
SAT for Epistemic Logic using Belief Bases

Fabián Romero1 and Emiliano Lorini1

IRIT, Toulouse France

Abstract. In [1] a new epistemic logic LDA of explicit and implicit be-
liefs was introduced, and in [2] we presented a tableau-based satisfabil-
ity checking procedure as well as a dynamic extension for LDA. Based
on such procedure, we created a portable software implementation that
works for the family of multi-agent epistemic logics, as well as for the
proposed dynamic extension. This software implementation runs as a li-
brary for the most common operative systems, also runs in popular IoT
and robot hardware, as well as cloud environments and in server-less
configurations.

1 Introduction

We believe that semantics based on explicit representation of agents’ epistemic
states expressed as knowledge or belief bases, are a more natural paradigm for the
description of intelligent systems such as robotic and conversational agents than
the Kripkean semantics commonly used for epistemic logics [4]. We implemented
the tableau-based satisfability procedure for LDA given in [2] in order to have a
tool to experiment with such semantics and explore its use.

2 Syntax and semantics

The language LLDA is constructed in the following way. Assume a countably
infinite set of atomic propositions Atm = {p, q, . . .} and a finite set of agents
Agt = {1, . . . , n}.

The language L0, is the language of explicit beliefs defined by the grammar:

α ::= γ | 4iα

Where γ is the grammar of classical propositional logic. The multi-modal oper-
ator 4iα is read as “α is a formula on agent’s i belief base”. The language of
implicit beliefs LLDA is defined by the grammar:

φ ::= α |�iφ | ♦iφ

Where α ∈ L0 And the �iφ modality can be read as “agent i can deduce φ from
its belief base” and the modal dual ♦iφ as “φ is consistent with agent i belief
base”.

louisedennis
Placed Image

2 Lorini E, Romero F

The dynamic extension of LDA we present in our companion paper, allow us
to describe actions of agents under observability conditions, this perceptive con-
text, where the dynamic actions take place is defined by the following grammar
LOBS:

ω ::= seei,j | seeiω
The expression seei,j Can be read as “agent i sees what agent j does”. And

seeiω represents the fact that “agent i sees that ω”.
The language LDLDA is defined by the following grammar:

χ ::= ¬χ | χ1 ∧ χ2 | [(p, τ, i, Ω)]χ | φ

Where p is a proposition, i ∈ Agt , φ ranges over the language LLDA ,τ ranges
over {+,−} and Ω is a finite set of formulas of LOBS.

The action +p consists in setting the value of the atomic variable p to true,
whereas the action −p consists in setting the value of the atomic variable p to
false. The formula [(p, τ, i, Ω)]φ has to be read “φ holds after the performance
of the action τp by agent i in the perceptive context Ω”.

2.1 Input syntax

The syntax used for the library is the following. Operations and precedence order
for unparenthesized expressions in LLDA are:

false := false, F,⊥
true := true, T,>

box operator agent j := [j],�j

diamond operator agent j := < j >,♦j

triangle operator agent j := {j},4j
negation := −,∼,¬

conjunction := &,∧, /\,̂
disjunction := ∨, \/, |
implication := − >,→

double implication := < − >,↔
conjunction := ;

Propositions are strings of lowercase letters of length greater than zero, fol-
lowed by zero or more digits, agents are strings of digits of length greater than
zero.

We represent seei,j in LOBS as “i < j” with infix right associative operator
“<” as . We use “;” to separate observations in a perceptive context, and for
the dynamic operator introduced as: [(p, τ, i, Ω)] we will use i + p or i − p to
represent the Boolean value of the variable p for the agent i. And “[(”, “)]”
will be used to open and close the definition of the operator. For example, if
Ω = {seei,i, seej,i, seeiseej,i}. Then the LDLDA operator [(p,+, i, Ω)] is written
as:

SAT for Epistemic Logic using Belief Bases 3

[(i+p;i<i;j<i;i<j<i)]

For readability, we allow comments starting from a character ’#’ to the end
of the line, and all contiguous white space characters including new lines are
interpreted as a single space.

3 Example

The example consists in a simple scenario of human-robot interaction from the
famous Sally-Anne false belief’s task from the psychological literature on Theory
of Mind [5]. As discussed on our companion paper [2].

We assume that Agt = {1, 2} where 1 denotes a human and 2 denotes a
robot. The human and the robot are standing in front of each other on the
opposite sides of a table. The robot has a black ball, a grey ball, and two boxes
in front of him. Initially, the human has not previous knowledge of the setting,
and the robot, doesn’t has any knowledge about the human’s knowledge. Then,
the robot puts the black ball inside the box no.2, while it is aware that the
human is watching his actions. And the robot believes that the human believes
that if a ball is in a given box, then that ball is not in the other box. From this
setting, the robot should be able to deduce that the human believes that the
black ball is not in box no.1.

