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Pre-training general language representations

* Feature-based approaches
* Non-neural word representations

* Neural embedding
* Word embedding: Word2Vec, Glove, -
* Sentence embedding, paragraph embedding, -

* Deep contextualised word representation (ELMo, Embeddings from Language Models)
(Peters et al., 2018)

* Fine-tuning approaches
* OpenAl GPT (Generative Pre-trained Transformer) (rRadford et a/, 2018a)
* BERT (Bi-directional Encoder Representations from Transformers) (Deviin et a/, 2018)



Content

* ELMO (Peters et al, 2018)

* OpenAl GPT (radford er al, 2018a)

* Transtormer (especially self-attention) vaswani et . 2017)
* BERT (Deviin et ar, 2018)

* Analyses & Future Studies



ELMo: deep contextualised word representation

(Peters et al, 2018)

* “Instead of using a fixed embedding for each word, ELMo looks at the entire sentence before
assigning each word in it an embedding.”
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ELMo is a task specific
representation. A down-stream

ELMo represents a word [; as a linear combination of

corresponding hidden layers (inc. its embedding)
biLMs

task learns weighting parameters
Forward LM

Unlike usual word embeddings, ELMo is
assigned to every token instead of a type
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Many linguistic tasks are improved by using ELMo

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/

BASELINE BASELINE RELATIVE)

Q&A SQuAD | Liuetal. (2017) 84.4 || 81.1 85.8 4.7 124.9%
Textual entailment SNLI Chen et al. (2017) 88.6 || 88.0 88.7£0.17 0.7/5.8%

Semantic role labelling SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coreference resolution Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
Named entity recognition NER Peters et al. (2017) 91.93 £0.19 || 90.15 9222+ 0.10 2.06/21%
Sentiment analysis SST-5 McCann et al. (2017) 53.7 || 514 54.7 £ 0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F; for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.
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OpenAl GPT (Generative Pre-trained
Transformer) — (1) pre-training

* Unsupervised pre-training, maximising the log-likelihood,

Ll(Z/{) = Zlog P(’U@”Uji_k, ey Uj—1, (“))

« where U = {’Uq, o ,Un} Is an unsupervised corpus of tokens, k is the size of context
window, P is modelled as a neural network with parameters 0.

h; = transformer_block(h;_1)Vi € [1,n]
P(u) = softmax(h, W)
* where U Is one-hot representation of tokens in the window, n is the total number of

transformer layers, transformer block() denotes the decoder of the Transformer
model (multi-headed self-attention and position-wise feedfoward layers).

Equations in (Radford et a/., 2018)



0.1% Aardvark
Possible classes:

A Ergon s e GPT: (2) Fine-tuning

0% | Zyzzyva

Given labelled data €, including each input as a

FFNN + Softmax
sequence of tokens x1, x2, ...,x™, each label as Y .

12 [ DECODER ] P(ylz',...,2™) = softmax(h]"W,)
A
Ly(C) = ) log P(ylz',... 2™
- 3 - (z,y)
2 | DECODER ) Then maximise the final objective function:
/'y
1| DECODER J L3(C) = La(C) + A x L1(C)

Ais set as 0.5 in the experiment.

Acknowledgement to Figure from http://jalammar.github.io/illustrated-bert/ Equations in (Radford et al.,, 2018)
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Transformer: a segZ2seqg model
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Figure 1: The Transformer - model architecture.
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Figure in (Vaswani et al., 2017)
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Self-attention (1)
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Equation and Figure in (Vaswani et al., 2017)
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Self-attention (2)
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Multi-head attention

QK"

Attention(Q, K, V) = softmax(
Vi

\%

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
where head; = Attention(QWiQ? K Wg-K i VWiv)

Q dmode X dk K dmodel X dk |4 dmn el X dv
WO € Rimaaxde WK ¢ R WY € R

Wo 6 thv X dmodel

d
h=8d, =d, =22 - 64

(Vaswani et al., 2017)

Multi-Head Attention
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|
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Attention




Multi-head attention
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keys

Modelling the dependencies between

(keitakurita, 2019) attention scores

(1) the input and output tokens | 1 ! | Lo
(2) the input tokens themselves n L] Lo s [ ValiEs
(3) the output tokens themselves. Acknowledgement to Figure from (keitakurita, 2019)
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Three Multi-Head attention blocks

Encoder Multi-Head Attention (left)

* Keys, values and queries are the output of the previous layer
In the encoder.

* Multiple word-word alignments.

Decoder Masked Multi-Head Attention (lower right)

* Set the word-word attention weights for the connections to
illegal “future” words to —oo,

* Keys and values from the output of the encoder, queries
from the previous decoder layer.

