some link j′ ∈Ml−1.
Since L is a Nash equilibrium, for each link j ∈Ml,

Λj′(L) ≤ Λj(L) +
1
cj

≤ Λj(L) + OPTMSP(n, c) .

Assume �rst that l = 1. By de�nition of the setM0,

Λj′(L) ≥ k · OPTMSP(n, c) .

It follows that

Λj(L) ≥ (k − 1) · OPTMSP(n, c),

and the proof of (2) for the basis case is now complete.
So, assume l > 1. By induction hypothesis (condition (2)),

Λj′(L) ≥ (k − (l − 1)) · OPTMSP(n, c)
= (k − l) · OPTMSP(n, c) + OPTMSP(n, c) .

It follows that

Λj(L) ≥ (k − l) · OPTMSP(n, c),

and the proof of (2) is now complete.
• To prove (3), we use (2) and (1) to derive that∑

j∈Ml

δj(L) =
∑

j∈Ml

Λj(L) · cj

≥ (k − l) · OPTMSP(n, c) ·
∑

j∈Ml

cj

≥ (k − l) · OPTMSP(n, c) · (k − 1) ·
∏

j∈[l−1]

(k − j) ·
∑

j∈M0

cj

= (k − 1) ·
∏
j∈[l]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj ,

as needed for proving (3).
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• Recall �rst that in the optimal strategy pro�le Q, Λj(Q) ≤ OPTMSP(n, c) for
each link j ∈ [m]. By de�nition of latency, this implies that

∑
j∈Ml

δj(Q) ≤
OPTMSP(n, c) ·

∑
j∈Ml

cj .
Clearly, the number of players assigned by L to links inM0 ∪ . . .∪Ml whose
strategy sets include links outsideM0 ∪ . . .Ml is at least∑

r∈[0,l]

∑
j∈Mr

(δj(L)− δj(Q))

=
∑

r∈[0,l−1]

∑
j∈Mr

(δj(L)− δj(Q)) +
∑

j∈Ml

δj(L)−
∑

j∈Ml

δj(Q)

≥ (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

+(k − l) · OPTMSP(n, c) ·
∑

j∈Ml

cj − OPTMSP(n, c) ·
∑

j∈Ml

cj

= (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

+(k − l − 1) · OPTMSP(n, c) ·
∑

j∈Ml

cj

≥ (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

+(k − l − 1) · OPTMSP(n, c) · (k − 1) ·
∏

j∈[l−1]

(k − j) ·
∑

j∈M0

cj

= (1 + (k − l − 1)) · (k − 1) ·
∏

j∈[l−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

= (k − 1) ·
∏
j∈[l]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj ,

as needed for proving (4).

The proof of the inductive claim is now complete.

We now prove an upper bound on k + 1. Fix any link j ∈ M0. Clearly,
Λj(L) ≤ SCMSP(n, c,L) < (k + 1) · OPTMSP(n, c). Recall that by de�nition of
M0, Λj(L) ≥ k ·OPTMSP(n, c) > 0. This implies that Λj(L) ≥ 1

cj
. It follows that

1
cj

< (k + 1) · OPTMSP(n, c). This implies that

OPTMSP(n, c) ·
∑

j∈M0

cj >
1

k + 1
.

Assume, without loss of generality, that k ≥ 3 (otherwise k+1 ∈ O(1)). Then,
by Lemma 4.34 (condition (3)),
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n ≥
∑

j∈Mk−1

δj(L) +
∑

j∈Mk−2

δj(L)

≥ (k − 1) ·
∏

j∈[k−1]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

+(k − 1) ·
∏

j∈[k−2]

(k − j) · OPTMSP(n, c) ·
∑

j∈M0

cj

> 2 · (k − 1) · (k − 1)! · 1
k + 1

≥ (k − 1)!
= Γ(k) .

Hence

k + 1 < Γ−1(n) + 1

= O

(
log n

log log n

)
,

as needed.

We remark that Theorems 4.32 and 4.33 leave a gap between our bounds on the
pure price of anarchy for the case of identical players. Closing this gap remains
an interesting open problem.

4.4.2.3 Arbitrary Players and Identical Links

With a similar proof as in Theorem 4.33, we can prove an upper bound on the pure
price of anarchy for the model of arbitrary players with restricted strategy sets
and identical links. This upper bound matches asymptotically the lower bound
shown in Theorem 4.32.

Theorem 4.35. Consider the model of arbitrary players with restricted strategy
sets and identical links. Then,

pPoAMSP = Γ−1(m) = O

(
log m

log log m

)
.

Theorems 4.33 and 4.35 together imply:

Theorem 4.36. Consider the model of identical players with restricted strategy
sets and identical links. Then,

pPoAMSP = O

(
log min{m,n}

log log min{m,n}

)
.

We remark that in the interesting cases where n ≥ m, Theorems 4.32 and 4.36
provide asymptotically tight bounds on the pure price of anarchy for the case of
identical players and identical links.
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4.4.2.4 Arbitrary Players and Related Links

We now turn to the model of arbitrary players with restricted strategy sets and
related links. For this model, we provide almost matching upper and lower bounds
on the pure price of anarchy. We �rst prove the lower bound:

Theorem 4.37. Consider the model of arbitrary players with restricted strategy
sets and related links. Then, pPoA ≥ m− 1.

Proof. Consider an instance 〈w, c〉 as follows:

• For each link j ∈ [m], the capacity cj is

cj =
(m− 1)!
(j − 1)!

.

• There are n = m− 1 players; the weight of player i ∈ [m− 1] is wi = ci.

Moreover, assume that for each player i ∈ [m − 1], the strategy set Si is Si =
{i, i + 1}.

• Construct a pure strategy pro�le L as follows:
Each player i ∈ [m− 1] is assigned to link i + 1.

We will argue that all players are satis�ed in L.
� On the one hand, the private cost of each player i ∈ [m− 1] \ {1} is

PCi(L) = Λi+1(L)

=
wi

ci+1

= i .

On the other hand, moving to the other link i in its strategy set would
lead to latency

δi + wi

ci
=

wi−1 + wi

ci

=
ci−1 + ci

ci

= (i− 1) + 1
= i .

It follows that player i ∈ [m− 1] \ {1} is satis�ed in L.
� Consider now player 1. Since c1 = c2 and there are no players assigned to

link 1, player 1 cannot decrease its private cost by switching from link 2
to link 1. So, player 1 is also satis�ed in L.

It follows that L is a Nash equilibrium. Clearly,

SCMSP(w, c,L) = max
j∈[m]

Λj(L)

= m− 1 .
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• Construct now a pure strategy pro�le Q as follows:
Each player i ∈ [m− 1] is assigned to link i.

Clearly, for each link j ∈ [m − 1], Λj(L) = wj

cj
= 1 and Λm(L) = 0. So,

SCMSP(w, c,Q) = 1. Thus, OPTMSP(w, c) ≤ 1.

It follows that

pPoAMSP ≥
SCMSP(w, c,L)
OPTMSP(w, c)

= m− 1 ,

as needed.

We now prove the upper bound:

Theorem 4.38. Consider the model of arbitrary players with restricted strategy
sets and related links. Then, pPoA < m.

Proof. Consider any arbitrary instance 〈w, c〉 with an associated Nash equilib-
rium L such that

k · OPTMSP(w, c) ≤ SCMSP(w, c,L) < (k + 1) · OPTMSP(w, c)

for some integer k ∈ N, and an optimal strategy pro�le Q. To prove an upper
bound on the price of anarchy, it su�ces to prove an upper bound on k + 1. To
do so, we will prove a lower bound (as a function of k) on the number of links
that are necessary for such a Nash equilibrium L. We will then use this lower
bound to prove an upper bound of m on k + 1. We continue with the details of
the formal proof.

We prove an inductive claim:

Lemma 4.39. For each integer i ∈ [k], there exists a distinct link li ∈ [m] with
latency Λli(L) ≥ (k − i + 1) · OPTMSP(w, c).

Proof. By (strong) induction on i. For the basis case, let i = 1. Since
SCMSP(w, c,L) ≥ k · OPTMSP(w, c), there is a link l1 ∈ [m] with latency
Λl1(L) ≥ k · OPTMSP(w, c), as needed.

Assume inductively that the claim holds for all integers not exceeding (i− 1)
where i ≥ 2. We will prove the claim for i. By induction hypothesis, there exist
i− 1 distinct links l1, . . . , li−1 with

Λlj (L) ≥ (k − j + 1) · OPTMSP(w, c) ,

for each integer j ∈ [i − 1]. Since j ≤ i − 1 and i ≤ k, it follows that j ≤ k − 1.
So, k − j + 1 ≥ 2. It follows that for each integer j ∈ [i− 1],

Λlj (L) > OPTMSP(w, c) .

Since OPTMSP(w, c) = SCMSP(w, c,Q) ≥ Λlj (Q) for each integer j ∈ [i − 1], it
follows that for each integer j ∈ [i − 1], Λlj (L) > Λlj (Q). So,

∑
j∈[i−1] Λlj (L) >
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j∈[i−1] Λlj (Q). It follows that there is some player i0 assigned by L to some

link in the set {l1, . . . , li−1} that is assigned by Q to some link li 6∈ {l1, . . . , li−1}
(otherwise,

∑
j∈[i−1] Λlj (Q) ≥

∑
j∈[i−1] Λlj (L)). Thus, li is an allowed link for

player i0.
Since L is a Nash equilibrium, player i0 has no incentive to switch from its

link lj , where j ∈ [i− 1], to link li. Since player i0 is assigned to link li in Q, the
additional latency on link li in L due to player i0 switching to link li is at most
the latency on link li in Q; since Q is optimal, this additional latency is at most
OPTMSP(w, c). It follows that

Λlj (L) ≤ Λli(L) + OPTMSP(w, c) .

By induction hypothesis,

Λlj (L) ≥ (k − j + 1) · OPTMSP(w, c)
≥ (k − (i− 1) + 1) · OPTMSP(w, c)
= (k − i + 1) · OPTMSP(w, c) + OPTMSP(w, c) .

It follows that

Λli(L) ≥ (k − i + 1) · OPTMSP(w, c) .

The proof of the inductive claim is now complete.

Lemma 4.39 implies that for L, there are k distinct links with latency
larger than OPTMSP(w, c). Since

∑
j∈[m] Λj(L) =

∑
j∈[m] Λj(Q) and Λj(Q) ≤

OPTMSP(w, c) for each link j ∈ [m], it follows that there is some other link with
latency smaller than OPTMSP(w, c). So, k ≤ m− 1 or k + 1 ≤ m, as needed.

4.5 Polynomial Social Cost

We now come back to the case of unrestricted strategy sets and study polynomial
social cost for routing games on parallel links. Throughout this section, we restrict
to the case of identical links. Recall, that polynomial social cost is de�ned with
the help of a certain polynomial cost function πd(λ) of degree d. Using a di�erent
de�nition of social cost does not alter the de�nition of private cost nor the set
of (pure) Nash equilibria. Thus, the results on sequences of sel�sh steps from
Section 4.2.1 also apply to this model. Furthermore, Lücking [70] showed that
sel�sh steps do not increase polynomial social cost. This implies that Nashify-
Identical from Section 4.2.2 can be used to convert a given strategy pro�le into
a pure Nash equilibrium with non-increased polynomial social cost.

In this section, we are interested in the price of anarchy for polynomial social
cost. We start by proving a simple fact (Lemma 4.40), that will be instrumental
for reducing the polynomial price of anarchy for arbitrary polynomials (with non-
negative coe�cients) to the monomial price of anarchy. This result holds for arbi-
trary players. We then focus on the case of identical players. Here, we show that
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the monomial social cost of the fully mixed Nash equilibrium can be expressed
as a combinatorial sum of Stirling numbers of the second kind (Corollary 4.41).
With the help of Corollary 4.41, we show that fully mixed Nash equilibria max-
imize polynomial social cost, for the case of identical players and two identical
links (Theorem 4.42). Afterwards, we consider the case of identical players and
arbitrary many identical links. Here, we show that fully mixed Nash equilibria

maximize polynomial social cost up to a factor
(
1 + 1

n−1

)d
(Theorem 4.44). Re-

cently, it was shown that this factor is not necessary (Theorem 4.47).
Equipped with these results, we show that for the model of identical players

and identical links, the price of anarchy is upper bounded by Bd. Recall that
Bd is the Bell number of order d. Our analysis �rst shows that Bd is an upper
bound on the price of anarchy, if the polynomial cost function is the d'th power
(Theorem 4.48). As a corollary we get that the same upper bound also holds for
general polynomial cost functions (Corollary 4.49). We show in Theorem 4.50
and Corollary 4.51 that, for the special case of 2 links, both upper bounds reduce
from Bd to 2d−2

(
1 +

(
1
n

)d−1
)
.

We start by proving a simple fact that holds for arbitrary players.

Lemma 4.40 (From Polynomials to Monomials). Consider the model of
arbitrary players and identical links. Fix an instance 〈w,m〉 with an associated
Nash equilibrium P. Then,

SCπd(λ)(w,m,P)
OPTπd(λ)(w,m)

≤ max
t∈[d]

{
SCλt(w,m,P)
OPTλt(w,m)

}
.

Proof. Our proof will use the expression of polynomial social cost as a linear
combination of monomial social costs (see Section 3.1.5.2). The proof will manip-
ulate sums of fractions while relying on the non-negativeness of the coe�cients
in the latency cost function. We continue with the details of the formal proof.

Let Q be an optimal strategy pro�le for the instance 〈w,m〉. Then,

SCπd(λ)(w,m,P)
OPTπd(λ)(w,m)

=
SCπd(λ)(w,m,P)
SCπd(λ)(w,m,Q)

=
a0 +

∑
t∈[d] at · SCλt(w,m,P)

a0 +
∑

t∈[d] at · SCλt(w,m,Q)
.

Since Q is an optimal strategy pro�le, SCπd(λ)(w,m,P) ≥ SCπd(λ)(w,m,Q).
Since the coe�cients at are non-negative for all t ∈ [d], it follows that

∑
t∈[d] at ·

SCλt(w,m,P) ≥
∑

t∈[d] at · SCλt(w,m,Q). Since a0 ≥ 0, this implies that

a0 +
∑

t∈[d] at · SCλt(w,m,P)

a0 +
∑

t∈[d] at · SCλt(w,m,Q)
≤
∑

t∈[d] at · SCλt(w,m,P)∑
t∈[d] at · SCλt(w,m,Q)

.
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Now de�ne, for each t ∈ [d],

K(t,P,Q) =
SCλt(w,m,P)
SCλt(w,m,Q)

.

Observe, that for each t ∈ [d], SCλt(w,m,Q) > 0; so K(t,P,Q) is well de�ned.
It follows that∑

t∈[d] at · SCλt(w,m,P)∑
t∈[d] at · SCλt(w,m,Q)

=

∑
t∈[d] at · SCλt(w,m,Q) ·K(t,P,Q)∑

t∈[d] at · SCλt(w,m,Q)

≤
maxt∈[d] {K(t,P,Q)} ·

∑
t∈[d] at · SCλt(w,m,Q)∑

t∈[d]|at>0 at · SCλt(w,m,Q)

= max
t∈[d]
{K(t,P,Q)}

= max
t∈[d]

{
SCλt(w,m,P)
SCλt(w,m,Q)

}
.

Since SCλt(w,m,Q) ≥ OPTλt(w,m) the claim follows.

4.5.1 Identical Players

In the following we restrict to the case of identical players. In this case, by De�-
nition 2.1, polynomial social cost reduces to

SCπd(λ)(n, m,P) =
∑

j∈[m]

∑
A⊆[n]

(∏
i∈A

pij

)∏
i6∈A

(1− pij)

πd(|A|)

=
∑

j∈[m]

BF(〈p1j , . . . , pnj〉, πd(λ)) .

So, polynomial social cost is a sum of binomial functions, one for each link.

4.5.1.1 Fully Mixed Nash Equilibria

We proceed by providing a simple expression for the monomial social cost of
the fully mixed Nash equilibrium. Recall that in the case of identical links, all
probabilities are identical (and equal to 1

m) for the fully mixed Nash equilibrium
F. Hence, Proposition 2.2 implies now that the monomial social cost of the fully
mixed Nash equilibrium F is a combinatorial sum of Stirling numbers of the
second kind.

Corollary 4.41. Consider the model of identical players and identical links. Fix
an instance 〈n, m〉. Then,

SCλd(n, m,F) = m
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt .
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A lower bound on the monomial optimum for the case of identical players is
OPTλd(n, m) ≥ m

(
n
m

)d if n ≥ m, while OPTλd(n, m) = n if n < m.
We are now ready to prove that fully mixed Nash equilibria maximize poly-

nomial social cost for the case of identical players and two identical links.

Theorem 4.42. Consider the model of identical players and two identical links.
Fix an instance 〈n, 2〉 with associated Nash equilibrium P and fully mixed Nash
equilibrium F. Then,

SCπd(λ)(n, 2,P) ≤ SCπd(λ)(n, 2,F) .

Proof. Since polynomial social cost is a linear combination (with non-negative
coe�cients) of monomial social costs, it su�ces to prove the claim for a monomial
latency cost function πd(λ) = λd.

We partition the set of players [n] into three sets:

U1 = {i ∈ [n] | supporti(P) = {1}},
U2 = {i ∈ [n] | supporti(P) = {2}},
U12 = {i ∈ [n] | supporti(P) = {1, 2}}.

Without loss of generality, assume that |U1| ≤ |U2|. Denote u = |U1|, v = |U2|−u
and r = |U12|.

We will treat separately pure and non-pure Nash equilibria. In the second
case, we will distinguish between the subcase where there are no pure players
assigned to one of the two links (that is, u = 0), and the subcase where there are
pure players assigned to each of the two links (that is, u > 0). The second subcase
will be reduced to the �rst. We now continue with the details of the formal proof.
We proceed by case analysis.

1. Assume �rst that P is pure. Since P is a Nash equilibrium, Λ1(P) ≤ Λ2(P)+1
and Λ2(P) ≤ Λ1(P) + 1. So, |Λ1(P)−Λ2(P)| ≤ 1. Note that SCλd(n, 2,P) =
(Λ1(P))d+(Λ2(P))d and Λ1(P)+Λ2(P) = n. Hence, SCλd(n, 2,P) is minimum
when |Λ1(P) − Λ2(P)| ≤ 1. It follows that P is an optimal strategy pro�le,
so that SCλd(n, 2,P) ≤ SCλd(n, 2,F), as needed.

2. Assume now that P is not pure, so that r > 0. There are two separate cases.
a) Assume �rst that u = 0. So, no pure player is assigned to link 1. We �rst

prove that, in this case, r > 1. Assume, by way of contradiction, that
r = 1, and consider the single mixed player i0. Then, λi01(P) = 1, while
λi02(P) = |U2| + 1. Since P is a Nash equilibrium, λi01(P) = λi02(P). It
follows that |U2| = 0. This implies that n = r = 1, a contradiction. It
follows that r > 1. So, r ∈ [n−1]\{1} mixed players are assigned to both
links and n− r pure players are assigned to link 2.
Consider any arbitrary player i ∈ U12. Clearly,

λi1(P) = Λ1(P)− pi1 + 1
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and

λi2(P) = Λ2(P)− pi2 + 1
= Λ2(P)− (1− pi1) + 1.

Since P is a Nash equilibrium, λi1(P) = λi2(P). This implies that

pi1 =
Λ1(P)− Λ2(P) + 1

2
.

So, pi1 is independent of i. It follows that each mixed player chooses link
1 with probability p1 = pi1 and link 2 with probability p2 = 1 − p1.
Hence, Λ1(P) = rp1 and Λ2(P) = (n − r) + r(1 − p1). We obtain that
p1 = rp1−((n−r)+r(1−p1))+1

2 , from which we derive that

p1 =
1
2

+
n− r

2(r − 1)
,

p2 =
1
2
− n− r

2(r − 1)
.

