
Agent-based Autonomous Systems and
Abstraction Engines: Theory meets Practice

Louise A. Dennis1, Jonathan M. Aitken2, Joe Collenette1, Elisa Cucco1,
Maryam Kamali1, Owen McAree2, Affan Shaukat3, Katie Atkinson1, Yang

Gao3, Sandor Veres2, and Michael Fisher1

1 Department of Computer Science, University of Liverpool
2 Department of Autonomous Systems and Control, University of Sheffield

3 Surrey Space Centre, University of Surrey

Abstract. We report on experiences in the development of hybrid au-
tonomous systems where high-level decisions are made by a rational
agent. This rational agent interacts with other sub-systems via an ab-
straction engine. We describe three systems we have developed using the
EASS BDI agent programming language and framework which supports
this architecture. As a result of these experiences we recommend changes
to the theoretical operational semantics that underpins the EASS frame-
work and present a fourth implementation using the new semantics.

1 Introduction

Translating continuous sensor data into abstractions suitable for use in Beliefs-
Desires-Intentions (BDI) style agent programming languages is an area of active
study and research [7, 6, 17]. Work in [7] provides an architecture for autonomous
systems which explicitly includes an abstraction engine responsible for translat-
ing continuous data into discrete agent beliefs and for reifying actions from
the agent into commands for the underlying control system. The architecture
includes an operational semantics that specifies the interactions between the
various sub-systems.

This paper reports on three autonomous systems based on this architecture,
recommends changes to the semantics and then presents a fourth system using
the new architecture. In particular we recommend moving away from a view
based on a fixed number of sub-systems, to one based on a variable number of
communication channels; and abandoning the idea that the abstraction engine
works with data present in a logical form.

2 Agents with Abstraction Engines

Hybrid models of control are of increasing popularity in the design and im-
plementation of autonomous systems. In particular there has been interest in
systems in which a software agent takes high-level decisions but then invokes
lower level controllers to enact those decisions [14, 15, 20]. In many applications

the ability of a rational agent to capture the “reasons” for making decisions is
important [11]. As the key programming paradigm for rational agents, the BDI
model (Beliefs-Desires-Intention [18]) is of obvious interest when designing and
programming such systems.

A key problem in integrating BDI programs with control systems is that
the data generated by sensors is generally continuous in nature where BDI pro-
gramming languages are generally based on the logic-programming paradigm
and prefer to manage information presented in the format of discrete first or-
der logic predicates. A second problem is that the data delivered from sensors
often arrives faster than a BDI system is able to process it, particularly when
attempting to execute more complex reasoning tasks at the same time.

Work in [7] proposes the architecture shown in Figure 1 in which an abstrac-
tion engine is inserted between the rational agent (called the reasoning engine)
and the rest of the system. The abstraction engine is able to rapidly process in-
coming sensor data and forward only events of interest to the reasoning engine for
decision-making purposes. The abstraction engine mediates between the reason-

Sense

:ABSTRACTION ENGINE

!:PHYSICAL ENGINE " : CONTINUOUS ENGINE

Act

Sense

R :REASONING ENGINE

A

Data Flow
Control Flow

(SIMULATION OF) REAL ENVIRONMENT

Reason

Calculate

Abstract

Continous Query

Abstract Action

Continuous Action

Abstract Query

Sense

Act

Fig. 1. Abstract Architecture for Agent Based Autonomous Systems

ing engine and a physical engine (representing the software control systems and
sensors of the underlying autonomous system) and a continuous engine which
can perform calculation and simulation, specifically, in the original architecture,
with a view to path planning and spatial prediction.

