
Argumentation Schemes for Reasoning
about Factors with Dimensions

Katie ATKINSON1, Trevor BENCH-CAPON1 Henry PRAKKEN2, Adam WYNER3,
1Department of Computer Science, The University of Liverpool, England

2University of Utrecht, Department of Information and Computing Sciences and
University of Groningen, Faculty of Law, The Netherlands

3Department of Computing Science, The University of Aberdeen, Scotland

Abstract.
In previous work we presented argumentation schemes to capture the CATO and

value based theory construction approaches to reasoning with legal cases with fac-
tors. We formalised the schemes with ASPIC+, a formal representation of instan-
tiated argumentation. In ASPIC+ the premises of a scheme may either be a factor
provided in a knowledge base or established using a further argumentation scheme.
Thus far we have taken the factors associated with cases to be given in the knowl-
edge base. While this is adequate for expressing factor based reasoning, we can
further investigate the justifications for the relationship between factors and facts
or evidence. In this paper we examine how dimensions as used in the HYPO sys-
tem can provide grounds on which to argue about which factors should apply to a
case. By making this element of the reasoning explicit and subject to argument, we
advance our overall account of reasoning with legal cases and make it more robust.

Keywords. case based reasoning, dimensions, argumentation schemes

1. Introduction

Understanding how cases are used in legal reasoning is central to AI and Law. This paper
is part of an on-going project to articulate our current understanding of this topic. Our
overall aim is to present reconstructions of AI approaches to reasoning with cases as
argumentation schemes, formalised in ASPIC+ [10, 9], with the following agenda:

1. to provide a precise and transparent account of what is involved in the reasoning,
in particular to articulate the argumentation involved;

2. to specify the knowledge that must be supplied to the system by the analyst;
3. to use a formalism which will enable logical properties such as consistency and

closure to be proven of the formalised knowledge;
4. to provide precise specifications which can readily be implemented using stan-

dard techniques.

ASPIC+ is suitable for this since it satisfies the third point. In addition, the fourth point
is addressed since the formalisation, being founded on a knowledge base and rules, maps
straightforwardly into a logic programming language such as Prolog, and thus effectively
serves as a program specification.



In [13] and [3] we presented argumentation schemes to capture the reasoning of
CATO [1] and value based theory construction [5] respectively. Legal reasoning can be
seen as moving from evidence to facts, from facts to factors and from factors to legal
consequences. The factor based reasoning of CATO and [5] is essentially but a single
step of argument, covering only the last of these stages. In [1] and [5] cases are sets
of factors assigned by an analyst outside the system: the schemes presented here bring
the assignment of factors within the scope of the system, and so open this aspect to
explicit argument. This is needed because some cases (e.g. Pierson v Post) turn on which
factors are assigned. We base this argumentation on dimensions as in HYPO [2]. Since
factors correspond to a range of points on a dimension and favour a particular party,
factors can be assigned by using the facts to determine which dimensions are relevant,
and the points on these dimensions satisfied by the case. This paper is thus a small but
necessary increment to the work in [15, 13, 3], which extends the coverage of formal
legal argumentation one step further towards the case facts.

2. Preliminaries

We now summarise the formal frameworks used in this paper. An abstract argument
framework, as introduced by Dung, [7] is a pair AF = 〈A, defeat〉, where A is a set
of arguments and defeat a binary relation on A. A subset B of A is conflict-free if no
argument in B defeats an argument in B and it is said to be admissible if it is both
conflict-free and also defends itself against any attack, i.e., if an argument A1 is in B and
some argument A2 in A but not in B defeats A1, then some argument in B defeats A2.
A preferred extension is then a maximal (with respect to set inclusion) admissible set.
Dung defines several other types of extensions but they are not used in our model.

