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Abstract. Despite shared objectives, modern languages for specifying
multiagent interaction protocols differ significantly in their—often complex—
technical details. We contribute a comparative evaluation of prominent
select languages based on their support for concurrent enactments and
for asynchrony, both important facets of flexibility. We show how the
underlying abstractions and assumptions of the various languages fare
on these criteria.

1 Introduction

Protocols lie at the heart of multiagent systems (MAS). Specification languages
for protocols are therefore crucial in engineering MAS. Several notable MAS
software methodologies, e.g., [11,4,12], give a place of prominence to specify-
ing protocols; however, most rely on informal notations such as AUML [10] for
specifying them.

Over the last two decades, several formal languages for specifying protocols
have been proposed, and in communities as diverse as programming languages,
Web services, and multiagent systems. These languages make different assump-
tions and provide varying capabilities for specifying protocols. However, today,
we lack generally clear evaluation criteria or use cases for protocol languages.
Any set of evaluation criteria would necessarily be incomplete, but what would
constitute an informative set that sheds light upon the theoretical foundations
for protocols? To answer this question, we turn to some central challenges in
specifying interaction protocols.

A central challenge in specifying interaction protocols for MAS is how to
enable the specification of flexible protocols that agents can correctly enact in
a decentralized manner, that is, based solely only on local knowledge and ac-
commodating asynchrony? This challenge captures the essence of what drives
most theoretical work on protocol languages [3,7,2,15,5,9]. The difficulty is that
flexibility, which includes important aspects such as concurrency, is in tension
with correctness in asynchronous settings.

Based on the foregoing, we motivate the following criteria for evaluating
protocol languages. How well does a language support concurrent enactments?
How well does a language support asynchrony? For example, does it require
ordered delivery of messages?
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Using these criteria, we undertake a comparative evaluation of selected ap-
proaches. We focus on state-of-the-art languages. Specifically, we evaluate each
approach with respect to the same criteria by specifying (as best possible) the
same scenarios.

The paper’s overarching contribution and significance lie in developing and
applying unified evaluation criteria for protocol languages. Its novelty arises
from the absence, currently, of such a framework. Notably, this paper focuses
on essential representational criteria and plays down contingent features such as
current tool support and popularity.

2 Overview of Selected Approaches

We select protocol specification languages that are recent and represent diverse
doctrines. We introduce their main ideas via a common scenario in which a
buyer B requests an item from a seller S, who responds with a price. B may
accept or reject the offer. Rejection ends the enactment. If B accepts, S instructs
warehouse W to ship the item, following which W delivers it to B.

.

2.1 Multiparty Session Types

We discuss two prominent approaches, Trace and Scribble.

Trace Expressions. Castagna et al. [5], Ancona et al. [1], and Ferrando et al.
[8] exemplify this approach. Hereon, we refer to this approach as Trace. We
follow Castagna et al.’s [5] variant for concreteness as they give clear rules for
determining projections of protocols. Here, x m−→y means that x sends message m
to y; ‘;’ denotes sequence, ‘∨’ denotes mutually exclusive choice, and ‘∧’ denotes
shuffle (order-preserving interleaving). Trace assumes pairwise-FIFO communi-
cation. Listing 1 shows how our purchase example may be rendered in Trace.

Listing 1: Three-party Purchase protocol in Trace.

B Item−−→ S ; S Price−−→ B ;

(B Accept−−−→ S ; S Ship−−→ W ; W Deliver−−−→ B) ∨ B Reject−−−→ S

Given a protocol, Trace yields projections for each role. A role’s projection
represents the local protocol-related computations performed by the role. Ideally,
the computations realized jointly by all projections of a protocol should exactly
be the computations of the protocol (as we shall see, this is not always the case).

Scribble. Scribble [19] (which is itself based on [9]) is similar to Trace. A proto-
col is an ordering of constituent protocols (bottoming out at individual message
specifications) using constructs such as sequence, choice, and iteration. Scrib-
ble assumes ordered communication over FIFO channels. Listing 2 highlights its
salient features.
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Listing 2: Three-party Purchase in Scribble.

p r o t o c o l Purchase ( r o l e B, r o l e S , r o l e W) {
I tem ( s t r i n g ) from B to S ;
P r i c e ( i n t ) from S to B ;

c h o i c e a t B {
Accept ( ) from B to S ;
Sh ip ( ) from S to W;
D e l i v e r ( ) from W to B ;
} o r {

R e j e c t ( ) from B to S ;
NoShip ( ) from S to W; }}

Scribble [14] has tooling that can generate role-specific projections from pro-
tocols.

2.2 HAPN

HAPN [17] is a graphical protocol language. As Figure 1 shows, nodes repre-
sent states; they can also reference other protocols to compose them. Edges can
have complex annotations, supporting the specification of message transmissions,
guard expressions, and changes to state. HAPN specifies the computations of a
protocol in terms of state machines. It assumes synchronous communication [17,
p. 61] and does not give a method for projecting a protocol to local perspectives
(although it acknowledges their need).

s0 s1 s2 s3

B 7→ S:
Accept()

s5

s6

W 7→ B: Deliver()

S 7→ W:
Ship()

s4

B 7→ S: Reject()

S 7→ B:
Price()

B 7→ S:
Item()

P:

Fig. 1: Three-party Purchase in HAPN, starting from s0.