The reasoning engine reasons with discrete information. The abstraction en-
gine is responsible, therefore, for abstracting the data from sensors (e.g., real
number values, representing distances) to predicates (e.g., too close, etc.). In [7]
it is assumed that the abstraction engine works with sensor readings repre-
sented in logical form – for instance of the form distance(2.5). A function, fof ,
is assumed which transforms data from sensors into this representation. The rea-

soning engine makes decisions about actions, but may also request calculations
(for instance estimates of whether any collisions are anticipated in the next time
window). The abstraction engine is responsible for translating these actions,
which it is anticipated will be expressed in a high level fashion, into appropriate
commands for either the physical engine or the continuous engine.

A variant of the Gwendolen BDI programming language [8], named EASS,
implements this architecture. Specifically it provides BDI-based programming
structures for both abstraction and reasoning engines (so both are implemented
as rational agents). It also provides Java classes for building middleware environ-
ments for the agents which implement the operational semantics of interaction
from [7]. These environments can communicate with external systems by a range
of methods (e.g., over sockets or using the Robot Operating System (ROS)4 [16])
and provide support for transforming data from these systems into first order
predicate structures (i.e., providing the fof function). We refer to the EASS lan-
guage and associated environment support as the EASS framework. The EASS
framework was used in an extensive case study for the architecture involving
satellite and space craft systems [13, 10].

3 Practical Systems

We now discuss three systems built using the EASS framework. The first is a
demonstration system in which a robot arm performs sort and segregate tasks.
The second is a simulation of a convoy of road vehicles. The third is a public
engagement activity involving LEGO robots.

3.1 An Autonomous Robotic Arm

The autonomous robotic arm system performs sort and segregate tasks such as
waste recycling or nuclear waste management5 [2, 1]. The system is required to
view a set of items on a tray and identify those items. It must determine what
should be done with each one (e.g. composted, used for paper recycling or glass
recycling, etc) and then move each item to a suitable location.

The system integrates computer vision, a robot arm and agent-based de-
cision making. It is implemented in the Robot Operating System (ROS) [16].
Computer vision identifies items on a tray [19]. These identities and locations
are published to a ROS topic – a communication channel. The abstraction engine
subscribes to this topic and abstracts away the location information informing
the reasoning engine what types of object can be seen. The reasoning engine
makes decisions about what should be done with each object. These decisions
involve, for instance, sending: anything that is plant matter to be composted;

4 www.ros.org
5 The robotic arm system involves proprietary software developed jointly by the uni-

versities of Liverpool, Sheffield and Surrey and National Nuclear Labs. Requests for
access to the code or experimental data should be made to Profs Fisher, Veres or
Gao.

Java Environment

Abstraction Engine

Reasoning Engine

Computer Vision
System Arm Control System

Fig. 2. Architecture for the Robot Arm

paper for recycling; and bricks for landfill. These decisions are published to a dif-
ferent topic by the abstraction engine (adding back the information about object
location) to which the robot arm control system subscribes. The control system
publishes information about what it is doing which the reasoning engine uses to
make sure new instructions are not sent until previous ones have completed.

The architecture is shown in Figure 2. The abstraction and reasoning engine
operate as described in [7]. We also show the Java Environment that supports
interaction. There is no equivalent to the continuous engine. The physical engine
is a combination of the arm control system and the computer vision system. The
computer vision and robotic arm sub-systems communicate with each other for
coordination when moving objects.

This system has subsequently been extended to deal with the sort and disrupt
problem [1]. A canister is presented, which must be lifted and placed in a set of
v-shaped grooves, before it is opened using a pneumatic cutting tool to inspect
the contents which then undergo sort and segregate. This demonstrator consists
of a KUKA IIWA arm, with a payload of 7kg. The location of disruption is
indicated on a canister via a laser-pen to prevent physical destruction of the test
pieces. As well as handling the sort and disrupt task the agent can reason about
faulty equipment (simulated using laser-pen failure). The reasoning engine uses
a reconfiguration strategy [9] to instruct the arm to use a different laser-pen to
complete the task. Similarly the agent reasons about the accuracy and reliability
of the information received from the computer vision system.