Clearly, Λ1(P) = rp1 and Λ2(P) = n − Λ1(P). Denote α = n
2 and β =

n−r
2(r−1) to derive that Λ1(P) = α+β and Λ2(P) = α−β. Then, the average
probabilities on links 1 and 2 are

p̃1 =
Λ1(P)

r
=

α + β

r
, and

p̃2 =
Λ2(P)

n
=

α− β

n
,

respectively.
On one hand, Lemma 2.3 and Proposition 2.2 imply that

SCλd(n, 2,P) = BF

〈p1, . . . , p1︸ ︷︷ ︸
r entries

〉, λd


+BF

〈p2, . . . , p2︸ ︷︷ ︸
r entries

, 1, . . . , 1︸ ︷︷ ︸
n− r entries

〉, λd


≤ BF

(
p̃1, r, λ

d
)

+ BF
(
p̃2, n, λd

)
=
∑
t∈[d]

(
(p̃1)t · S(d, t) · rt

)
+
∑
t∈[d]

(
(p̃2)t · S(d, t) · nt

)
=
∑
t∈[d]

S(d, t)
(

(α + β)t · r
t

rt
+ (α− β)t · n

t

nt

)
.
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On the other hand, Lemma 4.41 and Proposition 2.2 imply that

SCλd(n, 2,F) = BF
(
〈f11, . . . , fn1〉, λd

)
+ BF

(
〈f12, . . . , fn2〉, λd

)
= 2BF

(
1
2
, n, λd

)
= 2BF

(α

n
, n, λd

)
= 2

∑
t∈[d]

(α

n

)t
· S(d, t) · nt

=
∑
t∈[d]

S(d, t) ·
(

2 αt · n
t

nt

)
.

So, clearly,

SCλd(n, 2,F)− SCλd(n, 2,P) =
∑
t∈[d]

S(d, t) ·∆(t) ,

where for each integer t ∈ [d],

∆(t) = 2αt · n
t

nt
−
(

(α + β)t · r
t

rt
+ (α− β)t · n

t

nt

)
.

We prove:

Lemma 4.43. For each integer t ≥ 1, ∆(t) ≥ 0.

Proof. By induction on t. For the basis case where t = 1, the claim holds
since 2α − ((α + β) + (α− β)) = 0. Assume inductively that the claim
holds for (t − 1), where t ≥ 2. For the induction step, we will prove the
claim for t.
Note �rst that by the de�nition of α and β and since r ≤ n,

(α + β) · r − (t− 1)
r

=
(n− 1)r
2(r − 1)

· r − (t− 1)
r

=
n− 1

2
· r − (t− 1)

r − 1

≤ n− 1
2
· n− (t− 1)

n− 1

=
n

2
· n− (t− 1)

n

= α · n− (t− 1)
n

.
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We now use this fact to derive that

(α + β)t · r
t

rt
+ (α− β)t · n

t

nt

= (α + β) · r − (t− 1)
r

· (α + β)t−1 · r
t−1

rt−1

+(α− β) · n− (t− 1)
n

· (α− β)t−1 · n
(t−1)

nt−1

≤ α · n− (t− 1)
n

· (α + β)t−1 · r
t−1

rt−1

+(α− β) · n− (t− 1)
n

· (α− β)t−1 · n
(t−1)

nt−1

≤ α · n− (t− 1)
n

· (α + β)t−1 · r
t−1

rt−1

+α · n− (t− 1)
n

· (α− β)t−1 · n
(t−1)

nt−1

≤ α · n− (t− 1)
n

·

(
(α + β)t−1 · r

t−1

rt−1
+ (α− β)t−1 · n

(t−1)

nt−1

)

≤ α · n− (t− 1)
n

· 2αt−1 · n
t−1

nt−1

= 2αt · n
t

nt
,

where we used the induction hypothesis in the last inequality. This com-
pletes the proof of the lemma.
Lemma 4.43 implies that SCλd(n, 2,P) ≤ SCλd(n, 2,F). The proof for the
case u = 0 that SCπd(λ)(n, 2,P) ≤ SCπd(λ)(n, 2,F) is now complete.

b) Assume now that u > 0.
Consider the mixed strategy pro�le Q for the instance 〈n, 2〉, which assigns
u pure players to each link (with probability 1) and ñ = n − 2u mixed
players to each link with probability 1

2 . Clearly, Q is a Nash equilibrium.

Note that the average probability for each link is u·1+(n−2u)· 1
2

n = 1
2 , which

is precisely the probability with which each player is assigned to a link in
the fully mixed Nash equilibrium F. Since polynomial social cost is a sum
of binomial functions and the function πd(λ) = λd is convex, Lemma 2.3
implies that

SCλd(n, 2,Q) ≤ SCλd(n, 2,F).

In the rest, we will prove that SCλd(n, 2,P) ≤ SCλd(n, 2,Q), and this will
complete the proof.
Denote F̃ the (unique) fully mixed Nash equilibrium associated with the
instance 〈ñ, 2〉. On one hand,

SCλd(n, 2,Q) = SC(λ+u)d(ñ, 2, F̃).
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On the other hand,

SCλd(ñ, 2,P) = SC(λ+u)d(ñ, 2, P̃),

where P̃ is a mixed strategy pro�le associated with the instance 〈ñ, 2〉
that assigns v pure players to link 2 and r mixed players to both links.
Since the function (λ + u)d is a linear combination of monomials in λ
with non-negative coe�cients, we are reduced to Case (a). Hence, it fol-
lows that SC(λ+u)d(ñ, 2, P̃) ≤ SC(λ+u)d(ñ, 2, F̃). Hence, this implies that
SCλd(n, 2,P) ≤ SCλd(n, 2,Q), as needed. The proof for the case u > 0
that SCπd(λ)(n, 2,P) ≤ SCπd(λ)(n, 2,F) is now complete.

Since we examined all possible cases, the proof is now complete.

We now turn to the case of m identical links. We prove that the polynomial
social cost of any Nash equilibrium is upper bounded by (1 + 1

n−1)d times the
polynomial social cost of the fully mixed Nash equilibrium.

Theorem 4.44. Consider the model of identical players and identical links. Fix
an instance 〈n, m〉 with associated Nash equilibrium P and fully mixed Nash equi-
librium F. Then,

SCπd(λ)(n, m,P) ≤
(

1 +
1

n− 1

)d

· SCπd(λ)(n, m,F) .

Proof. We �rst consider the case of the monomial latency cost function πd(λ) =
λd. We will later reduce the general case to this case.

Denote α = n
m . For each link j ∈ [m], denote rj = |{i ∈ [n] : pij > 0}|.

Assume, without loss of generality, that for each link j ∈ [m], rj ≥ 1. Clearly, the
average probability on link j is Λj(P)

rj
. De�ne βj = |Λj(P)−α|. Roughly speaking,

βj is the excess expected latency on link j from the fair share α. Partition the
set of links [m] into

M1 = {j ∈ [m] | 0 < Λj(P) ≤ α} ,

M2 = {j ∈ [m] | Λj(P) > α} .

Clearly, Λj(P) = α−βj for j ∈M1 and Λj(P) = α+βj for j ∈M2. De�ne now
qj = mini∈[n] {pij | pij > 0}. Clearly, qj ≤ Λj(P)

rj
.

De�ne β = maxj∈M1 βj . We prove a simple fact.

Lemma 4.45. For each link j ∈M2 with rj ≥ 2, βj ≤ α−rjβ
rj−1 .

Proof. Fix a link j ∈ M2 with rj ≥ 2 and a player i0 ∈ {i ∈ [n] | pij > 0} such
that pi0j = qj . Consider a link j′ ∈ M1 such that βj′ = β. Since P is a Nash
equilibrium, λi0j(P) ≤ λi0j′(P). Clearly, λi0j(P) = Λj(P)−qj+1 = α+βj−qj+1.
Also, λi0j′(P) = Λj′(P) − pi0j′ + 1 ≤ Λj′(P) + 1 = α − β + 1. It follows that
α + βj − qj + 1 ≤ α − β + 1 or βj + β ≤ qj ≤ Λj(P)

rj
= α+βj

rj
. This implies that

βj ≤ α−rjβ
rj−1 , as needed.
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On one hand, Lemma 2.3 and Proposition 2.2 imply that

SCλd(n, m,P)

=
∑

j∈[m]

BF
(
〈p1j , . . . , pnj〉, λd

)
=
∑

j∈M1

BF
(
〈p1j , . . . , pnj〉, λd

)
+
∑

j∈M2

BF
(
〈p1j , . . . , pnj〉, λd

)
≤
∑

j∈M1

BF

(
α− βj

rj
, rj , λ

d

)
+
∑

j∈M2

BF

(
α + βj

rj
, rjλ

d

)

=
∑

j∈M1

∑
t∈[d]

(
α− βj

rj

)t

· S(d, t) · (rj)t +
∑

j∈M2

∑
t∈[d]

(
α + βj

rj

)t

· S(d, t) · (rj)t

=
∑
t∈[d]

S(d, t) ·

 ∑
j∈M1

(
α− βj

rj

)t

· (rj)t +
∑

j∈M2

(
α + βj

rj

)t

· (rj)t

 .

On the other hand Lemma 4.41 and Proposition 2.2 imply that

SCλd(n, m,F) =
∑

j∈[m]

BF
(
〈f1j , . . . , fnj〉, λd

)
= m · BF

(
1
m

,n, λd

)
=
∑
t∈[d]

S(d, t) ·
(

m · αt · n
t

nt

)
.

For each integer t ∈ [d] de�ne the function

∆(t) =
(

n

n− 1

)t(
m · αt · n

t

nt

)

−

 ∑
j∈M1

(
α− βj

rj

)t

· (rj)t +
∑

j∈M2

(
α + βj

rj

)t

· (rj)t

 .

We prove:

Lemma 4.46. For each integer t ≥ 1, ∆(t) ≥ 0.

Proof. By induction on t. For the basis case, let t = 1. Then,

∆(t) = m · α−

 ∑
j∈M1

(α− βj) +
∑

j∈M2

(α + βj)


= m · α−

 ∑
j∈M1

Λj(P) +
∑

j∈M2

Λj(P)


= m · α− n

= 0 ,
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as needed.
Assume inductively that the claim holds for (t − 1), for some integer t ≥ 2.

For the induction step, we will prove the claim for t.
Since (rj)t = 0 for each j ∈M1 ∪M2 with rj < t, it follows that

∑
j∈M1

(
α− βj

rj

)t

(rj)t +
∑

j∈M2

(
α + βj

rj

)t

(rj)t

=
∑

j∈M1:rj≥t

(
α− βj

rj

)t

(rj)t +
∑

j∈M2:rj≥t

(
α + βj

rj

)t

(rj)t

=
∑

j∈M1:rj≥t

(α− βj)
rj − (t− 1)

rj

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

(α + βj)
rj − (t− 1)

rj

(
α + βj

rj

)t−1

(rj)t−1 .

Note that for each link j ∈ [m], the fraction rj−(t−1)
rj

is monotonically increasing
in rj (since t ≥ 2). Since for each j ∈ [m], rj ≤ n and βj ≥ 0, it follows that

∑
j∈M1

(
α− βj

rj

)t

(rj)t +
∑

j∈M2

(
α + βj

rj

)t

(rj)t

≤
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

(α + βj)
rj − (t− 1)

rj

(
α + βj

rj

)t−1

(rj)t−1 . (4.21)

We proceed by case analysis.

1. Assume that for each link j ∈ M2 with rj ≥ t, βj ≤ n−rj

m(rj−1) . The implies

that for each link j ∈M2 with rj ≥ t, α + βj ≤ (n−1)rj

m(rj−1) . Then, with (4.21),

∑
j∈M1

(
α− βj

rj

)t

(rj)t +
∑

j∈M2

(
α + βj

rj

)t

(rj)t

≤
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

(n− 1)rj

m(rj − 1)
rj − (t− 1)

rj

(
α + βj

rj

)t−1

(rj)t−1
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=
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

n− 1
m

rj − (t− 1)
rj − 1

(
α + βj

rj

)t−1

(rj)t−1

≤
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

n− 1
m

n− (t− 1)
n− 1

(
α + βj

rj

)t−1

(rj)t−1

=
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

α
n− (t− 1)

n

(
α + βj

rj

)t−1

(rj)t−1

= α
n− (t− 1)

n
·

·

 ∑
j∈M1:rj≥t

(
α− βj

rj

)t−1

(rj)t−1 +
∑

j∈M2:rj≥t

(
α + βj

rj

)t−1

(rj)t−1


= α

n− (t− 1)
n

 ∑
j∈M1

(
α− βj

rj

)t−1

(rj)t−1 +
∑

j∈M2

(
α + βj

rj

)t−1

(rj)t−1


≤ α

n− (t− 1)
n

(
n

n− 1

)t−1(
m · αt−1 · n

t−1

nt−1

)
<

(
n

n− 1

)t(
mαt n

t

nt

)
,

where the induction hypothesis was used for the last inequality. This implies
that ∆(t) ≥ 0, as needed.

2. Assume now that there exists a link j ∈ M2 with rj ≥ t such that βj >
n−rj

m(rj−1) . By Lemma 4.45, for each link j ∈M2 with rj ≥ t ≥ 2,

(α + βj) ·
rj − (t− 1)

rj
≤
(

α +
α− rjβ

rj − 1

)
· rj − (t− 1)

rj

β≥0
≤ αrj

rj − 1
· rj − (t− 1)

rj

= α · rj − (t− 1)
rj − 1

≤ α · n− (t− 1)
n− 1

.
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Thus, with (4.21),

∑
j∈M1

(
α− βj

rj

)t

(rj)t +
∑

j∈M2

(
α + βj

rj

)t

(rj)t

≤
∑

j∈M1:rj≥t

α
n− (t− 1)

n

(
α− βj

rj

)t−1

(rj)t−1

+
∑

j∈M2:rj≥t

α
n− (t− 1)

n− 1

(
α + βj

rj

)t−1

(rj)t−1

≤ n

n− 1
α

n− (t− 1)
n

·

·

 ∑
j∈M1:rj≥t

(
α− βj

rj

)t−1

(rj)t−1 +
∑

j∈M2:rj≥t

(
α + βj

rj

)t−1

(rj)t−1


≤ n

n− 1
α

n− (t− 1)
n

(
n

n− 1

)t−1(
m · αt−1 nt−1

nt−1

)
=
(

n

n− 1

)t(
mαt n

t

nt

)
,

where the induction hypothesis was used for the last inequality. This implies
that ∆(t) ≥ 0, as needed.

This completes the proof of the Lemma 4.46.

Lemma 4.46 implies that SCλd(n, m,P) ≤
(
1 + 1

n−1

)d
· SCλd(n, m,F). Hence,

SCπd(λ)(n, m,P) =
∑

0≤t≤d

at · SCλt(n, m,P)

≤
∑

0≤t≤d

at ·
(

1 +
1

n− 1

)t

· SCλt(n, m,F)

≤
(

1 +
1

n− 1

)d

·
∑

0≤t≤d

at · SCλt(n, m,F)

=
(

1 +
1

n− 1

)d

· SCπd(λ)(n, m,F) ,

as needed. The proof of Theorem 4.44 is now complete.

We remark that the proof of Theorem 4.44 follows the proof of Theorem 4.42.
However, it is more complicated in dealing with an arbitrary number of links.

In the process of publishing the corresponding paper in a journal, an unknown
referee contributed a substantial improvement to Theorem 4.44, showing that the

factor
(
1 + 1

n−1

)d
is not necessary.
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Theorem 4.47 (Gairing et al. [43]). Consider the model of identical players
and identical links. Fix an instance 〈n, m〉 with associated Nash equilibrium P
and fully mixed Nash equilibrium F. Then,

SCπd(λ)(n, m,P) ≤ SCπd(λ)(n, m,F) .

4.5.1.2 The Monomial and Polynomial Prices of Anarchy.

We are now ready to prove our upper bounds on the price of anarchy for monomial
and polynomial social cost.

Identical Players and Identical Links

We �rst consider the model of identical players and identical links. We use The-
orem 4.47 to prove upper bounds on the price of anarchy for monomial and
polynomial social cost (Theorem 4.48 and Corollary 4.49).

Theorem 4.48. Consider the model of identical players and identical links.
Then,

PoAλd ≤ Bd .

Proof. Fix any instance 〈n, m〉 with an associated fully mixed Nash equilibrium
F. By Proposition 2.2,

SCλd(n, m,F) =
∑

j∈[m]

BF
(
〈f1j , . . . , fnj〉, λd

)
= m · BF

(
〈f1j , . . . , fnj〉, λd

)
= m ·

∑
t∈[d]

(
1
m

)t

· S(d, t) · nt

≤ m ·
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt .

We now proceed by case analysis.

1. Assume �rst that n ≥ m. Recall that in this case, OPTλd(w,m) ≥ m ·
(

n
m

)d.
Hence,

SCλd(n, m,F)
OPTλd(n, m)

≤ 1
m
·
(m

n

)d
·m ·

∑
t∈[d]

(
1
m

)t

· S(d, t) · nt

=
∑
t∈[d]

(m

n

)d−t
· S(d, t)

≤
∑
t∈[d]

S(d, t)

= Bd .
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2. Assume now that n < m. Recall that, in this case, OPTλd(n, m) ≥ n. Hence,

SCλd(n, m,F)
OPTλd(n, m)

≤ 1
n

m ·
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt

=
∑
t∈[d]

( n

m

)t−1
· S(d, t)

≤
∑
t∈[d]

S(d, t)

= Bd .

So, in all cases, SC
λd (n,m,F)

OPT
λd (n,m) ≤ Bd. Theorem 4.47 implies now the claim.

Note that the upper bound on the monomial price of anarchy established in
Theorem 4.48 approaches Bd as n approaches in�nity. By Lemma 4.40 and since
the Bell numbers are increasing in their order, Theorem 4.48 immediately implies:

Corollary 4.49. Consider the model of identical players and identical links.
Then,

PoAπd(λ) ≤ Bd .

Identical Players and Two Identical Links

We now turn to the model of identical players and two identical links. Again,
we use Theorem 4.47 to prove (tight) upper bounds on the price of anarchy for
monomial and polynomial social cost (Theorem 4.50 and Corollary 4.51).

Theorem 4.50. Consider the model of identical players and two identical links.
Then,

PoAλd ≤ 2d−2

(
1 +

(
1
n

)d−1
)

.

This bound is tight for n = 2.

Proof. We start with the upper bound. Fix any instance 〈n, 2〉 with an associated
Nash equilibrium P. On the one hand, by Theorem 4.47,
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SCλd(n, 2,P) ≤ SCλd(n, 2,F)

= 2 · BF(
1
2
, n, λd)

= 2 ·
∑
t∈[d]

(
1
2

)t

· S(d, t) · nt

≤ 2 ·

1
2
· S(d, 1) · n +

1
4
·
∑

2≤i≤d

S(d, i)ni


= 2 ·

(
1
2
· S(d, 1) · n +

1
4
· (nd − S(d, 1) · n)

)
= 2 ·

(
n

4
+

nd

4

)
.

On the other hand,

OPTλd(n, 2) ≥ 2 ·
(n

2

)d
.

It follows that

SCλd(n, 2,F)
OPTλd(n, 2)

≤
(

2
n

)d

·
(

n

4
+

nd

4

)
= 2d−2

(
1 +

(
1
n

)d−1
)

,

as needed. To prove that the upper bound is tight for n = 2, note that it becomes
2d−2 + 1

2 . We continue to prove that this is also a lower bound for n = 2. Fix an
instance 〈2, 2〉. Then,

OPTλd(2, 2) = 2 ,

while

SCλd(2, 2,F) = 2 ·
∑
t∈[d]

(
1
2

)t

· S(d, t) · 2t

= 2 ·
(

1
2
· S(d, 1) · 2 +

1
4
· S(d, 2) · 2 · 1

)
= 2 ·

(
S(d, 1) +

1
2
· S(d, 2)

)
= 2 ·

(
1 +

1
2
· (2d−1 − 1)

)
= 2 ·

(
2d−2 +

1
2

)
.

It follows that PoAλd ≥ 2d−2 + 1
2 as needed.