Figure in (Vaswani et a/., 2017)
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Figure 1: The Transformer - model architecture.
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Why self-attention? - Efficiency and Path

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?*) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Table in (Vaswani et al., 2017)



Maximum Path Length in RNN and Self-attention
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Positional Embedding

* In order to add position information (order of the sequence)

PE (pos 2i) = sin(pos/10000%/ )
PE(pﬂs:2i+1) = f?c)s(pos/l[)[][][j?'iﬁdmm.eu)

* Each dimension of the positional encoding corresponds to a sinusoid.

* For any fixed offset k, PE}, s+, Can be represented as a linear transformation of PE, . This
would allow the model to easily learn to attend by relative positions.

Equations in (Vaswani et al., 2017)
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Evaluation for Transtormer

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

el BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-1019  1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10" 1.5-10%
MOoE [32] 26.03  40.56 2.0-10 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36  41.29 7.7-10"  1.2.10%
Transformer (base model) 27.3 38.1 3.3-10'%
Transformer (big) 28.4 41.8 2.3-10%°

Table in (Vaswani et al., 2017)



Fvaluation for Transtormer — parameter tuning

Table in (Vaswani et al., 2017)

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to
per-word perplexities.

N dmoda dx h dp dy Pirop €1s :::;; (EE‘I:) ]?dlili pzrf 52 >
base | 6 512 2048 8 64 64 0.1 0.1 100K | 4.92 25.8 65
I 512 512 5.29 249
(A) 4 128 128 5,00 255
16 32 32 491 25.8
32 16 16 5.01 254
(B) 16 5.16  25.1 58
32 5.01 254 60
2 6.11 23.7 36
4 5.19 25.3 50
8 4.88 25.5 80
(C) 256 32 32 5.75 24.5 28
1024 128 128 4.66  26.0 168
1024 5.12 254 33
4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
D) 0.0 4.67 25.3
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213




What i1s BERT (Bidirectional Encoder Representations from Transformers)?

BERT (Ours) OpenAl GPT

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-

to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

Figure in (Devlin et al., 2018)



Input Representation

Hidden state corresponding to [CLS] will be
used as the sentence representation
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* Token Embeddings: WordPiece embedding (wu et a7, 2016)

* Segment Embeddings: randomly initialized and learned; single sentence input only adds Ea

* Position embeddings: randomly initialized and learned

Figure in (Devlin et al., 2018)



* Masked Language Model:
Cloze Task

Use the output of the
masked word’s position

raining tasks (1) - Masked Language Model

0.1% | Aardvark

Possible classes:

All English words 10% Improvisation

to predict the masked word

* Masking(input_seq):

For every Input_seq :

* Randomly select 15% of tokens
(not more than 20 per seq)
* For 80% of the time:

* Replace the word
with the [MASK]
token.

* For 10% of the time:

* Replace the word
with a random word

* For 10% of the time

* Keep the word
unchanged..

Randomly mask
Q

* For related code see def _ 15% of tokens
create_masked Im_predictions(---) in
https://github.com/google-
research/bert/blob/master/create pret
raining_data.py

Input

Acknowledgement to the Figure from http://jalammar.github.io/illustrated-bert/
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https://github.com/google-research/bert/blob/master/create_pretraining_data.py

raining tasks (2) — Next Sentence Prediction

* Next sentence prediction —  pradict likelihood .
. ‘o . 1% | IsNext
Binary classification that sentence B -
* For every input document ~ Pelongs after 99%  NotNext
sentence A

as a sentence-token 2D list:

* Randomly select a split over
sentences: FFNN + Softmax

* Store the segment A
* For 50% of the time:

* Sample random
sentence split from
another document
as segment B.

* For 50% of the time: BERT

* Use the actual
sentences as
segment B.

Tokenized "y

* Masking (Truncate([segment A, Inout
segment B])) P [MASK]

* For related code see def
create_instances_from_document (---)

flight ##less
/ g

in https://github.com/google- Input [CLS) [MASK] [MASK]
research/bert/blob/master/create pret : ! : :
raining_data.py segment A segment B

Acknowledgement to the Figure adapted from http://jalammar.github.io/illustrated-bert/
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Pre-Training datasets and detalls

* Training loss L is the sum of the mean masked LM likelihood and mean next sentence
prediction likelihood.

Dataset: Long contiguous word sequences.

* BooksCorpus (800M words), about 7,000 unique unpublished books from a variety of
genres including Adventure,
Fantasy, and Romance.

* English Wikipedia (2,500M words), excluding lists, tables, headers.