The ASPIC+ framework [10, 9] gives structure to the arguments and defeat relation.
It defines the notion of an argumentation system, which consists of a logical language
L with a binary contrariness relation − and two sets of inference rules Rs and Rd of
strict and defeasible inference rules defined over L, written as ϕ1, . . . , ϕn → ϕ and ϕ1,
. . . , ϕn ⇒ ϕ. Informally, that an inference rule is strict means that if its antecedents are
accepted, then its consequent must be accepted no matter what, while that an inference
rule is defeasible means that if its antecedents are accepted, then its consequent must
be accepted if there are no good reasons not to accept it. An argumentation system
also contains a function n which for each defeasible rule in Rd returns a formula in L.
Informally, n(r) is a wff in L which says that the defeasible rule r ∈ R is applicable.

In this paper we use an argumentation system in which L is a many-sorted first-order
language with equality further specified in the coming sections, its contrariness relation
corresponds to classical negation, the strict rules Rs are all valid first-order inferences
over L and the defeasible rulesRd and naming function n are as specified further on.

ASPIC+ arguments are constructed from a knowledge base K, which contains two
disjoint kinds of formulas: the axioms Kn and the ordinary premises Kp. The formal
definition of an argument is as follows:

Definition 2.1 [Argument] An argument A on the basis of a knowledge base K in an
argumentation system (L,−,Rs,Rd) is:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; TopRule(A)
= undefined.



2. A1, . . . An →/⇒ ψ if A1, . . . , An are arguments such that there exists a strict or
a defeasible rule
Conc(A1), . . . , Conc(An)→/⇒ ψ inRs/Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A};
TopRule(A) = Conc(A1), . . . , Conc(An)→/⇒ ψ.

An argument is strict if all its inference rules are strict and defeasible otherwise, and
it is firm if all its premises are in Kn and plausible otherwise.

An argumentation system and a knowledge base are combined with an argument
ordering into an argumentation theory. The argument ordering could be defined in any
way, for example, in terms of orderings onRd and Kp.

Definition 2.2 [Argumentation theories] An argumentation theory is a triple AT =
(AS ,K,�) where AS is an argumentation system, K is a knowledge base in AS and �
is a partial preorder on the set of all arguments on the basis of K in AS (below denoted
by AAT ).

Arguments can be attacked in three ways: attacking a conclusion of a defeasible infer-
ence, attacking the defeasible inference itself, or attacking a premise. Inference attacks
are defined with the help of the naming function n that assigns to each element of Rd a
well-formed formula in L. For our argumentation system, ASPIC+’s definitions of attack
can be simplified as follows:1

Definition 2.3 [Attacks] A attacks B iff A undercuts, rebuts or undermines B, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on ϕ) iff Conc(A) = −ϕ for some ordinary premise
ϕ of B.

Attacks combined with the preferences defined by an argument ordering yield three
kinds of defeat.

Definition 2.4 [Successful rebuttal, undermining and defeat]

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.
• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.
• A defeats B iff A undercuts or successfully rebuts or successfully undermines B.

ASPIC+ thus defines a set of arguments with a binary relation of defeat, that is, it
defines abstract argumentation frameworks in the sense of [7]. Formally:

Definition 2.5 [Argumentation framework] An abstract argumentation framework (AF )
corresponding to an argumentation theory AT is a pair < A, Def> such that:

• A is the set AAT as defined by Definition 2.1,

1In the definitions below, −¬ϕ denotes ϕ, while if ϕ does not start with a negation, −ϕ denotes ¬ϕ.



• Def is the relation on A given by Definition 2.4.

Thus any semantics for abstract argumentation can be applied to ASPIC+.

3. Dimensions in Legal Case Based Reasoning

Dimensions, rather than factors, were used in HYPO [2], from which CATO devel-
oped (see [14] for a discussion). Dimensions have an extent and points along the extent.
Whereas factors are either simply present or absent, a dimension, if present, may favour
either the plaintiff or defendant and to a particular degree. Dimensions thus encompass
a range of points, with the extreme pro-plaintiff point at one end and the extreme pro-
defendant point at the other. Thus, at some unspecified point along the range the dimen-
sion will cease to favour the plaintiff and start to favour the defendant. ootnoteThis is
related to a general phenomena in cognition of categorial perception [8]. ade, but used
the forum in which the disclosure had been made to determine which factor to assign.