By Lemma 4.40, Theorem 4.50 immediately implies:
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Corollary 4.51. Consider the model of identical players and two identical links.
Then,

PoAπd(λ) ≤ 2d−2

(
1 +

(
1
n

)d−1
)

.

This bound is tight for n = 2.

Proof. We will show that for all integer t ∈ [2, d] the upper bound on PoAλt is
larger than the upper bound on PoAλt−1 . Clearly,

2t−2

(
1 +

(
1
n

)t−1
)
− 2t−3

(
1 +

(
1
n

)t−2
)

= 2t−3

(
2 +

2
n

(
1
n

)t−2
)
− 2t−3

(
1 +

(
1
n

)t−2
)

= 2t−3

(
1−

(
1− 2

n

)(
1
n

)t−2
)

≥ 2t−3

(
1−

(
1− 2

n

))
=

2t−2

n
> 0 ,

as needed. Tightness, for n = 2, follows from the tightness of Theorem 4.50

4.6 Conclusion and Discussion

In this chapter, we have studied routing games on parallel links. For this setting,
we have provided many results concerning the computational complexity of pure
Nash equilibria. Moreover, we proved an extensive collection of results related to
the price of anarchy in various sub-models. Although, routing games on parallel
links have received a lot of attention, many problems are still tantalizing open.
We only state some of them.

• For the model of identical links, our nashi�cation algorithm NashifyIdenti-

cal is based only on sel�sh steps. Is it also possible to provide a polynomial-
time nashi�cation algorithm, for the model of related links, that solely depends
on sel�sh steps?

• We have described a polynomial-time algorithm to compute a pure Nash equi-
librium for the model of restricted strategy sets and identical links. Is it possi-
ble to provide such an algorithm for the model of restricted strategy sets and
related links?

• Our bounds on the price of anarchy for polynomial social cost are all for the
model of identical players. Proving such bounds for arbitrary players remains
a challenging open problem.





5

Weighted Congestion Games

5.1 Introduction

In this chapter, we present strong results on the price of anarchy for congestion
games and weighted congestion games. Such games have been formally introduced
in Section 3.2. In a congestion game, there is a set of resources and the strat-
egy set of each player is a subset of the power set of the resources. Thus, a pure
strategy might consist of multiple resources. This stands in contrast to the games
studied in Chapter 4 where each pure strategy consists of a single resource (link).
For each resource, there is a latency function which describes the latency of this
resource. In this chapter, we allow for polynomial latency functions with max-
imum degree d and non-negative coe�cients. Each player aims to minimize its
private cost which is de�ned as the (expected) sum of the latencies of its chosen
resources. For (unweighted) congestion games the latency of a resource only de-
pends on the number of players sharing this resource. In a weighted congestion
game, players have weights and thus di�erent in�uence on the congestion of the
resources. Weighted congestion games provide us with a general framework for
modeling any kind of non-cooperative resource sharing problem. A typical re-
source sharing problem is that of routing. In a routing game the strategy sets of
the players correspond to paths in a network. Routing games where the demand
of the players cannot be split among multiple paths are also called (weighted)
network congestion games.

5.1.1 Summary of Results

In this chapter, we prove exact bounds on the price of anarchy for unweighted and
weighted congestion games with polynomial latency functions. We use the total
latency as social cost measure. This improves on results by Awerbuch et al. [5]
and Christodoulou and Koutsoupias [17], where non-matching upper and lower
bounds are given.
We now describe our �ndings in more detail.

• For unweighted congestion games we show that the price of anarchy (PoATL)
is exactly
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PoATL =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = bΦdc and Φd is a natural generalization of the golden ratio to
larger dimensions such that Φd is the solution to (Φd + 1)d = Φd+1

d . Prior
to this paper the best known upper and lower bounds were shown to be of
the form dd(1−o(1)) [17]. However, the term o(1) still hides a gap between the
upper and the lower bound.

• For weighted congestion games we show that the price of anarchy (PoATL) is
exactly

PoATL = Φd+1
d .

This result closes the gap between the so far best upper and lower bounds of
O(2ddd+1) and Ω(dd/2) from [5].

We show that the above values on the price of anarchy also hold for the subclasses
of unweighted and weighted network congestion games.

For our upper bounds we use a similar analysis as in [17]. The core of our
analysis is to determine parameters c1 and c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (5.1)

for all polynomial latency functions f of maximum degree d and for all reals x, y ≥
0. For the case of unweighted demands it su�ces to show (5.1) for all integers x, y.
In order to prove their upper bound Christodoulou and Koutsoupias [17] looked
at (5.1) with c1 = 1

2 and gave an asymptotic estimate for c2. In our analysis
we optimize both parameters c1, c2. This optimization process requires new ideas
and is non-trivial.

unweighted PoATL weighted PoATL

d Φd Our exact result Upper Bound [17] Lower bound [17] Our exact result Lower bound [5]

1 1.618 2.5 2.5 2.5 2.618 2.618
2 2.148 9.583 10 (2.5) 9.909 (2.618)
3 2.630 41.54 47 (2.5) 47.82 5
4 3.080 267.6 269 21.33 277.0 15
5 3.506 1,514 2,154 42.67 1,858 52
6 3.915 12,345 15,187 85.33 14,099 203
7 4.309 98,734 169,247 170.7 118,926 877
8 4.692 802,603 1,451,906 14,762 1,101,126 4,140
9 5.064 10,540,286 20,241,038 44,287 11,079,429 21,147
10 5.427 88,562,706 202,153,442 132,860 120,180,803 115,975

Table 5.1. Comparison of our results to [17] and [5]

Table 5.1 shows a numerical comparison of our bounds with the previous
results of Awerbuch et al. [5] and Christodoulou and Koutsoupias [17].

For d ≥ 2, the table only gives the respective lower bounds that are given in
the cited works (before any estimates are applied). Values in parentheses denote
cases in which the bound for linear functions is better than the general case.
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In [5, Theorem 4.3], a construction scheme for networks is described with price
of anarchy approximating 1

e

∑∞
k=1

kd

k! which yields the d-th Bell number. In [17,

Theorem 10], a network with price of anarchy (N−1)d+2

N is given, with N being
the largest integer for which (N − 1)d+2 ≤ Nd holds.

The column with the upper bound from [17] is computed by using (5.1) with
c1 = 1

2 and optimizing c2 with help of our analysis. Thus, the column shows the
best possible bounds that can be shown with c1 = 1

2 .

5.1.2 Related Work

The papers most closely related to our work are those of Awerbuch et al. [5]
and Christodoulou and Koutsoupias [17, 16]. For (unweighted) congestion games
and social cost de�ned as average private cost (which in this case is the same as
total latency) it has been shown that the price of anarchy of pure Nash equilibria
is 5

2 for linear latency functions and dΘ(d) for polynomial latency functions of
maximum degree d [5, 17]. The bound of 5

2 for linear latency function also holds
for the (mixed) price of anarchy [16]. For weighted congestion games and social
cost de�ned as the total latency, the (mixed) price of anarchy is 3+

√
5

2 in case of
linear latency functions and dΘ(d) in case of polynomial latency functions [5].

Since the routing games on parallel links are a special class of weighted conges-
tion games, all results concerning the price of anarchy that are either described
in Section 4.1.2 or presented throughout Chapter 4 belong to the related work
here. Of particular interest is the paper of Lücking et al. [71], where they studied
the total latency (they call it quadratic social cost) for routing games on paral-
lel links. For this model, Lücking et al. [71] showed that the price of anarchy is
exactly 4

3 for the case of identical players and related links and 9
8 for the case of

arbitrary players and identical links.
The class of congestion games has been introduced by Rosenthal [88] and

extensively studied afterwards (see e.g. [1, 2, 27, 38, 39, 77, 78, 96]). In Rosen-
thal's model the strategy of each player is a subset of resources. Resource utility
functions can be arbitrary but they only depend on the number of players shar-
ing the same resource. Rosenthal showed that such games always admit a pure
Nash equilibrium using a potential function. Monderer and Shapley [78] and later
Voorneveld et al. [96] characterized games that possess a potential function as
potential games and showed their relation to congestion games. Milchtaich [77]
considers weighted congestion games with player-speci�c payo� functions and
shows that these games do not admit a pure Nash equilibrium in general. Acker-
mann et al. [2] further studied the existence of pure Nash equilibria in weighted
congestion games and (unweighted) congestion games with player-speci�c payo�
functions. Fotakis et al. [38, 39] considered the price of anarchy for symmetric
weighted network congestion games in layered networks [38] and for symmetric
(unweighted) network congestion games in general networks [39]. In both cases
they de�ned social cost as expected maximum latency. The complexity of com-
puting a pure Nash equilibrium has been studied by Fabrikant et al. [27]. On
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the one hand, they proved that for any symmetric network congestion game, a
pure Nash equilibrium can be constructed in polynomial time, by computing the
optimum of Rosenthal's potential function. This is accomplished through a nice
reduction to an instance of the min-cost �ow problem. On the other hand, Fab-
rikant et al. [27] showed that the problem of computing a pure Nash equilibrium
becomes PLS-complete, if we allow for asymmetric or non-network congestion
games. Ackermann et al. [1] further studied the complexity of computing a pure
Nash equilibrium in congestion games. In particular, they showed that a pure
Nash equilibrium can be computed in polynomial time, if the strategy sets of the
players have a certain property. For a survey on weighted congestion games we
refer to [48].

Inspired by the arisen interest in the price of anarchy Roughgarden and Tardos
[92] re-investigated the Wardrop model and used the total latency as a social cost
measure. In this context the price of anarchy was shown to be 4

3 for linear latency
functions [92] and Θ( d

log d) [89] for polynomial latency functions of maximum
degree d. An overview on results for this model can be found in the recent book
of Roughgarden [90].

5.1.3 Organization

The rest of this chapter is organized as follows. We present our exact bounds
on the price of anarchy for unweighted congestion games in Section 5.2 and for
weighted congestion games in Section 5.3. We conclude in Section 5.4 with a
discussion on our results.

5.2 Price of Anarchy for Unweighted Congestion Games

In this section, we prove the exact value for the price of anarchy of unweighted
congestion games with polynomial latency functions. We start by showing the
upper bound in Section 5.2.1. In Section 5.2.2 we provide a matching lower bound.

5.2.1 Upper Bound

Before we can state our upper bound on the price of anarchy for unweighted con-
gestion games, we introduce two technical lemmas (Lemma 5.1 and Lemma 5.2).
These lemmas are crucial for determining c1 and c2 in (5.1) and thus for proving
the upper bound in Theorem 5.3.

Lemma 5.1. Let 0 ≤ c < 1 and d ∈ N0 then

max
x∈N0,y∈N

{(
x + 1

y

)d

− c ·
(

x

y

)d+1
}

= max
x∈N0

{
(x + 1)d − c · xd+1

}
.
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Proof. Let

g(x, y, c) =
(

x + 1
y

)d

− c ·
(

x

y

)d+1

.

We will show that for all x ∈ N0, y ∈ N there exists x̂ ∈ N0 such that

g(x̂, 1, c) ≥ g(x, y, c) ∀0 ≤ c < 1.

Let x ∈ N0, y ∈ N be arbitrary non-negative integers. If y ≥ x + 1 then we can
choose x̂ = 0 to see that g(0, 1, c) = 1 ≥ g(x, y, c). So in the following we may
assume that y ≤ x.

Let x̂ be the smallest integer such that g(x̂, 1, 0) ≥ g(x, y, 0), that is

x̂ =
⌈

x + 1− y

y

⌉
.

To complete the proof, we will show that also g(x̂, 1, 1) ≥ g(x, y, 1), or equiva-
lently

(x̂ + 1)d − x̂d+1 ≥
(

x + 1
y

)d

−
(

x

y

)d+1

⇔
⌈

x + 1
y

⌉d

−
⌈

x + 1− y

y

⌉d+1

≥
(

x + 1
y

)d

−
(

x

y

)d+1

⇐
(

x

y

)d+1

≥
⌈

x + 1− y

y

⌉d+1

⇔ x

y
≥
⌈

x + 1− y

y

⌉
To see that the last inequality holds, recall that x ≥ y. Thus we can express x
as x = b1 · y + b2 where b1 and b2 are integers with b1 ≥ 1 and 0 ≤ b2 < y. Then
the last inequality reduces to b1 + b2

y ≥ b1, which is ful�lled. This completes the
proof of the lemma.

Lemma 5.2. Let d ∈ N and

Fd = {g(d)
r : R→ R | g(d)

r (x) = (r + 1)d − x · rd+1, r ∈ R≥0}

be an in�nite set of linear functions. Furthermore, let γ(s, t) for s, t ∈ R≥0 and
s 6= t denote the intersection abscissa of g

(d)
s and g

(d)
t . Then it holds for any

s, t, u ∈ R≥0 with s < t < u that γ(s, t) > γ(s, u) and γ(u, s) > γ(u, t).

Proof. We �rst show that γ(v, v + δ) is strictly decreasing in v ∈ R≥0, for any
δ ∈ R>0. Afterwards we will show that this implies the lemma.

For some v ∈ R≥0, consider now the two linear functions g
(d)
v , g

(d)
v+δ from Fd.

They intersect at

γ(v, v + δ) =
(v + 1 + δ)d − (v + 1)d

(v + δ)d+1 − vd+1
.
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Computing the �rst derivative in v of γ(v, v + δ) yields

∂γ(v, v + δ)
∂v

=
d
[
(v + 1 + δ)d−1 − (v + 1)d−1

]
·
[
(v + δ)d+1 − vd+1

]
((v + 1)d+1 − vd+1)2

−
(d + 1)

[
(v + 1 + δ)d − (v + 1)d

]
·
[
(v + δ)d − vd

]
((v + 1)d+1 − vd+1)2

<
d
[
(v + 1 + δ)d−1 − (v + 1)d−1

]
·
[
(v + δ)d+1 − vd+1

]
((v + 1)d+1 − vd+1)2

−
d
[
(v + 1 + δ)d − (v + 1)d

]
·
[
(v + δ)d − vd

]
((v + 1)d+1 − vd+1)2

= d ·

[
(1 + δ)(v + 1 + δ)d−1vd + (1− δ)(v + 1)d−1(v + δ)d

((v + 1)d+1 − vd+1)2

− (v + 1 + δ)d−1(v + δ)d + (v + 1)d−1vd

((v + 1)d+1 − vd+1)2

]
We now show (by induction over d) that

(1 + δ)(v + 1 + δ)d−1vd + (1− δ)(v + 1)d−1(v + δ)d

−(v + 1 + δ)d−1(v + δ)d − (v + 1)d−1vd < 0
(5.2)

and thus γ(v, v + δ) is strictly decreasing in v:
Clearly, (5.2) holds for d = 1 as

(1 + δ)v + (1− δ)(v + δ)− (v + δ)− v = −δ2 < 0.

It also holds for v = 0 as

(1− δ)δd − (1 + δ)d−1δd < 0.

Thus, we only consider v > 0 in the following. Assume that our induction hy-
pothesis (5.2) holds for a natural d. We then multiply with (v + 1 + δ)v and
get:

(1 + δ)(v + 1 + δ)dvd+1 + (1− δ)(v + 1)d−1(v + δ)d(v + 1 + δ)v

− (v + 1 + δ)d(v + δ)d︸ ︷︷ ︸
=A

v − (v + 1)d−1vd+1︸ ︷︷ ︸
=B

(v + 1 + δ) < 0

⇔ (1 + δ)(v + 1 + δ)dvd+1 + (1− δ)(v + 1)d−1(v + δ)d(v + 1 + δ)v︸ ︷︷ ︸
=C

−δB + δA− (v + 1 + δ)d(v + δ)d+1 − (v + 1)dvd+1 < 0.

Thus, if we de�ne D = (1 − δ)(v + 1)d(v + δ)d+1, proving the inductive step
d→ d + 1 reduces to showing that

C − δB + δA ≥ D
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or equivalently

C − δB + δA−D ≥ 0.

Now,

C − δB + δA−D

= (1− δ)(v + 1)d−1(v + δ)d(v + 1 + δ)v − δB + δA−D

= (1− δ)(v + 1)d−1(v + δ)d(v + 1)v − δB + δA

+δ(1− δ)(v + 1)d−1(v + δ)dv −D

= (1− δ)(v + 1)d(v + δ)d(v + δ)− δB + δA

+δ(1− δ)(v + 1)d−1(v + δ)dv − δ(1− δ)(v + 1)d(v + δ)d −D

= D − δB + δA− δ(1− δ)(v + 1)d−1(v + δ)d −D

= δ
(
−B + A− (1− δ)(v + 1)d−1(v + δ)d

)
> δ

(
−B + A− (v + 1)d−1(v + δ)d

)
> δ

(
−(v + 1)d−1(v + δ)dv + A− (v + 1)d−1(v + δ)d

)
= δ

(
−(v + 1)d(v + δ)d + (v + 1 + δ)d(v + δ)d

)
> 0.

This last inequality obviously holds for any δ > 0, thus γ(v, v + δ) is strictly
decreasing in v ∈ R≥0, for any δ ∈ R>0.

It follows that γ(v + k · δ, v + (k + 1) · δ) strictly decreases as k ∈ Z, k ≥ −v
δ ,

becomes larger. We separately consider functions g
(d)
v+k·δ for integers k > 0 and

k < 0:

• We �rst turn to the case where k > 0. Then the intersection of g
(d)
v+k·δ and

g
(d)
v+(k+1)·δ must lie above g

(d)
v . This can easily be seen due to the fact that

g
(d)
v+k·δ(x) > g

(d)
v (x) holds for any x < γ(v, v + δ) and any k ∈ N. Now recall

that the slope of g
(d)
v+k·δ is −(v + k · δ)d+1, which is decreasing as k becomes

larger. Since the aforementioned intersection lies above g
(d)
v , we have that

γ(v, v + (k + 1) · δ) < γ(v, v + k · δ).
• Now let −v

δ ≤ k < 0. For clarity set j = −k and consider the intersection of

g
(d)
v−j·δ and g

(d)
v−(j+1)·δ which still lies above g

(d)
v . Obviously, g

(d)
v−j·δ(x) > g

(d)
v (x)

holds for any x > γ(v, v + δ) and any j ∈ N. With corresponding arguments
as in the �rst case we get that γ(v, v − j · δ) < γ(v, v − (j + 1) · δ).

Hence, γ(v, v + k · δ) is increasing in any k ∈ Z \ {0}, k ≥ −v
δ , and the lemma

holds for any s < t < u where (t − s) and (u − s) are rational � by choosing δ
as the reciprocal of a common denominator of (t− s) and (u− s). Note that this
is also a denominator of (u− t). Finally, as x 7→ γ(v, v + x) is continuous in any
x ∈ [−v,∞) \ {0}, the lemma follows.



90 5 Weighted Congestion Games

We are now ready to prove our upper bound on the price of anarchy for un-
weighted congestion games with polynomial latency functions.

Theorem 5.3. For unweighted congestion games with polynomial latency func-
tions of maximum degree d and non-negative coe�cients, we have

PoATL ≤
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1

where k = bΦdc.

Proof. Let P = (P1, ..., Pn) be a (mixed) Nash equilibrium and let Q =
(Q1, ..., Qn) be a pure strategy pro�le with optimum social cost. Since P is a
Nash equilibrium, player i ∈ [n] cannot improve by switching from strategy Pi

to strategy Qi. Thus,

PCi(P) =
∑
s∈S

p(s)
∑
e∈si

fe(δe(s))

≤ PCi(P−i, Qi)

=
∑

s′∈S−i

p(s′)

 ∑
e∈Qi∩si

fe(δe(s)) +
∑

e∈Qi\si

fe(δe(s) + 1)


≤
∑

s′∈S−i

p(s′)
∑
e∈Qi

fe(δe(s) + 1)

=
∑
si∈Si

p(i, si)
∑

s′∈S−i

p(s′)
∑
e∈Qi

fe(δe(s) + 1)

=
∑
s∈S

p(s)
∑
e∈Qi

fe(δe(s) + 1).