* Sequence length 512; Batch size 256; trained for 1M steps (approximately 40 epochs):
learning rate le-4; Adam optimiser, 1 as 0.9, 5 as 0.999; dropout as 0.1 on all layers; GELU
activation; L2 weight decay of 0.01; learning rate warmup over the first 10,000 steps, linear
decay of learning rate -



BERTgasg: N = 6, diyoqe; = 512, h = 12, Total Parameters=110M
4 cloud TPUs in Pod configuration (16 TPU chips total)

BERTiarge: N = 24, dy0qe1 = 1024, h = 16, Total Parameters=340M
16 Cloud TPUs (64 TPU chips total)

Each pretraining took 4 days to complete.



Fine-tuning with BERT

L ]

L ]

L ]

Context vector C: Take the final
hidden state corresponding to
the first token in the input:

[CLS].
Transform to a probability

distribution of the class labels:

P = softmax(CWT)

Batch size: 16, 32

Learning rate (Adam): 5e-5, 3e-5, 2e-5

Number of epochs: 3. 4

Figure in (Devlin et al., 2018)
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Fvaluation for BERT: GLUE

* General Language Understanding Evaluation (GLUE) benchmark: Standard split of data to
train, validation, test, where labels for the test set is only held in the server.

* Sentence pair tasks
* MNLI, Multi-Genre Natural Language Inference
* QQP, Quora Question Pairs
* QNLI, Question Natural Language Inference
* STS-B The Semantic Textual Similarity Benchmark
* MRPC Microsoft Research Paraphrase Corpus
* RTE Recognizing Textual Entailment
* WNLI Winograd NLI is a small natural language inference dataset

* Single sentence classification
* SST-2 The Stanford Sentiment Treebank
* CoLA The Corpus of Linguistic Acceptability



Fvaluation for BERT: GLUE

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE |Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k| -
Pre-OpenAl SOTA 80.6/80.1  66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn ~ 76.4/76.1  64.8 799 904 360 73.3 849 568 71.0
OpenAl GPT 82.1/814 703 88.1 913 454 80.0 823 56.0| 752
BERTgASE 84.6/83.4 712 90.1 935 5211 858 889 66.4| 79.6
BERT ARGE 86.7/85.9 721 91.1 949 60.5 865 893 70.1| 81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAl GPT = (L=12, H=768, A=12); BERTgssg = (L=12, H=768,
A=12); BERT arge = (L=24, H=1024, A=16). BERT and OpenAl GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.
com/language—unsupervised/.

Table in (Devlin et al., 2018)



System Dev Test

Fvaluat SOUAD - T
va Ua lOn On Q Leaderboard (Oct 8th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
* The Standford Question Answering #2 Ensemble - QANet - - 345905
Dataset (SQUAD) is a collection of 100k #1 omgle - ninel C T S o
, : #2 Single - QANet - - 825 893
crowdsourced question/answer pairs.
‘ Published
 Input Question: BiDAF+ELMo (Single) ~ 858 - -
R.M. Reader (Single) 78.9 86.3 79.5 86.6
Where do water droplets collide with ice R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5
crystals to form precipitation? ours
BERTgase (Single) 80.8 88.5 - -
, BERT | arce (Single) 84.1 909 - -
L ]
Input Paragraph: BERT, arce (Ensemble) 858 918 -

Precipitation forms as smaller droplets BERTLarGE (Sgl+TriviaQA) 84.2 91.1 85.1 91.8
BERTLarGe (Ens.+TriviaQA) 86.2 92.2 874 93.2

coalesce via collision with other rain drops

or ice crystals within a cloud. ... Table 2: SQuAD results. The BERT ensemble is 7x
systems which use different pre-training checkpoints
e Output Answer: and fine-tuning seeds.

within a cloud Table in (Devlin et a/., 2018)



Fvaluation on Named Entity Recognition

* The CoNLL 2003 Named Entity
Recognition (NER) dataset. This dataset
consists of 200k training words which
have been annotated as Person,
Organization, Location, Miscellaneous,
or Other (non-named entity).

Jim Hen ##son was a puppet ##eer
I-PER I-PER X O O O X

Table in (Devlin et al., 2018)

System Dev F1 Test F1
ELMo+BiLSTM+CRF 95.7 92.2
CVT+Multi (Clark et al., 2018) : 92.6
BERTgASE 96.4 92.4
BERT| ARGE 96.6 92.8

Table 3: CoNLL-2003 Named Entity Recognition re-
sults. The hyperparameters were selected using the
Dev set, and the reported Dev and Test scores are aver-
aged over 5 random restarts using those hyperparame-
ters.



