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Abstract. Business processes realize a business goal by coordinating the tasks
undertaken by multiple interacting parties. Even if it is possible to monitor the
execution of such complex distributed process, current approaches do not allow
participants to report to the right account taker the causes of the success or failure
of their duties. However, as in exception management in programming languages,
having such information could enable the account taker to properly handle errors.
We claim that an explicit representation of accountability and responsibility as-
sumptions provides the right abstractions to engineer multi-agent systems, that
execute such business processes, both at the level of design and at the level of
programming. Basing our programming approach on multi-agent organizations,
we present two accountability patterns for developing accountable agents. To il-
lustrate this approach we use the JaCaMo multi-agent programming platform.

1 Introduction

Weske [39] defines a business process as “a set of activities that are performed in coor-
dination in an organizational and technical environment. These activities jointly realize
a business goal.” In general, a business goal is achieved by breaking it up into sub-
goals, which are distributed to a number of actors. Each actor carries out part of the
process, and depends on the collaboration of others to perform its task. One limit of
business processes is that they integrate, at the same abstraction level, both the business
logic and the interaction logic (message passing). This, on one hand, makes their reuse
problematic–whenever different coordination schemas are to be enacted the business
process must be revised. On the other hand, since message exchanges lie at the level of
data, it is difficult to assess the correctness of individual processes in isolation.

Multiagent Systems (MAS), and in particular models for MAS organizations, are
promising candidates to supply the right abstractions to keep processes linked together
in a way that allows reasoning about the correctness of the overall system in terms of
goals, rather than of messages. However, agent organizations are still lacking of a sys-
tematic way to treat exceptions at execution time. The point is that when an exception
does occur, the agent which is apt to handle it (or which is interested to know), may be
not the same agent who detects the exception. To make the overall system robust, the
exception should be reported to the agent with the proper means for treating it.
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In [2] a proposal was made to use accountability and responsibility relationships
to state the rights and duties of agents in the organisation, given the specification of a
normative structures. From this understanding we define what it means for an agent to
be accountable when taking responsibilities in the execution of part of a business pro-
cess. That is, we address the notion of accountability from a computational perspective
and study how it can be obtained as a design property [5]. In the following we show
how robustness can be achieved via accountability and responsibility relationships, and
we use these concepts as tools to systematize and guide the design and development
of the agents. We then exemplify how such concepts can be engineered in the partic-
ular context of a JaCaMo multi-agent system where agents execute under a normative
organization expressing business process as accountability and responsibility relations
among agents.

2 Responsibility and Accountability as Engineering Concepts

Why Should Current BPM and MAO Be Better Engineered

In this paper we consider the Incident Management scenario (from the BPMN examples
by the OMG [31]), see Figure 1. The case models the interaction between a customer
and a company for the management of a problem reported by the customer. It involves
several actors. The customer reports the problem to a Key Account Manager who, on
the basis of her experience, can either resolve the problem directly or ask for the in-
tervention of first-level support. The problem is, then, recursively treated at different
support levels until, in the worst case, it is reported to the software developer. Gener-
ally, the business aim of the process (to solve the reported problem) is decomposed and
can be distributed over five BPMN processes, whose execution requires interaction and
coordination, realized through message exchange. Noticeably, as always with business
processes, the way in which goals are achieved matters, so the agents that will partici-
pate into the organization are expected not only to fulfill their assigned goals but also to
respect the business process: from an organizational perspective, the “goal” is that the
process takes place [1].

Limitations/Problems in Current BPM and MAO

Goal distribution over a group of processes bears strong similarities with proposals
from research on MAS organizations. For what concerns software modularity, both
business processes and MAS organizations suffer from some limitations and drawbacks;
in particular, by focussing merely on the achievement of the assigned sub-goals, agents
lose sight of the overall process, and ignore the place of their achievement has within
the organization. So, for instance, in BPMN the relationships between the actors are
just loosely modeled via message exchange, and there is no explicit representation of
the responsibilities each of them takes as a party of the interaction nor of the legitimate
expectations each actor has of the others. The relationship between each level of support
and the following one, in the example, is emblematic: when a request of support is
made, an answer containing some kind of feedback is expected in order to proceed.
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However, since processes are independent, one cannot give for granted that another will
answer. It follows that when a process does not answer, the waiting one may get stuck
indefinitely.
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Fig. 1: The incident management BPMN diagram.

Similarly, MAO (see, e.g., [12, 16]) allow structuring complex, organizational goal
via a functional decomposition, whereby subgoals are assigned to agents. The coordi-
nated execution of subgoals is often supported by a normative specification, with which
the organization issues obligations towards the agents (e.g. [15, 20, 14, 9]). However,
agents may have the capability of achieving the assigned goals but in ways that do not
fit into the process specification and, more importantly, when agents fail, the organiza-
tion has no explicit mechanism for sorting out what occurred, for a redress.
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Even if agent organizations solve part of the limitation of BPMN, what is actually
missing is the agents’ awareness of their part in the organization, not only in terms of
the goals assigned to them but also (and equally important) in terms of the relationships
they have with the others, of their mutual dependences, and, more broadly, of the de-
pendence of the organization on its members for what concerns the realization of the
business process. We claim that the notions of responsibility and accountability serve
this purpose in an intuitive, yet effective way. A first conceptualization of how these
notions can be used in the context of distributed processes is discussed in [7], here we
discuss more practical, programming aspects.

