
Mechanisms for scheduling with single-bit private values

Vincenzo Auletta∗ George Christodoulou† Paolo Penna‡

Abstract

Designing truthful mechanisms for makespan minimization in scheduling is a class of
problems that has attracted much interest of researchers over the last decade. It is well
known that the complexity of this problem is strictly related to the dimension of the
agents’ type domain. When machines are unrelated, the domain is multi-dimensional.
In this case it is known that truthfulness imposes severe restrictions on feasible algo-
rithms, and impossibility results can be shown. On the other hand, if one restricts
the input domain to be single-dimensional and studies the related machines setting,
truthfulness seems to be transparent. In the latter case, minimizing makespan can be
truthfully implemented [AT01].

Following Lavi and Swamy [LS09], we study a multi-dimensional scheduling setting
where agents’ types are restricted to contain only two possible values. Moreover, we
assume that for each machine jobs are partitioned in two (publicly known) sets where
each set contain jobs that take the same processing time. In a sense, our setting is
the simplest among the multi-dimensional settings, where each machine holds privately
only a single-bit of information (i.e., which side of the partition contain the good jobs).

Our first result shows a separation between truthfulness-in-expectation, and univer-
sal truthfulness for this problem; for the case where all the machines’ job partitions
are identical we show a way to transform every algorithm into a randomized truthful-
in-expectation mechanism with the same approximation guarantee, and therefore we
show that optimal truthful-in-expectation mechanisms can be designed. On the other
hand, we show a lower bound on the approximation guarantee of universally truthful
mechanisms.

Then we focus on the special case of two machines. We present an optimal truthful-
in-expectation mechanism for the case where all the machines’ partitions have the same
size and a 3/2–approximation deterministic truthful mechanism for the case where
partitions are unrestricted but publicly known. Finally, we show that if one allows
domains to contain more than two values, a lower bound of 2 can be achieved.

∗Dipartimento di Informatica, Università di Salerno, Italy, auletta@dia.unisa.it
†Computer Science Department, University of Liverpool, United Kingdom, gchristo@liv.ac.uk
‡Dipartimento di Informatica, Università di Salerno, Italy, penna@dia.unisa.it

1

1 Introduction

Designing truthful mechanisms for scheduling problems was first suggested in the seminal
paper by Nisan and Ronen [NR01], as a paradigm to demonstrate the applicability of Mech-
anism Design to an optimization problem. In its general form, where the machines are
unrelated, there are n jobs to be assigned to m machines. The time needed by a machine i
to process job k is described by a nonnegative real value tik. Given such an input matrix, a
standard task from the algorithm designer’s point of view, is to allocate the jobs in a way
such that some global objective is optimized; a typical objective is to minimize the maximum
completion time (i.e. the makespan).

In a game-theoretic setting, it is assumed that each entry of this matrix is not known
to the designer, but instead it is a private value held by a selfish agent that controls the
machine. We call this private value the agent’s type. The mechanism has to ask each agent
for her type and the agent can misreport her type to the designer if this is advantageous
to her. Mechanism design suggests using monetary compensation to incentivize agents to
report truthfully. Truthfulness is desired, because it facilitates the prediction of the outcome
and at the same time simplifies the agents’ way of reasoning. The challenge is to design
truthful mechanisms that optimize/approximate the makespan.

When the entries of the matrix t are unrelated, the type domain for each machine i is an n-
valued vector ti. For this multi-dimensional domain, the constraints imposed by truthfulness
make the problem hard. Nisan and Ronen [NR01], showed that it is impossible to design a
truthful mechanism with approximation factor better than 2, even for two machines. Later
this bound was further improved to 2.41 [CKV09] for 3 machines, and to 2.618 [KV12] for
many machines. In [NR01], it was also shown that applying the VCG mechanism [Vic61,
Cla71, Gro73] achieves an approximation ratio of m, and it has been conjectured that this
bound is tight. This conjecture still remains open, but it was further strengthened by
Ashlagi et al. [ADL12], who proved the conjecture for the intuitively very natural case of
anonymous mechanisms (where roughly the allocation algorithm does not base its decisions
on the machines’ ids).

Randomization provably helps for this problem. There are two notions of truthfulness
for randomized mechanisms. Roughly, a mechanism is universally truthful if it is defined
as a probability distribution over deterministic truthful mechanisms, while it is truthful-in-
expectation, if in expectation no player can benefit by lying. Already in [NR01], a universally
truthful mechanism was suggested for the case with two machines. The mechanism was
extended to the case of m machines by Mu’alem and Schapira [MS07] with an approximation
guarantee of 0.875m, and this was further improved in [LY08a] to 0.837m. Lu and Yu [LY08b]
showed a truthful-in-expectation mechanism with an approximation guarantee of (m+ 5)/2.
In [MS07] it was also shown a lower bound of 2− 1/m, for both randomized versions, while
in [CKK10] the lower bound was extended to fractional mechanisms, and an upper bound
of (m+ 1)/2 was provided.

Surprisingly, even for the special case of two machines a tight answer on the approxi-
mation factor of truthful randomized mechanisms has not been given. Currently, the lower
bound is 1.5 [MS07], while the best upper bound is 1.5963 due to [LY08b].

2

Setting restrictions to the input domain can make the problem easier. The single-
dimensional counterpart of the problem is the scheduling on related machines. In this case it
is assumed that machine i has speed si and tik = wk/si, where the weights wk of the jobs are
known to the designer. Notice that the only information missing to the designer is the speed
of the machines. Here, the constraints imposed by truthfulness seem harmless; the optimal
allocation is truthfully implementable [AT01], although it takes exponential running time,
while the best possible approximation guarantee, a PTAS, can be achieved by polynomial
time truthful mechanisms [DDDR11, CK10]. An immediate conclusion is that when one
restricts the domain, then truthfulness becomes less and less stringent.

A prominent approach suggested by Lavi and Swamy [LS09], is to restrict the input
domain, but still keep the multi-dimensional flavour. They assumed that each entry in the
input matrix can take only two possible values L,H, that are publicly known to the designer.
In this case, a very elegant deterministic mechanism achieves an approximation factor of 2,
that is a great improvement comparing to the m upper bound that is the best known for the
general problem. Surprisingly, even for this special case the lower bound is 11/10.

