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Abstract

We study envy-free and truthful mechanisms for domains with additive valuations, like the ones
that arise in scheduling on unrelated machines. We investigate the allocation functions that are
both weakly monotone (truthful) and locally efficient (envy-free), in the case of only two tasks, but
many players. We show that the only allocation functions that satisfy both conditions are affine
minimizers, with strong restrictions on the parameters of the affine minimizer. As a further result,
we provide a common payment function, i.e., a single mechanism that is both truthful and envy-free.

For additive combinatorial auctions our approach leads us (only) to a non- affine maximizer
similar to the counterexample of Lavi et al. [27]. Thus our result demonstrates the inherent difference
between the scheduling and the auctions domain, and inspires new questions related to the classic
problem of characterizing truthfulness in additive domains.

Since for two tasks, the so called anonymous allocations turn out to be envy-free, we obtain a
characterization of anonymous (two-task) mechanisms in addition.

1 Introduction

We are interested in characterizing the class of deterministic mechanisms that are both incentive-
compatible and envy-free for domains with additive valuations1. Such valuations arise naturally in many
interesting problems, like for instance scheduling on unrelated machines, and combinatorial auctions with
additive bidders. We describe the whole setting as a scheduling problem. There are n machines (agents)
and m tasks, and the processing time needed for a task j to run on machine i is tij , and is privately
known only to the agent that owns the machine. Incentive-compatibility assures that no player can gain
by misreporting her true values, while envy-freeness that no individual is envious of the combination of
tasks and payments given to other players.

Incentive-compatibility. The scheduling setting was originally proposed by Nisan and Ronen, in their
seminal paper [33] that pioneered the field of Algorithmic Mechanism Design, as a vehicle to explore the
potentiality/limitations of truthful mechanisms in optimization problems. It was demonstrated that not
all objectives can be truthfully optimized, even by non polynomial-time algorithms. In particular, a
standard performance criterion in the scheduling literature is makespan minimization (i.e. minimizing
the maximum completion time of a machine), which is radically different than the common, well-studied
social welfare maximization objective in economics. Nisan and Ronen showed that it is impossible
to design deterministic truthful mechanisms with approximation guarantee better than 2, and they
conjectured that VCG [37, 13, 21] (that achieves the rather unattractive ratio of n) is optimal among
truthful mechanisms. The conjecture still remains open; the constant lower bound has been slightly
improved to 2.41 for three machines [9], and later to 2.61 for n machines [26].

One of the reasons that make the problem particularly difficult, is the lack of a useful characterization
of the allocation functions used by incentive-compatible mechanisms for restricted domains. There are
two types of characterizations that dominate the literature of Mechanism Design. Characterizations of
the first type, like Weak Monotonicity [31, 27, 36] or Cycle Monotonicity [35], describe the implementable
allocations in a local fashion. Roughly, these are properties that describe the restrictions imposed on
a single player’s possible allocations with respect to his declarations. The second type characterizes
the implementable allocations in a more global fashion. The most important result of this type is due
to Roberts who showed that for unrestricted domains (where all possible valuations over outcomes are
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allowed) the only implementable social choice rules are a simple generalization of VCG mechanisms,
namely affine maximizers [25].

Since we follow the scheduling notation, and the players are cost minimizers instead of utility maxi-
mizers, it will be useful to define affine minimizers.

Definition 1. [Affine Minimizers] We say that an allocation function is an affine minimizer if there
exist nonnegative constants λi, one for each player i = 1, . . . , n, and γa one for each allocation a, such
that the mechanism selects the allocation a, that minimizes

n∑

i=1

m∑

j=1

λi · aij · tij + γa,

where aij is 1 if player i gets task j according to a, and 0 otherwise.

Both characterizations of the first type have been proved very useful in the design of truthful mech-
anisms, but only in domains that are very restricted; there exist non-VCG deterministic monotone al-
gorithms with optimal performance for single-parameter2 valuation domains (e.g. scheduling on related
machines [1, 11], single-minded combinatorial auctions [29, 7]), and cycle-monotone algorithms for multi-
dimensional domains with only two possible values [28]. However, for more general multi-dimensional
domains such characterizations did not seem to be informative so far. A global, Roberts-like charac-
terization would be much more useful. Unfortunately, Roberts’ requirement of unrestricted valuations
does not apply to many realistic setups with richer structure, like combinatorial auctions and scheduling
where inherently, externalities3 make not much sense. Only for the special cases of two players, when all
items/tasks must be allocated4, is a global characterization known [19, 10].

Since the problem has remained open for so long, there have been efforts to impose extra conditions
on top of incentive-compatibility, in order to restrict further the class of possible mechanisms, and try
to make the problem easier to attack. Lavi et al. [27] showed that assuming a restriction analogous
to the Arrowian Independence of Irrelevant Alternatives, the only truthful mechanisms (in order based
domains) are so-called ”almost-” affine maximizers.

Anonymous mechanisms. A natural restriction for truthful additive mechanisms is anonymity, i.e.
the allocation should not depend on the identities of the players. We use the same (rather weak) definition
of anonymity as [2]:

Definition 2. An allocation rule is called anonymous, if for any input matrix t = [tij ]n×m with pairwise
different bids (rows), exchanging the inputs ti and tj of arbitrary two players (leaving the rest unchanged),
results in exchanging the allocations ai and aj of these players.

Ashlagi et al. [2] succeeded in proving the Nisan-Ronen conjecture for anonymous scheduling mech-
anisms: no anonymous truthful mechanism can achieve a better than min(n,m) approximation of the
optimum makespan. Their lower-bound proof did not need a characterization of anonymous truthful
mechanisms, which still remains a major open problem.

Envy-Freeness. Envy-freeness has traditionally been considered a very important fairness criterion
in Economics and Political Science in settings without money and with infinitely divisible goods [5, 34].
While generally in settings with indivisible goods, envy-free allocations do not always exist, if we allow
payments, in the standard quasilinear utility setting, envy-free outcomes do exist. Money is used to
compensate envious players. Formally, a mechanism is envy-free for the scheduling setting, if for every
player i ∈ [n], and for every other player h 6= i,

m∑

j=1

aijtij − pi ≤

m∑

j=1

ahjtij − ph,

where pi, and ph are the respective payments for the players.
Haake et al. [23] characterized the class of allocations that can be implemented in an envy-free

manner, in terms of a property that is called local efficiency in [30]. This requires that the allocation
must maximize the social welfare over allocations permuting the same bundles, and is necessary and
sufficient for envy-free implementations. For our setting the definition is the following.

2We refer the reader to Chapters 9 and 12 of part II of [32] for basic definitions and discussion about valuation domains.
3The valuation of a player i in such settings is a function of the bundle of items (or set of tasks) that i gets, and not of

the other players’ bundles.
4For settings that allow partial allocations, there exist positive results that escape those characterizations [4, 18].
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Definition 3 (Local Efficiency). We say that a mechanism is locally efficient if the mechanism selects
an allocation a, such that for all t = (t1, . . . , tn), and all permutations π of [n], it satisfies

n∑

i=1

m∑

j=1

aij · tij ≤

n∑

i=1

m∑

j=1

aπ(i)j · tij .

There have been many papers that considered envy-free pricing for revenue maximization prob-
lems [22, 8, 6, 3], while hardness results have been shown in [17]. Kempe et al [24] studied the case where
the bidders have budget constraints. Mu’alem [30], and later Cohen et al. [14] considered bounding the
performance of (non-truthful) envy-free mechanisms for makespan minimization.