There are two ways in which dimensions convert to factors. Dimensions may be
Boolean, in which case the dimension maps to two disjoint factors: often one of the
factors is not in fact used since it does not strengthen the case (e.g. in HYPO it does not
help the defendant if he did not bribe an employee). Alternatively, where the dimension
is a numeric range or an ordered series of descriptive points, it may give rise to a set of
factors, each corresponding to part of the dimension.

Although factors became the de facto standard representation of cases, (e.g. [6, 12,
5]), the need for dimensions was argued for in [4], since a case may turn on which factor
is applicable: which factor covers the particular point on the dimension occupied by the
current case will determine which party is favoured by the fact situation. Pierson v Post
is an example: the dispute turns on when pursuit can be counted as justifying lawful
possession, for which different degrees of progress towards bodily seizure need to be
recognised.2 ply in cases. We will take Post as the plaintiff, as in the original action.

As analysed in [6], the only factors present are NotCaught and OpenLand, both
of which are pro-defendant. But the plaintiff argued that Post was sufficiently close to
taking bodily possession of the fox that it should be counted as caught. Whereas the
representation in [6] effectively decides the case by assigning NotCaught, to do justice
to Post’s argument we need to be able to argue that the facts justify assigning Caught
instead. What this means in ASPIC+ terms is that the factors attributed to the case must
cease to be elements in the knowledge base and instead require justification. What form
might this justification take?

In Pierson v Post, the defendant’s argument was in terms of particular commentaries.
It is accepted by both sides that how close Post was to bodily securing the fox is relevant
- the commentaries are all directed towards this point. Thus the stage of the pursuit is a
dimension. The question then becomes at which point on this dimension does the plaintiff
start to be favoured? In other words, at which point on the dimension does the factor
NotCaught cease to apply and the factor Caught start to apply? In the next sections we
will develop a specialist argumentation scheme for attributing factors to cases to enable
this sort of argument.

2In brief the facts were these. Post was chasing a fox with horse and hounds and had cornered it when
Pierson intervened and killed it. Post sued Pierson, but lost because he did not have possession of the fox.



4. Facts

Our proposal is that cases should be represented as bundles of facts rather than factors.
This means that the KB will need to represent cases using a set of statements of the
form hasFact(Case,Fact) Here Case will be a case name, such as PiersonVPost , but
Fact requires some more consideration, since we do need to be able to compare facts
across cases, which means that they will need to be at a sufficient level of abstraction.
Moreover, not every fact will play a part in the decision: some facts will be relevant and
some irrelevant. Further, we will need a picture of how facts relate to factors, so that we
can argue about the attribution of factors to cases.

To illustrate some of these points, let us suppose that an undecided case concerning
capturing a wild animal is being argued where the plaintiff claims that the animal was
Caught on the basis of hot pursuit. This is what Livingston, speaking for Post, did indeed
argue in Pierson v Post. However, even though the argument was put forward it was not
sustained, and so Pierson v Post in fact establishes that the factor NotCaught applies to
the benefit of the defendant where the fact is only hot pursuit. But to argue as Livingston
did, even unsuccessfully, requires that cases are not represented in terms of summarising
factors (e.g. NotCaught) but as the underlying facts which determine the presence of the
factor (e.g. HotPursuit). In the next section we will see how case decisions can give rise
to rules for assigning factors based on precedents.

For these reasons we will need to restrict the facts that can be used: to do this we will
take our inspiration from [2] and [4]. The relevance of a fact will be ensured by relating
it to a dimension. A dimension will be a name and a set of linearly ordered points on
the dimension. These will be represented in Kp as dimension(Dimension, TermSet). For
example we might have:

dimension(Pursuit , {Possessed ,CaptureInevitable,Wounded ,HotPursuit ,
ChaseStarted ,Seen,None}).