Observe the semicolon ’;’ means conjunction (with the least precendence)

it is convenient as we usually create belief bases on conjunctive form.

#Hypotesis 1

-{1}b1 & -{1}b2; # Human doesn’t explicitly believe either ball

-{1}g1 & -{1}g2; # is in either box

-{2}{1}b1 & -{2}{1}b2; # Robot doesn’t explicitly believe the human believe

-{2}{1}g1 & -{2}{1}g2; # if either ball is in either box

#Hypotesis 2

{2}({1}b1->{1}-b2; # Robot explicitly believes that

{1}b2->{1}-b1; # if human believes any ball is in either box

{1}g1->{1}-g2; # then it also believes that such ball is not

{1}g1->{1}-g2); # in the other box (here enumerated the 4 options)

As usual with SAT, we use the negation of the formula we want to

test, because, if the negation is unsatisfiable, the formula holds

The observation context is both observing each other

and simultaneosly aware of this fact and of themselves

-[(2+b2; 1<1; 2<2; 1<2; 2<1; 1<2<1; 2<1<2)](# We set b2 true for the robot

({2}b2) & ({1}b2) & ({2}{1}b2);# All aware that black ball is in box 2

[2]{1}-b1 # Robot can conclude that human belives ...

) # ... that the black ball is not in box 1

Which of course, after evaluating the translation, returns that is unsatisfiable.
The tool is available for testing at https://tableau.irit.fr.

https://tableau.irit.fr

4 Lorini E, Romero F

4 Implementation

4.1 Software, Architecture and algorithms

We created a tool in the F] programming language (an open source, cross plat-
form ML language for the Common Language Infrastructure (CLI)), that follows
closely the paper as reference implementation, with the following speed improve-
ments.

There are two separated API methods, one for the reduction of the dynamic
extension, and the second for the evaluation of the satisfability given by the
tableau procedure.

For the reduction of the dynamic extension, we implement the exact rewriting
as specified in the paper, with no further optimization.

For the propositional case, we added a modern yet simple DPLL SAT solver,
we focused more in having a clean and solid functional architecture for this rather
than adding all possible heuristics, it is slower (2x-50x) than other modern SAT
solver (We benchmarked against Z3 [3]), and also is much simpler (the current
implementation of the SAT solver has less than 1k lines of code). However, is
written in F], so it is exactly as portable as the library itself, which simplifies
enormously the development/testing and integration as compared as using a
C+ + library which is the language most modern SAT solvers are implemented.
This solver is used to discard processes, but the solution when available, is given
by the tableau itself. So this is only used to help speed up execution, and it can
be disabled when calling the library.

We use a reactive asynchronous execution workflow that allows us to aggres-
sively benefit from hardware parallelism when available.

We create a process tree which is the contraction of the tableau tree on the
root node and all nodes created by applying a transitional rule. Each process runs
a “SAT solver” for the propositional interpretation of the set of variables, and
spawns one process for each transitional rule that would apply to the contracted
tableau node. If the “SAT solver” is not satisfiable or any of the children sends
a message saying it is unsatisfiable, it kills all remaining children and returns
with the same message to its father. In other case, when all transitional children
return a satisfactory configuration, it returns itself with the appropriate message
to its father.

As we use immutable data structures, we can use shared memory between
processes, in a safe and fast manner.

It is written entirely for the .net core platform, which runs in an array of
architectures and operative systems, that include RaspberyPi, Linux, MacOs,
Windows and the Windows 10 IoT which is rapidly increasing the array of hosts.

A trade off for the current version, is that we use a full in-memory approach.
So, it runs well with models having few thousands of “modal” tableau nodes and
few million propositional variables among them, but fails in much larger models,
which we consider is acceptable for the kind of environments/problems the tool
is designed for.

SAT for Epistemic Logic using Belief Bases 5

References

1. Lorini, E. 2018a. In praise of belief bases: Doing epistemic logic without possible
worlds. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 19151922. AAAI Press

2. Lorini, E., Romero, F. 2019a. Decision Procedures for Epistemic Logic Exploiting
Belief Bases. Conference 2019 AAMAS.

3. De Moura, Leonardo and Bjrner, Nikolaj. 2008. Z3: an efficient SMT solver. In:
Tools and Algorithms for the Construction and Analysis of Systems, pp227-340

4. Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Reasoning about Knowledge.
Cambridge: MIT Press.

5. S. Baron-Cohen AND A. M. Leslie AND U. Frith. 1985. Does the autistic child have
a “theory of mind”?. Ignition 21 pp36-46

	SAT for Epistemic Logic using Belief Bases