Our contribution. We study envy-free and truthful mechanisms for domains with additive valuations,
like scheduling. It is known [16] that this class is non-empty, as VCG with Clarke payments satisfy both
conditions. Cohen et al. [15] have characterized this class in terms of a Rochet-like cycle monotonicity.
In [16] the same authors studied a variation where each agent has a capacity that determines the max-
imum number of items that she can be assigned. They focus on VCG mechanisms, and they seek for
payments that are both truthful and envy-free. Very recently, Fleischer and Wang [20] showed that for
the case of two related machines, the only mechanism that is truthful, envy-free, scalable, anonymous,
and individually rational is the VCG. Our domain is multi-dimensional (unrelated machines), our results
hold for many players (for two items), and we require only envy-freeness on top of truthfulness.

• We investigate the allocation functions that are both weakly monotone (truthful) and locally effi-
cient, in the case of only two tasks, but many players. We are interested in a global, Roberts-like
characterization. For the sake of more generality and simple exposition, in the technical part we
allow that the tij take arbitrary real values. We show that if equal bids for the same task are
excluded, then the only allocation functions in this class are affine minimizers with all λi = 1, and
further strong restrictions on the parameters γa (see Theorem 1). We complete the theorem by
showing a simple non affine-minimizer mechanism with singularities for three players, if equal bids
of different players for the same task are allowed in the input. The characterization for general
(unbounded) additive domain appears in Sections 2 and 3.

• Surprisingly, we found that our proof methods and results carry over to the scheduling domain (i.e.,
when all tij are positive), while they do not carry over to additive combinatorial auctions with two
items (equivalent to our model with every tij negative)! This fact is especially interesting, given
that so far the two problems have been treated as ”almost” equivalent. For combinatorial auctions,
we present a new non affine-minimizer mechanism for three or more players, that is continuous,
truthful and envy-free. The characterization for scheduling and the implications for auctions are
treated in Sections 4 and 5, respectively.

• In Section 6 we consider anonymous allocations, and show that (for any number of tasks) they all
have a certain technical property. Subsequently we prove that, for m = 2 they must be locally
efficient, which implies a characterization of anonymous mechanisms for this case.

• Since the affine minimizers of the characterization theorem are both monotone, and locally efficient,
they admit a truthful payment scheme, and a (possibly different) envy-free payment scheme. Such
allocation rules were termed EF ∪ IC-implementable mechanisms in [15]. We provide a common
payment function, i.e., a single mechanism that is both truthful and envy-free. This shows that
the obtained affine minimizers are in fact the EF ∩ IC-implementable allocation functions. The
results about payments are presented in Section 7.

It should be emphasized that this is a genuinely multi-parameter setting. To the best of our knowl-
edge, this is the first time that a global characterization has been proven for a scheduling-type multi-
dimensional domain for more than two players. Even for the simple case of three players and two tasks,
no global characterization of incentive-compatible (non-envy-free) mechanisms is known, which is con-
sidered a very important open problem. Our primary goal has been to purify the general problem with
the envy-freeness constraints, so that a new, structural approach to characterization becomes feasible.

Open problems. The most important question here is, whether the non-envy-free problem, or other
problem variants can be tackled by generalizing our methods. Similar results for two tasks in the non-
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envy-free case could possibly serve as cornerstones for the general many-tasks problem [33], as has been
the case in the two-player setting [10].

Taking an opposite view, we ask the following: The counterexample of Section 5 turns out to be of
similar flavor as the non affine-maximizer auction of Lavi et al. ([27] Example 4.). Note that this kind
of example exists despite the envy-freeness restriction, whereas no counterexample exists for scheduling.
Are there nontrivial5 counterexamples for scheduling, (or for the unbounded domain) in the truthful,
non envy-free case? Is the orientation of the domain crucial?

Notation and basic geometry of truthfulness. The allocation of tasks to player i is denoted
by ai, and can take the values ai ∈ {11, 10, 01, 00}; the allocation a to all the players is the vector
a = (a1, a2, . . . , an). Further, we denote by aij the allocation giving task 1 to player i and task 2 to
player j.

In a truthful mechanism, the payment of player i depends on the bid matrix t−i of the other players,
and on the allocation ai of player i. Let piai

(t−i) denote this payment. We introduce the following
functions:

Notation.
fi(t−i) = pi11(t−i)− pi01(t−i)

f ′
i(t−i) = pi10(t−i)− pi00(t−i)

gi(t−i) = pi11(t−i)− pi10(t−i)

g′i(t−i) = pi01(t−i)− pi00(t−i)

Most of the time we will apply the short notation fi, f
′
i , gi, g

′
i, and for player i = 1 we omit the

subscript, using only f, f ′, g, g′, for the respective values. It is well known (see, e.g.,[10]) that in any
truthful mechanism, for fixed t−i the allocation of player i as a function of (ti1, ti2) has a geometrical
representation of one of three possible shapes – see Figure 2 –, where the two vertical boundaries are on
the lines ti1 = fi and ti1 = f ′

i , and the horizontal ones are on the lines ti2 = gi and ti2 = g′i. Furthermore,
f ′
i − fi = g′i − gi holds. We call the 45◦ boundary 10/01 or 11\00 the flipping boundary, since there
the allocation of both tasks gets flipped (the flipping boundary may happen to be a single point). Our
proofs are based on this type of representation.

Notation. Let tm be the point (in general not a single bid) with coordinates tm1 = mink 6=1,2 tk1 and
tm2 = mink 6=1,2 tk2. Furthermore, let M = mini6=1{ti1 + ti2}.

2 Constraints due to envy-freeness

We start by investigating the (geometric) restrictions that envy-freeness imposes on the possible alloca-
tions. Without loss of generality, we consider the allocation figure of player 1. In the next propositions
we deal with the cases, when in t−1 a single player (assume wlog. player 2) bids minimum, respectively
when different players (say players 2, and 3) bid minimum for the two tasks.

Proposition 1. Assume that t22 < ti2, and t21 < ti1 for every player i 6= 1, 2. The following restrictions
are implied by local efficiency (see Figure 1 (a)). If the allocation of player 1 is

(a) (11) then t11 + t12 ≤ t21 + t22;

(b) (10) then t11 + t22 ≤ t12 + t21, and t11 ≤ tm1 ;

(c) (01) then t11 + t22 ≥ t12 + t21, and t12 ≤ tm2 ;

(d) (00) then t11 + t12 ≥ t21 + t22.

Proof. The proof consists of direct applications of the local efficiency property. By this, (a) and the first
part of (b) and (c) are straightforward. Assume w.l.o.g. that tm1 = t31 and tm2 = t32. Note that in case
(b) the allocation can only be a12, since t22 < ti2 for i 6= 1, 2. Comparing this with the possible allocation
a32, we obtain t11 ≤ t31 = tm1 . The proof of (c) is analogous. Finally, it is easy to see that in the area
t11 + t12 ≤ t21 + t22 no allocation giving 00 to player 1 can be locally efficient, which yields (d).

5The known non- affine-minimizers (over some subdomain) have additive payments, and are ’practically’ task-
independent (over the subdomain) [10, 19].
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Figure 1: Envy-freeness constraints on the allocations, in case of minimum bids by a single agent (a)
and two different agents (b)

Proposition 2. Assume that t21 ≤ ti1, and t32 ≤ ti2 for every player i 6= 1. The following restrictions
are implied by local efficiency (see Figure 1 (b)). If the allocation of player 1 is

(a) (11) then t11 + t12 ≤ M ;

(b) (10) then t11 + t32 ≤ t12 + t21, and t11 ≤ t21;

(c) (01) then t11 + t32 ≥ t12 + t21, and t12 ≤ t32;

(d) (00) then t11 + t12 ≥ M, or (t11 ≥ t21 and t12 ≥ t32).

Proof. (a) is immediate by local efficiency. For (b) we observe that in this case the sum of winning bids
is t11 + t32; comparing it to the allocations a21 and a23 yields the conditions in (b), and (c) is analogous.
Finally, (d) follows by assuming that the 00 allocation is of type aii, and aij (i 6= j), respectively.

The geometric implications for envy-free allocations are summarized by Corollary 1 below. They
admit allocations of types shown in Figures 2 and 3.