1.1 Our contribution

The focus of this work is to study selfish scheduling problems on restricted but multi-
dimensional input domains for which optimized/efficient mechanisms can be given. Following
[LS09] we consider domains where each agent’s type can take only one of two possible values
L,H, with L < H, that are publicly known, but we even restrict the way these values are
placed in a player input vector. We assume that the designer is given for each machine some
publicly known partition of the tasks into two sets such that all jobs in the same set take the
same execution time. Thus, the only information missing to the designer is which set of the
partition contains jobs taking time L and which set contains jobs taking time H. Therefore,
the only missing information is a single bit for each player1. The lower bound given in [LS09]
is still valid for our setting. It is important to emphasize that all the aforementioned lower
bounds are due to truthfulness, and hold even for exponential running time algorithms. We
explore the effects of truthfulness (both randomized and deterministic) in this restricted
setting. Our contributions are the following:

• Power of truthful-in-expectation mechanisms. There is a class of scheduling problems
on two-values domains with publicly known partitions (see Section 1.2) for which every
algorithm (thus including optimal ones) can be turned into a truthful-in-expectation
mechanism with the same approximation guarantee (Theorem 4). On the contrary,
randomized universally truthful mechanisms cannot achieve an approximation better
than 31/30 (Theorem 22), and the 11/10 lower bound for deterministic mechanisms in
[LS09] also applies.

1Notice that the information missing is just a single bit, much less than that of the related machines case,
where the missing information is a positive real number. However, ours is not a single-dimensional domain.
We refer the reader to Chapter 9 and 12 of [NRTV07] for the precise definition of a single-dimensional
domain.

3

Notice that such a separation was not known for the general problem since, although Lu
[Lu09], showed a lower bound higher than 1.5 for universally truthful mechanisms, the
result holds only for scale-free mechanisms. This is arguably a very natural assumption,
but it is still needed to be proven that it is without loss of generality.

• Mechanisms for two machines. For the special case of two machines with uniform
partitions (see Section 1.2), we present an exact truthful-in-expectation mechanism
(Theorem 18).

We also give some evidence that two-vales domains are easier than the general case,
even for this simple case of two machines. In fact, we show that the lower bound of 2
for deterministic mechanisms for unrelated machines still hold (Theorem 24) when we
admit three–values domains while a 3/2–approximation deterministic truthful mecha-
nisms exists for two-values domains with publicly known partitions (Theorem 19), that
are still a restriction of the two-values domains).

1.2 Preliminaries

The scheduling domain. We have n jobs to be scheduled on m machines. Each job must
be assigned to exactly one machine. In the unrelated-machines setting, each machine i has
a vector of processing times or type ti = (tih)h, where tih ∈ <≥0 is i’s processing time for job
h.

In the two-values domains by Lavi and Swamy [LS09], the time for executing job h on
machine i is either L (low) or H (high), with H > L (the case L = H is trivial). Given
a partition of the jobs (S, S̄), we say that machine i is an LS-machine (respectively, HS-
machine) if all jobs in S take time L (respectively, H), and all jobs not in S take time H
(respectively, L). That is, the type ti of an LS-machine i is such that for any job h

tih = LhS :=

{
L if h ∈ S
H otherwise

and similarly for HS-machines.
In this work, we consider the two-values domains with publicly known partitions,

that are special cases of the two-values domains defined in [LS09]. For each machine i we are
given a (publicly known) subset Si and the private information is whether i is an LSi

-machine
or an HSi

-machine. Hence, the type ti ∈ {LSi
, HSi
}. Intuitively, a type ti = LSi

indicates
that machine i is “good” for the jobs in Si and “bad” for other jobs, while for ti = HSi

it is the other way around (notice that HSi
= LS̄i

where S̄i = [n] \ Si). We shall further
distinguish between three restrictions (of increasing difficulty) of the domain with publicly
known partitions:

1. identical partitions, where all subsets Si are identical;

2. uniform partitions, where all subsets Si have size s for some s ≥ 0;

4

3. (unrestricted) publicly known partitions, which impose no restriction on the
subsets Si.

We say that job h is an L-job (respectively, H-job) for machine i if tih = L (respectively,
tih = H), with ti being the type of machine i. We represent an allocation by a matrix
x = (xih), where xih ∈ {0, 1} and xih = 1 iff job h is assigned to machine i (since every job
is assigned to exactly one machine,

∑
i xih = 1).

Given an allocation x and machine types t, we define the load of machine i as the set of
jobs allocated to i in x and denote by

Ci(x, t) :=
∑

h

xihtih

the cost of machine i. The makespan of x with respect to t is the maximum cost of any
machine, i.e., maxiCi(x, t).

An exact or optimal allocation is an allocation that, for the given input t, minimizes
the makespan. A c-approximation is an allocation whose makespan is at most c times that
of the optimal allocation. A deterministic algorithm A outputs an allocation x = A(t).
For a randomized algorithm Arand, Arand(t) is a probability distribution over all possible
allocations; we call Arand(t) a randomized allocation.

Mechanism design. In order to characterize truthful mechanisms, we consider the allo-
cations that are given in output for two inputs which differ only in one machine’s type. We
let (t̂i, t−i) denote the vector (t1, . . . , ti−1, t̂i, ti+1, . . . , tm) obtained from t by replacing ti with
t̂i.

Given types t and a job allocation x, we count the number of L-jobs and the number of
H-jobs allocated to machine i in x:

niL(x, t) := |{h : tih = L and xih = 1}|,
niH(x, t) := |{h : tih = H and xih = 1}|.

Definition 1 (monotone algorithm). An algorithm A is monotone (in expectation) if, for
any machine i and for any two inputs that differ only in one machine’s type, t = (ti, t−i)
and t̂ = (t̂i, t−i), the following inequality holds (in expectation):

niL − niH + n̂iL − n̂iH ≥ 0 (1)

where niL = niL(A(t), t), niH = niH(A(t), t), n̂iL = niL(A(t̂), t̂), and n̂iL = niL(A(t̂), t̂).

By applying [LS09, Proposition 5.7] to our two-values domains with publicly known
partitions, we obtain that truthfulness is equivalent to the monotonicity condition above:

Theorem 2. For the case of two-values domains with publicly known partitions, there exist
prices P such that the mechanism (A,P) is truthful (in expectation) iff A is monotone (in
expectation).

5

Throughout the paper, we refer to the quantity niL(x, t) − niH(x, t) as the unbalance of
machine i in the allocation x with respect to type t. We also refer to the quantity in (1) as
the overall unbalance of machine i. For any instance t, for any two machines i and j, and
for any α, β ∈ {L,H}, we consider the subset of jobs whose execution time is α on machine
i and β on machine j:

J ijαβ(t) := {h : tih = α and tjh = β}.

1.3 An illustrative example

We begin with an example and show how we can use randomization to design optimal
monotone-in-expectation algorithms from deterministic algorithms in the case of two-values
domains with identical partitions.