Responsibility and Accountability

According to Dubnick [17], accountability “emerges as a primary characteristic of gov-
ernance where there is a sense of agreement and certainty about the legitimacy of expec-
tations between the community members.” So, within an institutional frame, account-
ability manifests as rules, through which authority is “controlled” so that it is exercised
in appropriate ways. In human organizations, it amounts to the enactment of mecha-
nisms for dealing with expectations/uncertainty. In complex task environments where
multiple, diverse and conflicting expectations arise, it is a means for managing an other-
wise chaotic situation. Further on this line [22], accountability implies that some actors
have the right to hold other actors to a set of standards, to judge whether they have
fulfilled their responsibilities in light of these standards, and to impose sanctions if they
determine that these responsibilities have not been met. They explain that accountabil-
ity presupposes a relationship between power-wielders and those holding them account-
able, where there is a general recognition of the legitimacy of (1) the operative standards
for accountability and (2) the authority of the parties to the relationship (one to exercise
particular powers and the other to hold them to account).

Concerning responsibility, [38] proposes an ontology relating six different responsi-
bility concepts (capacity, causal, role, outcome, virtue, and liability), that capture: doing
the right thing, having duties, an outcome being ascribable to someone, a condition that
produced something, the capacity to understand and decide what to do, something being
legally attributable. In the context of Information Systems (in particular, access rights
models and rights engineering methods), the meta-model ReMMO [19] represents re-
sponsibility as a unique charge assigned to an agent, and in the cited literature most
of the authors acknowledge that responsibility aims at conferring one or more obliga-
tion(s) to an actor (the responsibility owner). As a consequence, this causes a moral or
formal duty, in the mind of the responsibility owner, to justify the performance of the
obligation to someone else, by virtue of its accountability.

Business processes, represent an agreed behavior, introduce expectations on the be-
havior of the interacting parties, and require some kind of governance in order for the
process to be enacted. Thus, they show all the characteristics of accountability settings,
but the lack of an adequate representation obfuscates the accountability [30], which re-
sults hidden into some kind of collective responsibility –often taking the shape of the so
called “many hands problem”. As a consequence, the governance of the system is com-
promised as well as its functioning as a whole. As Thompson [37] explains, typically
adopted solutions for avoiding the many hands problem, like applying hierarchical or
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collective forms of responsibility, are wanting, and personal responsibility approaches,
based on some weak causal connection between an individual and the event, should
be preferred. It is worth noting that accountability and responsibility are not primitive
concepts. Rather, they are properties that emerge in carefully designed software sys-
tems. This means that when we use accountability/responsibility as engineering tools,
we actually constrain the ways in which software is designed and developed.

3 Engineering MAO with Accountability/Responsibility

JaCaMo Organisation Model

JaCaMo [10] is a conceptual model and programming platform that integrates agents,
environments and organizations. A MAS in JaCaMo consists of an agent organization,
realized through MOISE [26], involving Jason [11] autonomous agents, working in
a shared, artifact-based environment, programmed in CArtAgO [34]. A Jason agent
consists of a set of plans, each having the structure triggering event : 〈context〉 ←
〈body〉. On occurrence of triggering event (belief/goal addition or deletion), under the
circumstances given by context, the course of action expressed by body should be taken.
MOISE includes an organization modeling language and an organization manage-

ment infrastructure [25]. The specification of an organization is decomposed into three
dimensions. The structural dimension specifies roles, groups and links between roles
in the organization. The functional dimension is composed of one (or more) scheme
capturing how the global organizational goal is decomposed into subgoals, and how
subgoals are grouped in sets, called missions, to be distributed to the agents. The nor-
mative dimension binds the two previous dimensions by specifying roles’ permissions
and obligations for missions.

JaCaMo provides various kinds of organizational artifacts that allow encoding the
state and behavior of the organization, in terms of groups, schemes and normative states.
Obligations are issued on the basis of a normative program, written in NOPL [24].
Norms have the form id : φ → ψ, where id is a unique identifier of the norm; φ is
a formula that determines the activation condition for the norm; and ψ is the conse-
quence of the activation of the norm (either a failure or the generation of an obligation).
Obligations, thus, have a well-defined lifecycle. Once created, an obligation is active.
It becomes fulfilled when the agent, to which the obligation is directed, brings about
the state of the world specified by the obligation before a given deadline. An obliga-
tion is unfulfilled when the agent does not bring it about before the deadline. When the
condition φ does not hold anymore, the state becomes inactive.

Accountability/Responsibility Specifications in the JaCaMo Organisation Model

As introduced in [2], we denote by R(x, q) and A(x, y, r, u) responsibility and ac-
countability relationships, respectively. R(x, q) expresses an expectation on any agent
playing role x on pursuing condition q (x is entitled and should have the capabilities of
bringing about q). Instead, A(x, y, r, u) expresses that x, the account-giver (a-giver), is
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accountable towards y, the account-taker (a-taker), for the condition u when the condi-
tion r (context) holds. We see u in the context of r as the agreed standard which brings
about expectations inside the organization.