Corollary 1. For the allocation of player 1 in a truthful and envy-free mechanism the following hold:
If t21 < tm1 , and t22 < tm2 , then the point t2 is on the flipping boundary, furthermore f ′ ≤ tm1 and

g′ ≤ tm2 .
If in t−1 players 2 and 3 bid minimum for tasks 1 and 2 respectively, then either f ′ = t21 and g′ = t32,

OR f ′ ≤ t21 and g′ ≤ t32, and the flipping boundary (11\00) is on the line t11 + t12 = M.

3 Characterization of envy-free truthful mechanisms

The characterization has two major steps. For taking the first step, we look at the case when in t−1

a single player has minimum bids for both jobs. For the second step, we examine the situation when
different players bid minimum for the two jobs.

Focusing on the case of minimum bids by a single player, we prove that the distances f ′− t21, t21−f,
g′ − t22, and t22 − g are independent of t2, that is, by moving t2 the allocation figure moves along with
t2 while keeping its shape (cf. Figure 2).

By looking at the case of minimum bids by different players (Figure 3), it becomes clear that many
of these constant distances must be equal, further implying that they are even independent of all other
bids (e.g., f ′ − t21, is independent not only of t2 but even of t−12, the input of all players other than 1
and 2). Therewith the allocation rule turns out to be identical to that of an affine minimizer, given that
all payment functions are continuous. If arbitrary functions are allowed, then it is an affine minimizer
over inputs with pairwise different bids, with possible singularities when some bids are equal.

3.1 The same player bids minimum for each job

Assuming minimum bids by a single player (say, player 2) in t−1, we prove that the distances f ′ − t21,
t21 − f, g′ − t22, and t22 − g are independent of t2. To be precise, this holds as long as f ′ < tm1 , g′ < tm2
and t21 + t22 is minimum, i.e., t21 + t22 = M. In fact, these conditions delineate a slightly extended or
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Figure 2: Possible forms of allocations when a single player bids minimum for both tasks.

narrowed domain for t2 (as compared to the domain where he bids minimum), enforcing a somewhat
technical formulation of the two lemmas.

We start with the observation that whenever player 1 is sure to exchange the first task with player
2, the functions f and f ′ are non-decreasing in t21 independently of t22.

6 Note that the conditions of
the next Lemma guarantee that the task gets exchanged with player 2, and not with some other player.
Below we omit the fixed constant t−12 from the argument of these functions.

Lemma 1. (a) For any t2, t
′
2 s.t. t21 < t′21 < tm1 , it holds that f(t2) ≤ f(t′2).

(b) Let t2 be so that t22 < ti2 and t21+t22 < ti1+ti2 for i ≥ 3, and let the same hold for t′2. If t21 < t′21,
and g′(t′2) < tm2 , then f ′(t2) ≤ f ′(t′2).

Analogous statements hold for g and g′.

Proof. (a) Assume for contradiction that t21 < t′21 < tm1 , and f(t2) > f(t′2). We fix a t1 such that
f(t′2) < t11 < f(t2), and t12 < min{g(t2), g

′(t2), g(t
′
2), g

′(t′2)}. For input (t1, t2) the allocation is a11

(by definition of f(t2)); whereas for (t1, t
′
2) it is a21 ( by definition of f(t′2) and since t′21 is minimum).

However, for the fixed t1, t−12 this contradicts truthfulness for inputs t2 (getting 00) and t′2 (getting 10)
(see Figure 2).
(b) The proof of monotonicity of f ′ is analogous. By local efficiency, the f ′ separates the allocations
a12 and a22. More precisely, an appropriate t1 imposing these allocations for t2 and t′2 can be found
unless either f ′(t′2) = tm1 , or g′(t′2) = tm2 . In the former case f ′(t′2) is maximum possible by Corollary 1,
so f ′(t′2) ≥ f ′(t2); the latter case violates the conditions of the lemma (and monotonicity does not
hold).

Lemma 2 completes the first main step of the characterization.

Lemma 2. In every truthful envy-free mechanism, for fixed t−12 there exist constants ∆ = ∆(t−12), and
Ω = Ω(t−12) so that for every t2 such that t21 + t22 = M,

(a) f(t2) = t21 − Ω if t21 < tm1 and t22 ≤ max{tm2 , tm2 − Ω}, and

(b) f ′(t2) = min{t21 +∆, tm1 } whenever t22 ≤ min{tm2 , tm2 −∆}.

Furthermore, if ∆ is positive (negative) then Ω is non-negative (non-positive).

Analogous statements hold for g and g′. In particular, given that t2 is on the flipping boundary, we
obtain that if Ω and ∆ are non-negative, then g = t22 − Ω, and g′ = min{t22 + ∆, tm2 }; if they are
non-positive, then g = t22 −∆, and g′ = min{t22 +Ω, tm2 } = t22 +Ω.

An intuitive proof of the lemma is the following. By Lemma 1, f(t21, t22) is a monotone function of
t21, and therefore it is continuous in almost all t21 (say, for fixed t22). Moreover, since f is monotone in
t21 regardless of t22, it is necessarily independent of t22 (that is, f(t21, t22) = f(t21, t

′
22)), whenever it is

continuous in t21. Assume e.g., that f(t21, t22) < t21. Then the fact that t2 is on the flipping boundary
(cf. Corollary 1), and f(t21, t22) is independent of t22 implies that t22 − g(t21, t22) = t21 − f(t21, t22) is a
constant for fixed t21. We name this constant Ω, and obtain that g(t21, t22) = t22 − Ω must hold for all
t21, since g is monotone in t22 regardless of t21.

6In a more special form, the same was observed in [10].
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Figure 3: Possible forms of allocations when different players bid minimum for both tasks.

Proof. (a) Observe that by Corollary 1, in the given domain t2 is on the flipping boundary (using also
t21 + t22 = M).Let an arbitrary t∗22 ≤ tm2 be fixed, and t∗21 be a point where the monotone f(t21, t

∗
22)

is continuous. We claim that f(t∗21, t22) is independent of t22, that is, for every t22 < tm2 the equality
f(t∗21, t22) = f(t∗21, t

∗
22) holds. Assume for contradiction that e.g., f(t∗21, t22) < f(t∗21, t

∗
22). Then by the

continuity of f in (t∗21, t
∗
22), there is an ǫ, such that f(t∗21, t22) < f(t∗21 − ǫ, t∗22), contradicting Lemma 1.

The proof is analogous if we assume f(t∗21, t22) > f(t∗21, t
∗
22).

Now define Ω as Ω = t∗21−f(t∗21, t
∗
22). Assume first, that Ω > 0. Since t2 is on the flipping boundary, in

this case f uniquely determines g, in particular t22 − g(t∗21, t22) = t∗21− f(t∗21, t22) = t∗21 − f(t∗21, t
∗
22) = Ω,

that is, for all t22 we have g(t∗21, t22) = t22 − Ω. Observe that for the fixed t∗21 the function g(t∗21, t22) is
continuous in every point t22 < tm2 so that for arbitrary fixed t22, by exchanging the roles of f and g,
and of t∗22 and t∗21, (using Lemma 1 for g) we obtain f(t21, t22) = t21 − Ω for all t21 < tm1 and t22 < tm2 .
Second, if Ω ≤ 0, we replace g by g′ and use an analogous argument. Note that the argument holds as
long as g′ < tm2 which, in turn, holds if t22 < tm2 − Ω.
(b) In order to show (b), we need some technical preparation. We search for a point of the form t2 =
(tm1 − y, tm2 − y) for which f ′(t2) < tm1 (if such a point does not exist, that corresponds to the degenerate
case of ∆ = ∞). Next, let t∗22 = tm2 −y−ǫ. Now for all points (t21, t

∗
22) such that tm1 −y−ǫ < t21 < tm1 −y

it holds that f ′ < tm1 , by monotonicity of f ′ (Lemma 1); and also g′ < tm2 by trivial geometry. We fix a
point t∗21 in this interval, where the (nondecreasing) f ′(t21, t

∗
22) is continuous. From here on, the proof is

basically the same as above: We show that for arbitrary t22 < tm2 the equality f ′(t∗21, t22) = f ′(t∗21, t
∗
22)

holds, unless g′(t∗21, t22) = tm2 . Then, ∆ is defined as f ′(t∗21, t
∗
22)− t∗21; finally, the monotonicity of g and

g′ is exploited in the cases ∆ < 0 and ∆ ≥ 0, respectively. (g′ = tm2 occurs exactly when t22 ≥ tm2 −∆,
otherwise the monotonicity of f ′ or g′ is violated.)