Consider the following instances along with their optimal allocation (gray box), and the
quantities niL − niH for each of the two machines (numbers outside the box):

2 5 5 52

2 5 5 52 5 5

5 5 2 5 5 52

25

4

5 5

5 2 2 22 255 2 2 22

25 2 2 22

2 5 5 52 5 5

25 2 2 225 5

-3 5 1

0 1 -2 4 (2)

Let machine 1 and machine 2 correspond to top and bottom machine, respectively. Observe
that the monotonicity condition (1) is violated for machine i = 2 by looking at the two
middle instances (they differ in the machine connected by dotted line). Indeed, the quantity
in (1) is 1− 2 = −1. Alternatively, we can swap the allocation in the first and in the third
input:

2 5 5 52

2 5 5 52 5 5

5 5 2 5 5 52

25

4

5 5

5 2 2 22 255 2 2 22

25 2 2 22

2 5 5 52 5 5

25 2 2 225 5

-3 5

10

1

-2

4 (3)

Now, however, the monotonicity condition is violated by machine i = 1 for the last two
instances. These instances have been used by Lavi and Swamy [LS09] to prove their lower
bound for deterministic mechanisms. However, if we choose randomly between the allocation
in (2) and the one in (3) with the same probability, the corresponding optimal randomized
algorithm satisfies monotonicity in expectation (for example, in the first instance the unbal-
ance becomes −3/2 for both machines, while in the second instance it remains unchanged).

Fact 3. For two machines and two-values domains with identical partitions as above, with
values L = 2 and H = 5, no truthful mechanism can achieve an approximation factor better
than 1.1 [LS09]. On the contrary, for the same problem there exists an exact truthful-in-
expectation mechanism.

In the sequel we show that this positive result holds in general for some of our domains,
and not only in the very special instance where deterministic mechanisms cannot be optimal.

6

2 Identical partitions

In this section we consider the case of machines with identical partitions and give a general
(“black box”) method to convert scheduling deterministic algorithms into mechanisms that
are truthful-in-expectation. The main result of this section is summarized by the following
theorem.

Theorem 4. Every deterministic algorithm A for scheduling jobs on machines with identical
partitions can be turned into a randomized mechanism M which is truthful-in-expectation and
such that the allocation returned by M has makespan no greater than the one returned by A.

Let (S, S̄) be a partition of the jobs, with |S| = s and |S̄| = n − s, such that for each
machine i we have Si = S. Without loss of generality we can reorder the jobs in such a way
that S = {1, 2, . . . , s} and S̄ = {s+ 1, s+ 2, . . . , n}. Since the partition of the jobs is public,
the only information that is private to each machine is which side of the partition contains
its L-jobs. Thus, the type’s domain of each machine contains only two elements:

LS = (L · · ·LH · · · · · ·H) and HS = (H · · ·HL · · · · · ·L)

For any instance t, we denote by mS(t) and mS̄(t) the number of LS-machines and
HS-machines in t, respectively. Clearly, mS(t) + mS̄(t) = m. Given an allocation x, it is
convenient to count, for each side of the partition, the number of jobs that are scheduled in
x as L-jobs:

`S(x, t) = |{h ∈ S : ∃i such that xih = 1 and tih = L}| (4)

`S̄(x, t) = |{h ∈ S̄ : ∃i such that xih = 1 and tih = L}| (5)

and `(x, t) := `S(x, t) + `S̄(x, t) is the overall number of jobs allocated in x as L-jobs.

Following the idea described in Section 1.3, we show now how to obtain a randomized
allocation from a deterministic one by randomly “shuffling” machines of the same type:

Definition 5. For any deterministic allocation x, we denote by x(rand) the randomized allo-
cation obtained from x as follows:

• Pick an integer r ∈ {0, . . . ,mS−1} uniformly at random, and set x
(rand)
i := xi+r mod mS

for each LS-machine i;

• Pick an integer r̄ ∈ {0, . . . ,mS̄−1} uniformly at random, and set x
(rand)
i := xi+r̄ mod mS̄

for each HS-machine i.

For any deterministic algorithm A, we let A(rand) be the randomized algorithm that, on input
t, returns the randomized allocation x(rand) where x = A(t).

Notice that `S(x(rand), t) = `S(x, t) and `S̄(x(rand), t) = `S̄(x, t). In the following discussion
we fix x and t and simply write `S and `S̄.

7

For any LS-machine i, its expected load consists of niL = `S/mS L-jobs and niH =
(n− s− `S̄)/mS H jobs. Thus the expected unbalance of an LS-machine is

niL − niH =
`S − (n− s− `S̄)

mS

=
`− (n− s)

mS

.

Similarly, the expected load of an HS-machine i consists of niL = `S̄/mS̄ L-jobs and njH =
(s− `S)/mS̄ H-jobs and its expected unbalance is equal to

niL − niH =
`S̄ − (s− `S)

mS̄

=
`− s
mS̄

.

Lemma 6. Algorithm A(rand) is monotone-in-expectation if the deterministic algorithm A is
such that for any t = (LS, t−i) and t̂ = (HS, t−i), it holds that

`− (n− s)
mS

+
ˆ̀− s
mS̄ + 1

≥ 0 (6)

where ` = `(A(t), t) and ˆ̀ = `(A(t̂), t̂) denote the number of L-jobs allocated by A on input
t and t̂, respectively.

Proof. Consider two instances t = (LS, t−i) and t̂ = (HS, t−i). By the previous discussion
we have that, for any i, the total unbalance of machine i is

niL − niH + n̂iL − n̂iH =
`− (n− s)

mS

+
ˆ̀− s
m̂S̄

where m̂S̄ is the number of HS-machines in t̂. Since m̂S̄ = mS̄ + 1, then (6) is equivalent to
(1) and, by Definition 1, A(rand) is monotone-in-expectation.

2.1 Canonical allocations

Lemma 6 says that in order to design an exact truthful-in-expectation mechanism for two-
values domains with identical partitions it is sufficient to design a deterministic exact algo-
rithm which satisfies the condition in (6). We now show that this is always possible by taking
any exact algorithm A and transforming the allocations computed by A into “canonical” al-
locations. Intuitively, canonical allocations are allocations where it is not possible to swap
jobs between two machines and increase the number of allocated L-jobs without increasing
the makespan of the allocation. These allocations can be obtained from any allocation by
repeatedly swapping jobs according to local rules (specified below). We will show that each
of these swap operations increase the number of allocated L-jobs, without increasing the
makespan.

To this end, we extend our previous notation.

8

L L

L L

H H

H H

L L

H H

H H· · ·
L L· · ·

H H· · ·
L L· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

︷︸︸︷︷︸︸︷

i

j

nij
HL

nji
LH

L L

L L

H H

H H

L L

H H

H H· · ·
L L· · ·

H H· · ·
L L· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

i

j

Figure 1: The swapping Rule R2 in the definition of canonical allocation.

Definition 7. Given an instance t and an allocation x, for any α, β ∈ {L,H} and for any
two machines i and j, we let nijαβ(x, t) be the number of α-jobs that are allocated to machine
i and that are β-jobs for machine j:

nijαβ(x, t) := |{k : xik = 1, tik = α, and tjk = β}|.

Notice that nijαβ is different from njiβα because the first index denotes the machine that
gets the jobs. We can now define our canonical allocations.