Since the proposal is set into the JaCaMo framework [10], the coordinated execution
of the agents is regulated by obligations, issued by the organization. Agents, however,
are autonomous and their fulfillment of the obligations cannot be given for granted. In
[2], it is therefore proposed to improve the specification of an organization by comple-
menting the functional decomposition of the organizational goal with a set of account-
ability and responsibility specifications. Precisely, accountability relationships can be
collected in a set A, called an accountability specification. The organization designer
will generally specify a set of accountability specifications which is denoted by A. In
the following, we show in JaCaMo how accountability and responsibility are taken into
account at design time. In particular, we discuss a programming pattern for accountable
agents, that is, agents that provide an account of their conduct both when they succeed
in achieving their goals, and when, for some reason, they fail in the attempt.

To specify the execution conditions that are object of accountability and responsi-
bility, we use the event-based linear logic called precedence logic [35]. Such a language
allows modeling complex expressions, under the responsibility of many agents, whose
execution needs to be coordinated. The interpretation deals with occurrences of events
along runs (i.e., sequence of instanced events). Event occurrences are assumed non-
repeating and persistent: once an event has occurred, it has occurred forever. The logic
has three primary operators: ‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before). The be-
fore operator constrains the order with which two events must occur: a · b means that
a must occur before b, but not necessarily one immediately after the other. If e be an
event, e (the complement of e) is also an event. Initially, neither e nor e hold. On any
run, either of the two may occur, not both. Complementary events allow specifying sit-
uations in which an expected event e does not occur, either because of the occurrence
of an opposite event, or because of the expiration of a time deadline.

Residuation, inspired by [29, 35], allows to track the progression of temporal logic
expressions, hopefully arriving to completion of their execution. The residual of a tem-
poral expression q with respect to an event e, denoted as q/e, is the remainder temporal
expression that would be left over when e occurs, and whose satisfaction would guar-
antee the satisfaction of the original temporal expression q. Residual can be calculated
by means of a set of rewrite rules. The following equations are due to Singh [35, 29].
Here, r is a sequence expression, and e is an event or >. Below, Γu is the set of liter-
als and their complements mentioned in u. Thus, for instance, Γe = {e, e} = Γe and
Γe·f = {e, e, f, f}. We have that:

0/e
.
= 0 >/e .

= >
(r ∧ u)/e .

= ((r/e) ∧ (u/e)) (r ∨ u)/e .
= ((r/e) ∨ (u/e))

(e · r)/e .
= r, if e 6∈ Γr (e′ · r)/e .

= 0, if e ∈ Γr

r/e
.
= r, if e 6∈ Γr (e · r)/e .

= 0

Using the terminology in [2], we say that an event e is relevant to a temporal ex-
pression p if that event is involved in p, i.e. p/e 6≡ p. Let us denote by e a sequence
e1, e2, . . . , en of events. We extend the notion of residual of a temporal expression q to
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a sequence of events e as follows: q/e = (. . . ((q/e1)/e2)/ . . .)/en. If q/e ≡ > and
all events in e are relevant to q, we say that the sequence e is an actualization of the
temporal expression q (denoted by q̂).

Agent Programming Patterns

Given a set of accountability specifications A, and a set of responsibility assumptions
R (responsibility distribution), the organization is properly specified when the account-
ability fitting “R fits A” (denoted by R A) holds. This happens if ∃ A ∈ A such that
∀ A(x, y, r, u) ∈ A, ∃ R(x, q) ∈ R such that, for some actualization q̂, (u/r)/q̂ ≡ >.

Fitting has a relevant impact on organization design: When R A holds, any set of
agents playing roles into the organization (consistently with R and one accountability
specification A ∈ A) can actually accomplish the organizational goal, see [2]. More-
over, fitting provides a guide for developing agents that are accountable by design, be-
cause it expresses what an agent is engaged to achieve, by fulfilling its responsibilities,
and how this achievement is related to that process which is the goal of the organization
(through accountability). In other words, we claim that R A provides a specification
the agents must explicitly conform to, when enacting organizational roles.

When an agent enacts some role in an organization, it declares to be aware of all the
responsibilities that come with that role, and by accepting them it declares to adhere to
the fitting exposed by the organization itself. That is, the accountability fitting exposed
by an organization specifies the requirements that agents, willing to play roles in that
organization, must satisfy.

As seen in Section 2, when an agent accepts a responsibility it accepts to account
for the achievement, or failure, of some state of interest. In our metaphor, thus, an agent
acts with the aim of preparing the account it should provide. In this way, we reify the
cited “sense of agreement and certainty about the legitimacy of expectations between
the community members” which otherwise remains implicit both in business processes
and in MAS organizations. Leveraging these concepts for developing agents provides
interesting advantages from a software engineering point of view. We now introduce
two programming patterns that allow realizing accountable agents, but before we need
to identify the portion of fitting involving each single individual.