For (b) we exploited the fact that by Corollary 1, in the given domain either t2 is on the flipping
boundary, or f ′ = tm1 holds.

Remark 1. The above proof is a variant of the characterization proof of [10] for two players. Here, the
fact that t2 is on the flipping boundary allows a simplification. Curiously, even the non-envy-free case
admits a comparably simple argument showing independency and linarity of f and g (given that f ′ 6= f
in some continuous point).

Notation. Let ∆1
2 = ∆1

2(t−12), and Ω1
2 = Ω1

2(t−12) denote the constants obtained in Lemma 2. For
arbitrary two players i 6= j we define ∆i

j(t−ij), and Ωi
j(t−ij) analogously. Note that ∆i

j and Ωi
j appear

in the allocation figure of player i, when player j has minimum bids in t−i.

Observation 1. For any i 6= j, for fixed t−ij we have ∆i
j = Ωj

i .

Proof. For example, let t−12 be fixed, and ∆ = ∆1
2 > 0. We show that ∆ = Ω2

1 (see Figure 4 (b)).
Consider a t2 s.t. f ′(t2) = t21 + ∆ < tm1 and g′(t2) = t22 + ∆ < tm2 (if such a t2 does not exist, then
∆ = Ω2

1 = ∞ can be shown). Now let t11 = t21 + ∆ + δ < tm1 , and t12 = t22 + ∆ − ǫ. Since t1 has
minimum coordinates in t−2, Ω

2
1 appears in the allocation figure of player 2. By the position of t1, the

allocation is a21 for t1, t2. Therefore, in the figure of player 2, Ω2
1 ≥ t12 − t22 = ∆ − ǫ. By ǫ → 0 we get

Ω2
1 ≥ ∆. Similarly, by setting t′12 = t22 +∆+ ǫ, we obtain Ω2

1 ≤ ∆.

7
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Figure 4: Illustration to the proofs of Lemma 2, of Observation 1, and of Lemma 3.

3.2 Different players bid minimum for the two jobs

Here we consider the allocation to player 1 when in t−1 different players bid minimum for tasks 1
and 2, and conclude that the ∆i

j(t−ij) = Ωj
i (t−ij) values are independent of (t−ij). We complete the

characterization by showing that even many of these constants are equal, and either all ∆ are non-
negative, or all are non-positive.

Lemma 3. Let t−1 be fixed so that t21 < ti1 for all i 6= 1, 2, and t32 < ti2 for all i 6= 1, 3. Then for the
allocation of player 1 f = t21 −∆2

1(t−12) (see Figure 3). Furthermore, g = t32 −∆3
1(t−13) if g < t32, and

g = t32 − Ω3
1(t−13) if g > t32, and at least one of these two holds if g = t32.

Proof. Let t1 = (f − ǫ, t12), and t′1 = (f + ǫ, t12) where t12 < min{g, g′} (see Figure 4 (c)). Then, by
definition of f, and because t21 is strict minimum, the allocation is a11 for input (t1, t−1), and a21 for
input (t′1, t−1). Now we change our point of view, and look at the allocation figure of player 2. Since
with input t1 player 2 receives 00, and for t′1 he receives 10, we have

f ′
2(t1) ≤ t21 ≤ f ′

2(t
′
1).

Lemma 2 adapted for player 2 states that f ′
2(t1) = min{t11 +∆2

1, t
m
1 } whenever t12 ≤ min{t32, t32 −

∆2
1}, and t11 + t12 is minimum sum of bids in t−2. Assuming that the conditions of the lemma hold

for both t1 and t′1, we have f ′
2(t1) = min{t11 + ∆2

1, t
m
1 }, and f ′

2(t
′
1) = min{t′11 + ∆2

1, t
m
1 }. Now notice

that tm1 = f ′
2(t1) ≤ t21 would contradict tm1 > t21 (here we exploit that t21 is strict minimum in t−1).

Therefore,
f ′
2(t1) = t11 +∆2

1,

and
f ′
2(t

′
1) ≤ t′11 +∆2

1.

Putting all inequalities together, we obtain t11 + ∆2
1 ≤ t21 ≤ t′11 + ∆2

1. This implies the lemma, since
t11, t

′
11 → f if ǫ → 0.

It remains to prove the conditions of Lemma 2 for t1 and t′1. The only condition that needs verification
is t12 ≤ t32 −∆2

1 if ∆2
1 is positive (note that t12 = t′12). With input t1 player 2 receives 00. We choose t1

so that t32 − t12 > t21 − t11. In this case the allocation 00 to player 2 is possible only if t21 − t11 = ∆2
1

(cf. Figure 2 (a)). Thus, t32 − t12 > ∆2
1 and we are done.

The second statement of the lemma follows by a symmetric argument (the difference in formulation
is due to the task-specific definition of ∆ and Ω).

Lemma 4. Let t−12 = (t3, t4, . . . , tn), and t′−12 = (t′3, t4, . . . , tn) be such that max{t32, t
′
32} < ti2 (resp.

max{t31, t
′
31} < ti1) for i 6= 1, 3. Then ∆2

1(t−12) = ∆2
1(t

′
−12).

Proof. Assume first, that ∆2
1(t−12) > 0. Fix an arbitrary t2 such that t22 > max{t32, t

′
32}, and t21

is smaller than all first bids (see Figure 5 (a)). Now t32 is minimum among second bids, moreover
∆2

1(t−12) > 0, and by the previous lemma f = t21 −∆2
1(t−12); therefore the allocation can only have the

form as in Figure 3 (A). Consequently, ∆2
1(t−12) = t21−f = t32−g = ∆3

1(t−13). Now, since ∆
3
1(t−13) > 0,

by exchanging the roles of players 2 and 3, and tasks 1 and 2, we obtain that also ∆3
1(t−13) = ∆2

1(t
′
−12).
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Figure 5: Illustration to the proofs of Lemma 4, Lemma 5, and Theorem 2.

Second, let ∆2
1(t−12) < 0. Note that in this case, in order to have f − t21 = g − t32 we have to

make sure that the allocation is of type (B), and not of type (C) in Figure 3. The only bid in t−1 that
we are free to choose is t2. We choose a t2 such that t22 is large and t21 is minimum, moreover even
t21 +max{t32, t

′
32} −∆2

1(t−12) < M, holds. (This becomes problematic if we allow only positive or only
negative tij .) Then the allocation must be of type (B), which implies −∆2

1(t−12) = f − t21 = g − t32 =
−Ω3

1(t−13). Since Ω3
1(t−13) is negative, and t21 is small enough, for input t′3 the allocation is of type (B)

again, and we obtain −Ω3
1(t−13) = −∆2

1(t
′
−12).

If ∆2
1(t−12) = 0, then (set t2 as above) f = t21 and g = t32. The latter happens if either ∆

3
1(t−13) = 0

and Ω3
1(t−13) ≥ 0 or Ω3

1(t−13) = 0 and ∆3
1(t−13) ≤ 0. For input t′3 both imply g = t′32, which in turn

yields f = t21 for this input as well, and ∆2
1(t

′
−12) = 0.