Definition 8 (canonical allocation). A canonical allocation (for the instance t) is an allo-
cation obtained by modifying a deterministic allocation x as follows:

1. Apply the following Rule R1 until possible: Suppose jobs h and k are allocated to
machines i and j, respectively (xih = 1 = xjk). If tik ≤ tih and tjh < tjk (i.e.,
no machine gets worse and at least one gets better if we swap the two jobs among
the machines i and j), then move job h to machine j and job k to machine i (set
xik = xjh = 1 and xih = xjk = 0).

2. Apply the following Rule R2 until possible: If nijHL(x, t) > njiLH(x, t) and j gets only
jobs from J jiLH(t), then move nijHL jobs in J ijHL(t) from i to j, and move njiLH jobs in
J jiLH(t) from j to i (see Figure 1.).

Fact 9. Both Rules R1 and R2 decrease the overall number of H-jobs by at least one. Thus,
given x and t, it is possible to compute in polynomial time a canonical allocation x′ (following
the two steps in Definition 8) whose cost is not larger than the cost of x.

2.2 A black-box construction (proof of Theorem 4)

We can assume without loss of generality that our deterministic algorithm always returns
canonical allocations (Remark 9). The following two lemmas provide important structural
properties of such canonical allocations.

Lemma 10. Every allocation x that is canonical with respect to the instance t is such that
either `S(x, t) = s or `S̄(x, t) = n− s.

9

Proof. Suppose by absurd that `S(x, t) < s and `S̄(x, t) < n − s. Then, in the allocation x
there exists a job h ∈ S that is assigned to an HS-machine i and a job l ∈ S̄ that is assigned
to an LS-machine j. Since tih = H and tjl = H while tjh = L and til = L then it is possible
to apply Rule R1 to jobs j and l. But this contradicts the hypothesis that x is canonical
with respect to t.

Lemma 11. If the allocation x is canonical with respect to the instance t then we have that:

1. If `S(x, t) = s then `S̄(x, t) ≥ mS̄

m
· (n− s);

2. If `S̄(x, t) = n− s then `S(x, t) ≥ mS

m
· s.

Proof. We prove only point 1 (proof of point 2 being similar).
Let x be an allocation that is canonical with respect to t and such that `S(x, t) = s.

Since `S̄(x, t) is equal to the number of jobs in S̄ that are allocated to HS-machines then
there are n− s− `S̄(x, t) jobs of S̄ that are allocated to LS-machines (i.e. they are allocated
as H-jobs). Therefore, there must be an LS-machine i and an HS-machine j such that i gets
at least (n − s − `S̄(x, t))/mS jobs from S̄ (and all these jobs are bad for i but good for j)
and j gets at most `S̄(x, t)/mS̄ jobs from S̄ (they are good for j but bad for i). Then, we
have

nijHL ≥
n− s− `S̄(x, t)

mS

. (7)

and

njiLH ≤
`S̄(x, t)

mS̄

. (8)

Observe now that since by hypothesis `S(x, t) = s, we have that j gets only jobs from S̄
and, since x is canonical then, by point 2 of Definition 8, it must be nijHL ≤ njiLH . Thus, the
following inequality holds:

`S̄(x, t)

mS̄

≥ n− s− `S̄(x, t)

mS

(9)

from which we obtain that

`S̄(x, t) · (1/mS + 1/mS̄) = `S̄(x, t) ·m/(mS ·mS̄) ≥ (n− s)/mS,

and thus
`S̄(x, t) ≥ (n− s) · mS̄

m
.

We can now give a black-box construction to transform any deterministic algorithm into
a randomized and monotone-in-expectation one that has no worse makespan.

Theorem 4. Let A be a deterministic scheduling algorithm and let A′ be the algorithm that
first calls A to compute an allocation and then transforms this allocation into a canonical
one. We observe that the canonization process described in Definition 8 does not increase

10

the makespan of the allocation. Thus, by Theorem 2 and Lemma 6, to prove the theorem
it is sufficient to show that for any t = (LS, t−i) and t̂ = (HS, t−i) such that x = A′(t) and
x̂ = A′(t̂)

`− (n− s)
mS

+
ˆ̀− s

m−mS + 1
≥ 0

where ` is the number of L-jobs allocated in x and ˆ̀ is the number of L-jobs allocated in x̂.
Because of Lemma 10 there are only four cases to consider:

1. (`S = s and ˆ̀
S̄ = n− s.) Observe that `+ ˆ̀≥ n. Therefore

`− (n− s)
mS

+
ˆ̀− s

m−mS + 1
≥ `− (n− s) + ˆ̀− s

max{mS,m−mS + 1}

=
`+ ˆ̀− n

max{mS,m−mS + 1}
≥ 0.

2. (`S̄ = n − s and ˆ̀
S = s.) Also in this case ` + ˆ̀≥ n. The rest of the proof goes like

the previous case.

3. (`S = s and ˆ̀
S = s.) Since mS̄ = m −mS and m̂S̄ = mS̄ + 1, by Lemma 11, we have

that

`S̄ ≥
m−mS

m
· (n− s) and ˆ̀

S̄ ≥
mS̄ + 1

m
· (n− s).

Hence

`− (n− s)
mS

+
ˆ̀− s

m−mS + 1
=

s+ `S̄ − (n− s)
mS

+
s+ ˆ̀

S̄ − s
mS̄ + 1

≥ s+ m−mS

m
· (n− s)− (n− s)
mS

+
mS̄+1

m
(n− s)

mS̄ + 1

≥ s

mS

− n− s
m

+
n− s
m

≥ 0.

4. (`S̄ = n − s and ˆ̀
S̄ = n − s.) This case follows by symmetry with the previous case

(simply exchange S with S̄).

3 Mechanisms for two machines

In this section we consider scheduling on two-values domains with publicly known partitions
in the case of m = 2 machines. In particular, we give an exact truthful-in-expectation mech-
anism for the case with uniform partitions (Sect. 3.1) and a deterministic 3/2-approximation
mechanism for the case of (nrestricted) publicly known partitions (Sect. 3.2).

11

3.1 An exact truthful-in-expectation mechanism

As in the case of identical partitions, we show that every exact algorithm can be turned into
an exact monotone-in-expectation algorithm (by Theorem 2 this implies an exact truthful-
in-expectation mechanism). Also in this case we restrict ourselves to scheduling algorithms
that give in output only canonical allocations (this is without loss of generality by Fact 9)
and obtain monotonicity-in-expectation by randomizing among several exact allocations.
However, since the partitions are not identical, the randomization procedure will be applied
only to some of the canonical allocations.

Consider the four possible inputs and let us represent them as the following simple graph
where two inputs are adjacent if and only if they differ in exactly the type of one machine:

LS1

LS2

canonical

canonical

canonical

canonical

LS1

HS2

HS1

LS2

HS1

HS2

LS1

LS2

canonical

canonical

randomized

randomized

LS1

HS2

HS1

LS2

HS1

HS2

Figure 2: The strategy to obtain randomized monotone allocations for two machines: each
node corresponds to a possible input and only two out of the four canonical allocations are
randomized.