3.2 Vehicle Convoying

We view an autonomous vehicle convoy as a queue of vehicles in which the
first is controlled by a human driver, but subsequent vehicles are controlled
autonomously. The autonomously controlled “follower” vehicles maintain a safe
distance from the vehicle in front. When a human driving a vehicle wishes to
join a convoy they signal their intent to the convoy lead vehicle, together with
the position in the convoy they wish to join. Autonomous systems in the lead
vehicle then instructs the vehicle that will be behind the new one to drop back,
creating a gap for it to move into. When the gap is large enough, the human
driver is informed that they may change lane. Once this is achieved, autonomous

systems take control and move all the vehicles to the minimum safe convoying
distance. Similar protocols are followed when a driver wishes to leave the convoy.

Maintenance of minimum safe distances between vehicles is handled by two
low level control systems. When the convoy is in formation, control is managed
using distance sensors and wireless messages from the lead vehicle. These mes-
sages inform the convoy when the lead vehicle is braking or accelerating and so
allow smooth responses from the whole convoy to these events. This reduces the
safe minimum distance to one where fuel efficiency gains are possible. In some
situations control uses sensors alone (e.g., during leaving and joining). In these
situations the minimum safe distance is larger.

The agent system manages the messaging protocols for leaving and joining,
and switches between the control systems for distance maintenance. For instance,
if a communication break-down is detected, the agent switches to safe distance
control based on sensors alone. The abstraction engine, therefore, is involved
primarily in monitoring distance sensors and communication pings.

The system was developed in order to investigate issues in the verification and
validation of these convoying systems [12]6. A simulation of the vehicle control
systems was created in MATLab and connected to the the TORCS7 racing car
simulator. The architecture for this system is close to that in [7] with a single
physical engine, but still no continuous engine. Several agents connect to the
simulator, via the Java environment. The agents use the Java environment for
messaging between agents. This architecture is shown in Figure 3.

TORCS Car Simulation

MATLab Control System
Control System for

Car 1
Control System for

Car 3
Control System for

Car 2

Java Environment

Abstraction Engine
for Agent 1

Abstraction Engine
for Agent 3

Abstraction Engine
for Agent 2

Reasoning Engine
for Agent 1

Reasoning Engine
for Agent 2

Reasoning Engine
for Agent 3

Fig. 3. Architecture for a Simulated Convoying System

Following verification and validation phases based on simulation, we are in the
process of transferring the system to Jaguar 4x4 wheeled robots8 for hardware
testing in outdoor situations.

6 Software available from github.com/VerifiableAutonomy
7 torcs.sourceforge.net
8 jaguar.drrobot.com

3.3 LEGO Rovers

The LEGO Rovers system was developed to introduce the concepts of abstraction
and rational agent programming to school children9. It is used in science clubs
by volunteer members of the STEM Ambassador scheme, and has also been used
in larger scale events and demonstrations. The activity introduces the user to
a teleoperated LEGO robot and asks them to imagine it is a planetary rover.
The robot’s sensors are explained, the user is shown how the incoming data is
abstracted into beliefs such as obstacle or path using simple thresholds and can
then create simple rules, using a GUI, which dictate how the robot should react
to the appearance and disappearance of obstacles, etc.

This activity has been through two versions. In the first, the EASS framework
was used off-the-shelf with LEGO NXT robots, once again with no continuous
engine. The GUI ran on laptops. The system used the leJOS Java-based oper-
ating system for Mindstorms robots [4, 5] and classes from this were used for
direct communication with the robot. Sensors needed to be polled for data in
contrast two our other applications where sensors continuously published data to
a stream. While the activity worked well, some issues were observed, particularly
the robot’s response to rules sometimes lagged more than could be accounted
for simply by delays in Bluetooth communication. Investigation suggested that,
even when concerned only with processing sensor data, a rational agent was more
heavy-weight technology than was required for abstraction. The rational agent
used logical reasoning to match plans to events which were then executed to
produce abstractions. We discuss an amended version of the system in section 5.