The case max{t31, t
′
31} < ti1 is symmetric. Note however that if ∆2

1(t−12) < 0 then Ω1
2(= ∆2

1) can be
shown to be constant, and players 1 and 2 change roles.

Intuitively, the lemma implies that given the set of points {t3, t4, . . . , tn} in the plane, we can move
around the point in the lowermost (leftmost) position, the ∆2

1(t−12) does not change as long as the
point remains in the lowermost (leftmost) position. Next we show that an arbitrary array of points
(t3, t4, . . . , tn) can be transformed to another arbitrary array (t′3, t

′
4, . . . , t

′
n) using only such movements.

Consequently, ∆2
1(t−12) is independent of t−12 (at least for t−12 where the points have pairwise different

coordinates). This holds obviously for arbitrary pair of players i 6= j.

Lemma 5. Let t−12 = (t3, t4, . . . , tn) and t′−12 = (t′3, t
′
4, . . . , t

′
n) be arbitrary such that the second (or first)

coordinates of the points are pairwise different in t−12 and similarly in t′−12. Then ∆2
1(t−12) = ∆2

1(t
′
−12).

Proof. We transform the array (t3, t4, . . . , tn) into the array (t′3, t
′
4, . . . , t

′
n) by moving either the leftmost

or the lowermost point in every step. According to Lemma 4, this will prove the lemma. Assume w.l.o.g.
that 0 < t32 < t42 < . . . < tn2 and 0 < t′π(3)2 < t′π(4)2 < . . . < t′π(n)2, where π is a permutation, and that

also all first coordinates are positive. Clearly, we can move the points one after the other in the positions
(−i,∞) for i = 3, 4, . . . , n, by first moving them horizontally, and then vertically (see Figure 5 (b)). We
claim that we can then permute them to take the positions (−π(i),∞). Finally, we move them back to
t′π(n), t

′
π(n−1), . . . .

In order to exchange (−i,∞) and (−(i+1),∞), we first move (−k,∞) to (0, k) for k = n, n−1, . . . , i+1.
Then the movements (−(i+1),∞) → (−i+1/2, 0) and ((−i,∞) → (0,−1)) followed by (−i+1/2, 0)→
(0,−2) exchange the vertical positions of the two points, and we put all the points back to ∞ with the
points in positions (−i,∞) and (−(i + 1),∞) exchanged.

As a concluding step, we investigate the question, to what extent the constants ∆i
j determine each

other. If ∆i
j = 0 for all i 6= j, then the allocation is obviously the VCG allocation. Assume now that

there exist two players h 6= k, such that ∆h
k 6= 0. We have the following corollaries of Lemmas 3 and 5.

Corollary 2. If ∆h
k > 0, then ∆i

k = ∆h
k for every player i.

Proof. Fix a t−k so that th1 is strict minimum among first, and ti2 is strict minimum among second
coordinates. Then by Lemmas 3 and 5, 0 < ∆h

k = ∆h
k(t−hk) = ∆i

k(t−ik) = ∆i
k.

Corollary 3. If ∆h
k < 0, then for each pair i, j of different players ∆i

j = Ωj
i ≤ 0. Furthermore, for

n ≥ 3, all of the ∆i
j = Ωj

i values are equal.
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Proof. For n = 2 we observe that if ∆h
k < 0, then also Ωh

k = ∆k
h ≤ 0. Let n ≥ 3. For each i 6= h, k there

exists a vector t−k so that by Lemma 3 ∆h
k = ∆h

k(t−hk) = Ωi
k(t−ik) = Ωi

k. For n ≥ 4, let j 6∈ {i, h, k},

then ∆h
k = Ωj

k = ∆i
k = Ωk

i = ∆h
i , etc. proves that all ∆ and Ω are equal. For n = 3 the proof of equality

follows from Lemma 6.

Corollary 4. Either all ∆h
k are non-negative, or all are non-positive.

3.3 Main theorem

We summarize our results in terms of affine minimizers, using the notation of Definition 1. Notice that
if we assume continuous payment functions, then all f and g functions are also continuous, and therefore
the characterization can be extended to the whole domain. (Observe also that we require a rather weak
form of continuity.)

Theorem 1. For domains with additive valuations with two tasks (items), and any number of players,
any allocation rule that admits both truthful and envy-free mechanisms is an affine minimizer over the
part of the domain where no two bids for the same task (item) are equal. The affine minimizer has
parameters λi = 1 (i ∈ [1, n]), and either
(1) γaii ≥ 0, and γaij = 0 for i 6= j; or
(2) γaij ≥ 0, and γaii = 0. Furthermore, for n ≥ 3 all γaij (i 6= j) are equal.

Assuming that (fixing the rest of the input) the payments are continuous functions of every bid tij ,
the allocation is an affine minimizer over the whole domain.

Proof. Having the ∆i
j values constant, it is straightforward to verify that restricted to inputs having

pairwise different bids for each task, the allocation of the mechanism is identical to that of an affine
minimizer with λi = 1 for all i :

If all ∆j
i ≥ 0, then the allocation in Figure 2 (a) corresponds to ∆j

i = γaii − γaji = γaii − γaij . By
Corollary 2 these further equal γaii − γaki = γaii − γaik , and so all γaji (i 6= j) must be equal. Since only
the relative values of the additive γ matter, we can set γaji = 0 for i 6= j, which yields case (1).

If all ∆j
i ≤ 0, that corresponds to the case ∆j

i = γaii − γaji = γajj − γaji . Thus, γaii = γajj for i 6= j,
and we can set them all to 0. Corollary 3 then implies (2).

Finally, it takes a short check that the obtained types of allocations are, in fact, locally efficient.

3.4 Counterexample with singularity

Some kind of restriction of the domain to pairwise different bids, or the continuity requirement is really
necessary for the theorem to hold. Here we show a mechanism with singularity (maybe the simplest one
among numerous examples) that is not an affine minimizer.

Example 1. Consider the following simple allocation rule for n ≥ 3 players. Let A be the allocation of an
affine minimizer with γaii = 1 for all i, and γaij = 0 for i 6= j (i.e., case ∆ > 0), and define the allocation
rule a() to be a(t) = A(t) if t1 6= t2, and a(t) be the VCG allocation if t1 = t2.

7 Moreover, if t1 and t2
have equal, and minimum coordinates, then players 1 and 2 must both get a job. For players i 6= 1, 2,
for fixed t−i the allocation looks either like A or like VCG, and is truthful and envy-free. For player 1
(and similarly for player 2), for fixed t−1, the allocation figure is that of A. We only need to perform a
straightforward check – assuming different relative positions of t2 –, that in the single point t1 = t2, the
allocation of player 1 is consistent with this figure.

4 Task scheduling

Our setting models the problem of (envy-free) unrelated scheduling mechanisms, if we restrict the tij to
positive values.8 The proofs of Lemmas 1, 2 and 3 carry over to the restricted domain with straightforward
modifications. Futher, the same holds for Lemmas 4 and 5, in case ∆ ≥ 0. Namely, in these cases either
the statements hold or it can be shown that the respective boundaries at f, f ′ etc. do not appear in
– i.e., ’slip out of’– the figure, which is still uniquely determined by the remaining boundaries.

Assume ∆h
k < 0 for some h, k and some t−hk. The difficulty with this is that Lemma 4, and thus

also Lemma 5 do not necessarily hold if the tij coordinates are bounded. In fact, for this reason,

7We could have used any affine minimizer with γaii < 1 instead of VCG; however γaii > 1 would not work.
8For simplicity we exclude tij = 0, since our results hold for continuous mechanisms, or for inputs with pairwise different

coordinates.
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Figure 6: Illustration to Lemma 6: the allocation figures of player 1, and of player i.

the characterization result fails for tij ∈ R− (auctions domain). Rather surprisingly, for positive tij
Theorem 1 can be ’saved’ thanks to Lemma 6 below. Despite that the unrelated scheduling problem and
the additive combinatorial auctions problem look very similar, our results demonstrate that they do not
exhibit symmetric behaviour, and are by no means equivalent problems.