Note that the monotonicity condition (1) involves only inputs that are adjacent in this
graph. Our strategy is to prove that monotonicity is satisfied at every edge. To this aim, we
define two classes of allocations and prove that all canonical allocations are in one of these
two classes. We then show that the randomization procedure guarantees monotonicity for
canonical allocations in each of the two possible classes.

Definition 12 (allocation classes). An allocation x is classified with respect to the instance
t as

• i-restricted if machine i gets only a proper subset of the jobs in J ijLH(t), where j 6= i
denotes the other machine;

• symmetric if, for any i ∈ {1, 2} and j 6= i, machine i gets all jobs in J ijLH(t), no job
in J ijHL(t), and a (possibly empty) subset of the jobs in J ijLL(t) ∪ J ijHH(t).

We say that x is restricted if it is 1-restricted or 2-restricted.

The following lemma proves that all exact canonical allocations belong to one of the
classes defined in Definition 12.

12

L· · · · · ·
H· · · · · ·

H· · · · · ·
L· · · · · ·

L· · · · · ·
L· · · · · ·

H· · · · · ·
H· · · · · ·

i

j

i-restricted allocations

L· · · · · ·
H· · · · · ·

H· · · · · ·
L· · · · · ·

L· · · · · ·
L· · · · · ·

H· · · · · ·
H· · · · · ·

i

j

symmetric allocations

Figure 3: The two allocation classes of Definition 12.

Lemma 13. Every exact canonical allocation x with respect to an instance t is either sym-
metric or restricted.

Proof. Let x be an exact canonical allocation with respect to instance t. We remark that, by
definition, J12

LH(t) = J21
HL(t) and J21

LH(t) = J12
HL(t). This fact follows directly from Definition 8.

Fact 14. If the swapping Rule R1 cannot be applied to an allocation x with respect
to t, then there is at most one machine i such that nijHL(x, t) > 0, with j 6= i. In
this case, machine j gets only jobs from the set J jiLH(t).

Therefore it is not possible that in the allocation x machine 1 gets some jobs from J12
HL(t)

and machine 2 gets some jobs from J21
HL(t). Observe that if neither machine gets such jobs

then the allocation x is of class symmetric (see Definition 12). Thus, we have only to prove
that in all the other cases in the allocation x there is a machine i that gets only a subset of
jobs in J ijLH(t).

Suppose first that machine 1 gets some jobs from J12
HL(t) and machine 2 gets no jobs

from J21
HL(t). This means that all jobs in J21

HL(t) = J12
LH(t) are allocated to machine 1. To

conclude that the solution is of class 2–restricted, it is sufficient to show that all jobs in
JLL(t) ∪ JHH(t) are allocated to machine 1. But, this is true since if machine 2 would get a
job h̄ ∈ JLL(t)∪JHH(t) then it would be possible to apply Rule-R1 (see Definition 8) to swap
h̄ with a job h ∈ J12

HL(t), thus contradicting the hypothesis that the allocation is canonical.
Similarly, we have that if machine 2 gets some jobs from J21

HL(t) and machine 1 gets no
jobs from J12

HL(t), then the solution if of class 1–restricted.

The following two technical lemmas give bounds on the number of jobs allocated to
machines in exact allocations.

Lemma 15. In any exact allocation for an instance t, if there is at least one job that can be
assigned as L-job to one of the two machines (i.e., there is at least a machine i and a job k
such that tik = L), then no machine gets more than bn/2c H-jobs.

Proof. Consider the allocation in which machine i gets job k and any subset of bn/2c other
jobs, and the other machine j gets all the remaining n − (bn/2c + 1) = bn/2c jobs. The
makespan of this allocation is at most L+ bn/2cH < H + bn/2cH = dn/2eH. That is, any
allocation that assigns more than bn/2c H-jobs cannot be an exact allocation because it has
larger makespan.

13

L

L

H

HH

L H

L

S1
swapswap

︸︷︷︸

︷︸︸︷

S2

H

H

L

LL

H L

H

S1
swapswap

︸︷︷︸

︷︸︸︷

S2

instance (LS1
, LS2

) instance (HS1
, HS2

)

Figure 4: Swapping operation to obtain allocation y from the symmetric allocation x.

Lemma 16. If an instance t admits an exact allocation of class i–restricted then machine i
gets at least n/2 jobs in J ijLH(t), with i 6= j. This implies that |J ijLH(t)| > n/2.

Proof. Let x be an exact i–restricted allocation, for some i ∈ {1, 2}. By Definition 12,
machine i gets in x only a proper subset of the jobs in J ijLH(t) and machine j gets at least
one H-job. Then, niL(x, t) = nijLH(x, t) and niH(x, t) = 0. Since x is an exact allocation,
i must get more jobs than j, otherwise a new allocation with smaller makespan could be
obtained by moving one job in J ijLH(t) from j to i. Thus, niL(x, t) > n/2. To conclude the
proof observe that niL(x, t) = nijLH(x, t) < |J ijLH(t)|, where the inequality is strict because i
gets in x only a proper subset of the jobs in J ijLH(t).

We remark that in order to prove the monotonicity condition in (1) we would like to
have allocations that have large unbalance. The following lemma says that, for two of the
four possible inputs, exact canonical allocations can be converted into exact randomized
allocations having a “good” expected unbalance on both machines.

Lemma 17. For every deterministic exact canonical allocation x for an instance

t ∈ {(LS1 , LS2), (HS1 , HS2)}

with uniform partitions (i.e. |S1| = |S2|), there exists a randomized allocation x(rand) which
gives an expected unbalance of n

2
− |JHH(t)| to both machines and has makespan equal to x.

Proof. Since the partitions are uniform, the subsets J12
LH(t) and J12

HL(t) have the same size

s− |S1 ∩ S2|

in both instances (see Figure 4). This implies that allocation x must be symmetric, for
otherwise we would have one of the two subsets J12

LH(t) or J21
LH(t) with more than n/2

elements (Lemma 13 and Lemma 16), which cannot be because they have the same size and
they are disjoint.

Since allocation x is symmetric, we can build a new allocation y by swapping jobs in
J12
LL(t) and in J12

HH(t) between the two machines (see Figure 4). Clearly, the number of
H-jobs is now exchanged between the two machines, that is

n1
H(y, t) = n2

H(x, t) and n2
H(y, t) = n1

H(x, t).

14

Since |J12
LH(t)| = |J12

HL(t)|, the same happens with respect to the L-jobs, that is

n1
L(y, t) = n2

L(x, t) and n2
L(y, t) = n1

L(x, t).

This means that y has the same makespan as x. Moreover, if we pick at random with
probability 1/2 between allocation x and allocation y, in the resulting randomized allocation
x(rand), the expected number of L-jobs assigned to any of the two machines is equal to

n1
L(x, t) + n2

L(x, t)

2
=
n− |JHH(t)|

2
,

while the expected number of H-jobs is equal to

niH(x, t) + njH(x, t)

2
=
|JHH(t)|

2
.