The linear ordering on the points of a dimension d with respect to a factor f is formally
expressed with a ≤d,f predicate symbol in Kp, along with the usual ordering definitions.
The factor is needed in ≤d,f because a greater point may move towards or away from a
factor, depending on at which end the extreme pro-plaintiff point lies.

Now a possible fact will be a pair of a dimension and an element of the correspond-
ing set of dimension points. We write this as hasFact(Case,Dimension.Point). Tech-
nically, Dimension.Point is a function expression with the period as function symbol
and with Dimension and Point as its two arguments. We also add the corresponding
sorts for dimensions, facts and dimension points to L.

Note that we could define these facts using other, more concrete, facts. For exam-
ple we could give a list of sufficient conditions for saying that capture was inevitable.
Also, where dimensions are described in terms of a continuous element (e.g. age may
be described in terms of number of years) we normalise this into a series of bands (e.g
{Infant ,Child ,Adolescent ,Adult ,Senior}). These definitions will be beyond explicit
argument and so we will not consider them further here. For our purposes, cases are
represented as bundles of dimension-point pairs, as assigned by the analyst.

As in [13], there will be a set of factors available, and these will favour ei-
ther the plaintiff or the defendant. Factors are therefore represented using two predi-
cates pFactor(factor) and dFactor(factor). An axiom expresses that nothing can be



both a pfactor and a dFactor. For this example we need consider only two factors:
pFactor(Caught) and Factor(NotCaught). Thus hasFact(Case,Pursuit .Possessed)
should imply hasFactor(Case,Caught), and so favour the plaintiff, and hasFact(Case,
Pursuit .None) should imply hasFactor(Case,NotCaught) and so favour the defen-
dant, but at which point on the dimension the animal begins to be counted as Caught
remains open to debate. In the next section we will provide argumentation schemes for
attributing factors to cases on the basis of this representation of the facts of a case.

5. Reasoning from Facts to Factors

We now turn to the formalisation of argument schemes relating factors to facts. In [15],
a preliminary analysis of some aspects was presented; here we provide a fuller account
using the improved formalisation of [13]. The knowledge sources we will recognise
here are precedent cases and legal commentaries (we also regard minority arguments as
commentaries). We will also recognise justifications based on linguistic interpretation of
the terms involved, particularly to establish factors representing the extreme dimension
points. Moreover, sometimes there will be no supporting justification at all: sometimes
we will want to test arguments in a court setting in an effort to establish a precedent, but
there is no support for the rule beyond our contention that it should be recognised. As
discussed in the previous section, we have a binary relation hasFact(Case,Fact), where
a Fact is a dimension-point pair.

• hasFact(case, fact); e.g. hasFact(PiersonVPost ,Pursuit .HotPursuit)

We also introduce a five-place rule relation:

• rule(rulename, fact , factor , justification,Type),
where fact is a dimension-point list pair, a justification is a named commentator or
case decision or none, and the Type is from Commentary, Precedent, Definition,
or Contention.

Accordingly, we add to L sorts for rules, justifications and Types. We offer a sample of
five rules, which are discussed further below.

• rule(Rule1 ,Pursuit .CaptureInevitable,NotCaught , Justinian,Commentary)
• rule(Rule2 ,Pursuit .Wounded ,Caught ,Pufendorf ,Commentary)
• rule(Rule3 ,Pursuit .None,NotCaught ,None,Definition)
• rule(Rule4 ,Pursuit .HotPursuit ,NotCaught ,Tomkins,Contention)
• rule(Rule5 ,Pursuit .HotPursuit ,Caught ,Livingston,Contention)