Lemma 6 serves the same purpose as Lemma 3: it fixes a relation between the constants of different
players who exchange tasks with player 1, whereas this time the exchange is over the flipping boundary.
We introduce the notation αh

k = −∆h
k and βh

k = −Ωh
k, and omit the t−hk from the arguments. Figure 6

illustrates the proof.

Lemma 6. Let ti1 + ti2 < tk1 + tk2 for all k 6= 1, and t21 be minimum first coordinate in t−1. If the
allocation of player 1 is like in Figure 3 (C), and g′ > 0 then α2

1 = β1
i .

Proof. In the figure of player 1, we look at the vertical boundary at f and the horizontal one at g′. We
know that f = t21 + α2

1. The proof uses the points t1 = (f + 2ǫ, g′ − ǫ) and t′1 = (f + 2ǫ, g′ + ǫ). With
input t1 the allocation is a21, and with input t′1 it is aii.

Now turning to the allocation figure of player i, we observe that t1, (resp. t′1) have minimum sum
of coordiantes in t−i. For t1 player i gets 00, even though ti1 + ti2 < t11 + t12. This can only happen
if the allocation figure is of type Figure 3 (B) (or maybe (A)), and β1

i = α2
i (t1) < t11 − t21 = α2

1 + 2ǫ.
Thus, since t11 = t′11 and β1

i is independent of t1, also for input t′1 we have β1
i < t′11 − t21. Given that

on input t′1 player i receives 11, this further implies that with input t′1 the allocation is of type (B), and
β1
i = α2

i (t
′
1) ≥ α2

1 − ǫ. We obtain the claim by ǫ → 0.

Theorem 2. Restrict the domain of bids to ti ∈ R
2
+, and consider only inputs where the ti1 are pairwise

different, and similarly for the ti2, and for the ti1 + ti2. Over this domain, the truthful and envy-free
mechanisms for m = 2 are exactly the same mechanisms as in Theorem 1.

Proof. We provide a modified proof of Lemma 5 for the positive orthant. Assuming that ∆2
1(t−12) < 0

for some t−12, we show ∆2
1(t−12) = ∆2

1(t
′
−12). Let t32 < tk2, and ti1 + ti2 < tk1 + tk2 for all k 6= 1

(here i = 3 is allowed). We argue that α2
1 = β1

2 remains constant as we transform the pointset t−12

into t′−12. To this end, it is enough to move the points one in front of the other to positions (ǫ/i,∞),
(instead of (−i,∞) used in the proof of Lemma 5). Intuitively, after we moved the lowermost point in
t−12 horizontally towards 0, we may have to move it along a 45◦ line before we can move it into ∞
vertically (see Figure 5 (c)).

Observe that α2
1 appears in any allocation figure only if α2

1 < ti1 + ti2. In this case, for small enough
t21 the boundaries f and g′ do appear in the figure of player 1, i.e., g′ > 0. We move the points in
t−12 one after the other into the required positions. If the allocation is of type (B), we start with the
lowermost point; if it is of type (C), we start with the point of minimum sum of coordinates.

If the allocation of player 1 is of type Figure 3 (C), we move ti up-left without changing ti1+ti2. Since
β1
i , is independent of ti, and by Lemma 6, α2

1 = β1
i holds, α2

1 (and analogously, β3
1) does not change, and

the allocation does not change either. As soon as once ti1 is minimum in t−2 and ti2 > α2
1 occurs, we fix

a t1 with large t11, and t12 < ti2 − α2
1 = ti2 − β1

2 , and look at the figure of player 2. Here the allocation
is necessarily of type Figure 3 (B) and thus β1

2 = αi
2. The αi

2 = β1
2 remains constant, as ti2 is moved to

∞, and we are ’done’ with point ti .
If the figure of player 1 is of type Figure 3 (B), then we apply the previous argument twice for t3, to

first move t3 horizontally, then (if necessary) keeping t31 + t32 constant, and finally vertically.

11



Finally, consider the case when ∆2
1(t−12) > 0 for some t−12. Note that ∆2

1(t−12) is relevant only if
mini6=1,2 ti1 > ∆2

1(t−12), and mini6=1,2 ti2 > ∆2
1(t−12) both hold. However, two such t−12 vectors can be

transformed in each other without changing ∆2
1, using essentially the original argument of Lemma 5.

Notice that on R
2
+ our mechanisms are not decisive (i.e., a single player cannot force an arbitrary

outcome for himself, by bidding properly), except for the VCG mechanism.

5 Additive combinatorial auctions

In additive combinatorial auctions each player i has a positive value vij for every item j to be sold. As
opposed to the cost model (scheduling), players with higher vij tend to get the item j. By using tij = −vij ,
the problem becomes equivalent to the setting used in the paper, with the tij restricted to take negative
values. The next example shows that Theorem 1 does not carry over to additive combinatorial auctions.
We use the notation αh

k = −∆h
k and βh

k = −Ωh
k.

Example 2. Assume that ti1 + ti2 ≤ tj1 + tj2 ≤ tk1 + tk2 ≤ . . . are the three smallest sums of bids over
all players (break ties by player indices). Then allocate the two jobs to players i and j, according to an
affine minimizer with α = −(tk1 + tk2) (i.e. γaji = γaji = α, and γaii = γajj = 0). This mechanism is
well-defined, and checking the allocation figures shows that restricted to the negative orthant, it is also
truthful and envy-free.9

Notation. Let T (α) denote the closed triangular area determined by the points (−α, 0), (0, 0), (0,−α).

The subsequent considerations intuitively tell that all counterexamples for envy-free additive auctions
are variants of Example 2: changing a bid ti to t′i can change the α parameter to an arbitrary α′ > α,
only if either ti ∈ T (α), or t′i ∈ T (α).

The results of Section 3 hold restricted to the negative orthant (auctions domain) up to Lemma 4.
Example 2 could be constructed because Lemmas 4 and 5 do not hold.10 Instead, we can say the following
(we assume pairwise different first bids, second bids resp. sums of bids in all inputs).

Lemma 7. Let t−12 = (t3, t4, . . . , tn) and t′−12 = (t′3, t
′
4, . . . , t

′
n) be arbitrary sets of bids in (R− ×R−)

n.
If α = α2

1(t−12) < α2
1(t

′
−12), then the set of (indexed) bids of t−12 in the area T (α) is different than the

set of bids from t′−12 in T (α).

Proof. Assume by contradiction that the bidset t−12 restricted to T (α) is identical to t′−12 restricted to
T (α). We claim however, that α2

1(t−12) is invariant as we transform the set of points of t−12 outside of
T (α) to the points of t′−12 outside of T (α), contradicting α < α2

1(t
′
−12). In particular, for moving a point

ti of minimum second bid ti2 < −α, the proof of Lemma 4 works by choosing a t2 = (−K,−ǫ) with K
very large. Similarly, if ti1 < −α and ti1 is minimum, we can show that β1

2 = α2
1(t−12) is invariant by

choosing a t1 = (−ǫ,−K). First of all, we move all these points very close to (−α, 0), so that they have
no minimum sum of coordinates.

The remaining points are outside of T (α), but inside the square (−α, 0) × (−α, 0). Such a point of
minimum ti1 + ti2 can be moved out of the square by keeping ti1 + ti2 constant, using Lemma 6. The
rest of the proof is the same as in Lemma 5.

Corollary 5. Let α = α2
1(t−12). If t

′
−12 has the same bids (by the same players) in T (α), as t−12, then

α2
1(t

′
−12) = α (see Figure 7 (a)). Also, if t−13 has the same bids in T (α), as t−12, then β3

1(t−13) = α.

Corollary 6. If a t−hk exists so that all bids in t−hk are outside of the triangle T (αk
h(t−hk)), then the

mechanism is an affine minimizer with α = αk
h(t−hk) restricted to the bids of each player in (R−×R−)\

T (α).

