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Abstract. By gaining insight into the structure and behaviours of objects drawn at
random from a general class, it is often possible to develop algorithms and tech-
niques which ameliorate the computational difficulty of decision questions arising
in the general case. In this paper we present a number of approaches for the random
generation ofvalue-based argumentation frameworks(VAFs) built onn arguments
and usingk values. Via an empirical study we consider the behaviour of the asso-
ciated randomVAFs with respect to the issue of how many arguments within them
have the property of being “objectively accepted”. Our studies indicate that the
property of having no objectively accepted argument exhibits a so-called “phase-
transition effect”, similar in nature to those observed in many other well-established
AI studies.
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Introduction

An understanding of the characteristics underlying typical instances of a computational
problem may provide useful insight into the development of feasible algorithmic meth-
ods. As a result, even notionally intractable problems may be found to have efficient
average-casesolutions, provided that the most demanding instances for agiven algo-
rithm are comparatively rare. A well-known example of this phenomenon is deciding if
a propositional formula, presented inCNF, is satisfiable. Despite its status as a canonical
NP–complete problem, as shown by Wu & Tang [1], this has an average-case polynomial
time algorithm (under one of the standard models for random instances ofCNF formulae
involvingn propositional variables, i.e. that of Goldberg [2]).

There has been considerable recent activity dedicated to aspects of algorithmic
methods applied to the abstract argumentation framework (AF) formalism proposed by
Dung [3], almost without exception this has engaged with identifying so-called “tractable
fragments”: that is, special cases which admit efficient worst-case algorithms for some
decision problems. Thus, Dung [3] already identifiesacyclic AFs as such a fragment,
Dunne [4] (bipartiteAFs) and Coste-Marquiset al. [5] (symmetric AFs) extend the
range of classes. Recently more general mechanisms exploiting “tree-width” and “clique-
width” parameters have been shown to offer promising characteristics in work of Ord-
nyiak & Szeider [6], and Dvořáket al. [7,8]. In contrast, however, the potential use of
average-case solution techniques has been largely underdeveloped.



There are, of course, a number of reasons one could advance toexplain this appar-
ent oversight. Not least among these is the often formidablechallenge posed informally
demonstrating that a proposed approach isindeedeffective: average-case analyses tend-
ing to be significantly more demanding that their worst-casecounterparts. In order to
address such issues one can consider providing supporting evidence viaempirical ap-
proaches. Recent work of Atkinsonet al. [9] describes a suite of methods through which
random instancesof divers forms ofAFs may be generated. Among these, in addition
to standardAFs are value-based frameworks (VAF) as described in Bench-Capon [10],
andextendedAFs as proposed in Modgil [11]. Such approaches offer a basis upon which
empirical studies can be constructed and the behaviour of “typical” frameworks assessed.

Our aim in this paper is to consider a number of properties of randomVAFs – both
under uniform allocation of values to arguments and within two “biased” methods. Our
results offer strong empirical support that a number of known intractable decision prob-
lems regardingVAFs in fact may be solved by average-case polynomial time algorithms.
In the remainder of this paper we review background definitions in Sect. 1 and describe
a number of models of randomVAFs in Sect. 2. In Sect. 3 we present empirical evi-
dence regarding the characteristics of randomVAFs with respect to a number of specific
properties. Conclusions and directions for further work are offered in Sect. 5.

Prior to presenting our results, however, we briefly motivate the choice of Bench-
Capon’sVAF abstraction1 as of particular importance from the viewpoint of developing
efficient average-case solutions. TheVAF model offers two significant features of inter-
est. Firstly, from the perspective of “random generation methods”, as discussed in detail
in Atkinson et al. [9] and summarised in Sect. 2, unlike standardAFs which may for
such purposes be considered as directed graph structures, anumber of non-trivial issues
arise in regard to bothenumerationand random generation matters. Secondly, again in
contrast to classicalAFs, until quite recently no useful tractable fragments ofVAFs had
been identified.2 Thus, as shown by Dunne [4], graph structures as basic as binary trees
(even under the condition that no value is common to three or more arguments) fail to
reduce the computational complexity of standardVAF decision questions from theNP,
coNP–complete status of the unrestricted case. Given this situation, developing efficient
average-case methods would be particularly beneficial.

1. Background.

The following concepts were introduced in Dung [3].