These legal rules are included in Kp. The last argument of the rule predicate stands
for the legal justification type of the rule. Rule3 needs no specific justification: it is true
simply in virtue of the standard English meaning of the words. Rules 1 and 2, how-
ever, do need a justification to specify the particular commentary which justifies them.
Contentions have the name of the person advancing the contention as justification. Of
the above Rule1 and Rule2 are justified by commentaries, Justinian and Pufendorf re-
spectively; if we accept Justinian (Pufendorf) as an authoritative commentator we ac-
cept Rule1 (Rule2). Rules Rule4 and Rule5 are not independently justified. At the time
of Pierson, there were no precedent cases to provide justification, and the dispute was



whether Rule4 or Rule5 should hold. Following the decision of Pierson v Post, we may
take it that Rule4 holds, though Livingston argued for Rule5: we can then change the jus-
tification type of Rule4 to Precedent and the justification to PiersonVPost. Rule5, since
rejected in the case, could either be discarded or attributed to Livingston by changing the
justification type to Commentary and the justification to Livingston, depending on how
much regard we have for Livingston. The decision to amend or discard Rule5 will be
made on the basis of the interpretation of the analyst.

This permits the following argumentation scheme. We first give a stylised natural-
language version and then formalise it in ASPIC+:

CS1: From facts to factors

Premise 1: The Current case has Fact1
Premise 2: There is a Justification of a certain Type to regard Fact2 as an instance
of Factor
Premise 3: Fact1 points at least as strongly to Factor as Fact2
Conclusion: The Current case has Factor

CS1(ruleName, fact , factor , justification,Type, curr):

hasFact(curr , fact1 )
rule(ruleName, fact2 , factor , justification,Type)

fact1 = dimension.point1
fact2 = dimension.point2

dimension.point1 ≤d,f dimension.point2

hasFactor(curr , factor)

Recall that, as discussed above, our facts are dimension points. Note also that CS1
can be instantiated using both Rule4 and Rule5, whereas Caught and NotCaught are in-
tended to be exclusive. Adding suitable factor incompatibility axioms to Kn, will enable
the resulting arguments to rebut one another.

CS1 is presented as a single scheme, and Premise 2 can be instantiated using justi-
fications of any of our four types. This means that CS1 has four variants, one for each
of the justification types in Premise 2: CS1a for justifications by commentary, CS1p for
justification by precedent, CS1d for justification by definition and CS1c for justification
by contention. This is useful when we consider the characteristic ways of attacking ar-
guments made using the scheme, since the ways of attacking arguments made using the
scheme depend significantly on the justification type.

Thus a commentary may be attacked as too old (as that of Justinian was by Liv-
ingston in Pierson v Post), or perhaps as relating to the wrong kind of law: Justinian
wrote his commentary on Roman Law, and this expertise is arguably not transferrable
to Common Law, or modern Civil Law. Precedents may be from a different jurisdic-
tion. Or they may be from a lower court (cf the principle of lex superior) and so not be
binding in the current context. Again they may be very old (cf lex posterior) Age is not,
however, necessarily a problem: an argument against a precedent because it is old, may
be countered by examples of its recent use by relevant courts. Indeed the history of use
of a precedent should be considered in these arguments: some cases are established as
leading cases by frequent citation, others may have been derogated in a previous deci-
sion. Definitions may be attacked as too broad or too narrow, or simply incorrect in the



context. Different jurisdictions have different conventions, and conventions may change
over time. Contentions are not susceptible to special attacks: that the contention had been
advanced is a straightforward fact. Rules justified by contention are, in any case, tran-
sient: on their way to becoming precedent rules, commentary rules, or being discarded
altogether.

As well as these particular attacks on the various justification types, the rule is au-
thored by an analyst, and perhaps endorsed and supported by others. One of the pur-
poses of our new scheme is to expose the work of the analyst to debate. So we can ask
whether the analyst is reliable, whether the analyst is biased, and whether the rule has
been endorsed by other analysts. This is particularly important for rules relating to com-
mentaries, which always involve interpretation. For example in Rule2, some might think
that Pufendorf required inevitable capture rather than mere wounding.