4 An Improved Architecture and Semantics

Practical experience has shown that the provision of a continuous engine is not a
fundamental requirement and that it is unrealistic to think of a physical engine as
a monolithic entity that encompasses a single input and a single output channel.
The use of agent-based abstraction engines that work with first order formulae
also seems unnecessary and, in some cases, causes additional inefficiency in the
system. This leads us to an adaptation of the semantics in which the purpose of
the abstraction engine is to link the reasoning engine to a variety of communi-
cation channels which can be viewed as either input or output channels. Input
channels include channels which the abstraction engine polls for data so long as
it does not execute further until it has received an answer. Communications, like
those handled by the continuous engine, in which a request is made for a calcu-
lation and, some time later, an answer is received can be handled by placing a
request on an output channel and then receiving an answer on an input channel.
The abstraction engine (and reasoning engine) can be responsible for matching
received answers to requests in an appropriate fashion.

We group these channels into two sets. Π are output channels where the
abstraction engine writes information or sends commands to be interpreted by

9 www.csc.liv.ac.uk/∼lad/legorovers

other parts of the system. ∆ are input channels. Input channels may operate on
a request-reply basis but the abstraction engine does nothing between request
and reply. Figure 4 shows this new architecture.

Abstraction Engine

Reasoning Engine

ΔΠ

Fig. 4. Refined Architecture for Agent-Based Hybrid Systems with Abstractions

In [7], Π is the physical engine, Ω the continuous engine and ∆ is a set of
sensor inputs. The semantics also references A (the abstraction engine), R (the
reasoning engine) and Σ, Γ and Q, sets of predicates which are used in com-
munication between the abstraction and reasoning engines. Σ is a set of shared
beliefs which stores abstractions, Γ is a set of commands the reasoning engine
has requested for execution and Q is a set of queries from the reasoning engine.
The whole system is represented as a tuple. In the modified version of the op-
erational semantics, we no longer consider Ω and Q. ∆ and Π are now sets of
channels rather than explicit sub-systems. Therefore, we represent the system as
a tuple 〈∆,Π,A,R,Σ, Γ 〉. The operational semantics specifies a labelled tran-
sition system on this tuple. For clarity in discussion, we will sometimes replace
parts of this tuple with ellipsis (. . .) if they are unchanged by a transition.

Most of the rules governing interaction between the abstraction and reasoning
engine are largely unchanged. We show these rules in Figure 5 for completeness
but do not discuss them further here. We refer the reader to [7] for further
discussion and motivation. Three rules involving “queries” (the set Q) intended
for the continuous engine have been removed.

We turn our attention to the remaining rules in the semantics. It should be
noted that all subsystems may take internal transitions which change their state.

Only one rule involving interaction between abstraction and reasoning en-
gine needs modification. This semantic rule governs transitions the system takes
after the reasoning engine has placed a command in the set Γ for the abstraction
engine to reify. The original semantics views this reification process as a combina-
tion of the transitions taken by the abstraction engine in order to transform the
command and any subsequent changes to the physical engine. We simplify our
view of this so we consider only the change in A when it reads in the command

A
readCγ−−−−−→ A′. The abstraction engine may make subsequent internal transitions

as it processes the command. The changes to the system when it passes the
command on to the physical engine are shown in semantic rule (9). The new

A
per(Σ)−−−−→ A′

〈. . . , A,R,Σ, . . .〉 perA(Σ)−−−−−→ 〈. . . , A′, R,Σ, . . .〉
(1)

R
per(Σ)−−−−→ R′

〈. . . , A,R,Σ, . . . , 〉 perR(Σ)−−−−−→ 〈. . . , A,R′, Σ, . . .〉
(2)

A
+Σb−−−→ A′

〈. . . , A,R,Σ, . . .〉
+Σ,Ab−−−−→ 〈. . . , A′, R,Σ ∪ {b}, . . .〉

(3)