Summing up over all players i ∈ [n] yields

SCTL(Γ,P) =
∑
i∈[n]

∑
s∈S

p(s)
∑
e∈si

fe(δe(s))

≤
∑
i∈[n]

∑
s∈S

p(s)
∑
e∈Qi

fe(δe(s) + 1)

=
∑
s∈S

p(s)
∑
e∈E

δe(Q) · fe(δe(s) + 1).

Now, δe(Q) and δe(s) are both integer, since Q and s are both pure strategy
pro�les. Thus, by choosing c1, c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y) (5.3)

for all polynomials f with maximum degree d and non-negative coe�cients and
for all x, y ∈ N0, we get
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SCTL(Γ,P) ≤
∑
s∈S

p(s)
∑
e∈E

[c1 · δe(s) · fe(δe(s)) + c2 · δe(Q) · fe(δe(Q))]

= c1 · SCTL(Γ,P) + c2 · SCTL(Γ,Q).

With c1 < 1 it follows that SCTL(Γ,P)
SCTL(Γ,Q) ≤

c2
1−c1

. Since P is an arbitrary (mixed)
Nash equilibrium we get

PoATL ≤
c2

1− c1
. (5.4)

In fact, c1 and c2 depend on the maximum degree d, however, for the sake of
readability we omit this dependence in our notation.

We will now show how to determine constants c1 and c2 such that Inequality
(5.3) holds and such that the resulting upper bound of c2

1−c1
is minimal. To do

so, we will �rst show, that it su�ces to consider Inequality (5.3) with y = 1 and
f(x) = xd.

Since f is a polynomial of maximum degree d with non-negative coe�cients,
it is su�cient to determine c1 and c2 that ful�ll (5.3) for f(x) = xr for all integers
0 ≤ r ≤ d.

So let f(x) = xr for some 0 ≤ r ≤ d. In this case (5.3) reduces to

y · (x + 1)r ≤ c1 · xr+1 + c2 · yr+1. (5.5)

For any given constant 0 ≤ c1 < 1 let c2(r, c1) be the minimum value for c2 such
that (5.5) holds, that is

c2(r, c1) = max
x∈N0,y∈N

{
y(x + 1)r − c1 · xr+1

yr+1

}
= max

x∈N0,y∈N

{(
x + 1

y

)r

− c1 ·
(

x

y

)r+1
}

.

Note that (5.5) holds for any c2 when y = 0. By Lemma 5.1 we have

c2(r, c1) = max
x∈N0

{
(x + 1)r − c1 · xr+1

}
. (5.6)

Now, c2(r, c1) is the maximum of in�nitely many linear functions in c1; one for
each x ∈ N0. Denote Fr as the (in�nite) set of linear functions de�ning c2(r, c1).
Thus,

Fr = {g(r)
x : (0, 1)→ R | g(r)

x (c1) = (x + 1)r − c1 · xr+1, x ∈ N0} .

For the partial derivative of any function (x, r, c1) 7→ g
(r)
x (c1) we get

∂((x + 1)r − c1 · xr+1)
∂r

= (x + 1)r · ln(x + 1)− c1 · xr+1 · ln(x)

> ln(x + 1)
[
(x + 1)r − c1 · xr+1

]
≥ 0,



92 5 Weighted Congestion Games

for (x + 1)r − c1 · xr+1 ≥ 0, that is, for the positive range of the chosen function
from Fr. Thus, the positive range of (x + 1)d − c1 · xd+1 dominates the positive
range of (x+1)r− c1 ·xr+1 for all 0 ≤ r ≤ d. Since c2(r, c1) > 0 for all 0 ≤ r ≤ d,
it follows that c2(d, c1) ≥ c2(r, c1), for all 0 ≤ r ≤ d. Thus, without loss of
generality, we may assume that f(x) = xd.

For s, t ∈ R≥0 and s 6= t de�ne γ(s, t) as the intersection abscissa of g
(d)
s and

g
(d)
t (as in Lemma 5.2). Now consider the intersection of the two functions g

(d)
v

and g
(d)
v+1 from Fd for some v ∈ N. We show that this intersection lies above all

other functions from Fd.

• First consider any function g
(d)
z with z > v + 1. We have g

(d)
z (0) > g

(d)
v+1(0) >

g
(d)
v (0). Furthermore, by Lemma 5.2 we get γ(v, z) < γ(v, v + 1). It follows
that g

(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

• Now consider any function g
(d)
z with z < v. We have g

(d)
v+1(0) > g

(d)
v (0) >

g
(d)
z (0). Furthermore, by Lemma 5.2 we get γ(v, z) > γ(v, v + 1). Again, it
follows that g

(d)
v (γ(v, v + 1)) > g

(d)
z (γ(v, v + 1)).

Thus, all intersections of two consecutive linear functions from Fd lie on c2(d, c1).
The structure of function c2(d, c1) is illustrated in Figure 5.1.

c (d)1

c 
(d

)
2

2 1c (d, c )

 0
 0  1

x=0

x=1

x=2

x=3

x=4 x=5

Fig. 5.1. The function c2(d, c1)

By (5.4), any point that lies on c2(d, c1) gives an upper bound on PoATL.
Let k be the largest integer such that (k + 1)d ≥ kd+1, that is k = bΦdc. Then
(k + 2)d < (k + 1)d+1. Choose c1 and c2 at the intersection of the two lines
from Fd with x = k and x = k + 1, that is c2 = (k + 1)d − c1 · kd+1 and
c2 = (k + 2)d − c1 · (k + 1)d+1. Thus,

c1 =
(k + 2)d − (k + 1)d

(k + 1)d+1 − kd+1
and c2 =

(k + 1)2d+1 − (k + 2)d · kd+1

(k + 1)d+1 − kd+1
.



5.2 Price of Anarchy for Unweighted Congestion Games 93

Note that by the choice of k we have 0 < c1 < 1.
It follows that

PoATL ≤
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem.

5.2.2 Lower Bound

In Theorem 5.4 we give a matching lower bound which also holds for unweighted
network congestion games (Corollary 5.5).

Theorem 5.4. For unweighted congestion games with polynomial latency func-
tions of maximum degree d and non-negative coe�cients, we have

PoATL ≥
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = bΦdc.

Proof. Given the maximum degree d ∈ N for the polynomial latency functions,
we construct a congestion game for n ≥ k + 2 players and |E| = 2n facilities.

We divide the set E into two subsets E1 = {g1, . . . , gn} and E2 = {h1, . . . , hn}.
Each player i has two pure strategies, Pi = {gi+1, . . . , gi+k, hi+1, . . . , hi+k+1} and
Qi = {gi, hi} where gj = gj−n and hj = hj−n for j > n. I. e. Si = {Qi, Pi}.

Each of the facilities in E1 share the latency function x 7→ axd for an a ∈ R>0

(yet to be determined) whereas the facilities in E2 have latency x 7→ xd.
Obviously, the optimal allocation Q is for every player i to choose Qi. Now we

determine a value for a such that the allocation P = (P1, . . . , Pn) becomes a Nash
equilibrium, i. e. each player i is satis�ed with P, that is PCi(P) ≤ PCi(P−i, Qi)
for all i ∈ [n], or equivalently

k · a · kd + (k + 1) · (k + 1)d ≤ a · (k + 1)d + (k + 2)d.

Resolving to the coe�cient a gives

a ≥ (k + 1)d+1 − (k + 2)d

(k + 1)d − kd+1
> 0. (5.7)

Because (k + 1)d 6= kd+1 due to either k + 1 or k being odd and the other being
even, a is well de�ned and positive. Now since for any player i the private costs
are PCi(Q) = a + 1 and PCi(P) = a · kd+1 + (k + 1)d+1, it follows that

SCTL(Γ,P)
SCTL(Γ,Q)

=

∑
i∈[n] PCi(P)∑
i∈[n] PCi(Q)

=
a · kd+1 + (k + 1)d+1

a + 1
. (5.8)
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Provided that (k + 1)d ≥ kd+1, it is not hard to see that (5.8) is monotonically
decreasing in a. Thus, we assume equality in (5.7), which then gives

PoATL ≥
SCTL(Γ,P)
SCTL(Γ,Q)

=
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
.

This completes the proof of the theorem.

We close this section by showing that the just shown lower bound also holds for
unweighted network congestion games.

Corollary 5.5. The lower bound in Theorem 5.4 on PoATL also holds for un-
weighted network congestion games.

Proof. Instances of the congestion game in Theorem 5.4 can be characterized by
two parameters: the maximum degree d of the latency functions and the number
of players n ≥ bΦdc+ 2. The number of edges is then given by 2n.

2

1

4

g2

h3
g3

h1

g1

h2

2

43

3

g4

1

h4

v1 v2

v4

v3

fe(x)

v1 v2
fe(x)

(a) (b)

Fig. 5.2. Network congestion game for d = 2 and 4 players

Figure 5.2 (a) shows an example of the network congestion game for quadratic
latency functions (i.e. d = 2) and for n = 4 players. Unlabeled edges have fe(x) =
0 as their latency function. We say that these edges are free. All other edges have
the associated latency function as in Theorem 5.4. In the following we outline
the general construction scheme.

The network corresponding to an instance characterized by (d, n) can be con-
structed as follows:

There is a circle of 2n undirected edges g1, h1, g2, h2, . . . , gn, hn. Each undi-
rected edge (v1, v2) has to be replaced by the construction shown in Figure 5.2 (b).
This insures that no matter in which direction a player uses edge (v1, v2) it pro-
duces load on the directed edge (v3, v4).

Now, every player i has its own origin node outside the circle � which is
indicated by a gray background in the example. This node has an edge to the
connecting node of gi and hi−1. The destination node of each player i is the
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node between hi and gi+1, represented by a thick outline in the �gure. To also
allow for the strategy Pi for each player i (which essentially goes the other way
round inside the circle), we �nally add one more edge from i's origin node to the
connecting node of hi+k+1 and gi+k+1. As before, let k = bΦdc.

5.3 Price of Anarchy for Weighted Congestion Games

In this section, we prove the exact value for the price of anarchy of weighted
congestion games with polynomial latency functions.

We prove the upper bound in Theorem 5.6. In Theorem 5.7 we give a match-
ing lower bound which also holds for weighted network congestion games (Corol-
lary 5.9). Corollary 5.10 shows the impact of player weights to the price of anar-
chy.

5.3.1 Upper Bound

Theorem 5.6. For weighted congestion games with polynomial latency functions
of maximum degree d and non-negative coe�cients we have PoATL ≤ Φd+1

d .

Proof. Let P = (P1, . . . , Pn) be a (mixed) Nash equilibrium and let Q =
(Q1, . . . , Qn) be a pure strategy pro�le with optimum total latency. We �rst
note that due to the Nash inequalities it holds that

PCi(P) =
∑
s∈S

p(s)
∑
e∈si

fe(δe(s))

≤
∑
s∈S

p(s)
∑
e∈Qi

fe(δe(s) + wi)

≤
∑
s∈S

p(s)
∑
e∈Qi

fe(δe(s) + δe(Q)).

This gives the following upper bound for the total latency:

SCTL(Γ,P) =
n∑

i=1

wi · PCi(P)

≤
n∑

i=1

wi

∑
s∈S

p(s)
∑
e∈Qi

fe(δe(s) + δe(Q))

=
∑
s∈S

p(s)
∑
e∈E

δe(Q) · fe(δe(s) + δe(Q)).

Similarly to Theorem 5.3, by choosing c1, c2 ∈ R such that

y · f(x + y) ≤ c1 · x · f(x) + c2 · y · f(y) (5.9)

for all polynomials f with maximum degree d and non-negative coe�cients and
for all x, y ∈ R≥0, we get
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SCTL(Γ,P) ≤
∑
s∈S

p(s)
∑
e∈E

[
c1 · δe(s) · fe(δe(s)) + c2 · δe(Q) · fe(δe(Q))

]
= c1 · SCTL(Γ,P) + c2 · SCTL(Γ,Q).

Note here that (5.9) varies from (5.3) of Theorem 5.3 and hence the former values
for c1 and c2 in Theorem 5.3 cannot simply be reused.

For (5.9) to hold for all x, y ∈ R≥0, both c1 and c2 must be non-negative.
With 0 ≤ c1 < 1 it follows that SCTL(Γ,P)

SCTL(Γ,Q) ≤
c2

1−c1
. Since P is an arbitrary Nash

equilibrium we get PoATL ≤ c2
1−c1

.
Now let r ∈ [d]0. Because of the equivalences

∀x, y ∈ R≥0 : y · (x + y)r ≤ c1 · xr+1 + c2 · yr+1

⇔∀x ∈ R≥0, y ∈ R>0 :
(

x

y
+ 1
)r

≤ c1 ·
(

x

y

)r+1

+ c2

⇔∀x ∈ R≥0 : (x + 1)r ≤ c1 · xr+1 + c2

it is su�cient to choose c2 depending on c1 ∈ (0, 1) and r ∈ [d]0 as

c2 ≥ c2(r, c1) = max
x∈R≥0

{(x + 1)r − c1 · xr+1},

in order to ful�ll (5.9) for every monomial f of degree r. With the same argument
as for (5.6) in Theorem 5.3 it is su�cient to consider only the monomial of the
largest degree d, so that (5.9) will then hold for any polynomial of maximum
degree d with positive coe�cients.

Let again Fd denote the in�nite set of linear functions de�ning c2(d, c1), i. e.

Fd = {g(d)
x : (0, 1)→ R | g(d)

x (c1) = (x + 1)d − c1 · xd+1, x ∈ R≥0}.

Keep d �xed and � like in Lemma 5.2 � de�ne γ(s, t) for s, t ∈ R≥0 and s 6= t

as the intersection abscissa of g
(d)
s and g

(d)
t . From Lemma 5.2, we know that

x 7→ γ(v, x) is both continuous and strictly decreasing on (0, v) and then again
on (v,∞), for any v ∈ R>0. We are interested in the limit of x 7→ γ(v, x) at x = v
and get

lim
ε→0

γ(v, v + ε) = lim
ε→0

(v + 1 + ε)d − (v + 1)d

(v + ε)d+1 − vd+1
= lim

ε→0

∑d−1
i=0

(
d
i

)
· (v + 1)i · εd−i∑d

i=0

(
d+1

i

)
· vi · εd+1−i

which yields (by canceling one ε)

lim
ε→0

γ(v, v + ε) =
d · (v + 1)d−1

(d + 1) · vd
. (5.10)

Note here that this limit exists regardless of the direction in which ε approaches
0. Therefore, we make the natural extension of de�ning γ(v, v) to be the limit
from (5.10). We observe that this extension makes x 7→ γ(v, x) strictly decreasing
and continuous in all of its domain R>0.
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Now consider the intersection of the two functions g
(d)
v and g

(d)
v+ε from Fd

for ε → 0 and for some v ∈ R>0. For ε → 0 these functions intersect at
(γ(v, v), g(d)

v (γ(v, v))). We show that this intersection lies above all other func-
tions from Fd.

• First consider any function g
(d)
z with z > v. We have g

(d)
z (0) > g

(d)
v+ε(0) >

g
(d)
v (0) for 0 < ε < z − v. Furthermore, by Lemma 5.2 we get γ(v, z) <

γ(v, v + ε) < γ(v, v). It follows that g
(d)
v (γ(v, v)) > g

(d)
z (γ(v, v)).

• Now consider any function g
(d)
z with z < v. We have g

(d)
v+ε(0) > g

(d)
v (0) >

g
(d)
z (0). Furthermore, by Lemma 5.2 we get γ(v, z) > γ(v, v) > γ(v, v + ε).
Again, it follows that g

(d)
v (γ(v, v)) > g

(d)
z (γ(v, v)).

Thus, g
(d)
v (γ(v, v)) = maxx∈R≥0

g
(d)
x (γ(v, v)) for all v ∈ R>0.

Therefore, we can express c2(d, c1) as

c2(d, c1) = max
x∈R≥0

{g(d)
x (c1)} = g(d)

s (c1) (5.11)

where s ∈ R≥0 solely depends on c1 and d and is de�ned by γ(s, s) = c1. That
means g

(d)
s and g

(d)
s+ε, for ε→ 0, have c1 as their intersection abscissa. We choose

c1 = γ(Φd, Φd)

=
d · (Φd + 1)d−1

(d + 1) · Φd
d

=
d · Φd+1

d

(d + 1) · (Φd + 1) · Φd
d

=
d · Φd

(d + 1)(Φd + 1)
∈ (0, 1).

With (5.11), this yields c2(d, c1) = g
(d)
Φd

(c1) = Φd+1
d · (1− c1). Thus, we can choose

c2 = Φd+1
d · (1− c1) and get

PoATL ≤
c2

1− c1
=

Φd+1
d · (1− c1)

1− c1
= Φd+1

d .

This completes the proof of the theorem.

5.3.2 Lower Bound

Theorem 5.7. For weighted congestion games with polynomial latency functions
of maximum degree d and non-negative coe�cients, we have PoATL ≥ Φd+1

d .

Proof. Given the maximum degree d ∈ N for the polynomial latency functions,
set k ≥ max{

(
d

bd/2c
)
, 2}. Note, that

(
d

bd/2c
)

= maxj∈[d]0

(
d
j

)
. We construct a con-

gestion game for n = (d + 1) · k players and |E| = n facilities.
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We divide the set E into d + 1 partitions:
For i ∈ [d]0, let Ei = {gi,1, . . . , gi,k}, with each gi,j sharing the latency function
x 7→ ai·xd. The values of the coe�cients ai will be determined later. For simplicity
of notation, set gi,j = gi,j−k for j > k in the following.

Similarly, we partition the set of players [n]:
For i ∈ [d]0, let Ni = {ui,1, . . . , ui,k}. The weight of each player in set Ni is Φi

d,
so wui,j = Φi

d for all i ∈ [d]0, j ∈ [k].
Now, for every set Ni, each player ui,j ∈ Ni has exactly two strategies:

Qui,j = {gi,j} and Pui,j =

{
{gd,j+1, . . . , gd,j+(d

i)
, gi−1,j} for i = 1 to d,

{gd,j+1} for i = 0.

Now let Q = (Q1, . . . , Qn) and P = (P1, . . . , Pn) be strategy pro�les. The facili-
ties in each set Ei then have the following loads for Q and P:

load on every facility e ∈ Ei

i δe(Q) δe(P)

d Φd
d

∑d
l=0

(
d
l

)
Φl

d = (Φd + 1)d = Φd+1
d

0 to d− 1 Φi
d Φi+1

d

For P to become a Nash Equilibrium, we need to ful�ll the following Nash in-
equalities for each set Ni of players:

i Nash inequality to ful�ll

1 to d PCui,j (P) =
(
d
i

)
· ad · (Φd+1

d )d + ai−1 · (Φi
d)

d

≤ ai · (Φi+1
d + Φi

d)
d = PCui,j (P−ui,j , Qui,j )

0 PCu0,j (P) = ad · (Φd+1
d )d ≤ a0 · (Φd + 1)d = PCu0,j (P−u0,j , Qu0,j )

Replacing �≤� by �=� yields a homogeneous system of linear equations, i. e. the
system Bd · a = 0 where Bd is the following (d + 1)× (d + 1) matrix:

Bd =



−Φd2+d+1
d + Φd2+d

d Φd2

d 0 · · · · · · 0(
d

d−1

)
Φd2+d

d −Φd2+1
d

. . .
...

... 0
. . .

...
...

. . . . . .
...(

d
i

)
Φd2+d

d 0 · · · 0 −Φid+d+1
d Φid

d 0 · · · 0
...

... 0
. . . . . .

...
...

. . . 0
...

...
...

. . . Φd
d

Φd2+d
d 0 · · · 0 · · · 0 −Φd+1

d


(5.12)
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and a = (ad . . . a0)t. Obviously, a solution to this system ful�lls the initial Nash
inequalities. Note, that

(Φi+1
d + Φi

d)
d = (Φi

d)
d · (Φd + 1)d = Φid+d+1

d .

Claim 5.8. The (d + 1)× (d + 1) matrix Bd from (5.12) has rank d.

Proof. We use the well known fact from linear algebra that if a matrix C results
from another matrix D by adding a multiple of one row (or column) to another
row (or column, respectively) then rank(C) = rank(D).