Definition 1 An argumentation framework(AF) is a pairH = 〈X ,A〉, in whichX is a
finite set ofargumentsandA ⊆ X×X is theattack relationshipfor H. A pair 〈x , y〉 ∈ A
is referred to as ‘y is attacked byx ’ or ‘ x attacksy ’. x ∈ X is acceptable with respect
to S if for everyy ∈ X that attacksx there is somez ∈ S that attacksy; S is conflict-
free if no argument inS is attacked by any other argument inS . A conflict-free setS
is admissibleif everyy ∈ S is acceptable w.r.tS ; S is a preferred extensionif it is a

1It has been claimed that the semantics operating inVAFs may lead to inconsistent conclusions. Although,
to the authors’ knowledge this is an open question, we note that the alleged demonstration of “inconsistency”
from [12] is comprehensively refuted in [13].

2The first such fragments are presented in work of Dunne [14] and Kim et al. [15].



maximal (with respect to⊆) admissible set; An argumentx is credulously acceptedif
there issomepreferred extension containing it;x is sceptically acceptedif it is a member
of everypreferred extension.

Bench-Capon [10] develops the concept of “attack” from Dung’s model to take account
of values and thereby distinguish notions of attack fromsuccessfulattack.

Definition 2 A value-based argumentation framework(VAF), is defined by a triple
H(V) = 〈H(X ,A),V , η〉, whereH(X ,A) is an AF, V = {v1, v2, . . . , vk} a set ofk
values, andη : X → V a mapping that associates a valueη(x ) ∈ V with each argu-
mentx ∈ X . Anaudiencefor a VAF 〈X ,A,V , η〉, is a binary relationR ⊂ V ×V whose
(irreflexive) transitive closure,R∗, is asymmetric, i.e. at most one of〈v , v ′〉, 〈v ′, v〉 are
members ofR∗ for any distinctv , v ′ ∈ V . We say thatvi is preferred tovj in the audience
R, denotedvi ≻R vj , if 〈vi , vj 〉 ∈ R∗. We say thatα is aspecificaudience ifα yields a
totalordering ofV . The notationU is used for the set of all specific audiences overV

A standard assumption from [10] which we retain in our subsequent development is the
following:
Multivalued Cycles Assumption(MCA)
For anysimple cycleof arguments in aVAF, 〈X ,A,V , η〉, – i.e. a finite sequence of argu-
mentsy1y2 . . . yiyi+1 . . . yr with y1 = yr , |{y1, . . . , yr−1}| = r−1, and〈yj , yj+1〉 ∈ A
for each1 ≤ j < r – there are argumentsyi andyj for whichη(yi ) 6= η(yj ).

In less formal terms, this assumption states every simple cycle inH(V) uses at least
two distinct values.

UsingVAFs, ideas analogous to those introduced in Defn. 1 are given byrelativising
the concept of “attack” using that ofsuccessfulattack with respect to an audience. Thus,

Definition 3 Let 〈X ,A,V , η〉 be aVAF andR an audience. For argumentsx , y in X , x
is asuccessful attackony (or x defeatsy) with respect to the audienceR if: 〈x , y〉 ∈ A
andit is not the case thatη(y) ≻R η(x ).

Replacing “attack” by “successful attack w.r.t. the audienceR”, in Defn. 1 yields def-
initions of “conflict-free”, “admissible set” etc. relating to value-based systems, e.g.S

is conflict–free w.r.t. to the audienceR if for eachx , y in S it is not the case thatx
successfully attacksy w.r.t. R. It may be noted that a conflict-free set in this sense is
not necessarily a conflict-free set in the sense of Defn. 1: for x andy in S we may have
〈x , y〉 ∈ A, provided thatη(y) ≻R η(x ), i.e. the value promoted byy is preferred to
that promoted byx for the audienceR.

Bench-Capon [10] proves that every specific audience,α, induces a unique preferred
extension within its underlyingVAF: for a givenVAF,H(V), we useP(H(V), α) to denote
this extension. Analogous to the concepts of credulous and sceptical acceptance, inVAFs
the ideas ofsubjectiveandobjectiveacceptance arise.
Subjective Acceptance(SBA)
Instance:H(X ,A,V , η) andx ∈ X .
Question: Is there a specific audience,α, for whichx ∈ P(〈X ,A,V , η〉, α)?
Objective Acceptance(OBA)
Instance:H(X ,A,V , η) andx ∈ X .
Question: Is x ∈ P(〈X ,A,V , η〉, α) for everyspecific audienceα?



As we have noted earlier, the complexity ofSBA (NP–complete) andOBA (coNP–
complete) is known to be unchanged under quite extreme restrictions on the form of
instances as shown in Dunne [4].

2. Models of RandomVAFs.

In Atkinsonet al. [9] several distinctive features concerning “uniform generation meth-
ods” (that is, those for which, givenn andk , eachn argumentVAF using exactlyk val-
ues is equally likely to be reported) are identified and discussed. The basic algorithm
presented is reproduced as Algorithm 1.