A
−Σb−−−→ A′

〈. . . , A,R,Σ, . . .〉
−Σ,Ab−−−−→ 〈. . . , A′, R,Σ\{b}, . . .〉

(4)

R
+Σb−−−→ R′

〈. . . , R, . . . 〉
+Σ,Rb−−−−→ 〈. . . , R′, Σ ∪ {b}, . . .〉

(5)

R
−Σb−−−→ R′

〈. . . , R,Σ, . . . 〉
−Σ,Rb−−−−→ 〈. . . , R′, Σ\{b}, . . . 〉

(6)

R
do(γ)−−−→ R′

〈. . . , R, . . . , Γ 〉 doR(γ)−−−−→ 〈. . . , R′, . . . , {γ} ∪ Γ 〉
(7)

Fig. 5. Unchanged Semantic Rules

version of this rule is shown in (8). In this rule when A performs a read on Γ
the whole system makes a transition in which A is transformed to A′ and γ, the
command A has read, is removed from Γ .

γ ∈ Γ A
readC(γ)−−−−−−→ A′

〈. . . , A, . . . , Γ 〉 doA(γ)−−−−→ 〈. , A′, . . . , Γ\{γ}〉
(8)

Example Assume a simple BDI agent, A, represented as a tuple, 〈B,P, I〉 of a
set B of beliefs, a set P of plans and an intention stack I of commands to be
executed. Assume that when A reads a formula, γ ∈ Γ from it places it in B as
do(γ). Consider the Lego Rover example and a request from the reasoning engine
for the robot to turn right when A has an empty belief set. Before execution of
rule 8, A = 〈∅,P〉. After the execution of 8, A = 〈{do(turn right)},P, I〉.

Our view of the interaction of the abstraction engine with the rest of the
system is considerably simplified by the removal of an explicit continuous en-
gine. Two complex semantic rules are removed and we need only consider what
happens when the abstraction engine publishes a command to an output channel
and when it reads in data from an input channel.

A, the abstraction engine, can place data, γ (assumed to be the processed
form of a command issued by the reasoning engine – though this is not en-

forced10), on some output channel, π from Π. It does this using the transition

A
run(γ,π)−−−−−−→ A′ and we represent the change caused to π when a value is pub-

lished on it as π
pub(γ)−−−−→ π′. Π{π/π′} is the set Π with π replaced by π′. Rule

(9) shows the semantic rule for A publishing a request to π.

π ∈ Π A
run(γ,π)−−−−−−→ A′ π

pub(γ)−−−−→ π′

〈. . . , Π,A, . . .〉 run(γ,π)−−−−−−→ 〈. . . , Π{π/π′}, A′, . . .〉
(9)

This rule states that if A makes a transition where it publishes some internally

generated command, γ, to π, A
run(γ,π)−−−−−−→ A′, then assuming π is one of the

output channels and then effect of publishing γ to π is π′ then the whole system
makes a transition in which A is replaced by A′ and π by π′.

Example Returning to our example above, assume that A has plans that reify
turn right into a sequence of two commands, one for each engine controlling a
wheel on the robot. Internal execution of these plans places these commands on
the intention stack11.

A = 〈{B,P, pilot(right.back()) : pilot(left.forward()) : I〉

We assume Π consists of two output channels pilot (which transmits commands
over bluetooth to the leJOS Pilot class) and gui which sends status information
to the GUI controlling the robot. The agent executes the command pilot(γ) by
placing γ on the pilot channel and removing the command from the intention
stack. Assume that the pilot channel is empty and the GUI channel contains
the notification of an obstacle gui = {obstacle}. So before execution of rule 9,
Π = {∅, {obstacle}}. After one execution, Π = {{right.back()}, {obstacle}} and
A = 〈{B,P, pilot(left.forward()) : I〉.