Now consider the matrix Cd that results from adding row j multiplied by the
factor Φ−1

d to row j − 1, sequentially done for j = d + 1, d, . . . , 2. Obviously, Cd

is a lower triangular matrix with nonzero elements only in the �rst column and
on the principal diagonal.

For the top left element of Cd we get

− Φd2+d+1
d +

d∑
j=0

(
d

j

)
Φd2+j

d = Φd2

d ·

(
−Φd+1

d +
d∑

j=0

(
d

j

)
Φj

d︸ ︷︷ ︸
(Φd+1)d

)
= 0.

Since all elements on the principal diagonal of Cd � with the just shown
exception of the �rst one � are nonzero, it is easy to see that Cd (and thus also
Bd) has rank d.

By the above claim it follows that the column vectors of Bd are linearly de-
pendent and thus there are � with degree of freedom 1 � in�nitely many linear
combinations of them yielding 0. In other words, Bd ·a = 0 has a one-dimensional
solution space.

We now show (by induction over i) that all coe�cients ai, i ∈ [d]0 must
have the same sign and thus we can alway �nd a valid solution. From the last
equality, for i = 0, we have that ad and a0 must have the same sign. Now for
i = 1, . . . , d − 1, it follows that ai must have the same sign as ai−1 and ad, for
(Φd+1

d )d, (Φi
d)

d, and (Φi+1
d + Φi

d)
d are all positive.

Choosing a 6= 0 with all components being positive, all coe�cients of the
latency functions are positive. We get,

PoATL ≥
SCTL(Γ,P)
SCTL(Γ,Q)

=
k ·
∑d

i=0 ai(Φi+1
d )d+1

k ·
∑d

i=0 ai(Φi
d)

d+1
= Φd+1

d .

We proceed to show that just given lower bound also holds for weighted network
congestion games.

Corollary 5.9. The lower bound in Theorem 5.7 on PoATL also holds for weighted
network congestion games.
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Proof. Each instance of the congestion game in Theorem 5.7 essentially can be
characterized by two parameters: The maximum degree d of the latency functions
and the number of facilities k ≥ max{

(
d

bd/2c
)
, 2} in each class Ei, where i ∈ [d]0.

Remember that the number of facilities � as well as the number of players � is
given by (d + 1) · k.

Confer Figure 5.3 for an example in the case of quadratic latency functions
(i. e. d = 2) and k = 2. For their respective players, gray nodes denote origins,
whereas nodes with a thick outline represent destinations. Note that for the sake
of clarity not all edges are shown, as will be explained later. Edges without a
label have fe(x) = 0 as their latency function. Again, we call these edges free
edges. All other edges have the associated latency function as in Theorem 5.7. In
the following, we will outline the general construction scheme.

u2,1 u1,1 u0,1

u2,2 u1,2 u0,2

u2,1

u1,2

u0,1

u2,2

u1,1

u0,2

g
2,2

g
2,1

g0,2

g1,1

g0,1

g1,2

Fig. 5.3. Network congestion game for d = 2 and k = 2

The network corresponding to an instance characterized by (d, k) can be con-
structed as follows:

There is a circle of 2 · k edges where every other edge represents a resource
gd,1, gd,2, . . . , gd,k. All remaining edges in the circle are free edges. Furthermore,
every player ui,j has its own origin node which has a single free edge to gd,j+1.
Consequently, circle edge g

d,j+(d
i)

connects to a free edge which then in turn

connects to edge gi−1,j . (In case i = 0, the latter simply is another free edge.)
From there, there is another free edge to the destination node of player ui,j . Note
that, thus far, the graph has exactly one acyclic path for each player, i. e. for each
origin-destination pair. Each of these paths represents that player's �unfavorable�
strategy which has been denoted as Pui,j in Theorem 5.7.

One can now add two more free edges, for each player ui,j , that allow ui,j to
also use its optimal strategy Qui,j : From ui,j 's origin node add a free link to gi,j ,
and from gi,j add a free link to ui,j 's destination node. We call the �rst type of
links A-Links, the latter B-Links. Note that in Figure 5.3, A- and B-Links are
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only shown for player u1,1. (The �gure is complete otherwise.) The thick gray
path denotes player u1,1's strategy in the system optimum, whereas the hatched
path indicates its strategy in the worst-case Nash equilibrium.

A-Links obviously cannot create shortcuts for other players as origin nodes
only have outgoing edges. Similarly, destination nodes only have incoming edges
and therefore B-Links cannot create shortcuts for other players, either. Eventu-
ally, neither A- nor B-Links can create a shortcut for the same player's other
strategy Pu∗,∗ as they do not share any nodes, except for the origin and destina-
tion nodes.

Note, however, that B-Links do create additional paths: In Figure 5.3, for
instance, player u1,1 now has the further option of using a path consisting of �ve
edges: three free ones, g2,2, and g1,1. Nevertheless, all such additional paths are
supersets of the player's optimal strategy and thus neither change the system
optimum nor the worst-case Nash equilibrium.

We close this section by studying the impact of weights to the price of anarchy.

Corollary 5.10. The exact price of anarchy for unweighted congestion games

PoATL =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = bΦdc, is bounded by bΦdcd+1 ≤ PoATL ≤ Φd+1
d .

Proof. The upper bound obviously is a direct consequence of Theorem 5.6. For
the lower bound, de�ne A = (k +1)d− kd+1 and B = (k +1)d+1− (k +2)d. Note
that A,B > 0 by choice of k. Then,

(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
=

(A + kd+1)(k + 1)d+1 − kd+1(k + 2)d

A + B

= kd+1 ·
A ·
(

k+1
k

)d+1
+ B

A + B
≥ bΦdcd+1.

This completes the proof of the lower bound.

5.4 Conclusion and Discussion

In this chapter we closed the problem of obtaining the exact value of the price of
anarchy for (weighted) congestion games with polynomial latency functions. We
assumed polynomial latency functions of maximum degree d with non-negative
coe�cients. We considered the cases of unweighted and weighted players. The
given results improve on the two recent STOC papers of Awerbuch et al. [5]
and Christodoulou and Koutsoupias [17]. Our bounds on the price of anarchy
depend on a new combinatorial sequence Φd, which is a generalization of the
golden ratio to higher dimensions. We believe that this sequence is of independent
combinatorial interest.



102 5 Weighted Congestion Games

The key to our results was an improved analysis of an optimization process
that was also considered by Christodoulou and Koutsoupias [17]. Our improved
analysis uses some new and non-trivial ideas.

The techniques used for proving our upper bounds are also practical for other
models. In particular, by applying them, we were able to prove (tight) upper
bounds on the price of anarchy for weighted congestion games and Wardrop
games, both with player-speci�c linear latency functions [50]. Moreover, we de-
ployed them to show upper bounds on the price of anarchy for Wardrop games
with certain polynomial latency functions [24]. In both works [24, 50] we also
used the total latency as our social cost measure.
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Bayesian Routing Games

6.1 Introduction

In recent years, motivated by non-cooperative systems like the Internet, com-
bining ideas from Game Theory and Theoretical Computer Science has become
more and more attractive. In many of these large-scale, non-cooperative systems,
users have only incomplete information about the system for several reasons. In
his honored work, Harsanyi [58] introduced an elegant approach to studying non-
cooperative games with incomplete information, where the players are uncertain
about some parameters. To model such games, Harsanyi introduced the Harsanyi
transformation, which converts a (strategic) game with incomplete information
to a strategic game where players have di�erent types. The type of a player rep-
resents its private information that is not common knowledge to all players. In
the resulting Bayesian game, each player's uncertainty about each other's type
is described by a probability distribution over all possible type pro�les. Using
this probability distribution, players make their decisions according to Bayesian
Decision Theory [12]. In Bayesian Decision Theory probabilities are used as a
measure of the degree of belief a person has in some proposition.

In this chapter, we introduce a particular sel�sh routing game with incomplete
information that we call Bayesian routing game. These games have been formally
introduced in Section 3.3. Bayesian routing games are a generalization to the
routing games on parallel links studied in Chapter 4. In a Bayesian routing game,
each of n sel�sh players wishes to assign its tra�c to one of m parallel links. Each
link has a certain capacity, which speci�es the rate at which the link processes
tra�c. In the case of identical links, all links have equal capacity. Link capacities
vary arbitrary, in the case of related links. The latency of a link is the total
tra�c on the link divided by the capacity of the link. Players do not know each
other's tra�c. Following Harsanyi's approach, we introduce for each player a
set of possible types. We assume that all type sets are �nite. Each type of a
player corresponds to some tra�c. Furthermore, we assume that there is a joint
probability distribution Ψ, called type distribution, over the set of all possible type
realizations. In general, Ψ can be arbitrary; however, sometimes we assume Ψ to
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be independent � in that case, Ψ is expressed as the product of n independent
probability distributions, one for each player type set.

In a pure strategy, a player chooses for each of its types a particular link. So,
a pure strategy is a function from the type set of a player to the set of links. In a
mixed strategy, a player uses a probability distribution over all its possible pure
strategies. A strategy pro�le speci�es a strategy for each of the players. Users
choose strategies in order to minimize their private cost, which is de�ned as the
expected latency experienced by the player. Note that due to the Bayesian model,
the private cost in a pure strategy pro�le is given by the expectation over the
type distribution Ψ. For mixed strategy pro�les, the expectation is taken over
both the type distribution Ψ and the mixed strategies of the players.

The players neither cooperate with each other nor adhere to a global objective
function, the so called social cost [67]. A stable state in which no player has an
incentive to unilaterally change its strategy is called a Bayesian Nash equilibrium.
In our study, we distinguish between pure and mixed Bayesian Nash equilibria.
Of special interest to our work are fully mixed Bayesian Nash equilibria, where
each player assigns strictly positive probability to each of its pure strategies.

If each player has only a single type, so that players are completely informed
about each other's tra�c, then we are in the setting of the routing games on
parallel links (with complete information) that we studied in Chapter 4. In the
following, we call them complete information routing games, in order to empha-
size the connection to Bayesian routing games. In this setting, Bayesian Nash
equilibria become Nash equilibria.

As before, we use the price of anarchy [86], as a measure of the maximum
performance degradation due to the sel�sh behavior of the players. The price of
anarchy can be de�ned with respect to di�erent social cost measures.

As a generalization of our Bayesian routing games we also introduce weighted
Bayesian congestion games. Weighted Bayesian congestion games generalize the
weighted congestion games (as studied in Chapter 5) by incorporating incomplete
information about the players' tra�c. So, in a weighted Bayesian congestion
game, the strategy set of each player is a subset of the power set of given resources.
Weighted Bayesian congestion games provide us with a general framework for
modeling any kind of non-cooperative resource sharing problem where the players
do not know each other's tra�c.

6.1.1 Summary of Results

Due to the new dimension that the incomplete information introduces to the
routing game, the analysis of the Bayesian routing game requires new techniques.
In this chapter, we introduce such techniques and we present a comprehensive
collection of results for the Bayesian routing game. We partition our results into
three major parts:



6.1 Introduction 105

6.1.1.1 Existence and Computational Complexity of Pure Bayesian
Nash Equilibria

We de�ne a new potential function that we use to prove that every weighted
Bayesian congestion game possesses a pure Bayesian Nash equilibrium (The-
orem 6.1). Observe that this existence result applies for the class of weighted
Bayesian congestion games.

For the case of Bayesian routing games, identical links and independent type
distributions, a pure Bayesian Nash equilibrium can be computed in polynomial
time (Theorem 6.2). This computation is based on Graham's LPT scheduling al-
gorithm [56]. For the case of related links and independent type distribution, and
also for the case of identical links and arbitrary type distribution, the complexity
of computing a pure Bayesian Nash equilibrium remains open.

6.1.1.2 Properties of Fully Mixed Bayesian Nash Equilibria

We show that for the case of identical links, the private cost of each player is
maximized in a fully mixed Bayesian Nash equilibrium (Theorem 6.7). This also
implies that a player has the same private cost in any fully mixed Bayesian
Nash equilibrium. We de�ne a certain fully mixed Bayesian Nash equilibrium
that always exists. We show that, in general, there might exist more than one
fully mixed Bayesian Nash equilibrium, and we study their structural proper-
ties (Theorem 6.9). Finally, we determine the dimension of the space of fully
mixed Bayesian Nash equilibria for the case of independent type distributions
(Theorem 6.10).

6.1.1.3 Bounds on the Price of Anarchy

We close this chapter with bounds on the price of anarchy for three di�erent
social cost measures and for the case of identical links.

• The makespan social cost, which is de�ned by the expected maximum latency
on a link, is a social cost measure that expresses the social welfare of the sys-
tem. Here, we are able to show lower and upper bounds on the price of anarchy
for di�erent special cases (Theorem 6.12, Theorem 6.15 and Theorem 6.16).
The exact price of anarchy for this social cost measure remains open, even for
the case of identical links.

• A social cost measure that describes average player welfare is the sum of
private costs. In this setting, it follows that for the case of identical links,
each fully mixed Bayesian Nash equilibrium has maximum social cost (The-
orem 6.17). Using this fact, we prove an upper bound of m+n−1

m on the price
of anarchy for the case of identical links (Theorem 6.18). We prove that
this bound is asymptotically tight, already for complete information routing
games.
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• We also study social cost as maximum of private costs. For identical links, we
show asymptotically tight upper bounds on the price of anarchy of m+n−1

m for
Bayesian routing games and of 2− 1

m for complete information routing games
(Theorem 6.20).

6.1.2 Related Work

Bayesian routing games and weighted Bayesian congestion games generalize the
games studied in Chapter 4 and Chapter 5. So, many results that are already
described in Section 4.1.2 and Section 5.1.2 are also of interest here. To keep
this chapter self-contained, we again include those results that are most closely
related.

Rosenthal [88] introduced the class of congestion games and showed that they
always possess a pure Nash equilibrium. Fotakis et al. [38] considered weighted
congestion games and proved the existence of a pure Nash equilibria, for the case
where resources have linear latency functions. They also showed that a pure Nash
equilibrium might not exist for weighted congestion games with general latency
functions.

Harsanyi developed in his pioneering work [58, 59] a framework for studying
competitive situations where the players have incomplete information. For an
introduction to these so-called Bayesian games, we refer to Mas-Colell et al. [73]
and Myerson [79]. Facchini et al. [28] considered Bayesian congestion models with
players of identical weight, which have incomplete information about each other's
preferences. Beier et al. [9] focused on a service provider congestion game with
incomplete information.

Complete information routing games on parallel links were introduced by
Koutsoupias and Papadimitriou [67]. Graham's LPT scheduling algorithm [56]
computes a pure Nash equilibrium in this setting [37].

Mavronicolas and Spirakis [74] introduced the notion of fully mixed Nash equi-
libria to complete information routing games. They showed that, in case of exis-
tence, the fully mixed Nash equilibrium is unique. For the case of identical links,
Gairing et al. [47] showed that fully mixed Nash equilibria maximize private costs.

For complete information routing games and makespan social cost, there exist
tight bounds on the price of anarchy. These bounds are Θ( log m

log log m) for identical

links [23, 66] and Θ( log m
log log log m) for related links [23]. For complete information

routing games and social cost de�ned as the sum of private cost, Berenbrink et al.
[11] gave a lower bound of n

5 on the price of anarchy. Restricting to pure Nash
equilibria they also showed an upper bound that solely depends on the players'
tra�c.

Subsequently to our work Georgiou et al. [53] introduced a routing game with
incomplete information where the players have complete information about each
other's tra�c but only incomplete information about the latency functions in the
network.
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6.1.3 Organization

The rest of this chapter is organized as follows. Pure Bayesian Nash equilibria
are studied in Section 6.2. Some interesting structural properties of fully mixed
Bayesian Nash equilibria are treated in Section 6.3. Section 6.4 studies the price
of anarchy. We conclude, in Section 6.5, with a summary of our results and some
open problems.

6.2 Pure Bayesian Nash Equilibria

In this section we study the existence and the computational complexity of pure
Bayesian Nash equilibria.

We �rst show that there is always a pure Bayesian Nash equilibrium in any
Bayesian routing game. In fact, we show this result for the more general class
of weighted Bayesian congestion games (Theorem 6.1). Then, we present a poly-
nomial time algorithm, called PureBayesian, that computes a pure Bayesian
Nash equilibrium for a Bayesian routing game with identical links and indepen-
dent type distribution (Theorem 6.2). Finally, we show that PureBayesian
cannot be used to compute a pure Bayesian Nash equilibrium for Bayesian rout-
ing games with related links (Proposition 6.3) or with correlated type distribution
(Proposition 6.4).

6.2.1 Existence

We start by proving existence of pure Bayesian Nash equilibria.

Theorem 6.1. Every weighted Bayesian congestion game Γ with linear latency
functions has a pure Bayesian Nash equilibrium.

Proof. Given a pure strategy pro�le σ = (σ1, . . . , σn), de�ne the function

Φ(σ) =
∑
i∈[n]

∑
t∈Ti

∑
e∈σi(t)

Ψ(i, t) · w(t) ·
[
ge(δ−i

e (σ, (Ψ|ti = t)) + w(t)) + ge(w(t))
]
.

We will prove that any unilateral strategy change of a type agent that decreases
its private cost also decreases the value of the function Φ.
Given a pure strategy pro�le σ, de�ne for every player r ∈ [n] and type t ∈ Tr,

Φ(r,t)(σ) =
∑

e∈σr(t)

Ψ(r, t) · w(t) ·
[
ge(δ−r

e (σ, (Ψ|tr = t)) + w(t)) + ge(w(t))
]
;

and for every resource e ∈ [m] and player r ∈ [n],

Φ−r
e (σ)

=
∑

i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t) ·
[
ge(δ−i

e (σ, (Ψ|ti = t)) + w(t)) + ge(w(t))
]
.
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Observe �rst that∑
t∈Tr

Φ(r,t)(σ) +
∑

e∈[m]

Φ−r
e (σ)

=
∑
t∈Tr

∑
e∈σr(t)

Ψ(r, t) · w(t) ·
[
ge(δ−r

e (σ, (Ψ|tr = t)) + w(t)) + ge(w(t))
]

+
∑

e∈[m]

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t) ·
[
ge(δ−i

e (σ, (Ψ|ti = t)) + w(t)) + ge(w(t))
]

=
∑
t∈Tr

∑
e∈σr(t)

Ψ(r, t) · w(t) ·
[
ge(δ−r

e (σ, (Ψ|tr = t)) + w(t)) + ge(w(t))
]

+
∑

i∈[n]\{r}

∑
t∈Ti

∑
e∈σi(t)

Ψ(i, t) · w(t) ·
[
ge(δ−i

e (σ, (Ψ|ti = t)) + w(t)) + ge(w(t))
]

=
∑
i∈[n]

∑
t∈Ti

∑
e∈σi(t)

Ψ(i, t) · w(t) ·
[
ge(δ−i

e (σ, (Ψ|ti = t)) + w(t)) + ge(w(t))
]

= Φ(σ).

Consider a unilateral strategy change of type agent (r, t̂) from the set of
resources σr(t̂) ∈ Sr to the set of resources σ′r(t̂) ∈ Sr. Set σ′r(t) = σr(t)
for all t ∈ Tr \ {t̂} and de�ne σ′ = (σ1, . . . , σr−1, σ

′
r, σr+1, . . . σn) as the

pure strategy pro�le resulting from σ after this strategy change. Assume that
v(r,t̂)(σ

′,Ψ) < v(r,t̂)(σ,Ψ), that is, the private cost of type agent (r, t̂) decreases.
Thus,

v(r,t̂)(σ
′,Ψ)− v(r,t̂)(σ,Ψ)

=
∑

e∈σ′r(t̂)

ge

(
δ−r
e (σ′, (Ψ|tr = t̂)) + w(t̂)

)
−
∑

e∈σr(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
< 0.

Moreover,

• Φ(r,t)(σ) = Φ(r,t)(σ′) for all type agents (r, t) where t ∈ Tr \ {t̂}, and
• Φ−r

e (σ) = Φ−r
e (σ′) for all resources e that are neither in σr(t̂) nor in σ′r(t̂) or

that are in both σr(t̂) as well as in σ′r(t̂), that is, e ∈
(
[m] \ (σr(t̂) ∪ σ′r(t̂))

)
∪(

σr(t̂) ∩ σ′r(t̂)
)
. Observe that these are the resources where the load does not

change.