Algorithm 1 Random Generation ofVAFs (from [9])

1: Input: 〈n, k , p〉 (p ∈ [0, 1], n ≥ 0, 1 ≤ k ≤ n)
2: X := {x1, . . . , xn};
3: Xi := ∅ for 1 ≤ i ≤ k ;
4: A := ∅;
5: ni := 0 for 1 ≤ i ≤ k ;
6: V := {v1, v2, . . . , vk};
7: η := Random mapping ofX to V; //* Implementation discussed in sequel. *//
8: for i = 1; i ≤ k ; i ++ do
9: Xi := {x ∈ X : η(x ) = vi};

10: 〈Xi ,Ai〉 := RandomacyclicAF;
11: A := A ∪Ai ;
12: end for
13: for i = 1; i ≤ k ; i ++ do
14: for j = i + 1; j ≤ k ; j ++ do
15: for eachs ∈ Xi do
16: for eacht ∈ Xj do
17: b := Uniformly randomly chosen real value in the interval[0, 1);
18: if b < p then
19: A := A ∪ {〈s , t〉};
20: end if
21: b := Uniformly randomly chosen real value in the interval[0, 1);
22: if b < p then
23: A := A ∪ {〈t , s〉};
24: end if
25: end for
26: end for
27: end for
28: end for
29: return 〈〈X ,A〉,V , η〉;

A significant factor in the nature of the output reported by this algorithm concerns
the implementation of (l. 7). For our experimental studies we considertwo distinct ap-
proaches.

VM1. The mappingη : X → V is formed by



a. Uniformly at random choosing apartition, α = 〈a1, a2, . . . , ak 〉 ∈ N
k , of n

into k non-increasing and non-zero parts. That is, for whichai ≥ ai+1 ≥ 1

(for each1 ≤ i < k ) and
∑k

i=1 ai = n.
b. Uniformly at random choosingai arguments fromX whose value will be

fixed tovi .

VM2. For eachx ∈ X in turn setη(x ) = v in such a way thatP [η(x ) = v ] = 1/|V|.
We note that the rationale supporting the first of these methods (VM1) is that (whenp in
Algorithm 1 is fixed at0.5) this approach isuniformwhereas VM2 fails to be so. While
the reasons are discussed more fully in [9], this arises fromthe fact that for the purposes
of uniform generation the significant factor is the relativenumbersof arguments with a
given value and notwhich specificarguments these are. We note that while the expected
number of arguments with any given value using VM2 is≈ |X |/|V| = n/k , this isnot
the case w.r.t. (VM1). The main problem with (VM1) is that itsimplementation, even
for moderate values ofn andk , can be prohibitively slow. As we shall outline in the
following section, however, in terms ofVAF characteristics it turns out that (VM1) and
(VM2) have similar behaviour.

We shall subsequently useHVM
n,k ,p (whereVM is one of (VM1)–(VM2) above) to

denote the random variable defined by the output of Alg. 1 given input 〈n, k , p〉 and
constructing the value mapping,η via the method specified inVM .

3. Properties of “almost all” VAFs.

Using Alg. 1 configured using each of the methods (VM1)–(VM2)to determine the value
mappingη, we examine average-case behaviours in relation to the function,pVM

OBA : N×
N× [0, 1] → [0, 1] given by

pVM
OBA(n, k , p) = Prob[HVM

n,k ,p has at least oneobjectively acceptedargument.]

We observe that, in principle, one is dealing withfour quantities: the triple〈n, k , p〉
and the outcome being analysed. In order to present outcomesin an accessiblegraphical
form, however, it is useful to note that by considering the single valuen2+ k we are able
to combinen andk without loss of information. Recalling that1 ≤ k ≤ n, the value
n2 + k uniquely determines〈n, k〉: givenm = n2 + k , n is recovered by⌊√m⌋, and
(consequently)k viam − (⌊√m⌋)2.

The following experiment was carried out:

Experiment: This considered eachn ∈ {100, 150, 200, 250, 300, 350, 400} and6 ≤
k ≤ 20. For the value partition method VM2 all105 = 7 × 15 pairs〈n, k〉 were ex-
amined, while with VM1 only the18 cases fromn ≤ 350 and6 ≤ k ≤ 8.3 In each
case,100 VAFs were sampled fromHVM

n,k ,p for eachp, the range ofp being defined in
terms of multiples oflog(n+k)/(200(n+k) (wherelog is the natural logarithm). These
multiples (m) label thex -axis of the various output plots given below.