Definition 1. Given the fitting R  A, and a role x in its scope, the projection of the
fitting over role x is defined as Rx  Ax where Rx ≡ {R(x, q)|R(x, q) ∈ R}, and
Ax ≡ {A(x, y, r, u)|A(x, y, r, u) ∈ A}, and where for every A(x, y, r, u) ∈ Ax, there
is R(x, q) ∈ Rx, such that (u/r)/q̂ ≡ > holds for some actualization q̂ of q.

Indeed, since accountabilities and responsibilities imply some obligations [22], we can
think of realizing them in JaCaMo by relying on the deontic primitive elements that
such framework provides. In other words, the fitting projection over role x can then
be mapped into a number of Jason plans of the agent playing role x by way of the
following patterns, expressed in AgentSpeak(ER). AgentSpeak(ER) [33] extends Jason
by introducing two types of plans: g-plans encapsulate the strategy for achieving a goal
and can be further structured into sub-plans. Besides triggering events and contexts,
g-plans include a goal condition, specifying until when the agent should keep pursuing
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the goal. Instead, e-plans, defined in the scope of a g-plan, embody the reactive behavior
to adopt while pursuing the g-plan’s goal.

Definition 2 (Pattern Specification). The fitting relationship represented by each pair
〈R(x, q), A(x, y, r, u)〉 in Rx  Ax, is mapped into an AgentSpeak(ER) g-plan ac-
cording to the following pattern:

+!be accountable(x, y, q) <: drop fitting(x, y, q) {
+obligation(x, q) : r ∧ c
<- bodyq . Well-Doing e-plan

+oblUnfulfilled(x, q) : r ∧ c′
<- bodyf . Wrong-Doing e-plan

}
Such that: (1) bodyq satisfies the fitting-adherence condition (see below); (2) bodyf
includes the sending of an explanation for the failure from x to y.

The agent will perceive, through the identity that is provided by the organizational role
it plays, certain events as events it should tackle through some behavior of its own, but it
will also be aware of its social position both (1) by knowing some other agent will have
the right, under certain conditions, to ask for an account and (2) by including specific
behavior for building such an account. The two e-plans encode the proactive behavior of
an agent assuming a responsibility. From that moment on, and until the responsibility is
not dropped, the agent starts reacting to obligations in accordance to the accountability
relationship specified in the fitting.

Well-doing e-plan. The first e-plan is triggered when the specified obligation is issued
by the normative organization. That will be the usual obligation a Jason agent receives
from the MOISE organization when it is time to pursue a particular goal. The con-
text expression, r ∧ c, is satisfied when condition r activating the agent accountability
holds together with some possibly empty condition c: a local condition that encodes
the possibility for the agent to have multiple well-doing e-plans to react to the same
obligation, i.e. multiple ways to achieve a same result in different (local) circumstances
(e.g., a manager could decide to handle a task directly or delegate it to an employee).
Condition c allows the developer to discriminate between these alternatives, if any. It’s
worth noting that if multiple alternative e-plans with different c are present, the devel-
oper must take care of defining such conditions so that for each obligation issued, at
least one e-plan is always triggered. Due to the accountability fitting the agent has ac-
cepted, the body of the plan(s) (bodyq) must,then, be such to satisfy the responsibility
assumption represented by the pair 〈R(x, q), A(x, y, r, u)〉. That is, the plan body has
to satisfy the following fitting-adherence condition.

Definition 3. (Fitting-adherence) Let [bodyq]u denote the set of sequences of events
generated by the execution of bodyq , restricted to the events that are relevant for the
progression of u. bodyq satisfies the fitting-adherence condition if: ∃ sequence s ∈
[bodyq]u such that s ≡ q̂ and (u/r)/q̂ ≡ >.

Note that fitting adherence requires the agent to be just able to activate at least one
actualization s of q, not all of them. In other words, the agent needs to be able to
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perform at least one of the possibly many ways for carrying out q. The rationale is that
any actualization of q generates a sequence of events that brings the condition u/r to
>; hence, it is sufficient for an agent to implement one actualization in order to meet its
responsibility. As we have discussed above, an accountable agent provides an account of
its conduct. In our framework, the account of a well-doing pattern is immediately given
by the agent’s behavior itself. Following Garfinkel [21], we consider that the account, or
proof, that the agent behaved correctly is evident by how the agent has operated in the
environment. This means that the obligation to give an account for the satisfaction of
an obligation is implicitly resolved by satisfying the very same obligation. Thus, there
is not the need to capture the obligation to give an account explicitly. When, however,
it is not possible to see the agent’s operations as a proof, an explicit account should
be provided also for the well-doing case. This, for instance, happens when there is the
need of reporting facts that occur in one context, but are meaningful also in others where
they are not directly observable by the involved parties, see e.g., [4]. It is also the case
in which an agent’s behavior requires some certification for having been performed up
to some standard. It is interesting to note that the accountability fitting is not only a
functional specification of the organization, but it also specifies the “good” behavior of
the agents. It is in fact this characteristic that justifies our programming patterns, and
that it is not captured in standard JaCaMo.