Now, consider the change ∆(Φ) to the function Φ due to this strategy change of
type agent (r, t̂). Clearly,
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∆(Φ)
= Φ(σ′)− Φ(σ)

=
∑
t∈Tr

(
Φ(r,t)(σ

′)− Φ(r,t)(σ))
)

+
∑

e∈[m]

(
Φ−r

e (σ′)− Φ−r
e (σ)

)
=
(
Φ(r,t̂)(σ

′)− Φ(r,t̂)(σ))
)

+
∑

e∈σ′r(t̂)\σr(t̂)

(
Φ−r

e (σ′)− Φ−r
e (σ)

)
+

∑
e∈σr(t̂)\σ′r(t̂)

(
Φ−r

e (σ′)− Φ−r
e (σ)

)
= ∆1(Φ) + ∆2(Φ) + ∆3(Φ),

where

∆1(Φ) = Φ(r,t̂)(σ
′)− Φ(r,t̂)(σ),

∆2(Φ) =
∑

e∈σ′r(t̂)\σr(t̂)

(
Φ−r

e (σ′)− Φ−r
e (σ)

)
, and

∆3(Φ) =
∑

e∈σr(t̂)\σ′r(t̂)

(
Φ−r

e (σ′)− Φ−r
e (σ)

)
.

Clearly,

∆1(Φ)

= Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)

[
ge

(
δ−r
e (σ′, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

]

−
∑

e∈σr(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

]
= Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)\σr(t̂)

[
ge

(
δ−r
e (σ′, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

]

−
∑

e∈σr(t̂)\σ′r(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

]
= Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)\σr(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

]

−
∑

e∈σr(t̂)\σ′r(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂))

] .

Furthermore, due to the arrival of type agent (r, t̂) on the resources e ∈ σ′r(t̂) \
σr(t̂),
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∆2(Φ)

=
∑

e∈σ′r(t̂)\σr(t̂)

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t)

·
(
ge(δ−i

e (σ′, (Ψ|ti = t)) + w(t)) + ge(w(t))

− ge(δ−i
e (σ, (Ψ|ti = t)) + w(t))− ge(w(t))

)
=

∑
e∈σ′r(t̂)\σr(t̂)

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t)

·
(
ge(δ−i

e (σ′, (Ψ|ti = t)))− ge(δ−i
e (σ, (Ψ|ti = t)))

)
=

∑
e∈σ′r(t̂)\σr(t̂)

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t)

·ae

(
δ−i
e (σ′, (Ψ|ti = t))− δ−i

e (σ, (Ψ|ti = t))
)

=
∑

e∈σ′r(t̂)\σr(t̂)

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t) · ae

·
∑

(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) ·

 ∑
s∈[n]\{i}:
e∈σ′s(ts)

w(ts)−
∑

s∈[n]\{i}:
e∈σs(ts)

w(ts)

 .

Note that∑
s∈[n]\{i}:
e∈σ′s(ts)

w(ts)−
∑

s∈[n]\{i}:
e∈σs(ts)

w(ts) =
{

w(t̂), for all (t1, . . . , tn) ∈ T where tr = t̂,
0, else.

Hence,

∆2(Φ)

=
∑

e∈σ′r(t̂)\σr(t̂)

ae

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

Ψ(i, t) · w(t)

·
∑

(t1,...,tn)∈T :

ti=t,tr=t̂

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) · w(t̂)

= w(t̂)
∑

e∈σ′r(t̂)\σr(t̂)

ae

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

w(t)
∑

(t1,...,tn)∈T :

ti=t,tr=t̂

Ψ(t1, . . . , tn)

= w(t̂)
∑

e∈σ′r(t̂)\σr(t̂)

ae

∑
i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

∑
(t1,...,tn)∈T :

ti=t,tr=t̂

Ψ(t1, . . . , tn) · w(t)
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= Ψ(r, t̂) · w(t̂)
∑

e∈σ′r(t̂)\σr(t̂)

ae

·
∑

i∈[n]\{r}

∑
t∈Ti:

e∈σi(t)

∑
(t1,...,tn)∈T :

ti=t,tr=t̂

Ψ(t1, . . . , tr−1, tr+1, . . . , tn|tr = t̂) · w(t)

= Ψ(r, t̂) · w(t̂)
∑

e∈σ′r(t̂)\σr(t̂)

ae

·
∑

i∈[n]\{r}

∑
(t1,...,tn)∈T :

e∈σi(ti),tr=t̂

Ψ(t1, . . . , tr−1, tr+1, . . . , tn|tr = t̂) · w(ti)

= Ψ(r, t̂) · w(t̂)
∑

e∈σ′r(t̂)\σr(t̂)

ae

·
∑

(t1,...,tn)∈T :

tr=t̂

Ψ(t1, . . . , tr−1, tr+1, . . . , tn|tr = t̂)
∑

i∈[n]\{r}:
e∈σi(ti)

w(ti)

= Ψ(r, t̂) · w(t̂) ·
∑

e∈σ′r(t̂)\σr(t̂)

ae · δ−r
e (σ, (Ψ|tr = t̂)).

Similarly, since type agent (r, t̂) left the resources e ∈ σr(t̂)\σ′r(t̂), we obtain that

∆3(Φ) = −Ψ(r, t̂) · w(t̂) ·
∑

e∈σr(t̂)\σ′r(t̂)

ae · δ−r
e (σ, (Ψ|tr = t̂)).

Hence,

∆(Φ)
= ∆1(Φ) + ∆2(Φ) + ∆3(Φ)
= Ψ(r, t̂) · w(t̂)

·

 ∑
e∈σ′r(t̂)\σr(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂)) + ae · δ−r

e (σ, (Ψ|tr = t̂))
]

−
∑

e∈σr(t̂)\σ′r(t̂)

[
ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
+ ge(w(t̂)) + ae · δ−r

e (σ, (Ψ|tr = t̂))
]

= 2 · Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)\σr(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)

−
∑

e∈σr(t̂)\σ′r(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
= 2 · Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
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−
∑

e∈σr(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
= 2 · Ψ(r, t̂) · w(t̂) ·

 ∑
e∈σ′r(t̂)

ge

(
δ−r
e (σ′, (Ψ|tr = t̂)) + w(t̂)

)

−
∑

e∈σr(t̂)

ge

(
δ−r
e (σ, (Ψ|tr = t̂)) + w(t̂)

)
= 2 · Ψ(r, t̂) · w(t̂) ·

(
v(r,t̂)(σ

′,Ψ)− v(r,t̂)(σ,Ψ)
)

< 0 .

Thus, any unilateral strategy change of a type agent that decreases its private
cost also decreases the value of the function Φ. Since the number of possible
strategy pro�les in Γ is �nite, it follows that there is a pure strategy pro�le
that minimizes Φ. In this strategy pro�le, no type agent can decrease its private
cost by unilaterally changing its strategy. Hence, Γ has a pure Bayesian Nash
equilibrium, as needed.

This generalizes a result by Fotakis et al. [38, Theorem 1] to the Bayesian setting.
In particular our function Φ reduces to their potential function if each player has
only a single type.

6.2.2 Computation

We now turn to the model of identical links and show how a pure Bayesian
Nash equilibrium can be computed in polynomial time if the type distribution
is independent. An algorithm, called PureBayesian, that performs this task is
depicted in Figure 6.1. The algorithm computes a normal pure Bayesian Nash

PureBayesian(Γ )
Input: Bayesian routing game Γ = (n, m,1, T,Ψ) with identical links and independent

type distribution
Output: pure Bayesian Nash Equilibrium σ
1: Calculate for each player i ∈ [n] its expected tra�c W (i);
2: Construct a complete information routing game ΓCI = (n, m,1, {(t′1, ..., t′n)}, 1) where

w(t′i) = W (i) for all i ∈ [n].
3: Compute a pure Nash equilibrium L = (`1, . . . , `n) for ΓCI in polynomial time with the LPT

scheduling algorithm which assigns the players in order of non-increasing player tra�c
to minimum load links (see [37, 56]).

4: Set σi(t) = `i for all players i ∈ [n] and types t ∈ Ti.
5: return σ;

Fig. 6.1. PureBayesian

equilibrium, that is, for a �xed player, it assigns all types to the same link.
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PureBayesian �rst computes for each player its expected tra�c. Then, it uses
Graham's LPT scheduling algorithm [56] to assign (all types of) the players
in order non-increasing expected tra�c to minimum load links. Gairing et al.
[49] showed that the resulting strategy pro�le is a (normal) pure Bayesian Nash
equilibrium.

Theorem 6.2 (Gairing et al. [49]). Let Γ = (n, m,1, T,Ψ) be a Bayesian
routing game on identical links with independent type distribution. Then, a (nor-
mal) pure Bayesian Nash equilibrium for Γ can be computed in time polynomial
in the size of Γ even if Ψ is represented in a compact form by a set of probabilities
Ψ(i, t) for i ∈ [n] and t ∈ Ti.

Algorithm PureBayesian cannot be used to compute pure Bayesian Nash equi-
libria for the more general classes of Bayesian routing games either on related
links or with correlated type distribution. The reason is that it always computes
a normal pure Bayesian Nash equilibrium, while the following counter-examples
show that a normal pure Bayesian Nash equilibrium does not exist in general.

Proposition 6.3. There is a Bayesian routing game Γ on related links with in-
dependent type distribution that does not have a normal pure Bayesian Nash
equilibrium.

Proof. Consider the Bayesian routing game Γ = (2, 2, c, T1 × T2,Ψ) with two
links of capacity c1 = 1 and c2 = 5. The two players have type sets T1 = {t1, t′1}
and T2 = {t2}, where w(t1) = 1, w(t′1) = 5, w(t2) = 10, and Ψ(1, t1) = Ψ(1, t′1) =
1
2 . We will now study the structure of pure Bayesian Nash equilibria for Γ and
�nally recognize that it has no normal pure Bayesian Nash equilibrium.

Let σ be an arbitrary pure Bayesian Nash equilibrium. Then,

λ1
(2,t2)(σ,Ψ) =

δ−2
1 (σ,Ψ) + w(t2)

c1
≥ w(t2)

c1
= 10

while

λ2
(2,t2)(σ,Ψ) =

δ−2
2 (σ,Ψ) + w(t2)

c2
≤

1
2 · w(t1) + 1

2 · w(t′1) + w(t2)
c2

=
13
5

< 10.

Thus, σ assigns t2 to link 2, so σ2(t2) = 2. Consider now the types of player 1.
We have

λ1
(1,t1)(σ,Ψ) =

w(t1)
c1

= 1 and λ2
(1,t1)(σ,Ψ) =

w(t2) + w(t1)
c2

=
11
5

,

λ1
(1,t′1)(σ,Ψ) =

w(t′1)
c1

= 5 and λ2
(1,t′1)(σ,Ψ) =

w(t2) + w(t′1)
c2

= 3.

So σ assigns t1 to link 1 and t′1 to link 2. It follows that σ is the unique pure
Bayesian Nash equilibrium. However, σ is not a normal pure Bayesian Nash
equilibrium. The claim follows.
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Proposition 6.4. There is a Bayesian routing game Γ on identical links with
correlated type distribution that does not have a normal pure Bayesian Nash equi-
librium.

Proof. Consider the Bayesian routing game Γ = (3, 2,1, T1×T2×T3,Ψ) with 2
identical links and 3 players where the type sets are T1 = {t1, t′1}, T2 = {t2, t′2}
and T3 = {t3, t′3}. The types are of tra�c w(t1) = w(t′2) = w(t3) = w(t′3) = 1
and w(t′1) = w(t2) = 2. The correlated distribution Ψ is given by Ψ(t1, t2, t3) =
Ψ(t′1, t

′
2, t

′
3) = 1

2 .
Assume, by way of contradiction, that a normal pure Bayesian Nash equilib-

rium σ exists; so, σ1(t1) = σ1(t′1), σ2(t2) = σ2(t′2), and σ3(t3) = σ3(t′3). Let j
and k be the two links. Without loss of generality, set σ1(t1) = σ1(t′1) = j. Then,
clearly

λj
(2,t′2)

(σ,Ψ) ≥ w(t′1) + w(t′2) = 3 while λk
(2,t′2)(σ,Ψ) ≤ w(t′3) + w(t′2) = 2.

Thus, σ2(t′2) = k; hence, σ2(t2) = σ2(t′2) = k for all normal pure Bayesian Nash
equilibria σ. For the types of player 3, note that

λj
(3,t3)(σ,Ψ) = w(t1) + w(t3) = 2 while λk

(3,t3)(σ,Ψ) = w(t2) + w(t3) = 3, and

λj
(3,t′3)

(σ,Ψ) = w(t′1) + w(t′3) = 3 while λk
(3,t′3)(σ,Ψ) = w(t′2) + w(t′3) = 2.

Since σ is a Bayesian Nash equilibrium, σ3(t3) = j and σ3(t′3) = k. Hence, σ is
not normal. A contradiction.

6.3 Properties of Fully Mixed Bayesian Nash Equilibria

In this section, we study fully mixed Bayesian Nash equilibria for the case of
identical links. We start by proving a technical lemma that will be handy later
on (Lemma 6.5). With the help of this lemma, we prove a simple expression
on the private cost of the players in a fully mixed Bayesian Nash equilibrium
(Theorem 6.6). Then, we show that fully mixed Bayesian Nash equilibria max-
imize private costs (Theorem 6.7). This result will be of particular interest in
Section 6.4. We proceed with an exact characterization of fully mixed Bayesian
Nash equilibria (Theorem 6.9). Finally, we determine the dimension of space of
fully mixed Bayesian Nash equilibria (Theorem 6.10).

We start with the following technical lemma.

Lemma 6.5. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on identical
links and an associated mixed strategy pro�le P. Then, for each player i ∈ [n],∑

j∈[m]

δ−i
j (P, (Ψ|ti = t)) =

∑
s∈[n] {i}

W (s|ti = t).
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Proof. Clearly,∑
j∈[m]

δ−i
j (P, (Ψ|ti = t))

=
∑

j∈[m]

∑
σ∈Σ

∏
s∈[n]

p(s, σs) · δ−i
j (σ, (Ψ|ti = t))

=
∑

j∈[m]

∑
σ∈Σ

∏
s∈[n]

p(s, σs) ·
∑

(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)
∑

s∈[n]\{i}:
σs(ts)=j

w(ts)

=
∑
σ∈Σ

∏
s∈[n]

p(s, σs) ·
∑

(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)
∑

s∈[n]\{i}

w(ts)

=
∑

(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)
∑

s∈[n]\{i}

w(ts)

=
∑

s∈[n]\{i}

∑
(t1,...,tn)∈T :

ti=t

Ψ(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)w(ts)

=
∑

s∈[n]\{i}

W (s|ti = t),

as needed.

We continue to prove a simple expression for the private cost of each player in a
fully mixed Bayesian Nash equilibrium.

Theorem 6.6. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on iden-
tical links and an associated fully mixed Bayesian Nash equilibrium F. Then for
each player i ∈ [n],

PCi(F,Ψ) =
W

m
+

m− 1
m

W (i).

Proof. Fix any player i ∈ [n]. Clearly, for any link k ∈ supporti(F) = [m], and
by Lemma 6.5,

PCi(F,Ψ) =
∑
t∈Ti

Ψ(i, t) · v(i,t)(F,Ψ)

=
∑
t∈Ti

Ψ(i, t) ·
(
w(t) + δ−i

k (F, (Ψ|ti = t))
)

=
∑
t∈Ti

Ψ(i, t) · w(t) +
∑
t∈Ti

Ψ(i, t) · δ−i
k (F, (Ψ|ti = t))

= W (i) +
∑
t∈Ti

Ψ(i, t) · 1
m
·
∑

j∈[m]

δ−i
j (F, (Ψ|ti = t))

= W (i) +
1
m

∑
t∈Ti

Ψ(i, t)
∑

s∈[n]\{i}

W (s|ti = t) (6.1)
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= W (i) +
1
m

∑
s∈[n]\{i}

∑
t∈Ti

Ψ(i, t) ·W (s|ti = t)

= W (i) +
1
m

∑
s∈[n]\{i}

W (s)

=
W

m
+

m− 1
m

W (i),

as needed.

We now prove that the private cost of each player is maximized in a fully mixed
Bayesian Nash equilibrium. For the special case of complete information routing
games this result was shown by Gairing et al. [47].

Theorem 6.7. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on identi-
cal links and an associated fully mixed Bayesian Nash equilibrium F and Bayesian
Nash equilibrium P. Then for each player i ∈ [n],

PCi(P,Ψ) ≤ PCi(F,Ψ).

Proof. Fix any player i ∈ [n]. Then, for any link j ∈ [m],

PCi(P,Ψ) =
∑
t∈Ti

Ψ(i, t) · v(i,t)(P,Ψ)

≤
∑
t∈Ti

Ψ(i, t) ·
(
w(t) + δ−i

j (P, (Ψ|ti = t))
)

,

since P is a Bayesian Nash equilibrium. In particular,

PCi(P,Ψ) ≤
∑
t∈Ti

Ψ(i, t)
(

w(t) + min
j∈[m]

{
δ−i
j (P, (Ψ|ti = t))

})

≤
∑
t∈Ti

Ψ(i, t)

w(t) +
1
m

∑
j∈[m]

δ−i
j (P, (Ψ|ti = t))


=
∑
t∈Ti

Ψ(i, t)

w(t) +
1
m

∑
s∈[n]\{i}

W (s|ti = t)


= W (i) +

1
m

∑
t∈Ti

Ψ(i, t)
∑

s∈[n]\{i}

W (s|ti = t)

= PCi(F,Ψ),

by Equation (6.1), as needed.

We proceed to de�ne a particular fully mixed strategy pro�le F∗.

De�nition 6.8. The standard fully mixed strategy pro�le F∗ is the fully mixed
strategy pro�le that assigns every type agent to every link with probability 1

m .
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It is easy to see that for any Bayesian routing game Γ on identical links, the
standard fully mixed strategy pro�le is a Bayesian Nash equilibrium. For the
special case of complete information routing games, this fact was �rst stated in
[74].

In general, there exists more than one fully mixed Bayesian Nash equilibrium.
In the remainder of this section, we study the structure of fully mixed Bayesian
Nash equilibria for Bayesian routing games on identical links with independent
type distribution. We start with an exact characterization of fully mixed Bayesian
Nash equilibria.

Theorem 6.9. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on identi-
cal links with independent type distribution and an associated fully mixed strategy
pro�le F. Then, F is a fully mixed Bayesian Nash equilibrium if and only if

1
m
·W (i) =

∑
σi∈Σi

f(i, σi)
∑
t∈Ti:

σi(t)=j

Ψ(i, t) · w(t)

for all players i ∈ [n] and links j ∈ [m].

Proof. For any player i ∈ [n] and link j ∈ [m], set

µ(F, i, j) =
∑

σi∈Σi

f(i, σi)
∑
t∈Ti:

σi(t)=j

Ψ(i, t) · w(t).

Observe that for any player i ∈ [n] and link j ∈ [m],

δ−i
j (F,Ψ) =

∑
σ∈Σ

∏
s∈[n]

f(s, σs)
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn)
∑

k∈[n]\{i}:
σk(tk)=j

w(tk)

=
∑
σ∈Σ

∏
s∈[n]

f(s, σs)
∑

k∈[n]\{i}

∑
tk∈Tk:

σk(tk)=j

Ψ(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑
σ∈Σ

∏
s∈[n]

f(s, σs)
∑

tk∈Tk:

σk(tk)=j

Ψ(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑
σ′k∈Σk

f(k, σ′k)
∑
σ∈Σ:

σk=σ′k

∏
s∈[n]\{k}

f(s, σs)
∑

tk∈Tk:

σk(tk)=j

Ψ(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑
σ′k∈Σk

f(k, σ′k)
∑

tk∈Tk:

σk(tk)=j

Ψ(k, tk) · w(tk)

=
∑

k∈[n]\{i}

µ(F, k, j) .