Ablation Study (1) — on pre-train tasks

Dev Set
Tasks MNLI-m QNLI MRPC SST-2 SQuAD
(Acc) (Acc) (Acc) (Acc) (FI)
BERTgAsE 84 .4 88.4  86.7 927 88.5
No NSP 83.9 849 865 926 87.9
LTR & No NSP 82.1 843 775 921 77.8
+ BiLSTM 82.1 84.1 75.77 91.6 84.9

Table 5: Ablation over the pre-training tasks using the
BERTgAgg architecture. “No NSP” is trained without
the next sentence prediction task. “LTR & No NSP” is
trained as a left-to-right LM without the next sentence
prediction, like OpenAl GPT. “+ BiLSTM™ adds a ran-
domly initialized BiLSTM on top of the “LTR + No
NSP” model during fine-tuning.
Table in (Devlin et al., 2018)



Ablation Study (2) — on model sizes

Hyperparams Dev Set Accuracy
#LL. #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12  5.84 77.9 79.8  88.4
6 768 3 524 80.6 82.2  90.7
6 768 12  4.68 81.9 848 913
12 768 12 399 84.4 86.7 929
12 1024 16  3.54 85.7 869 933
24 1024 16  3.23 86.6 87.8  93.7

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LLM (ppl)” 1s the masked LM perplexity
of held-out training data.

Table in (Devlin et al., 2018)



Ablation Study (3) — on pre-training steps

[t
L~

MNLI Dev Accuracy

—~— BERTgRaAsg (Masked LM)

76 |- —>¢— BERTgaAsE (Left-to-Right)

|
200 400 600 300 1,000

Pre-training Steps (Thousands)

Figure in (Devlin et al., 2018)



Ablation Study (4) — using BERT as feature extractor
(Wwithout fine-tuning)

Layers Dev Fl
Finetune All 96.4

First Layer (Embeddings) 91.0
Second-to-Last Hidden 05.6
Last Hidden 94.9
Sum Last Four Hidden 95.9
Concat Last Four Hidden  96.1
Sum All 12 Layers 95.5

Table 7: Ablation using BERT with a feature-based ap-
proach on CoNLL-2003 NER. The activations from the
specified layers are combined and fed into a two-layer
Bi1LSTM, without backpropagation to BERT. Table in (Devlin et al,, 2018)



Why BERT works?

* Leveraging huge unlabeled and high quality data: 7000 books +
Wikipedia (together 3300M words)

* Multi-head self-attention blocks in Transformer:
* modelling the intra- and extra- word-word relations
* parallelable within instance and thus efficient

* Task similarity: masked language modelling + next sentence
prediction



How to iImprove BERT?

* Pre-training
* Better tasks for pre-training for more complex usage
* Better (larger, high-quality) data
* Cross-lingual BERT for unsupervised learning (Lample & Conneau, 2019)

* Even larger model, GPT-2: zero shot to outperform the SOTA (radford ez al,
2018b)

* Fine-tuning
* Better loss Iin fine-tuning
* Introduce new tasks In fine-tuning



An architecture for multi-label classification
(Dong, 2019)

Title (Title-guided)
Sentence-level attentions

Word-level attentions Sigmoid

Vg

Sentence ’ Semantic-based loss regularisation
(in Content) wa | Vsa Ay Lsim +2A3Lsup

In H. Dong, W. Wang, H. Kaizhu, F. Coenen. Joint Multi-Label Attention Networks for Social Text Annotation, in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), Volume 2 (Short Papers), Minneapolis, USA, 2-7 June, 2019.



s It possible? Any further thought?

Title
Ca
| FFNN+Sigmoid
BERT =u
] Semantic-based loss regularisation
— AlLsim +/12Lsub
Sentence

(in Content)



Recommended Learning Resources

* Jay Alammar. The lllustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). Dec
2018. http://jalammar.github.io/illustrated-bert/

* Jay Alammar. The lllustrated Transformer. http://jJalammar.github.io/illustrated-transformer/.
June 2018.

* Ashish Vaswani and Anna Huang. Transformers and Self-Attention For Generative Models.
Feb 2019. CS224n. Stanford University. http://web.stanford.edu/class/cs224n/slides/cs224n -
2019-lecturel4-transformers.pdf

* Kevin Clark. Future of NLP + Deep Learning. Mar 2019. CS224n. Stanford University.
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture20-future.pdf

* keitakurita. Paper Dissected: “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding” Explained http://mlexplained.com/2019/01/07/paper-dissected-
bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/

* keitakurita. Paper Dissected: “Attention is All You Need” Explained
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/



http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-transformer/
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture20-future.pdf
http://mlexplained.com/2019/01/07/paper-dissected-bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding-explained/
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/
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