Wrong-doing e-plan. The second pattern allows the agent to provide an account also
when the agent does not complete a task, for some reason. The triggering event, oblUn-
fulfilled, is generated by theMOISE organization when a previously issued obligation
has been left unsatisfied. The context of the pattern is again a condition that is true when
the accountability is activated (i.e., r holds), and when some local condition c′ is satis-
fied. bodyf , this time, has to produce an account about the failure. We can think of such
an account as an explanation that the agent produces so that another agent, possibly the
a-taker y, can use it to resume the execution, thus managing the exception. The correct
use of the pattern guarantees, by design, that exceptional events, when occurring, are
reported to the agents who can handle them properly. Accountability fulfills this pur-
pose because, by nature, it brings about an obligation on the a-giver to give an account
of what it does. The account, then, can be used by the a-taker to recover, when possi-
ble, from the exceptional situation. Under this respect, the account should be provided
in terms that can be understood by all the interested agents in the organization. This
aspect, however, is strongly domain dependent. As well as in the positive pattern, the
agent will produce an account by modifying its environment in a way that is meaningful
for the agents that have to capture and interpret it.Along this line, a promising approach
to the synthesis of an account is discussed in [13].

4 JaCaMo Accountable Agents

In JaCaMo, the state of an organization is encoded in terms of group instances (i.e.,
which agents are playing which roles) and scheme instances (i.e., which goals were
achieved, which ones are ready to be pursued, etc). Notably, such scheme instances are
declarative in nature: they only specify which (sub)goals should be achieved, and in
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which order, but they do not specify how. By exploiting these instances, the organiza-
tion issues proper obligations to role players (i.e., agents). The agents are autonomous
in the way they satisfy their obligations, and may also use artifacts that are not globally
accessible to all the involved agents. They are, however, held to notify the organization
about the completion of their task (see the use of goalAchieved messages in Section 4).
By capturing these messages, the organization traces the subgoals that have been com-
pleted and determine the next obligations to be issued.

The engineering ofMOISE accountable organizations involves the following steps3:

1. Each process is mapped to a role in the organization;
2. A scheme representing the overall process goal is defined; the successful execution

of such a scheme corresponds to the achievement of the process goal;
3. For each activity to be performed in sequence, a corresponding subgoal is added to

the scheme, by means of the corresponding operator;
4. For each structured block including a concurrent execution, the corresponding goals,

grouped together via the parallel operator, are added to the scheme;
5. If a choice is present inside a process, a number of schemes should be defined,

representing the possible courses of action. These schemes are to be instantiated
dynamically by the agents, depending on their internal choices. Their execution
concurs to the progression of the already present ones.

By applying the steps above to Incident Management we obtain the following. For
what concerns the structural specification, five roles are identified, all belonging to a
single group: customer (c), key account manager (am), first level support (fls), second
level support (sls), and developer (dev). For each problem to manage, we assume there
will be exactly one agent playing each role. Moreover, we use the label company to
identify the owner of the specified organization.

The overall organizational goal is distributed into a set of schemes, part of which
is reported in Figure 2. The scheme on top involves c and am, and is instantiated by
the customer c when some need arises. In other terms, the scheme instantiation corre-
sponds to the occurrence of a report-problemc event. When a problem is reported, the
account manager is expected to perform ask-descriptionam (ask for a description of the
problem), and c to send what requested (send-descriptionc). Then, am should provide
a solution: to this aim, it can take two alternatives courses of action, both leading to
the same join point of the BPMN diagram. Each path amounts to a new scheme, that
will be instantiated by the agent depending on the choice made. Only by completing
the execution of the selected scheme the outer scheme will progress. Here, the first al-
ternative amounts to the case in which am can handle the problem directly, and does
not require the execution of any action before the join point. For this reason, the cor-
responding scheme would be empty and we omit it. The second scheme, instead, is
instantiated when am cannot handle the problem directly. Thus, it will, first, make a
request (ask-support-flsam) that fls will either manage directly or will involve the next
level of support by instantiating a further scheme. It is worth noting that scheme in-
stantiation is not used just to tackle situations in which one agent needs to interact with

3 Here we restrict our attention to the translation of structured blocks (see [18]) into social
schemes. The presence of a single exit point is necessary to ensure the proper completion of
theMOISE schemes.
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first-level-management

problem-management

ask-descriptionam send-descriptionc explain-solutionam

. . .

handle-issue-1fls provide-feedback-amflsask-support-flsam

cannot-handleam

result-slsfls

report-problemc

Fig. 2: Part of the functional decomposition of Incident Management.

a1 : A(am, c, report-problemc, report-problemc · ask-descriptionam)
a2 : A(am, c, report-problemc · ask-descriptionam · send-descriptionc, report-problemc · ask-descriptionam·
·send-descriptionc · explain-solutionam)

a3 : A(am, company, report-problemc, report-problemc · ask-descriptionam)
a4 : A(am, company, report-problemc · ask-descriptionam · send-descriptionc, report-problemc · ask-descriptionam·
·send-descriptionc · explain-solutionam)

a5 : A(am, company, report-problemc · ask-descriptionam · send-descriptionc · cannot-handleam, report-problemc·
·ask-descriptionam · send-descriptionc · cannot-handleam · ask-support-flsam)

. . .

r1 : R(am, ask-descriptionam) r2 : R(am, explain-solutionam) r3 : R(am, ask-support-flsam)
. . .