Similarly, we indicate the process of abstraction engine, A, reading a value

from a channel d by A
read(d)−−−−−→ A′. We represent any change in state on the

channel if a value is read from it as d
read−−−→ d′. This allows us to simply define a

semantics for perception in (10).

d ∈ ∆ A
read(d)−−−−−→ A′ d

read−−−→ d′

〈∆, . . . A, . . .〉 read(d)−−−−−→ 〈∆{d/d′}, . . . , A′, . . .〉
(10)

Example Returning to the example, assume that A = 〈∅,P, I〉 is reads from
two input channels: a distance sensor and an RGB colour sensor. Let ∆ =
{{50}, {〈1, 5, 6〉}} (i.e., there is an object 50 centimetres from the robot and the
color sensor is looking at a very dark (almost black) surface). Suppose, when A
reads data, d, from either channel it removes the reading from the channel and

10 Particularly since a single command from the reasoning engine can be transformed
into a sequence of commands by the abstraction engine.

11 We use : to indicate concatenation of an element to the top of a stack.

turns it into a belief distance(d) or rgb(d) respectively. If rule 10 is executed
and A reads from the distance channel. Then ∆ becomes {∅, {〈1, 5, 6〉}} and
A = 〈{distance(50)},P, I〉.

The main advantage of this new semantics is the simplification of the system
by the removal of semantic rules involving calculations and queries and the
removal of related components from the state tuple. We also believe it has the
pragmatic virtue of representing more accurately the architectures of systems
that people actually build using abstraction engines and reasoning agents.

5 Implementation (LEGO Rovers v.2)

The new operational semantics required few changes to the EASS framework,
many of which had been implemented incrementally during our experience build-
ing the systems in section 3. Support for continuous engines was dropped, sim-
plifying both the language and the Java Environment classes. Support for agent-
based abstraction engines was kept, but their use became optional. The imple-
mentation had never enforced the use of single input and output channels and
the nature of Java meant these were trivial to include as an application required.

Lego Robot running the leJOS operating system

Android Tablet

Reasoning Engine

Java Abstraction Engine

GUI

Ultrasonic
Sensor

Light
Sensor

Remote Pilot

Fig. 6. Architecture for the LEGO Rover System

A second version of the LEGO Rover activity was then developed for LEGO
EV3 robots with a GUI running on Android Tablets. This version used the new
semantics with the EASS based abstraction engine being replaced by an efficient
Java class that handled abstraction of data and reification of commands.

The architecture for the second version is shown in Figure 6. Both abstraction
and reasoning engines interact with the GUI which displays the sensor data and
the abstractions, and allows the user to define the rules in the reasoning engine.
The abstraction engine polls two sensors (ultrasonic and light) for data and
publishes commands to the robot. Feedback from demonstrators and teachers
suggests that the changes to the activity, including the removal of lag caused by
the agent-based abstraction engine, provide a better experience for children.

6 Further Work and Conclusions

In this paper we amended the operational semantics for communication between
rational agents, abstraction engines and the rest of a hybrid autonomous sys-
tem that was presented in [7]. This results in a simplification of the semantics,
particularly the removal of an explicit continuous engine and the insistence that
abstraction engines handle data in a logical form. The changes are based on ex-
tensive practical experience in developing such systems, three of which we have
outlined in order both to illustrate the development of agent-based autonomous
systems and to motivate the changes to the semantics.

In future, we intend to provide more software support for the implemented
framework, particularly for the development of abstraction engines. For instance
we aim to expand our abstraction engines, which are currently based almost
exclusively on thresholding data, to richer formalisms that would allow abstrac-
tions to be formed based on observed complex events and to explore the use of
external systems and frameworks to perform the necessary stream processing. In
particular it seems desirable to consider abstraction engines either developed in,
or incorporating, efficient stream processing tools such as Esper12 or ETALIS [3].

We now have a refined and simplified a framework for agent-based hybrid sys-
tems that use abstraction engines. The framework is well-supported by practical
experience in the construction of such systems and represents a strong practical
theoretical basis for agent-based hybrid systems.