Notice that in Example 2 no such t−hk exists; however it does exist if, e.g., we modify α to be
α = min(1,−(tk1 + tk2)).

9Note that if ti1 + ti2 ≤ tk1 + tk2 then for player j the area tk1 + tk2 < tj1 + tj2 must be part of the 00 allocation of j.
This area is bounded in the negative orthant, but not bounded if tij can take positive values. Therefore, in the scheduling
or unbounded domain only degenerate affine minimizers with ∆ = −∞ fulfil this requirement.

10The proof of Lemma 4 fails for ∆ < 0, because t22 cannot be chosen large enough.
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Figure 7: (a) The additive combinatorial auctions domain; bid vectors t−12 and t′−12 that induce the

same α1
2 = α parameter. (b) The extended closure R̃i

00. (c) Lemma 8.

6 Anonymous mechanisms

In this section we show that in the case of two tasks, anonymous mechanisms are also locally efficient
except for possible singularities. This fact, together with the above results, facilitates an easy charac-
terization of anonymous mechanisms for m = 2. The first observation is an obvious consequence of
anonymity.

Observation 2. If ti = tj , in some fixed input t, then the allocation figure of player i for t−i is the same
as the allocation figure of player j for t−j .

Notation. For fixed t−i and c, d ∈ {0, 1}m let Ri
c = Ri

c(t−i) = {ti ∈ R
m | ai = c}, and Ri

cd = Ri
c ∩Ri

d be
the boundary of the regions Ri

c and Ri
d.

Definition 4. (See Figure 7 (b).) Let 0 ∈ {0, 1}m mean the zero allocation. We define the extended

closure R̃i
0
of Ri

0
as

R̃i
0
= Ri

0
∪
⋃

{Ri
cd | c

j = 0 or dj = 0 ∀ j ∈ [1,m]}.

Observation 3. In a truthful anonymous allocation, for arbitrary number of players and tasks, for fixed

i and t−i, all bids of the other players are in the extended closure R̃i
0
.

Proof. For the sake of contradiction, let tj ∈ R
m \ R̃i

0
. However, for every point p ∈ Rm \ R̃i

0
there is

some task so that i certainly gets this task if ti = p. (E.g., if ti is on the boundary of the regions Ri
10

and Ri
11 then he must get task 1.) Assume w.l.o.g., that player i must get task 1, if ti = tj . Then by

Observation 2 player j must also get task 1 if tj = ti, a contradiction.

6.1 Anonymous mechanisms for two tasks

Lemma 8. For two tasks, every truthful (weakly monotone), and anonymous allocation rule is locally
efficient on inputs such that ti2 − ti1 6= tj2 − tj1 for all i 6= j.

Proof. Suppose we have an anonymous allocation and for given input t the allocation is aii. We claim
that ti1+ ti2 = minj{tj1+ tj2}, implying local efficiency for this case. Assume the contrary that ti ∈ Ri

11,

and still tj1 + tj2 < ti1 + ti2. However, in this case, tj ∈ R̃i
00 is impossible in any truthful allocation (see

Figure 2), contradicting Observation 3.
Second, we consider the case when the allocation is aij for i 6= j. We show that ti1 + tj2 is minimum

among all th1 + tk2 (h 6= k), which will complete the proof. If ti1 = minh th1, and tj2 = minh th2, then
the statement is clear. Assume w.l.o.g., that tk1 = minh th1 < ti1. Then, ti ∈ Ri

10 in the allocation
figure of i, and by Observation 3, tk1 < ti1 may occur only if tk ∈ Ri

10,01 (see Figure 7 (c)). Moreover,

for every other player h, the condition th2 − th1 6= tk2 − tk1 implies that tk 6∈ Ri
10,01 but th ∈ Ri

00.
Therefore for every h 6= i, k also ti1 − tk1 ≤ th2 − tk2 holds. Thus, ti1 + tk2 is minimum over the sums
of bids of different players. If j = k, then we are done. If j 6= k, then by symmetric argument also
ti1 − tk1 = tj2 − tk2 must hold. However, tk can be moved by a very small vector so that its allocation is
still 00, but tk1+ tk2 6= ti1+ tj2. For this new position of tk, no allocation is possible, a contradiction.
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Theorem 1 together with Lemma 8, and Observation 2 imply the characterization result for anony-
mous mechanisms for m = 2:

Theorem 3. For domains with additive valuations with two tasks (items), and any number of players,
the allocation of any anonymous truthful mechanism is an affine minimizer over the part of the domain
where ti2 − ti1 6= tj2 − tj1, and ti2 6= tj2 (or ti1 6= tj1) for all i 6= j. The affine minimizer has parameters
λi = 1 for all i, and either
(1) there is a ∆ > 0 so that γaii = ∆, and γaij = 0 for all i 6= j, or
(2) there is an α > 0 so that γaij = α, and γaii = 0 for all i 6= j.

Assuming that (fixing the rest of the input) the payments are continuous functions of every bid tij ,
the allocation is an affine minimizer over the whole domain.

There exist non-continuous anonymous mechanisms with singularities in inputs with ti2 − ti1 6=
tj2 − tj1, that are not locally efficient and no affine minimizers.11 For the scheduling domain, the
continuous anonymous mechanisms are affine minimizers with the same restrictions on the parameters
as in Theorem 3. For anonymous additive auctions Example 2 demonstrates again that anonymous
continuous non-affine minimizers exist.

Remark 2. In the proof of Observation 3 we used equal bids of different players. This is not inconsistent
either with the anonymity definition for pairwise different bids, or with the characterization result that
holds for a part of the domain where bids are not equal. Still, the question remains open, whether
essentially different types of anonymous truthful allocations exist if we restrict the domain to pairwise
different bid vectors of the players. Such a mechanism for two tasks would have non-continuous payment
functions, and would violate Observation 3. (A similar restriction of the input bids would not influence
the envy-free characterization result.)

7 Truthful and envy-free payments

Section 3 characterized all allocation rules that are both weakly monotone, and locally efficient. Weak
monotonicity implies that there exist payments that extend the allocation rule to a truthful mechanism.
By local efficiency, there exist (possibly other) payment rules, so that with these the mechanism is envy-
free. With the terminology introduced in [15], we characterized EF ∪ IC-implementable mechanisms
for two tasks. In this section we provide common payment rules, i.e., inducing mechanisms that are
both truthful and envy-free. This shows that the allocations of Theorem 1 are in fact the EF ∩ IC-
implementable allocation functions.

Definition 5. A mechanism is individually rational if for every input the profit pi − aiti of each player
i is nonnegative.

Consider an allocation rule of either type (1) or type (2), as appear in Theorem 1. Recall that

∆j
i = γaii − γaji , where the γ are the additive constants of the affine minimizer. For type (2) allocations

(including the VCG allocation) the normalized (Clarke-) payments will turn out to be envy-free (as has
been known for VCG [16]). In contrast, for type (1) allocations with at least one γaii > 0, we prove that
no individually rational payments can be both truthful and envy-free. We show examples of other (non
individually rational) EF ∩ IC payments.

By the definition of fi, f
′
i , gi, and g′i, for any fixed player i, and fixed t−i the payments that induce a

truthful mechanism are exactly those of the form:

pi01 = pi00 + g′i; pi10 = pi00 + f ′
i ; pi11 = pi00 + g′i + fi,

where pi00(t−i) is an arbitrary real value (0 for normalized payments), and the fi(t−i), f
′
i(t−i), g

′
i(t−i)

values are determined by the allocation function. In what follows, we search for appropriate pi00(t−i)
functions that make the mechanism also envy-free.