Fig. 3: Excerpt of the accountability specification and responsibility distribution for the Incident
Management scenario.

others for some aim, but it may also occur when a process has internal choices. This
depends on whether the single branches are subject to accountabilities or not, that is,
whether the agent should not only achieve the goal, but also stick to the specified pro-
cess in doing so. This is, for instance, the case of the second choice in the Second Level
Support process (see “Result?” in Figure 1).

Interestingly, the instantiation “on-the-fly” of a scheme can be seen as a form of
planning autonomy: “This type of autonomy dictates if an agent is able (or unable) to
create, choose or modify plans to achieve a specific goal” [27]. The integration of this
type of autonomy into an organizational model (i.e.,MOISE) discussed in [27] opens
interesting perspectives in the modeling of BPMN processes for our accountable agents.

Figure 3 reports an excerpt of an accountability specification Aincident for the inci-
dent management scenario. Accountabilities a1-a5, in particular concern am as a-taker.
The first accountability a1 states that am is accountable towards c for asking for a de-
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scription, only after a problem is reported. To guarantee this strict ordering, the event
report-problemc appears both as the antecedent condition and as a prefix of the conse-
quent condition, preceding ask-descriptionam (the same structure is used throughout the
subsequent relationships). This requirement means that c can legitimately expect that,
by reporting a problem to am, it will be asked for a description of the problem. The
second accountability, similar to the previous one, states that once the description of the
problem has been provided, am must, in the end, explain the solution, no matter what
happens in the meanwhile.

Accountabilities a3-a5 encode the fact that all workers, inside the incident manage-
ment company, are expected to stick to the process specification. For this reason, these
accountabilities do not include the customer c, who is not an employee of the com-
pany. Indeed, in the BPMN representation the customer process is collapsed. The only
requirement that should be captured by the accountability specification concerns the
proper interaction with am. In a4, explain-solutionam is the exit point of the structured
block beginning with the XOR gateway (see Figure 1). The accountability means that,
no matter what path is chosen, the agent must account (either positively or negatively)
about the achievement of that task. This accountability is, then, complemented with a5,
which states that if am decides it cannot handle the problem directly (cannot-handleam),
then it will execute ask-support-flsam. In a way, cannot-handleam manifests the internal
choice made by the agent, and will lead to the instantiation of the second social scheme
discussed above. These five accountability, a1-a5, completely characterize the am agent.

With the accountability specification Aincident as a basis, the designer can iden-
tify a suitable responsibility distribution which fits it. An excerpt of an acceptable one,
w.r.t. am, is reported in Figure 3. It is easy to verify that for each ai ∈ Aam there
is a rj ∈ Ram which fits it. For instance, if we consider a1 and r1, we have that:
(report-problemc · ask-descriptionam)/report-problemc/ ask-descriptionam ≡ >.

Engineering Accountability Behaviors in Agents

As an illustration, we briefly explain the realization of the key account manager am
agent. We restrict our attention to Aam = {a1, a2, a3, a4, a5} and Ram = {r1, r2, r3}.
For each pair in Ram  Aam, a g-plan must be defined, containing the proper well-
doing and wrong-doing e-plans. Let us consider, in particular, the fitting involving r2  
a2 implemented by the following plans.

1 +!be_accountable(Ag,ATaker,What)
2

3 : .my_name(Ag) &
4 (satisfied(sch1,explain_solution) = What |
5 done(sch1,explain_solution,Ag) = What) &
6 play(ATaker,customer,incident_group)
7

8 <: drop_fitting(Ag,ATaker,What) {
9

10 +obligation(Ag,_,What,_)[artifact_id(ArtId)]
11 : .my_name(Ag) & (satisfied(sch1,explain_solution) = What |
12 done(sch1,explain_solution,Ag)=What) &
13 goalState(sch1,ask_description,_,_,satisfied) &
14 goalState(sch1,send_description,_,_,satisfied) &
15 play(Customer,customer,incident_group) & can_handle(What)
16 <- println("Explaining solution...");
17 .send(Customer,tell,explain_solution);
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18 goalAchieved(explain_solution)[artifact_id(ArtId)].
19

20 +obligation(Ag,_,What,_)[artifact_id(ArtId)]
21 : .my_name(Ag) & (satisfied(sch1,explain_solution) = What |
22 done(sch1,explain_solution,Ag)=What) &
23 goalState(sch1,ask_description,_,_,satisfied) &
24 goalState(sch1,send_description,_,_,satisfied) &
25 play(Customer,customer,incident_group) &
26 not can_handle(What) &
27 orgArt(OrgArtId) & grArt(GrArtId)
28 <- createScheme(sch2, scheme2, SchArtId)[artifact_id(OrgArtId)];
29 debug(inspector_gui(on))[artifact_id(SchArtId)];
30 focus(SchArtId); addScheme(sch2)[artifact_id(GrArtId)];
31 ?goalState(sch2,provide_feedback_am,_,_,satisfied)[artifact_id(SchArtId)];
32 .send(Customer,tell,explain_solution);
33 goalAchieved(explain_solution)[artifact_id(ArtId)].
34