Consider �rst an arbitrary fully mixed strategy pro�le F that satis�es µ(F, i, j) =
1
m ·W (i) for all players i ∈ [n] and links j ∈ [m]. Then, for all players i ∈ [n],
types t ∈ Ti, and links j ∈ [m],



118 6 Bayesian Routing Games

λj
(i,t)(F,Ψ) = δ−i

j (F, (Ψ|ti = t)) + w(t)

= δ−i
j (F,Ψ) + w(t)

=
∑

k∈[n]\{i}

µ(F, k, j) + w(t)

=
∑

k∈[n]\{i}

1
m
·W (k) + w(t).

Hence, we get for the private cost of type agent (i, t),

v(i,t)(F,Ψ) =
∑

σi∈Σi

f(i, σi) · λσi(t)
(i,t) (F,Ψ)

=
∑

k∈[n]\{i}

1
m
·W (k) + w(t).

So, v(i,t)(F,Ψ) = λj
(i,t)(F,Ψ) for all players i ∈ [n], types t ∈ Ti, and links

j ∈ [m]. Thus, F is a fully mixed Bayesian Nash equilibrium.
We will now show the opposite direction. Assume that F is a fully mixed

Bayesian Nash Equilibrium. It follows that supportt(P) = [m] for all players
i ∈ [n] and types t ∈ Ti. Since F is a fully mixed Bayesian Nash Equilibrium and
Ψ is independent, it follows that for all links j ∈ supportt(P) = [m],

v(i,t)(F,Ψ) = λj
(i,t)(F,Ψ)

= δ−i
j (F, (Ψ|ti = t)) + w(t)

= δ−i
j (F,Ψ) + w(t).

So, for all players i ∈ [n] and pair of links j, l ∈ [m],

δ−i
j (F,Ψ) = δ−i

l (F,Ψ).

Since δ−i
j (F,Ψ) =

∑
k∈[n]\{i} µ(F, k, j) for any player i and link j, it follows that

for an arbitrary pair of players i1, i2 ∈ [n] with i1 6= i2 and an arbitrary pair of
links j1, j2 ∈ [m] with j1 6= j2,∑

k∈[n]\{i1}

µ(F, k, j1) =
∑

k∈[n]\{i1}

µ(F, k, j2) (6.2)

and ∑
k∈[n]\{i2}

µ(F, k, j1) =
∑

k∈[n]\{i2}

µ(F, k, j2). (6.3)

Subtracting (6.3) from (6.2) yields that

µ(F, i2, j1)− µ(F, i1, j1) = µ(F, i2, j2)− µ(F, i1, j2),

or equivalently
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0 = µ(F, i2, j1)− µ(F, i2, j2) + µ(F, i1, j2)− µ(F, i1, j1).

Summing up over all players i2 ∈ [n] \ {i1} yields that

0 =
∑

i2∈[n]\{i1}

µ(F, i2, j1)−
∑

i2∈[n]\{i1}

µ(F, i2, j2)

+
∑

i2∈[n]\{i1}

µ(F, i1, j2)−
∑

i2∈[n]\{i1}

µ(F, i1, j1)

= δ−i1
j1

(F,Ψ)− δ−i1
j2

(F,Ψ) + (n− 1) · µ(F, i1, j2)− (n− 1) · µ(F, i1, j1)
= (n− 1) · (µ(F, i1, j2)− µ(F, i1, j1)) .

It follows that for all players i1 ∈ [n] and pair of links j1, j2 ∈ [m],

µ(F, i1, j1) = µ(F, i1, j2).

Clearly, for any player i ∈ [n],

W (i) =
∑
t∈Ti

Ψ(i, t) · w(t)

=
∑

σi∈Σi

f(i, σi)
∑
t∈Ti

Ψ(i, t) · w(t)

=
∑

σi∈Σi

f(i, σi)
∑

j∈[m]

∑
t∈Ti:

σi(t)=j

Ψ(i, t) · w(t)

=
∑

j∈[m]

∑
σi∈Σi

f(i, σi)
∑
t∈Ti:

σi(t)=j

Ψ(i, t) · w(t)

=
∑

j∈[m]

µ(F, i, j)

= m · µ(F, i, j),

for any link j ∈ [m]. This implies that for all players i ∈ [n] and links j ∈ [m],

µ(F, i, j) =
1
m
·W (i)

or
1
m
·W (i) =

∑
σi∈Σi

f(i, σi)
∑
t∈Ti:

σi(t)=j

Ψ(i, t) · w(t),

as needed.

We �nally determine a lower bound on the dimension of the space of fully mixed
Bayesian Nash equilibria.

Theorem 6.10. Consider a Bayesian routing game Γ on identical links with
independent type distribution. Then, the dimension of the space of fully mixed
Bayesian Nash equilibria for Γ is at least

∑
i∈[n] m

τi − nm.
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Proof. Let F be a fully mixed Bayesian Nash equilibrium. By Theorem 6.9, this
is equivalent to F being a fully mixed strategy pro�le and∑

σi∈Σi

f(i, σi)
∑

t∈Ti:σi(t)=j

Ψ(i, t) · w(t) =
1
m
·W (i)

for all players i ∈ [n] and links j ∈ [m]. So, F is a solution to the system of linear
equations and inequalities:

(1) f(i, σi) > 0 ∀i ∈ [n],∀σi ∈ Σi

(2)
∑

σi∈Σi

f(i, σi) = 1 ∀i ∈ [n]

(3)
∑

σi∈Σi

f(i, σi)
∑

t∈Ti:σi(t)=j

Ψ(i, t) · w(t) =
1
m
·W (i) ∀i ∈ [n],∀j ∈ [m].

The dimension of the solution space of this system is the number of variables
minus the number of independent equations. For each player i ∈ [n] we have mτi

variables. Thus, the total number of variables is
∑

i∈[n] m
τi . We now show an

upper bound on the number of independent equations. Fix any player i ∈ [n].
Summing up the equations (3) for all links j ∈ [m] yields∑

j∈[m]

∑
σi∈Σi

f(i, σi)
∑

t∈Ti:σi(t)=j

Ψ(i, t) · w(t) =
∑

j∈[m]

1
m
·W (i)

⇔
∑

σi∈Σi

f(i, σi)
∑
t∈Ti

Ψ(i, t) · w(t) = W (i)

⇔
∑

σi∈Σi

f(i, σi) ·W (i) = W (i)

⇔
∑

σi∈Σi

f(i, σi) = 1

It follows that all equations (2) are implied by a linear combination of equations
in (3). Therefore, nm is an upper bound on the number of independent equations.
The claim follows.

6.4 Social Cost and Price of Anarchy

In this section, we present bounds on the price of anarchy for three di�erent social
cost measures. All these results are for the case of identical links. In Section 6.4.1,
we summarize our results for makespan social cost. In Section 6.4.2, we consider
social cost as sum of private cost and in Section 6.4.3, we present our �ndings for
social cost as maximum of private costs.
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6.4.1 Makespan Social Cost

In this section, we study the price of anarchy for makespan social cost. For the
special case of complete information routing games this social cost measure was
introduced in [67] and asymptotic tight bounds on the price of anarchy were
given by Czumaj and Vöcking [23] and Koutsoupias et al. [66]. Their techniques
use Cherno� bounds to show that for identical links the quotient between the
expected maximum load and the maximum expected load on a link is at most
O( log m

log log m). We prove that previous techniques cannot be applied to prove an
upper bound on the price of anarchy which is better than O(m).

Proposition 6.11. For any ε > 0, there is a Bayesian routing game Γ =
(n, m,1, T,Ψ) on identical links with independent type distribution and an as-
sociated pure Bayesian Nash equilibrium σ with SCMSP(Γ,σ) = OPTMSP(Γ ),
such that for each link j ∈ [m],

SCMSP(Γ, σ)
δj(σ,Ψ)

≥ m

1 + ε
.

Proof. Set n = m. For each player i ∈ [n], set Ti = {ti, t′i} with w(ti) = 0 and
w(t′i) = a; set also for each player i ∈ [n], Ψ(i, ti) = 1 − 1

a and Ψ(i, t′i) = 1
a . Let

σ be the pure Bayesian Nash equilibrium that maps both types of player i to
link i, where i ∈ [n]. Since each player is assigned to a di�erent link, we have
OPTMSP(Γ ) = SCMSP(Γ,σ). Clearly, on the one hand, δj(σ,Ψ) = 1 for all links
j ∈ [m]. On the other hand,

SCMSP(Γ, σ) =
(

1−
(

1− 1
a

)m)
a.

Note that

lim
a→∞

((
1−

(
1− 1

a

)m)
a

)
= lim

a→∞

((
1−

m∑
i=0

(
m

i

)(
−1

a

)i
)

a

)

= lim
a→∞

((
1− 1−

m∑
i=1

(
m

i

)
(−1)i

(
1
a

)i
)

a

)

= lim
a→∞

(
m∑

i=1

(
m

i

)
(−1)i−1

(
1
a

)i−1
)

= lim
a→∞

(
m +

m∑
i=2

(
m

i

)
(−1)i−1

(
1
a

)i−1
)

= m.

The claim follows.

We now turn our attention to the standard fully mixed Bayesian Nash equi-
librium on identical links. We prove:
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Theorem 6.12. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on iden-
tical links and an associated standard fully mixed Bayesian Nash equilibrium F∗.
Then,

SCMSP(Γ,F∗)
OPTMSP(Γ )

= O
(

log m

log log m

)
.

Proof. Consider an arbitrary type pro�le t = (t1, ..., tn) ∈ T . Given t, we
de�ne the game ΓCI(t) = (n, m,1, {(t1, ..., tn)}, 1). Recall that for this com-
plete information routing game ΓCI(t), the unique fully mixed Nash equilibrium
P(t) assigns each player to each link with probability 1

m (see [74, Lemma 15]).
By [66, Theorem 4.4] or [23, Theorem 1.1], it holds that

SCMSP(ΓCI(t),P(t))
OPTMSP(ΓCI(t))

= O
(

log m

log log m

)
.

Recall that F∗ assigns every type agent to every link with probability 1
m . Thus,

SCMSP(Γ,F∗) =
∑
t∈T

Ψ(t) ·
∑

(σ1(t1),...,σn(tn))∈[m]n

(
1
m

)n

· max
j∈[m]


∑
i∈[n]:

σi(ti)=j

w(ti)


=
∑
t∈T

Ψ(t) · SCMSP(ΓCI(t),P(t))

=
∑
t∈T

Ψ(t) · OPTMSP(ΓCI(t)) · O
(

log m

log log m

)
= OPTMSP(Γ ) · O

(
log m

log log m

)
,

as needed.

Theorem 6.12 implies that for the standard fully mixed Nash equilibrium, incom-
plete information has no impact on the price of anarchy if social cost is taken as
makespan social cost.

Since, in general, there is more than one fully mixed Bayesian Nash equilib-
rium, the natural question arises whether they have all the same makespan social
cost. As we see now, this is not the case.

Proposition 6.13. There exists a Bayesian routing game Γ on identical links
and an associated fully mixed Bayesian Nash equilibrium F such that

SCMSP(Γ,F) > SCMSP(Γ,F∗).

Proof. Consider the Bayesian routing game Γ = (n, m,1, T,Ψ) with n = 2,m =
3 and Ti = {ti, t′i} with w(ti) = 2, w(t′i) = 1 for all players i ∈ {1, 2}; set
Ψ(i, ti) = Ψ(i, t′i) = 1

2 for all players i ∈ {1, 2}. Consider the standard fully
mixed Bayesian Nash equilibrium F∗ and some other fully mixed Bayesian Nash
equilibrium F which we de�ne below:
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• F∗ assigns each type to each link with a probability of 1
3 . Thus, the two

players are assigned to the same link with a probability of 1
3 . In this case, the

maximum latency can be 2, 3, or 4. With a probability of 2
3 , the players are

assigned to di�erent links. In this case the maximum latency can be 1 or 2.
Hence, the social cost of the standard fully mixed Bayesian Nash equilibrium
F∗ is SCMSP(Γ,F∗) = 1

3 ·
(

1
4 · 2 + 1

2 · 3 + 1
4 · 4

)
+ 2

3 ·
(

1
4 · 1 + 3

4 · 2
)

= 13
6 .

• The fully mixed strategy pro�le F assigns each type of tra�c 1 to link 1 with
a probability of 1

2 , to link 2 with a probability of 1
4 and to link 3 with a

probability of 1
4 . Each type of tra�c 2 is assigned to link 1 with a probability

of 1
4 , to link 2 with a probability of 3

8 and to link 3 with a probability of
3
8 . Observe that for all i ∈ {1, 2} we get δ−i

1 (F) = 1
2 ·

1
2 · 1 + 1

2 ·
1
4 · 2 = 1

2

and δ−i
2 (F) = δ−i

3 (F) = 1
2 ·

1
4 · 1 + 1

2 ·
3
8 · 2 = 1

2 . Thus, F is a Bayesian Nash
equilibrium.
With probability 1

4 both players are of tra�c 1. In this case they use the
same link with probability (1

2)2 + 2 · (1
4)2 = 3

8 . With probability 1
2 , exactly

one of the two players is of tra�c 1. In this case, the players use the same
link with probability 1

2 ·
1
4 + 2 · 1

4 ·
3
8 = 5

16 . With the remaining probability 1
4 ,

both players are of tra�c 2. In this case, the players use the same link with
probability (1

4)2 + 2 · (3
8)2 = 11

32 . Hence we get that the social cost of F is
SCMSP(Γ,F) = 1

4 ·
(

3
8 · 2 + 5

8 · 1
)

+ 1
2 ·
(

5
16 · 3 + 11

16 · 2
)

+ 1
4 ·
(

11
32 · 4 + 21

32 · 2
)

= 139
64 .

Observe that SCMSP(Γ,F) = 139
64 = 417

192 > 416
192 = 13

6 = SCMSP(Γ,F∗).

It is known (see [73, Section 8.E]) that mixed Nash equilibria in games with
complete information are related to pure Bayesian Nash equilibria in a Bayesian
game, where for each player all its types are identical. The following de�nition
and theorem applies this to Bayesian routing games.

De�nition 6.14. A CI-like game is a Bayesian routing game with an independent
type distribution such that w(t) = w(t′) for all types t, t′ ∈ Ti, where i ∈ [n].

We call these games CI-like games (where CI stands for complete information)
since they are similar to complete information routing games in the sense that the
tra�c of a player does not depend on its type. For complete information routing
games, there exist asymptotically tight upper bounds on the price of anarchy for
the cases of identical links [23, 66] and related links [23]. We use these bounds to
prove:

Theorem 6.15. Let Γ = (n, m, c, T,Ψ) be a CI-like game with an associated
pure Bayesian Nash equilibrium σ. Then

(a) SCMSP(Γ,σ)
OPTMSP(Γ ) = O

(
log m

log log m

)
, for the case of identical links,

(b) SCMSP(Γ,σ)
OPTMSP(Γ ) = O

(
log m

log log log m

)
, for the case of related links,

and there are CI-like games for which both bounds are asymptotically tight.
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Proof. The proof is structured as follows: We �rst de�ne a construction that
maps any CI-like game Γ with an associated pure strategy pro�le σ to a com-
plete information routing ΓCI with associated (mixed) strategy pro�le P. For
this construction, we show that SCMSP(Γ,σ) = SCMSP(ΓCI,P), OPTMSP(Γ ) =
OPTMSP(ΓCI), and that P is a Nash equilibrium if σ is a Bayesian Nash equilib-
rium. From these properties of our construction, we derive that the corresponding
upper bounds on the price of anarchy [23, 66] for complete information routing
games also hold for CI-like games. To prove tightness, we show that for every com-
plete information routing game ΓCI with associated (mixed) Nash equilibrium P,
we can de�ne a CI-like game Γ with associated pure Bayesian Nash equilibrium
σ, such that our construction maps Γ and σ to ΓCI and P, respectively. This
implies that also the lower bounds on the price of anarchy can be carried over to
the CI-like games.

We start by de�ning our construction.
Construction Γ 7→ ΓCI: Let Γ = (n, m, c, T,Ψ) be a CI-like game. For each i ∈ [n],
denote by wi = w(t) the tra�c of all types t ∈ Ti. De�ne a complete information
routing game ΓCI = (n, m, c, T ′, 1) where T ′ = {(t′1, . . . , t′n)} and w(t′i) = wi for
all i ∈ [n].

Let σ = (σ1, . . . , σn) be a pure strategy pro�le for the CI-like game Γ . Denote
by Σ′ the set of all pure strategy pro�les for ΓCI; thus, Σ′ = Σ′

1 × . . . × Σ′
n,

where for each player i ∈ [n], the set Σ′
i consists of all possible pure strategies

σ′i : {t′i} → [m] for player i.
De�ne a mixed strategy pro�le P for ΓCI, where for each player i ∈ [n]

and all pure strategies σ′i ∈ Σ′
i the probability p(i, σ′i) is given by p(i, σ′i) =∑

t∈Ti:σi(t)=σ′i(t
′
i)

Ψ(i, t).
We proceed by showing properties of our construction.

• SCMSP(Γ, σ) = SCMSP(ΓCI,P): To show that the strategy pro�les σ for Γ and
P for ΓCI are of the same social cost observe that

SCMSP(Γ, σ)

=
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn) · max
j∈[m]


1
cj

∑
i∈[n],

σi(ti)=j

w(ti)


=

∑
(t1,...,tn)∈T

∏
i∈[n]

Ψ(i, ti) · max
j∈[m]


1
cj

∑
i∈[n],

σi(ti)=j

wi


=

∑
(σ′1,...,σ′n)∈Σ′

 ∑
(t1,...,tn)∈T :

σi(ti)=σ′i(t
′
i)∀i∈[n]

∏
i∈[n]

Ψ(i, ti)

 · max
j∈[m]


1
cj

∑
i∈[n],

σ′i(t
′
i)=j

wi


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=
∑

(σ′1,...,σ′n)∈Σ′

∏
i∈[n]

∑
t∈Ti:

σi(t)=σ′i(t
′
i)

Ψ(i, t)

 · max
j∈[m]


1
cj

∑
i∈[n],

σ′i(t
′
i)=j

wi


=

∑
(σ′1,...,σ′n)∈Σ′

∏
i∈[n]

p(i, σ′i) · max
j∈[m]


1
cj

∑
i∈[n],

σ′i(t
′
i)=j

wi


= SCMSP(ΓCI,P).

• OPTMSP(Γ ) = OPTMSP(ΓCI): To show OPTMSP(Γ ) ≥ OPTMSP(ΓCI) observe
that our construction maps a pure strategy pro�le for Γ of optimum social
cost to a strategy pro�le for ΓCI that has the same social cost.
For the other direction OPTMSP(Γ ) ≤ OPTMSP(ΓCI), observe that there
always exists a pure strategy pro�le σ̂′ for ΓCI of optimum social cost,
i.e. SCMSP(ΓCI, σ̂

′) = OPTMSP(ΓCI). Consider the normal pure strategy pro�le
σ̂ for Γ that assigns for each i ∈ [n] all types of player i to the link to that σ̂′

assigns player i, so σ̂i(t) = σ̂i
′(t′i) for all players i ∈ [n] and all types t ∈ Ti.

Notice that our construction transforms Γ and σ̂ back to ΓCI and σ̂′. Thus,
SCMSP(Γ, σ̂) = SCMSP(ΓCI, σ̂

′). We get that

OPTMSP(Γ ) ≤ SCMSP(Γ, σ̂)
= SCMSP(ΓCI, σ̂

′)
= OPTMSP(ΓCI).