We start by investigating the possible pi00(t−i), when in t−i a single player j bids minimum for both
tasks. Let tm1 = mink 6=i,j tk1 and tm2 = mink 6=i,j tk2. It will prove useful to search for pi00 in the following
form:

11Consider an affine minimizer with γaii = 1 for all i. If any player i has minimum bids for both tasks, and for an
arbitrary j tj1 = ti1 + 1, and tj2 = ti2 + 1 hold (i.e. j is minimum player having these bids), then we give one task (1
resp. 2) to the player k 6= i, j with the next smallest bid overall (tk1 resp. tk2), and the remaining task to player i. This
example is very similar to Example 1.
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Notation. Let
Di

j(tj) = Di
j [t−ij ](tj) = pi00 +∆j(tj),

where ∆j(tj) = min{∆i
j , t

m
1 − tj1, t

m
2 − tj2} if ∆i

j > 0, and ∆j(tj) = 0 otherwise (i.e., for type (2)

allocations, Di and pi00 are the same).

This notation yields a simple expression for the payments pi01 = tj2 +Di
j(tj), and pi10 = tj1 +Di

j(tj),

also for allocations of type (1). For fixed t−ij , the domain of the function Di
j() is (−∞, tm1 )× (−∞, tm2 ).

Our first observation largely simplifies the picture:

Lemma 9. The function Di
j[t−ij ]() is independent of t−ij , and of i, that is, Di

j(tj) = Dk
j (tj) for different

i, j, k.

Proof. Suppose first that ∆i
j < min{tm1 − tj1, t

m
2 − tj2}, in which case there exists a ti ∈ (−∞, tm1 ) ×

(−∞, tm2 ) so that the allocation is ajj . Now, by envy-freeness, the payments of all players other than j,
must be the same. It follows that Di

j [t−ij ](tj) = Dk
j [t−kj ](tj). Therefore, D

i
j [t−ij ](tj) is independent of

tk ∈ t−ij for every k (at least as long as ∆i
j < min{tm1 −tj1, t

m
2 −tj2} holds for t−ij), and Di(tj) = Dk(tj).

Suppose now that ∆i
j ≥ min{tm1 − tj1, t

m
2 − tj2} = tm1 − tj1, and tm1 = ts1. We can set ti1 = ts1 − ǫ

and ti2 = ts2. The allocation is then aij , and the envy-freeness inequalities between players i and s
yield Di

j [t−ij ](tj) = Ds
j [t−sj ](tj), which by Dk

j [t−kj ](tj) = Ds
j [t−sj ](tj) implies the lemma for all other

players.

Lemma 10. Assume that the payments induce an envy-free mechanism. Let t−ij be fixed, and tj have

minimum bids in t−i, and similarly for ti in t−j. If the allocation is aji, then ti2−tj2 ≤ Di
j(tj)−Dj

i (ti) ≤

ti1 − tj1. If it is aii then 0 ≤ Dj
i (ti)−Di

j(tj) ≤ tj1 − ti1 + tj2 − ti2.

Proof. If ti, tj ∈ (−∞, tm1 )× (−∞, tm2 ) then only players i and j receive any jobs, so one of four possible
allocations occurs. The statement follows directly from the envy-freeness constraints aiti−pi ≤ ajti−pj

and ajtj − pj ≤ aitj − pi.

Corollary 7. In an envy-free mechanism for fixed t−ij the Di
j() and Dj

i () are identical (that is, Di
j(tj) =

Dj
i (ti) for tj = ti), and continuous functions.

Proof. Identity follows by applying the lemma to ti = tj , no matter if the jobs are allocated to the same
or to different players. Similarly, for ti → tj the lemma implies D(ti) → D(tj) no matter what exactly
the allocations are.

With this we showed that for any fixed mechanism with envy-free plus truthful payments the
Di

j [t−ij ]() functions are all restrictions of a single function D(), whose domain is the whole plane R
2.

Moreover, this function has the following properties.

Corollary 8. The function D(ti) is non-increasing in ti1 and in ti2 (by some ’slope’ between −1 and

0 in each point). Moreover, if all ∆j
i are non-negative and at least one of them is strictly positive then

D((ti1 + ǫ, ti2 + ǫ)) = D((ti1, ti2)) − ǫ. If all ∆j
i < 0, then D((ti1, ti2)) = D((ti1 − ǫ, ti2 + ǫ)) for ǫ > 0

small enough.

Proof. The first statement is straightforward from Lemma 10 setting ti2 = tj2, and ti1 = tj1, respectively.

Assume that ∆j
i > ǫ > 0 (cf. Figure 2 (a)). Then, for tj = (ti1 + ǫ, ti2 + ǫ) the allocation is either

aij or aji, and in both cases the lemma yields D(ti) = D(tj) + ǫ. If ∆j
i < ǫ < 0 (cf. Figure 2 (c)),

then we observe that for tj = (ti1 − ǫ, ti2 + ǫ) the allocation is either aii or ajj , and the lemma imples
D(ti) = D(tj).

For n = 2 players the above properties of the D function completely characterize envy-free+truthful
payments, i.e. they are necessary and sufficient. Notice that – for any number of players – for type
(2) allocations (including the VCG allocation) Corollary 8 admits that D() = pi00 is constant, and in
particular that pi00 ≡ 0. Indeed, it is straightforward to verify the following:

Theorem 4. For type (2) allocations the truthful payments with pi00 = 0 (Clarke-payments) are also
envy-free.
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Proof. Let tk1 and tl2 be minimum first and second coordinates respectively, and let tj1+tj2 be minimum
sum of coordinates in t−i, where j, k, l are not necessarily different. By Theorem 1 γali = γaik . The
Clarke-payments for player i are pi11 = min{tk1 + tl2+ γali , tj1 + tj2} pi01 = min{tl2, tj1 + tj2 − tk1 − γali}
and pi10 = min{tk1, tj1 + tj2 − tl2 − γali}. The envy-freeness inequalities can easily be checked for three
(essentially) different pairs of players.

Clarke-payments are also individually rational; on the other hand, as an obvious consequence of
Corollary 8 we have:

Theorem 5. For type (1) allocations with at least one γaii > 0 there exist no payments that are truthful,
envy-free, and individually rational.

Proof. By the constraintD((ti1+ǫ, ti2+ǫ)) = D((ti1, ti2))−ǫ, the function D(ti) is negative (for example)
for large enough ti2 = ti1. Furthermore, for large enough coordinates of t−i, (the allocation is aii and)

the value pj00 = D(ti)−∆i < 0 for every player j 6= i.

From now on, we assume that the allocation is of type (1) with γaii > 0 for some player i. We find a
further necessary condition for envy-free payments for n ≥ 3. Recall that D(tj) determines pi00 if j bids
minimum for both tasks in t−i. Consider now the setting where tj1 and tk2 are minimum among first
respectively among second coordinates, furthermore both coordinates of ti are maximum among j, k, i,
and all other players have very high bids. By our characterization theorem the allocation must be ajk

(see Figure 3 (a)). Moreover, the payments of players j and k were determined above as pj10 = D(tk)+tk1
and pk01 = D(tj) + tj2. Concerning the payment pi00 the envy-freeness conditions yield the bounds

max{D(tk), D(tj)} ≤ pi00 ≤ min{(tk1 − tj1 +D(tk)), (tj2 − tk2 +D(tj))}.

Thus, in this case we can set pi00 = max{D(tk), D(tj)}, and try to find an appropriate D() function
(consistent with Corollary 8) that in addition yields envy-free payments with the given definitions of
pi00. It turns out (by straightforward check) that the functions D(tj) = −tj1 (or D(tj) = −tj2) provide
envy-free payments (whereas other functions of the form D(tj) = −νtj1 − (1− ν)tj2 do not!).

Theorem 6. Consider a type (1) allocation with truthful payments defined as: if both coordinates of tj
are minimum in t−i, then let pi00 = −tj1 −∆j(tj). If tj1 and tk2 are minimum among first respectively
among second coordinates in t−i, then let pi00 = −tj1. The induced truthful mechanism is also envy-free.
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