The expected unbalance of each machine is thus n/2− |JHH(t)|. Clearly, since y and x have
the same makespan, the makespan of x(rand) is the same as the same makespan of x.

We are now in a position to prove the main result of this section:

Theorem 18. For m = 2 machines there exists an exact truthful-in-expectation mechanism
for scheduling on two-values domains with uniform partitions.

Proof. Let A be any exact deterministic algorithm for scheduling on two machines that gives
in output only canonical allocations. We can define a randomized exact algorithm which first
computes x = A(t), and then replaces x by the randomized allocation x(rand) of Lemma 17
in two out of the four possible input instances (see Figure 4):

A(rand)(t) :=

{
x(rand) if t ∈ {(LS1 , LS2), (HS1 , HS2)}
x if t ∈ {(HS1 , LS2), (LS1 , HS2)}

By Lemma 17, A(rand) is also an exact algorithm. So, we only need to prove that the
monotonicity condition in (1) holds in expectation (Theorem 2).

Observe that any two instances t = (ti, t−i) and t̂ = (t̂i, t−i) that differ only on the type
of one machine i correspond to a pair of adjacent nodes in the graph in Figure 4. We can
thus assume without loss of generality that t denotes the instance for which A(rand) returns a
randomized allocation x(rand) and t̂ denotes the instance for which it return a deterministic
exact canonical allocation x̂,

t ∈ {(LS1 , LS2), (HS1 , HS2)} and t̂ ∈ {(LS1 , HS2), (HS1 , LS2)}.
Consider the overall expected unbalance of machine i,

UN i := niL − niH + n̂iL − n̂iH (10)

where niL = niL(x(rand), t), niH = niH(x(rand), t), n̂iL = niL(x̂, t̂) and n̂iH = niH(x̂, t̂). By
Lemma 17, we know that niL − niH = n/2− |JHH(t)| and thus

UN i = n/2− |JHH(t)|+ n̂iL − n̂iH .
To show that this quantity is positive we distinguish two cases:

15

(x̂ is i–restricted) Machine i gets no H-jobs (Definition 12) and at least n/2 L-jobs (by
Lemma 16), which means that

n̂iL − n̂iH ≥ n/2

thus implying

UN i ≥ n/2− |JHH(t)|+ n/2

= n− |JHH(t)|
≥ 0.

(x̂ is not i–restricted) By Lemma 13, allocation x̂ is either symmetric or j–restricted with
j 6= i. In both cases, machine i gets all jobs in J ijLH(t̂). Since t̂ ∈ {(LS1 , HS2), (HS1 , LS2)}
and because the partitions have uniform size, in instance t̂ there is at least one job
that can be assigned as an L-job to one of the two machines. Thus, by Lemma 15, in
allocation x̂ machine i gets at most n/2 H-jobs. Therefore we have

n̂iL − n̂iH ≥ |J ijLH(t̂)| − n/2.

Observe that J ijLH(t̂) = J ijHH(t), which implies

UN i ≥ n/2− |JHH(t)|+ |JHH(t)| − n/2
= 0.

We have thus shown that A(rand) is monotone in expectation.

3.2 A deterministic 3/2-approximation truthful mechanism

Now we switch to deterministic mechanisms and we prove the following result:

Theorem 19. For m = 2 machines there exists a 3/2-approximation deterministic truthful
mechanism for scheduling for two-values domains with (unrestricted) publicly known parti-
tions.

In order to prove this result we exhibit a monotone 3/2-approximation algorithm. We
were unable to extend the mechanism for the case of three or more machines so this is left
as a natural open problem.

The algorithm. On input t, the algorithm partitions the jobs into three subsets:

JLL(t), JHH(t) and JLHHL(t) := J12
LH(t) ∪ J12

HL(t)

First, allocates jobs in JLHHL(t), and then completes the allocation by dividing “evenly” the
other jobs in JLL(t) and in JHH(t). Some careful “tie breaking rule” must be used here to
deal with the case in which some of these subsets of jobs have odd cardinality.

The algorithm consists of the following two steps (in the sequel we do not specify the
input “t”):

16

1. Step 1 (allocate jobs in JLHHL) We allocate these jobs depending on the class of
the canonical exact allocation (see Definition 12) for all jobs:

(a) (class i–restricted. Compute a canonical exact allocation for JLHHL.

(b) (class symmetric). Assign all jobs in JLHHL as L-jobs.

We denote by J iLHHL the set of jobs that are assigned to machine i in this first step,

and let C
(LHHL)
i be the corresponding cost of machine i.

2. Step 2 (allocate jobs in JLL and JHH) For a set of jobs S and a nonnegative integer
q, we denote by bS/qc and dS/qe an arbitrary subset of S of cardinality b|S|/qc and
d|S|/qe, respectively. We define the set J i of all jobs that are assigned to machine i at
the end of this step (which includes the jobs J iLHHL assigned in the previous step) as

follows: For i and j satisfying C
(LHHL)
i ≥ C

(LHHL)
j , we allocate to i the set

J i :=





J iLHHL ∪
⌊
JHH

2

⌋
∪
⌈
JLL
2

⌉
if both |JLL| and |JHH | are odd;

J iLHHL ∪
⌊
JHH

2

⌋
∪
⌊
JLL
2

⌋
otherwise,

and thus machine j gets the rest of the jobs

J j := J̄ i = [n] \ J i.

Approximation guarantee. The two steps of the algorithm keep a small difference be-
tween the completion times of the two machines as is formally demonstrated in the following:

Lemma 20. After each step, the difference between the two completion times is at most the
optimum, that is

max
i
C

(LHHL)
i ≤ OPT and max

i
Ci ≤ min

i
Ci +OPT.

Proof. As for the first part, let JLHHL be not empty (otherwise the statement trivially holds).
Recall that there are two cases for the allocation of jobs in JLHHL. In the first case (canonical
exact is not symmetric) the algorithm allocates JLHHL identically to the exact allocation on
this set, and therefore the statement holds. In the second case (canonical exact is symmetric),
the algorithm allocates all jobs as L-jobs. This is exactly what the exact allocation does, so
the statement follows.

For the second statement, if the machine with higher C
(LHHL)
i controls the makespan,

17

and both JLL, JHH have odd size, then

max
i
Ci = max

i
C

(LHHL)
i +

⌊
JHH

2

⌋
H +

⌈
JLL
2

⌉
L

≤ min
i
C

(LHHL)
i +OPT +

⌊
JHH

2

⌋
H +

⌈
JLL
2

⌉
L

≤ min
i
C

(LHHL)
i +

⌈
JHH

2

⌉
H +

⌊
JLL
2

⌋
L+OPT

= min
i
Ci +OPT,

while if not both JLL, JHH are odd,

max
i
Ci = max

i
C

(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL
2

⌋
L

≤ min
i
C

(LHHL)
i +OPT +

⌊
JHH

2

⌋
H +

⌊
JLL
2

⌋
L

≤ min
i
Ci +OPT.