We therefore need to store some additional information to enable these attacks.
For example we might use a relation commentary(Name, Date, Code) (e.g. commen-
tary(Justinian, 300, Roman). For precedents we need precedent(Name, Court, Date),
and also a set of facts recording citations and derogations, e.g. cited(Precedent, Cit-
ingCase, Date). For example, precedent(KeebleVHickergill, QueensBench, 1707) and
cited(KeebleVHickergill, PiersonVPost, 1805). The breadth of definition can be deter-
mined from the rule; the rule, if we take account of the stronger dimension points,
will cover a number of points, and the more points the broader the definition. Thus
Rule3 offers a very narrow definition: a different rule, defining NotCaught with Pur-
suit.CaptureInevitable would be maximally broad. Each justification type will have a set
of undercutters using this information and corresponding to the characteristic attacks.
For example the undercutter used by Livingston to attack the use of Justinian is:
U1(ruleName, fact , factor , justification,Commentary , curr):

commentary(justification, date, code) ∧ (date < 1400)

¬CS1(ruleName, fact , factor , justification,Commentary , curr)

which attacks commentaries pre-1400 as too old. Similar undercutting schemes would
express the other characteristic ways of attacking the variants of CS1. If desired addi-
tional information about the justification types could be included, giving rise to addi-
tional characteristic attacks, and additional undercutters corresponding to them.

As well as these ways of attacking arguments using CS1, we can also suggest ways
of using the information to support them, and where we have rebutting arguments, choos-
ing between them. One obvious thing to do is express preferences between justification
types. Preferring precedents over commentaries, commentaries over mere definition and
definitions over contentions would be one natural ordering. Within justification types,
precedents may be preferred according to frequency and recency of citation, and some
commentaries may be more highly regarded than others. Additionally, we may trust some
analysts more than others, or we may choose the rule endorsed by the greater number of
analysts. Taken together these ways of attacking and supporting the rules used to assign
factors means that we can render transparent and open to debate what was effectively a
black box in the CATO system.

To ensure that the factors that are derivable in a given case are the only factors
in that case we include the defeasible rule ⇒ ¬hasFactor(case, factor) in Rd with a
lower priority than any other rule. The unique-names and domain-closure axioms from



[13] are retained and formulated for the new sorts. Then any argument for an unnegated
hasFactor conclusion will strictly defeat any argument using this defeasible rule.

The representation that we provide enables a level of argumentation that is not avail-
able in HYPO and CATO. We have chosen to represent facts using a list of possible
points along particular dimensions as in, e.g. [4] and [5], but, if desired, some more com-
plicated ontology representing the domain could be used. As noted above, there are some
similarities with the validity rules of [11], but whereas there the validity in question was
a legal rule, here it is rules for the qualification of facts as factors, which are used by the
analyst and are themselves more like heuristics than legal rules.

Thus far we have taken dimensions to give rise to two factors, one plaintiff and one
defendant. Thus any given dimension point will give rise to at most one factor (there may
be a gap in the middle of the range, but this is not a problem: the gap can be closed by
additional rules, and different ways of closing the gap may be resolved by subsequent
decisions). If, however, we have a dimension with three ranges, we will find that CS1 will
ascribe two factors to part of the range. Thus suppose we have three factors: a defendant
factor NoEffort, a plaintiff factor Effort and a stronger plaintiff factor SuccessfulEffort.
We might map these factors to the Pursuit dimension using the following rules:

• rule(Rule7 ,Pursuit .CaptureInevitable,SuccessfulEffort ,None,Definition)
• rule(Rule8 ,Pursuit .ChaseStarted ,Effort ,None,Definition)
• rule(Rule9 ,Pursuit .Seen,NoEffort ,None,Definition)

Now if the facts of a case are that capture is inevitable, rules 7 and 8 will both apply,
suggesting that both SuccessfulEffort and Effort are factors in the case. We may be happy
with this, or we may wish to avoid having both factors apply, to avoid double counting.
Although examples of both can be found in [1], we regard exclusive ranges as being
preferable. Thus we wish to ensure that if SuccessfulEffort is present, Effort is not. To
express this relationship, we need an additional predicate subsumes(factor1 , factor2 )
and an axiom expressing that if factor1 subsumes factor2, then the presence of factor1
in a case entails that factor2 is also present.