Acknowledgments

The work in this paper was funded by EPSRC grants Reconfigurable Au-
tonomy (EP/J011770/1, EP/J011843/1, EP/J011916/1) and Verifiable Auton-
omy (EP/L024845/1, EP/L024942/1, EP/L024861/1) and STFC Grant LEGO
Rovers Evolution (ST/M002225/1)

References

1. Aitken, J.M., Shaukat, A., Cucco, E., Dennis, L.A., Veres, S.M., Gao, Y., Fisher,
M., Kuo, J.A., Robinson, T., Mort, P.E.: Autonomous nuclear waste management.
Robotics and Automation (2016), under Review

2. Aitken, J.M., Veres, S.M., Judge, M.: Adaptation of system configuration under the
robot operating system. Proceedings of the 19th world congress of the international
federation of automatic control (IFAC) (2014)

3. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in etalis. Semant. web 3(4), 397–407 (Oct 2012)

4. Bagnall, B.: Maximum LEGO NXT: Building Robots with Java Brains. Variant
Press (2013)

5. Bagnall, B.: Maximum LEGO EV3: Building Robots with Java Brains. Variant
Press (2014)

12 www.espertech.com

6. Cranefield, S., Ranathunga, S.: Handling agent perception in heterogeneous dis-
tributed systems: A policy-based approach. In: Holvoet, T., Viroli, M. (eds.) Co-
ordination Models and Languages: 17th IFIP WG 6.1 International Conference,
COORDINATION 2015. pp. 169–185. Springer International Publishing (2015)

7. Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Declarative Ab-
stractions for Agent Based Hybrid Control Systems. In: Proc. 8th International
Workshop on Declarative Agent Languages and Technologies (DALT). LNCS, vol.
6619, pp. 96–111. Springer (2010)

8. Dennis, L.A., Farwer, B.: Gwendolen: A bdi language for verifiable agents. In: Löwe,
B. (ed.) Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen
(2008), AISB’08 Workshop

9. Dennis, L.A., Fisher, M., Aitken, J.M., Veres, S.M., Gao, Y., Shaukat, A., Bur-
roughes, G.: Reconfigurable autonomy. KI-Künstliche Intelligenz 28(3), 199–207
(2014)

10. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Automated Software
Engineering pp. 1–55 (2014)

11. Fisher, M., Dennis, L.A., Webster, M.P.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

12. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal Verification
of Autonomous Vehicle Platooning. ArXiv e-prints (Feb 2016), under Review

13. Lincoln, N.K., Veres, S.M., Dennis, L.A., Fisher, M., Lisitsa, A.: Autonomous
asteroid exploration by rational agents. Computational Intelligence Magazine 8(4),
25–38 (IEEE, 2013)

14. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: To boldly go
where no ai system has gone before. Artif. Intell. 103(1-2), 5–47 (Aug 1998)

15. Patchett, C., Ansell, D.: The development of an advanced autonomous integrated
mission system for uninhabited air systems to meet uk airspace requirements. In:
Intelligent Systems, Modelling and Simulation (ISMS), 2010 International Confer-
ence on. pp. 60–64 (Jan 2010)

16. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: An open-source robot operating system. In: Proc. ICRA Workshop
on Open Source Software (2009)

17. Ranathunga, S., Cranefield, S., Purvis, M.: Identifying events taking place in second
life virtual environments. Applied Artificial Intelligence 26(1-2), 137–181 (2012)

18. Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: Proc.
3rd International Conference on Principles of Knowledge Representation and Rea-
soning (KR). pp. 439–449 (1992)

19. Shaukat, A., Gao, Y., Kuo, J.A., Bowen, B.A., Mort, P.E.: Visual classification of
waste material for nuclear decommissioning. Robotics and Autonomous Systems
75, Part B, 365 – 378 (2016)

20. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) Programming Multi-Agent Systems: 10th Inter-
national Workshop, ProMAS 2012, Valencia, Spain, June 5, 2012, Revised Selected
Papers. pp. 54–71. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