Finally, if the machine with lower C
(LHHL)
i determines the makespan, then

max
i
Ci ≤ min

i
C

(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL
2

⌋
L+H

≤ max
i
C

(LHHL)
i +

⌊
JHH

2

⌋
H +

⌊
JLL
2

⌋
L+H

≤ min
i
Ci +OPT.

Then we prove the 3/2-approximation guarantee by distinguishing the two cases in Step 1
of the algorithm (allocation of jobs in JLHHL) which correspond to the class of the canonical
exact allocation for the whole instance.

(class 1–restricted or 2–restricted). Recall that an allocation of class 2–restricted as-
signs a proper subset of these jobs to machine 2, thus implying that machine 1 must get at
least one H-job from this set. (The case of the solution for the class 1–restricted is similar).
Therefore

OPT ≥ OPT1 ≥ |JLL|L+ |JHH |H +H.

On the other hand, by using Lemma 20, we obtain

2APX = 2 max
i
Ci ≤ C1 + C2 +H = |JLL|L+ |JHH |H + C

(LHHL)
1 + C

(LHHL)
2 +H ≤ 3OPT.

18

(class symmetric). Let gLL and gHH denote the number of jobs from JLL and JHH that
the optimum assigns to machine 1, respectively. This gives the following lower bound on the
optimum (the costs of the two machines):

OPT ≥ gLLL+ gHHH + |J12
LH |L

OPT ≥ (JLL − gLL)L+ (JHH − gHH)H + |J21
LH |L

and thus (by summing up)

2OPT ≥ |JLL|L+ |JHH |H + (|JLH |+ |JHL|)L.
In this scenario, our algorithm assigns all jobs in JLHHL = J12

LH ∪J21
LH as L-jobs and thus the

two costs satisfy
C

(LHHL)
1 + C

(LHHL)
2 = |J12

LH |L+ |J12
HL|L.

Therefore

2APX = 2 max
i
Ci ≤ C1 + C2 +H = |JLL|L+ |JHH |H + C

(LHHL)
1 + C

(LHHL)
2 +H

≤ |JLL|L+ |JHH |H +H + 2OPT − |JLL|L− |JHH |H ≤ 3OPT,

and hence the approximation guarantee has been shown for both cases.

Fact 21. It is easy to verify that the mechanism can indeed reach a 3/2 approximation
guarantee on the following instance |JLL| = 2, |JHH | = 1, |JLHHL| = 0, with H = 2L. The
optimal makespan is 2L, while the makespan of the algorithm is 3L.

Monotonicity. First observe that the algorithm assigns to machine i at least half (rounded
up or down) of its L-jobs in t, and at most half (rounded up or down) of its H-jobs in t. In
particular,

nijLH ≥
⌈
J ijLH

2

⌉
, nijLL ≥

⌊
J ijLL
2

⌋
and nijHL ≤

⌊
J ijHL

2

⌋
, nijHH ≤

⌈
J ijHH

2

⌉
.

For the jobsets JLL and JHH this is immediate. Now, let us consider the jobset J ijLH (the
other case is symmetric). If we are in the symmetric case, the algorithm assigns all these
jobs to i. Otherwise, the algorithm computes the canonical optimum on JLHHL. Suppose

that nijLH < dJ
ij
LH

2
e. Optimality implies that machine i gets at least one H job from the set

J ijHL. But then the allocation is not canonical (nor optimal) since Rule 2 of Definition 8 can
be applied. Therefore we obtain

niL ≥
⌈
J ijLH

2

⌉
+

⌊
J ijLL
2

⌋
, niH ≤

⌈
J ijHH

2

⌉
+

⌊
J ijHL

2

⌋
. (11)

Second, observe that if the type of machine i flips from ti to t̂i, then |Ĵ ijᾱβ| = |J ijαβ| (here

L̄ = H and H̄ = L). Applying (11) for both ti, t̂i and using the last identity, we finally
obtain (1).

19

4 Lower bounds and separation results

The next theorem says that truthful-in-expectation mechanisms are provably more powerful
than universally truthful mechanisms. Indeed, for this problem version, exact truthful-
in-expectation mechanism exist for any number of machines (see Theorem 4). The proof
combines the idea of the lower bound by Lavi and Swamy [LS09] with the use of Yao’s
Min-Max Principle suggested by Mu’alem and Schapira [MS07].

Theorem 22. No universally truthful mechanism can achieve an approximation factor better
than 31/30 for scheduling on two machines, even for the case of identical partitions.

Proof. A universally truthful mechanism is simply a probability distribution over determin-
istic truthful mechanisms [NR01]. A lower bound on the approximation ratio of any uni-
versally truthful mechanism can be obtained via Yao’s Min-Max Principle as illustrated in
[MS07]: find a probability distribution over all possible inputs such that every deterministic
mechanism (monotone algorithm) has an expected approximation guarantee of c or worse.

Example 23 (two-machines identical partitions). We have the four inputs in the example
in Section 1.3. We know that any deterministic algorithm must err on at least one of these
four inputs and this implies that (because of the values) on this input the approximation is
10/9 ≈ 1.111 (the deterministic lower bound). Taking the uniform distribution over these
four inputs, Yao’s principle tells us that every universally truthful mechanism must have an
(expected) approximation which is not better than (1/4) · (10/9) + 3/4 = 37/36 ≈ 1.0277.

The previous bound can be improved by optimizing the probability distribution. In
particular, we assign positive probabilities only to three out of the four inputs shown here:

probability p 1− 2p p

input
5522222
2255555

5522222
5522222

2255555
5522222

APX of alternative allocation 10/9 11/10 10/9

(12)

Every deterministic monotone algorithm must change the output in at least one of these
three inputs (because monotonicity is not satisfied between the first two inputs and between
the last two). Deterministic algorithms that use an alternative allocation in the first (or the
third) input have an expected approximation at least

p · (10/9) + (1− p) = 1 + p/10

while for those algorithms that use an alternative allocation in the second input, the approx-
imation is at least

(1− 2p)11/10 + 2p = 1 + 1/10− 2p/10

Taking p = 1/3 we equate these two quantities and thus obtain that every deterministic
algorithm must have an approximation of at least 31/30 ≈ 1.0333. Therefore Yao’s Min-
Max Principle yields Theorem 22.

20

Lower bounds for three-values domains. The above bounds can be strengthened by
considering three-values domains (which are no-longer “single-bit”). First, we give an alter-
native proof for the lower bound of 2 for deterministic mechanisms on two machines, first
showed by Nisan and Ronen in [NR01]. The proof in [NR01] requires that the input domain
consists of at least 4 different values. Here, we extend the proof in order to hold even when
the domain consists of 3 different values.

Theorem 24. For two machines and the case in which the processing times can take three
values, no (deterministic) truthful mechanism can achieve an approximation factor better
than 2.