35 +oblUnfulfilled(O)
36 : .my_name(Ag) & obligation(Ag,_,What,_) = O &
37 (satisfied(sch1,explain_solution) = What |
38 done(sch1,explain_solution,Ag)=What) &
39 goalState(sch1,ask_description,_,_,satisfied) &
40 goalState(sch1,send_description,_,_,satisfied) &
41 can_handle(What)
42 <- .send(ATaker, tell, operation_failed_error).
43

44 +oblUnfulfilled(O)
45 : .my_name(Ag) & obligation(Ag,_,What,_) = O &
46 (satisfied(sch1,explain_solution) = What |
47 done(sch1,explain_solution,Ag)=What) &
48 goalState(sch1,ask_description,_,_,satisfied) &
49 goalState(sch1,send_description,_,_,satisfied) &
50 not can_handle(What) &
51 not goalState(sch2,provide_feedback_am,_,_,satisfied) &
52 <- .send(ATaker, tell, please_call_again).
53

54 +cancel-fls-request
55 : oblUnfulfilled(O) & obligation(_,_,What,_) = O &
56 (satisfied(sch2,provide_feedback_am) = What |
57 done(sch2,provide_feedback_am,_)=What) &
58 <- .send(ATaker, tell, please_call_Again);
59 .drop_all_intentions.
60 ...
61 }

The outer g-plan is triggered when the agent proactively decides to adhere to the
fitting r2  a2, thereby becoming accountable for the task. Once triggered, the g-plan
will remain active until the agent does not drop the fitting (see Line 8). The plans in
braces encode the reactive behavior corresponding to the well-doing and wrong-doing
e-plans specified by the pattern. The first two plans, in particular, realize the well-doing
part of the pattern. Recalling Definition 2, the plans are triggered as soon as an obli-
gation to explain the solution to the customer’s problem is issued (Line 10). The obli-
gation’s object (What) is the satisfaction of the organizational goal explain solution
(Lines 11 and 12) –corresponding to the explain-solutionam event in Figure 3. Indeed,
in JaCaMo, the achievement of an organizational goal fulfills the corresponding obli-
gation. Then, as requested by the pattern, the contexts of both plans must include the
conditions specified in a2. In JaCaMo we represent these conditions in terms of schemes
that were instantiated and in terms of organizational goals that were achieved. Consider-
ing the fitting-adherence condition, we have that r is report-problemc·ask-descriptionam·
send-descriptionc, and u is report-problemc · ask-descriptionam · send-descriptionc ·
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explain-solutionam. Thus q ≡ u/r is just explain-solutionam. Both plans for well-doing,
thus, need to include some actions that amount to such an event. In this setting we
consider the event explain-solutionam to be occurred as soon as the corresponding orga-
nizational goal is set as achieved. This is trivially true in the example (see Lines 18 and
33). Here, the achievement of the goal is notified to the organization after the construc-
tion of the answer to the customer (represented in the code by a simple print in one case,
and by the interaction with fls in the other). Agent acts by modifying the organizational
environment. This leads to the construction of a sequence of facts that constitutes the
account for the specific goal.

The presence of two plans triggered by the same obligation reflects the internal
choice inside the business process, driven by some local condition. The first plan is ex-
ecuted when am can handle the problem directly (Line 15): the solution to the problem
is simply sent to the customer and the corresponding organizational goal is marked as
achieved. The second plan, instead, is executed when the agent decides to ask for sup-
port (Line 26). In this case, before providing a feedback to the customer the agent will
create an instance of the second social scheme (Line 28), thereby making its choice
(cannot-handleam) public. The successful scheme completion will provide it with a
feedback from fls (Line 31): am can legitimately expect such a feedback by virtue of
accountability a7, in which it is a-taker. The feedback, in turn, will enable the agent to
execute explain-solutionam, by setting the organizational goal as achieved and produc-
ing an actualization of the formula in the obligation, as discussed above.

The third and fourth plans, at Lines 35 and 44, instead, deal with the wrong-doing
part of the pattern. Should, for any reason, the obligation be unfulfilled, the agent, by
virtue of its accountabilities, must provide a motivation about the unsatisfaction of the
obligation to the account-taker. The plan at Line 35, in particular, is triggered when the
obligation is unfulfilled because of a reason that is internal to the am agent itself (e.g.,
the plan at Line 15 was triggered, but not successfully completed). The fourth plan,
instead, at Line 44, is triggered when the obligation becomes unfulfilled because am
is still waiting for a feedback from sls. In both cases, a proper message encoding the
explanation for the failure is sent to the a-taker (see Lines 42 and 52).

The last plan, at Line 54, in turn exemplifies how am behaves as an a-taker when
receives the account of a failure from another (a-giver) agent. Specifically, the plan
handles a possible failure coming from fls raised when it has not satisfied its obligation
to provide a feedback. Event cancel-fls-request corresponds to the message
fls sends as an account of such a failure, and am handles such a failure by asking the
customer to call another time and dropping its current intention(s).