We have provided the means to argue about the ascription of factors to cases, based
on a set of facts expressed as dimension points and rules taken from a variety of sources.
We have given a scheme applicable to any source of justification, and suggested how
arguments based on this scheme might be attacked, for several types of justification.
We have indicated what additional information information is needed to support such
argumentation, and how this can be used to resolve conflicts based on rebuttals. Finally
we have discussed how factors may exclude opposing or subsumed factors.

6. Conclusion

In this paper we have considered how reasoning about which factors should be consid-
ered to be present in particular cases can be made explicit using argumentation schemes.
In previous work this task has been left entirely to the unchallengable opinion of the ana-
lyst. So as to remain linked to preceding work in AI and Law we have taken as our start-
ing point facts as represented by points on dimensions, as used in [2]. The dimensions
determine which facts are relevant, and the points provide a degree of abstraction which
allows comparison of cases. Our new scheme allows us to argue for the assignment of



a factor to a case on the basis of such facts in terms of a commentary, a precedent case,
a standard interpretation of the words, or simply as a contention. Allowing the debate
to include discussion of the assignment of factors to cases is a small but necessary step
towards meeting our overall goal of developing a robust and comprehensive account of
reasoning about legal cases with argumentation schemes. Much more remains to be done
in future work including: argumentation about differing strengths of factors, arguments
about how observable facts relate to the points on a dimension used here, and arguments
about how facts are assigned on the basis of, perhaps conflicting, evidence.

References

[1] V. Aleven. Teaching case-based argumentation through a model and examples.
PhD thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1997.

[2] K. Ashley. Modelling Legal Argument: Reasoning with Cases and Hypotheticals.
Bradford Books/MIT Press, Cambridge, MA, 1990.

[3] T. Bench-Capon, H. Prakken, A. Wyner, and K. Atkinson. Argument schemes for
reasoning with legal cases using values. In Proc of the 14th ICAIL, pages 1–10,
2013.

[4] T. Bench-Capon and E. L. Rissland. Back to the future: dimensions revisited. In
B. Verheij and et al., editors, Proceedings of JURIX 2001, pages 41–52, Amsterd-
man, The Netherlands, 2001. IOS Press.

[5] T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating
theories and values. Artificial Intelligence, 150(1-2):97–143, 2003.

[6] D. H. Berman and C. D. Hafner. Representing teleological structure in case-based
legal reasoning: the missing link. In Proc. of the 4th ICAIL, pages 50–59. ACM
Press, 1993.

[7] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[8] S. Harnad. Categorical perception. In Encyclopedia of Cognitive Science. Nature
Publishing Group: Macmillan, December 2003.

[9] S. Modgil and H. Prakken. A general account of argumentation with preferences.
Artificial Intelligence, 195:361–397, 2013.

[10] H. Prakken. An abstract framework for argumentation with structured arguments.
Argument and Computation, 1(2):93–124, 2010.

[11] H. Prakken. Reconstructing Popov v. Hayashi in a framework for argumentation
with structured arguments and Dungean semantics. Artif. Intell. Law, 20(1):57–82,
2012.

[12] H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue
game. Artif. Intell. Law, 6(2-4):231–287, 1998.

[13] H. Prakken, A. Wyner, T. Bench-Capon, and K. Atkinson. A formalization of ar-
gumentation schemes for legal case-based reasoning in ASPIC+. Journal of Logic
and Computation, 2013, available on-line, doi: 10.1093/logcom/ext010.

[14] E. Rissland and K. Ashley. A note on dimensions and factors. Artif. Intell. Law,
10(1-3):65–77, 2002.

[15] A. Wyner, T. Bench-Capon, and K. Atkinson. Towards formalising argumentation
about legal cases. In Proc of the 13th ICAIL, pages 1–10, 2011.