Proof. Assume that we have only two machines and an odd number of jobs, that is n = 2k+1.
For every machine i and job h, the processing time can only take the following three values
tih ∈ {0, 1, 1 + ε}.

Let us assume that the input is tih = 1, for all machines i, and for all jobs h. Let x = A(t)
be the allocation matrix determined by the mechanism M = (A,P). If one of the machines
gets all the jobs then the algorithm has makespan 2k+ 1, while the opt has makespan k+ 1,
and so the approximation ratio can be arbitrarily close to 2 for large arbitrarily large values
of k. If the jobs are allocated to both machines, let j be the machine that gets a subset Sj
of jobs with odd cardinality. Now produce the following input t̂ by changing the type of j
only:

t̂ih =





0, i = j and h ∈ Sj
1 + ε, i = j and h 6∈ Sj
tih, otherwise

Let x̂ = A(t̂), be the allocation for the input t̂. Because the mechanism is truthful, it should
also be monotone (see e.g. [CKV09]):

∑

h∈Sj

(tjh − t̂jh) · (xjh − x̂jh) ≤ 0.

From this we get that the subset of jobs that machine j gets for the input t̂ is also Sj. The
makespan of the mechanism for the input t̂ is

∣∣S̄j
∣∣, where S̄j = [n] \ Sj, while the optimal

makespan is
∣∣S̄j
∣∣ /2.

We next strengthen the lower bound on universally truthful mechanisms of Theorem 22 by
considering domains of three values. The proof consists of a suitable probability distribution
over the instances used for the deterministic lower bound.

Theorem 25. No universally truthful mechanism can achieve an approximation factor better
than 9/8 for scheduling on two machines and three jobs that take three values.

Proof. There are three jobs and t is the matrix with all processing times equal 1. Besides
the two allocations which assign all jobs to one machine, there are 6 non-trivial allocations:

111
111

· · · 111
111

(13)

21

We next show that every deterministic monotone algorithm which gives one of these alloca-
tions cannot have an approximation better than 2. Consider a modified instance for each of
these allocations:

εδδ
111

· · · 111
δδε

(14)

where δ = 1 + ε and ε is a some tiny number. Every monotone deterministic algorithm
which chooses one of the allocations in (14) is forced to output the corresponding allocation
in (14) (this is the same as in the proof of Theorem 24 when considering three jobs). The
approximation is then 2/(1 + ε) which, for tiny ε, gets arbitrarily close to 2.

Assign a probability p to each of the instances in (14) and probability q = (1 − 6p) to
the instance of all 1’s. Every deterministic algorithm which allocates all jobs to the same
machine has expected approximation at least

q(3/2) + 1− q = 1 + q/2 = 1 + 1/2− 3p

while every deterministic monotone algorithm using on of the allocations in (13) has expected
approximation at least

2p+ 1− p = 1 + p

Taking p = 1/8 these two quantities are equal and thus every deterministic monotone algo-
rithm has an expected approximation at least 9/8. Yao’s Min-Max Principle implies that
this lower bound applies to every universally truthful mechanism.

5 Conclusion

In this paper we studied scheduling on selfish machines for two-values input domains with
publicly known partitions. We considered three different models of publicly known partitions
and presented both exact randomized truthful-in-expectation and approximation determin-
isitc mechanisms and proved some lower bounds.

Our work leaves several open questions. First of all, we are able to derive exact truthful-
in-expectation mechanisms for an arbitrary number of machines only in the case where
partitions where identical. Moreover, exact truthful-in-expectation mechanisms for two ma-
chines are given only for uniform partitions. A natural opne question is whether it’s possible
to extend the result to more general cases like (1) any number of machines with uniform
partitions, or (2) two machines with unrestricted given partitions? Finally we note that the
lower bound of 2 for three-values domains does not consider jobs’ partitions (as our upper
bounds do) and thus it would be natural/interesting to prove a lower bound for three-values
domains with publicly known partitions.

Acknowledgements. Part of this work was done while the second author was at the
Max-Planck Institute for Informatics, Saarbrücken, and while visiting the Università di
Salerno. Research of the first and third author partially supported by the PRIN 2008 re-
search project COGENT (COmputational and GamE-theoretic aspects of uncoordinated
NeTworks), funded by the Italian Ministry of University and Research.

22

References

[ADL12] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. Optimal lower bounds for anony-
mous scheduling mechanisms. Mathematics of Operations Research, 37(2):244–
258, 2012.

[AT01] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents.
In Proc. of the 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 482–491, 2001.

[CK10] George Christodoulou and Annamária Kovács. A deterministic truthful PTAS
for scheduling related machines. In Proc. of the 21st ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1005–1016. SIAM, 2010.

[CKK10] George Christodoulou, Elias Koutsoupias, and Annamária Kovács. Mechanism
design for fractional scheduling on unrelated machines. ACM Transactions on
Algorithms, 6(2), 2010.

[CKV09] George Christodoulou, Elias Koutsoupias, and Angelina Vidali. A lower bound
for scheduling mechanisms. Algorithmica, 55(4):729–740, 2009.

[Cla71] Edward H. Clarke. Multipart pricing of public goods. Public Choice, 8, 1971.

[DDDR11] Peerapong Dhangwatnotai, Shahar Dobzinski, Shaddin Dughmi, and Tim
Roughgarden. Truthful approximation schemes for single-parameter agents.
SIAM J. on Computing, 40(3):915–933, 2011.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[KV12] Elias Koutsoupias and Angelina Vidali. A lower bound of 1+φ for truthful
scheduling mechanisms. Algorithmica, pages 1–13, 2012.

[LS09] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multidi-
mensional scheduling via cycle monotonicity. Games and Economic Behavior,
67(1):99 – 124, 2009.

[Lu09] Pinyan Lu. On 2-player randomized mechanisms for scheduling. In Proc. of
the 5th International Workshop on Internet and Network Economics (WINE),
volume 5929 of Lecture Notes in Computer Science, pages 30–41. Springer, 2009.

[LY08a] Pinyan Lu and Changyuan Yu. An improved randomized truthful mechanism
for scheduling unrelated machines. In 25th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), volume 1 of LIPIcs, pages 527–538, 2008.

[LY08b] Pinyan Lu and Changyuan Yu. Randomized truthful mechanisms for scheduling
unrelated machines. In 4th International Workshop on Internet and Network
Economics (WINE), pages 402–413, 2008.

23

[MS07] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1143–1152, 2007.

[NR01] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and
Economic Behavior, 35:166–196, 2001.

[NRTV07] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[Vic61] William Vickrey. Counterspeculations, auctions and competitive sealed tenders.
Journal of Finance, 16:8–37, 1961.

24

	Introduction
	Our contribution
	Preliminaries
	An illustrative example

	Identical partitions
	Canonical allocations
	A black-box construction (proof of Theorem 4)

	Mechanisms for two machines
	An exact truthful-in-expectation mechanism
	A deterministic 3/2-approximation truthful mechanism

	Lower bounds and separation results
	Conclusion