Notably, considering the accountability specification as a requirement, the actual
implementation of the system results more robust. The accountable am for instance,
can be rewritten in BPMN as shown in Figure 4: to satisfy the requirement of being
accountable, am must be capable, on the one side, of capturing exceptions from other
agents (specifically, fls), and on the other side, of providing an account to its a-taker
(i.e., the customer). The other processes are modified in a similar way.
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Fig. 4: The accountable process of Account Manager.

5 Conclusions

In this paper we have focused on the development of accountable agents. So, we have
discussed how the accountability/responsibility specification of an organization can be
mapped into two patterns for programming Jason plans. The two patterns, when ap-
plied systematically, bring along positive consequences. First of all, an accountabili-
ty/responsibility specification provides a programmer with all the relevant information
for developing an agent that is aware of the process as characterization of the goal. In
fact, while a responsibility distribution is a coverage of the functional decomposition,
an accountability specification conveys the programmer how the agent being developed
contributes to the process. Hence, the accountabilities provide the programmer with a
behavioral specification the agent has to satisfy.

Our approach is specular to [40], where the objective is to determine whether a
group of agents can be attributed the responsibility for a given goal. Once the respon-
sibility can be attributed to the agents, their accountability is implicitly modeled in
the plan that has be inferred. Here, instead, we aim at developing agents that, by con-
struction, satisfy the organization specification. Indeed, an interesting evolution of the
present work goes in the direction of an agent-oriented type checking (see e.g., [3]).
Having an explicit model of the organization in terms of accountabilities and responsi-
bilities, it would be possible to mechanize a type checking system that verifies whether,
at role enacting time, an agent possesses all the necessary plans for role playing.

The proposal moves MAOs closer to other paradigms where exceptions are handled.
In the actor model (e.g., [23]), for instance, when an actor cannot handle an exception, it
usually reports the exception to its parent actor, which in turns decides to either handle
the exception or report it further. In an agent-based system such a scheme is not directly
applicable since agents are independent entities, and rarely are related to each other by a
parent-child relationship. In the MAS community, approaches for modeling exceptions
in a multi-agent setting have been proposed (see, e.g., [28, 36, 32]). However, no con-
sensus has been reached w.r.t. the usage of such a concept in agent systems. The main
problems rise when trying to accomodate the usual exception handling semantics with
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the properties of MAS; namely autonomy, openness, heterogeneity, and encapsulation.
Accountabilities can fill in this gap: when an obligation is not satisfied, it is reasonable
to report the exception to the a-taker (see above example). This is achieved quite natu-
rally with the Wrong-Doing Pattern, that allows an agent to provide an account for an
unsatisfied obligation.

Commitment-based protocols (e.g., [41]), as well as standard NorMAS [8], provide
alternatives for modeling coordination. Roughly speaking, a commitment is a promise
that a debtor does in favor to a creditor that in case some antecedent condition is satis-
fied, the debtor will bring about a consequent condition. When the antecedent holds, the
commitment is detached, and amounts to an obligation on the debtor to bring about the
consequent. When the consequent is no longer achievable, the commitment is violated.
In such a case, the creditor has the right to complain against the debtor, the creditor
cannot hold the debtor to provide an explanation. This lack of information hampers
both the understanding of what has occurred, and any attempt of recovery from the fail-
ure. However, commitments have the power of enforcing accountability when properly
used. For instance, the ADOPT protocol [6] establishes an accountability relationship,
expressed via a commitment-based protocol, between an organization and its agents.
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20. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of
institutional reality for open multiagent systems. Artificial Intelligence and Law 16(1), 89–
105 (2008). https://doi.org/10.1007/s10506-007-9055-z

21. Garfinkel, H.: Studies in ethnomethodology. Prentice-Hall Inc., Englewood Cliffs, New Jer-
sey (1967)

22. Grant, R.W., Keohane, R.O.: Accountability and Abuses of Power in World Politics. The
American Political Science Review 99(1) (2005)

23. Haller, P., Sommers, F.: Actors in Scala - concurrent programming for the multi-core era.
Artima (2011)
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26. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the
MOISE+ model: Programming issues at the system and agent levels. Int. J. Agent-Oriented
Softw. Eng. 1(3/4), 370–395 (2007)

27. Maia, A., Sichman, J.S.: Explicit representation of planning autonomy in MOISE organiza-
tional model. In: 7th Brazilian Conference on Intelligent Systems, BRACIS 2018, São Paulo,
Brazil, October 22-25, 2018. pp. 384–389 (2018)

28. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In: Proceed-
ings of the Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems. pp. 122–129. AAMAS ’05, ACM (2005)

29. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., Singh, M.: Commitments with
regulations: reasoning about safety and control in REGULA. In: Proc. of the 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS). vol. 2, pp. 467–474 (2011)

30. Nissenbaum, H.: Accountability in a computerized society. Science and Engineering Ethics
2(1), 25–42 (1996)

31. Object Management Group: Bpmn specification - business process model and notation
(2018), http://www.bpmn.org/, online, accessed 08/11/2018

32. Platon, E., Sabouret, N., Honiden, S.: An architecture for exception management in multia-
gent systems. Int. J. Agent-Oriented Softw. Eng. 2(3), 267–289 (2008)
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