• Mapping of Equilibria: Clearly, for all players i ∈ [n], types t ∈ Ti, and links
j ∈ [m],

λj
(i,t)(σ,Ψ)

=
1
cj
·
(
w(t) + δ−i

j (σ,Ψ)
)

=
1
cj
·

w(t) +
∑

(t1,...,tn)∈T

Ψ(t1, . . . , tn) ·
∑

s∈[n]\{i}:
σs(ts)=j

w(ts)



=
1
cj
·

wi +
∑

(t1,...,tn)∈T

∏
s∈[n]

Ψ(s, ts) ·
∑

s∈[n]\{i}:
σs(ts)=j

ws



=
1
cj
·

wi +
∑

(σ′1,...,σ′n)∈Σ′

 ∑
(t1,...,tn)∈T :

σs(ts)=σ′s(t
′
s)∀s∈[n]

∏
s∈[n]

Ψ(s, ts)

 · ∑
s∈[n]\{i}:
σ′s(t

′
s)=j

ws


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=
1
cj
·

wi +
∑

(σ′1,...,σ′n)∈Σ′

∏
s∈[n]

∑
ts∈Ts:

σs(ts)=σ′s(t
′
s)

Ψ(s, ts)

 · ∑
s∈[n]\{i}:
σ′s(t

′
s)=j

ws



=
1
cj
·

w(t′i) +
∑

(σ′1,...,σ′n)∈Σ′

∏
s∈[n]

p(s, σ′s) ·
∑

s∈[n]\{i}:
σ′s(t

′
s)=j

w(t′s)


=

1
cj
·
(
w(t′i) + δ−i

j (P, 1)
)

= λj
(i,t′i)

(P, 1).

We now use this property to show that P is a Nash equilibrium for ΓCI if σ is
a pure Bayesian Nash equilibrium for Γ . So, let σ be a pure Bayesian Nash
equilibrium for Γ . Fix an arbitrary player i ∈ [n]. Remember that in Γ all
types of player i have the same tra�c. Thus,

v(i,t)(σ,Ψ) = v(i,t̂)(σ,Ψ)

for all pairs of types t, t̂ ∈ Ti. Since σ is a pure Bayesian Nash equilibrium for
Γ , this implies that for all types t ∈ Ti,

v(i,t)(σ,Ψ) = λj
(i,t)(σ,Ψ) for all j ∈ supporti(σ) and

v(i,t)(σ,Ψ) ≤ λj
(i,t)(σ,Ψ) for all j 6∈ supporti(σ).

By de�nition of P,

supporti(σ) = supportt′i(P).

It follows that

v(i,t′i)
(P, 1) = λj

(i,t′i)
(P, 1) for all j ∈ supportt′i(P) and

v(i,t′i)
(P, 1) ≤ λj

(i,t′i)
(P, 1) for all j 6∈ supportt′i(P),

so that P is a Nash equilibrium.

Upper bounds on price of anarchy: Recall that by our construction, we have that
SCMSP(Γ, σ) = SCMSP(ΓCI,P) and OPTMSP(Γ ) = OPTMSP(ΓCI). Thus, resorting
to the corresponding upper bounds on the price of anarchy from [66] and [23],
we get

SCMSP(Γ, σ)
OPTMSP(Γ )

=
SCMSP(ΓCI,P)
OPTMSP(ΓCI)

=

O
(

log m
log log m

)
, for the case of identical links,

O
(

log m
log log log m

)
, for the case of related links.
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This completes the proof of the upper bounds.
Tightness of the upper bounds: From [66] and [23], there exist complete informa-
tion routing games ΓCI with an associated mixed Nash equilibrium P such that

SCMSP(ΓCI,P)
OPTMSP(ΓCI)

=

Ω
(

log m
log log m

)
, for the case of identical links,

Ω
(

log m
log log log m

)
, for the case of related links.

Let ΓCI = (n, m, c, T ′, 1), T ′ = {(t′1, . . . , t′n)}, be such a complete information
routing game with an associated mixed Nash equilibrium P. With a slight abuse
of notation, we denote P = (p(i, j))i∈[n],j∈[m] where p(i, j) is the probability that
type t′i ∈ T ′

i is assigned to link j ∈ [m].
We de�ne a CI-like game Γ = (n, m, c, T,Ψ) and an associated pure strategy

pro�le σ as follows:

For each player i ∈ [n], Ti consists of |supporti(P)| types, where we have
a type tji for every link j ∈ supporti(P). For all players i ∈ [n] and links
j ∈ supporti(P), de�ne Ψ(i, tji ) = p(i, j) and σi(t

j
i ) = j.

Notice that our construction Γ 7→ ΓCI transforms the CI-like game Γ with
associated pure strategy pro�le σ back to the complete information routing game
ΓCI with associated (mixed) Nash equilibrium P. It follows that SCMSP(Γ, σ) =
SCMSP(ΓCI,P), OPTMSP(Γ ) = OPTMSP(ΓCI) and λl

(i,tji )
(σ,Ψ) = λl

(i,t′i)
(P, 1) for

all players i ∈ [n], for all links l ∈ [m], and for all j ∈ supporti(P). Since P is a
Nash equilibrium we have

v(i,t′i)
(P, 1) = λj

(i,t′i)
(P, 1) for all j ∈ supportt′i(P) and

v(i,t′i)
(P, 1) ≤ λj

(i,t′i)
(P, 1) for all j 6∈ supportt′i(P ).

Furthermore, supporti(σ) = supporti(P) for all i ∈ [n], and λl
(i,tji )

(σ,Ψ) =

λl
(i,t′i)

(P, 1) for all players i ∈ [n], for all links l ∈ [m], and for all j ∈ supporti(P).
It follows that σ is a pure Bayesian Nash equilibrium with

SCMSP(Γ, σ)
OPTMSP(Γ )

=
SCMSP(ΓCI,P)
OPTMSP(ΓCI)

=

Ω
(

log m
log log m

)
, for the case of identical links,

Ω
(

log m
log log log m

)
, for the case of related links.

This completes the proof.

We conclude with a lower bound on the price of anarchy for social cost as expected
maximum latency if we restrict to normal pure Bayesian Nash equilibria.

Theorem 6.16. There exists a Bayesian routing game Γ = (n, m,1, T,Ψ) on
identical links and an associated normal pure Bayesian Nash equilibrium σ such
that

SCMSP(Γ,σ)
OPTMSP(Γ )

= Ω

(
log m

log log m

)
.
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Proof. Let m ∈ N be a perfect square. Consider a Bayesian routing game Γ =
(n, m,1, T,Ψ) on identical links with independent type distribution Ψ. There are
two classes of players, U1 and U2:

• The class U1 consists of m players with type set Ti = {ti, t′i}, where w(ti) =
1, w(t′i) = 0, Ψ(i, ti) = 1√

m
and Ψ(i, t′i) = 1− 1√

m
for all players i ∈ U1.

• The class U2 consists of (
√

m − 1)m players with type set Ti = {ti}, where
w(ti) = 1√

m
and Ψ(i, ti) = 1 all players i ∈ U2.

Consider the pure strategy pro�le σ′ that assigns to each link one player from
U1 and

√
m− 1 players from U2. By analyzing the social cost of σ′, we get

SCMSP(Γ, σ′) ≤ 1 + (
√

m− 1) · 1√
m

< 2.

Now consider the normal pure strategy pro�le σ where
√

m players from U1

are assigned to each link j ∈ [
√

m] and
√

m players from U2 to each of the
remaining m−

√
m links. Clearly, σ is a normal pure Bayesian Nash equilibrium.

To show a lower bound on SCMSP(Γ,σ) we consider any link j ∈ [
√

m]. The
actual load, say Xj , on link j ∈ [

√
m] is a random variable which is a sum of√

m independent random variables with E(Xj) = 1. Let 1 ≤ k ≤
√

m, k ∈ N; the
precise choice of k will be made later. Clearly,

Pr(Xj ≥ k) ≥ Pr(Xj = k)

=
(√

m

k

)
·
(

1√
m

)k

·
(

1− 1√
m

)√m−k

≥
(√

m

k

)
·
(

1√
m

)k

· 1
e

(since k ≥ 1)

=
√

m · . . . · (
√

m− k + 1)
√

m
k

· 1
k!
· 1
e
.

Now, observe that
√

m·...·(
√

m−k+1)
√

m
k is monotonically increasing in

√
m and

√
m ≥

k. Thus, √
m · . . . · (

√
m− k + 1)

√
m

k
≥ k!

kk
.

It follows that

Pr(Xj ≥ k) ≥ k!
kk
· 1
k!
· 1
e

=
1

e · kk
,

so that
Pr(Xj < k) ≤ 1− 1

e · kk
.

Now, since the actual loads X1, . . . , X√
m are independent of each other, we have
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Pr((X1 < k) ∧ ... ∧ (X√
m < k)) =

∏
j∈[

√
m]

Pr(Xj < k)

≤
(

1− 1
e · kk

)√m

≤ e
− 1

e·kk ·
√

m
.

De�ne now α > 0 so that
(

α
e

)α = m. Then, clearly, α = Θ
(

log m
log log m

)
. Choose

k = α
e . Then kk = m

1
e which implies

Pr((X1 < k) ∧ ... ∧ (X√
m < k)) ≤ e

− 1

e·kk ·
√

m

= e−
1
e
·m

1
2−

1
e

≤ 1
m

,

for suitably large m. This implies that

SCMSP(Γ, σ) ≥ Pr((X1 ≥ k) ∨ ... ∨ (X√
m ≥ k)) · k

=
(
1−Pr((X1 < k) ∧ ... ∧ (X√

m < k))
)
· k

≥
(

1− 1
m

)
· α

e

= Θ

(
log m

log log m

)
.

Thus,
SCMSP(Γ, σ)
OPTMSP(Γ )

≥ SCMSP(Γ, σ)
SCMSP(Γ,σ′)

= Ω

(
log m

log log m

)
,

as needed.

6.4.2 Social Cost as Sum of Private Costs

In this section, we study the price of anarchy for social cost as the sum of private
costs.

Theorem 6.7 implies that fully mixed Bayesian Nash equilibria maximize social
cost as sum of private costs. Hence, we obtain:

Theorem 6.17. Consider a Bayesian routing game Γ on identical links and an
associated fully mixed Bayesian Nash equilibrium F and a Bayesian Nash equi-
librium P. Then,

SCSUM(Γ,P) ≤ SCSUM(Γ,F).

We now use Theorem 6.17 to prove an asymptotically tight bound on the price
of anarchy for the case of identical links (and social cost as sum of private costs).
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Theorem 6.18. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on iden-
tical links and an associated Bayesian Nash equilibrium P. Then,

SCSUM(Γ,P)
OPTSUM(Γ )

≤ m + n− 1
m

,

and this bound is tight up to a factor of (1 + ε) for any ε > 0, even if Γ is a
complete information routing game.

Proof. By Theorem 6.17, it su�ces to prove the upper bound for a fully mixed
Bayesian Nash equilibrium F. Clearly, on the one hand,

SCSUM(Γ,F) =
∑
i∈[n]

PCi(F,Ψ)

=
∑
i∈[n]

(
W

m
+

m− 1
m

W (i)
)

(by Proposition 6.6)

=
nW

m
+

m− 1
m

W

=
m + n− 1

m
W.

On the other hand, PCi(P,Ψ) ≥ W (i) for any player i ∈ [s] and any strategy
pro�le P; hence,

OPTSUM(Γ ) ≥
∑
i∈[n]

W (i) = W.

The upper bound follows.
We now prove that this upper bound is tight even for complete information

routing games. To do so, we will prove that for any ε > 0, there is a complete
information routing game ΓCI = (n, m,1, T, 1) such that

OPTSUM(ΓCI) ≤ (1 + ε) ·W.

We proceed by case analysis on the relation between n and m.

• Assume �rst that n ≤ m. Let ΓCI be an arbitrary complete information routing
game with n ≤ m. Then we can assign each player to a separate link which
yields OPTSUM(ΓCI) = W .

• Assume now that n > m. De�ne the complete information routing game ΓCI

as follows:
There are two sets of players U1, and U2. The set U1 consists of n−m+1
players with w(ti) = 1 for all i ∈ U1, and U2 consists of m − 1 players
with w(ti) = k for all i ∈ U2 where k ∈ N is a constant to be determined
later.
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For the (expected) total tra�c, we get

W = n−m + 1 + (m− 1)k.

Let σ be the pure strategy pro�le that assigns all players from U1 to link m
and each of the m−1 players from U2 separately to a link from [m−1]. Thus,

OPTSUM(ΓCI) ≤ SCSUM(ΓCI,σ)
= (n−m + 1)2 + (m− 1)k

=
(n−m + 1)2 + (m− 1)k
n−m + 1 + (m− 1)k

·W

=
(n−m + 1) · (n−m) + (n−m + 1) + (m− 1) · k

n + (m− 1)(k − 1)
·W

=
(

1 +
(n−m)(n−m + 1)
n + (m− 1)(k − 1)

)
·W.

Clearly, for any ε > 0, there is a k ∈ N such that (n−m)(n−m+1)
n+(m−1)(k−1) ≤ ε. Hence,

for any ε > 0, there is a complete information routing game ΓCI such that
OPTSUM(ΓCI) ≤ (1 + ε) ·W . This completes the proof for the case n > m.

In all cases, there is a complete information routing game ΓCI such that
OPTSUM(ΓCI) ≤ (1 + ε) ·W . Since SCSUM(ΓCI,F) = m+n−1

m W , it follows that

SCSUM(ΓCI,F)
OPTSUM(ΓCI)

≥ 1
1 + ε

· m + n− 1
m

,

as needed.

Berenbrink et al. [11] showed that the price of anarchy for complete information
routing games and social cost as sum of private costs grows at least linearly with
the number of players. In particular they proved that n

5
is a lower bound on the

price of anarchy. Theorem 6.18 implies that the price of anarchy increases at most
linear with n and also shows the impact of the number of links.

Another interesting insight of Theorem 6.18 is that the price of anarchy does
not increase if we allow incomplete information. This is not the case if social cost
is de�ned as the maximum of private costs, as we will see next.

6.4.3 Social Cost as Maximum of Private Costs

In this section, we study the price of anarchy for social cost as the maximum of
private costs.

Theorem 6.7 implies that fully mixed Bayesian Nash equilibria maximize social
cost as maximum of private costs. Hence, we obtain:

Theorem 6.19. Consider a Bayesian routing game Γ on identical links and an
associated fully mixed Bayesian Nash equilibrium F and a Bayesian Nash equi-
librium P. Then,

SCMAX(Γ,P) ≤ SCMAX(Γ,F).
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We now use Theorem 6.19 to prove asymptotically tight bounds on the price
of anarchy for the case of identical links.

Theorem 6.20. Consider a Bayesian routing game Γ = (n, m,1, T,Ψ) on iden-
tical links and an associated Bayesian Nash equilibrium P. Then,

(a)
SCMAX(Γ,P)
OPTMAX(Γ )

≤ m + n− 1
m

, and

(b)
SCMAX(Γ,P)
OPTMAX(Γ )

≤ 2− 1
m

, if Γ is a complete information routing game.

The bound from (a) is tight up to a factor of (1 + ε) for any ε > 0 and the bound
from (b) is tight.

Proof. Let F be a fully mixed Bayesian Nash equilibrium for Γ . Theorem 6.6
and Theorem 6.7 imply together that

PCi(P,Ψ) ≤ PCi(F,Ψ) =
W

m
+

m− 1
m

W (i), (6.4)

for each player i ∈ [n]. We consider the two cases from the theorem.
Case (a):
Upper bound: Clearly, for any strategy pro�le P′ and for any player i ∈ [n],
PCi(P′,Ψ) ≥W (i); hence,

∑
i∈[n] PCi(P′,Ψ) ≥W . This implies that

OPTMAX(Γ ) ≥ W

n
. (6.5)

Clearly, OPTMAX(Γ ) ≥ W (i) for all i ∈ [n]. Fix any player i ∈ [n]. By (6.4) and
(6.5),

PCi(P,Ψ) ≤ W

m
+

m− 1
m

· OPTMAX(Γ )

≤ n

m
· OPTMAX(Γ ) +

m− 1
m

· OPTMAX(Γ )

=
m + n− 1

m
· OPTMAX(Γ ).

and the upper bound follows.
Lower bound: Fix any arbitrary k, a, r ∈ N, which will be determined later. Con-
sider the Bayesian routing game Γk,a,r = (n, m,1, T,Ψ) with independent type
distribution and n = k · (m − 1) players. Each player i ∈ [n] has type set
Ti = {ti, t′i} with tra�c w(ti) = 1, w(t′i) = a · r and probabilities Ψ(i, ti) = 1− 1

a ,
Ψ(i, t′i) = 1

a . Clearly, for player i ∈ [n], W (i) = r + 1− 1
a .

De�ne a pure strategy pro�le σ that assigns all types t′i, i ∈ [n], of tra�c 1 to
link m. The types ti, i ∈ [n], are evenly distributed among the links in [m − 1];
so, σ assigns exactly k of these types to each link in [m− 1]. Now for each player
i ∈ [n],
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PCi(σ,Ψ) =
(

1− 1
a

)
·
(

1 + (k − 1) ·
(

1− 1
a

))
+

1
a
· ((n− 1)r + r · a)

=
(

1− 1
a

)
·
(

1
a

+ k ·
(

1− 1
a

))
+ r ·

(
(n− 1)

a
+ 1
)

;

so, for any ε′ > 0, there is a su�ciently large a such that for each player i ∈ [n],

PCi(σ,Ψ) ≤ (k + r)(1 + ε′).

Hence, OPTMAX(Γk,a,r) ≤ (k+r)(1+ ε′). Fix now any fully mixed Bayesian Nash
equilibrium F. Theorem 6.6 implies that for each player i ∈ [n],

PCi(F,Ψ) =
(

1 +
n− 1

m

)
·W (i)

=
m + n− 1

m
·
(

r + 1− 1
a

)
.

Thus, SCMAX(Γk,a,r,F) = m+n−1
m ·

(
r + 1− 1

a

)
and we can conclude that

SCMAX(Γk,a,r,F)
OPTMAX(Γk,a,r)

≥
(r + 1− 1

a)
(k + r)(1 + ε′)

· m + n− 1
m

.

So, for any ε > ε′, there is a su�ciently large r such that

SCMAX(Γk,a,r,F)
OPTMAX(Γk,a,r)

≥ m + n− 1
m

· 1
1 + ε

.

This proves that the upper bound shown before is tight up to a factor of (1 + ε).
Case (b):
Upper bound:

Consider the complete information routing game ΓCI = (n, m,1, {(t1, . . . , tn)}, 1).
Here, W (i) = w(ti) for all i ∈ [n]. Clearly, OPTMAX(ΓCI) ≥ W (i) for all i ∈ [n]
and OPTMAX(ΓCI) ≥ W

m . By Equation (6.4),

PCi(P,Ψ) ≤ W

m
+

m− 1
m

W (i)

≤ OPTMAX(ΓCI) +
m− 1

m
OPTMAX(ΓCI)

=
(

2− 1
m

)
OPTMAX(ΓCI),

so that

SCMAX(Γ,P)
OPTMAX(Γ )

≤ 2− 1
m

as needed. The upper bound follows.
Lower bound:

Consider the complete information routing game ΓCI = (n, m,1, {(t1, . . . , tn)}, 1)
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with n = m and w(t1) = . . . = w(tn) = 1. Clearly, W (i) = w(ti) = 1 for
all i ∈ [n], W = m and OPTMAX(ΓCI) = 1. Now, for the fully mixed Nash
equilibrium F and any player i ∈ [n], by Equation (6.4),

PCi(F,Ψ) =
W

m
+

m− 1
m

W (i)

= (2− 1
m

) · OPTMAX(ΓCI),

so that

SCMAX(Γ,F)
OPTMAX(Γ )

= 2− 1
m

,

as needed.

6.5 Conclusion and Discussion

In this chapter, we have introduced the dimension of incomplete information into
the class of routing games on parallel links. For this setting, we have studied
the existence and computational complexity of pure Bayesian Nash equilibria,
structural properties of fully mixed Bayesian Nash equilibria and the price of
anarchy for di�erent social cost measures.

Our work leaves open several interesting problems. On the most concrete level,
we would like to ask:

• Can pure Bayesian Nash equilibria be computed in polynomial time?
• What is the exact value of the price of anarchy for identical links if social cost

is de�ned as expected maximum latency?
• What is the price of anarchy for all three considered social cost measures in

the case of related links?
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