3The value mapping mechanism required for VM1, involves a random partition generation algorithm whose
run-time is fromO(nk+1). Background to this is discussed in Atkinsonet al.[9].



In each of the100 trials with a fixed〈n, k , p〉 the number of occasions in which at
least one objectively accepted argument was “discovered” was recorded. Given that it is
infeasible exhaustively to enumerate allk ! specific audiences for larger values ofk , a
randomly chosen sample ofk2 ordering were chosen so that an argument was reported as
“objectively accepted” if every such audience led to its acceptance.4 They-axis describes
the proportionS/100 whereS is the number of cases in100 instances which report at
least oneOBA argument. For reasons of space we concentrate on results forVM2 noting
that VM1 has similar (though not identical) characteristics.

In Figure 1 the effect of varyingn with k = 20 is shown, while Figure 2 illustrates
the behaviour resulting forn = 400 andk varying.

Figure 1. Objective Acceptance – VM2 behaviour withk = 20 andn ∈ {100, 200, 300, 400}

As is seen in Figure 1, the transition from “almost every” to “almost none” becomes
more pronounced asn increases for a fixedk , with a similar effect ask increases being
noticeable in Figure 2

The behaviour of VM1 and VM2 lends support to the following,

Conjecture 1 For X ∈ {VM 1,VM 2}, for all k ∈ N, there is apositive constant,
θXk ∈ ℜ+ for which

lim
n→∞

pX
OBA

(

n, k ,
α log n

n

)

= 0 if α > θXk

lim
n→∞

pX
OBA

(

n, k ,
α log n

n

)

= 1 if α < θXk

4Note that whereas there is a small chance of arguments being incorrectly reported as objectively accepted,
whenever an argument is reported asnot having this property, such reports are guaranteed to be accurate.



Figure 2. Objective Acceptance – VM2 behaviour withn = 400 andk ∈ {10, 15, 20}

Notice that the outcomes from the experiments suggest a region forθXk of

0.00375< θVM1 < 0.02875 ; 0.00375< θVM2 < 0.02

(Recall that the labelling of thex -axis in these figures definesmultiplesof 1/200.)

4. Towards an Analytic Verification of Empirical Behaviour.

Consider the value partition method defined throughVM 2: that is, in which each ar-
gument is allocated a specific value,vi , with probability1/|V| independently of other
choices made. We state the following properties without proof (for space reasons).

Lemma 1 LetDn,p(X ,A) be the random variable corresponding to anacyclicAF with
n argumentsX and attacks included independently with probabilityp. Let g(n, p) de-
note theexpected sizeof the grounded extension ofDn,p . Theng(n, p) satisfies

g(1, p) = 1 ; g(n, 0) = n ; g(n, 1) = 1

g(n, p) =
1− (1− p)n

p
+ g

((

n − 1− (1 − p)n

p

)

(

(1− p)
1−(1−p)n

p

)

, p

)

Lemma 2 g

(

n,
α log n

n

)

≈ n

α log n

(

1 − 1

nα

)

and, for fixedp, g(n, p) ≈ Cp log n, withCp dependent onp.

Coupling Lemma 1 with the following property of objectivelyaccepted arguments sug-
gests not only an approach to analytically confirming existence issues for these within
VAFs but also hints at a potentially fastaverage-casealgorithm for deciding whether an
argument isnot so accepted.

Lemma 3 Let 〈X ,A,V , η〉 be anyVAF and x an argument inX . If x is objectively
acceptable then no attackery of x belongs toGη(y).



Hence, via Lemma 3, a basic algorithm for deciding¬OBA, is: test ify ∈ Gη(y) for each
y ∈ {x}−, reporting¬OBA(H, x ) if any suchy is found.

5. Conclusions and development.

The focus of this paper has reviewed random bases for constructingVAFs. The long term
aim of this approach is to exploit the behaviour observed in guiding the design of effi-
cientaverage-casealgorithms. To illustrate its viability we have presented apreliminary
experimental study of one property: the likelihood of an objectively accepted argument
being present. The outcomes offer strong indications that so-called “phase-transition be-
haviours” arise, irrespective of how value mappings are constructed. Overall our interest
is in identifying characteristics by which a wide range ofVAF problems may be consid-
ered, e.g.SBA, counting questions, etc.

There are, of course, a wide variety of proposals for developments of Dung’sAF

abstraction. The ideas promoted in the current article may well prove fruitful within this
more general context and, in principle, add a range of important algorithm design tech-
niques whose applicabilty to the abstractAF sphere has, to date, been barely addressed.
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