HAPN provides methods to flatten a hierarchical protocol into simple proto-
cols and finite state machines for verification.

2.3 BSPL

BSPL [15,16] and Splee [6], which extends BSPL, are exemplars of information-
based languages, which are declarative and eschew specifying ordering between
messages. In BSPL, a protocol specifies an information object. Each protocol
enactment fills out an instance of this object. A protocol specifies two kinds of
constraints on the messages a role can observe: causality or information flow
constraints between protocols and integrity or consistency constraints on any
object.
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Listing 3: Three-party Purchase in BSPL.

Purchase {
role B, S , W
parameter out ID key , out item , out p r i c e , out d , out OK

B 7→ S : RFQ[ out ID , out i tem ]
S 7→ B : O f f e r [ i n ID , i n item , out p r i c e ]
B 7→ S : Accept [ i n ID , i n item , i n p r i c e , out d , out addr ]
B 7→ S : R e j e c t [ i n ID , i n p r i c e , out d , out OK]
S 7→ W: Ship [ i n ID , i n item , i n addr ]
W 7→ B : D e l i v e r [ i n ID , i n item , i n addr , out OK] }

In Listing 3, B requests a quote from S for a specific item, and initiates
an enactment uniquely identified by key ID. The poutq annotations on ID and
item mean that in sending RFQ, B produces bindings for those parameters. The
pinq annotations on ID and item in the Offer message indicate that S needs to
know these parameters before S can send Offer. B can either accept or reject
the offered price, but not both, because both messages produce a “decision” (as
d), and integrity requires a parameter to have at most one binding. An accept
message includes the buyer’s address, so S can send shipping instructions to
warehouse W. An enactment is complete when all public poutq parameters are
bound, so either Reject or Deliver can complete Purchase. Notice that S cannot
send Ship if Reject happens as it does not know addr.

The projection of a BSPL protocol to a role is a protocol containing only
those messages that involve the specified role. For example, the projection of
Purchase for W consists only of Ship and Deliver.

3 Concurrent Enactments

To support autonomy, we should constrain an agent only as essential to the
enactment of a protocol. In particular, we should allow agents to act concurrently
when doing so would not violate correctness.

Scenario. B sends Request to S to ship some item. After sending Request,
B may send Payment. After receiving Request, S may send Shipment. That is,
Payment and Shipment are not mutually ordered.

This scenario is natural in case of reciprocal commitments: B commits to S
that if Shipment occurs, B will send a Payment and S commits to B that if
Payment occurs, S will send a Shipment [18].

Figure 2 shows possible enactments of one protocol instance, eliding the
parameters.

Listing 4 gives a Trace protocol specification that appears to capture the
scenario.

Listing 4: Attempt to capture Figure 2 in Trace.

B Request−−−−→ S ; (B Payment−−−−→ S ∧ S Shipment−−−−−→ B)
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B S

Request

Shipment

Payment

(a) Shipment first.

B S

Request
Payment

Shipment

(b) Payment first.

B S

Request
Payment

Shipment

(c) Concurrent.

Fig. 2: Three possible enactments of Purchase.

The shortcomings of Listing 4 become apparent when determining its pro-
jections. Following Trace [5, p. 14], we eliminate ∧ from Listing 4 to obtain the
equivalent Listing 5.

Listing 5: A Trace transformation of protocol in Listing 4.

B Request−−−−→ S ; (B Payment−−−−→ S ; S Shipment−−−−−→ B) ∨ ( S Shipment−−−−−→ B ; B Payment−−−−→ S )

Listing 5 is unprojectable because the choice is controlled by different parties—
either B pays or S ships. Specifically, the projections must interpret ∨ as external
choice (choosing) for one agent and an internal choice (following) for another.
Listing 6 arbitrarily gives the external choice (denoted +) to B and the inter-
nal choice (denoted ⊕) to S (the reverse is equally good since the situation is
symmetric). However, this provides only the illusion of choice, because choosing
to receive causes deadlock; the agent arbitrarily given the internal choice must
send first, enabling only one of the two desired enactments.

Listing 6: Hypothetical local projections in Trace that illustrate the difficulty
with choice.

B : S ! Request . ( S? Shipment . S ! Payment ) + ( S ! Payment . S? Shipment )
S : B? Request . ( B! Shipment . B? Payment ) ⊕ (B? Payment . B! Shipment )

Castagna et al. formalize properties of sequentiality and knowledge for choice
under which Listing 6 is invalid because of the nonlocal choice between Payment
and Shipment.

Scribble shares Trace’s limitations. Listing 7 shows how we might model the
scenario in Scribble. Scribble tooling rejects the protocol as ill-formed because
the choice is at B but one of the alternatives triggers with an action by S.

Listing 7: Encode in Scribble.

p r o t o c o l F l e x i b l e P u r c h a s e ( r o l e B, r o l e S ) {
Request ( ) from B to S ;
c h o i c e a t B {

Payment ( ) from B to S ;
Shipment ( ) from S to B ;

} o r {
Shipment ( ) from S to B ; // not v a l i d
Payment ( ) from B to S ;}}
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Figure 3’s HAPN protocol captures only the first two enactments, not the
concurrent one, because HAPN assumes synchrony.

s0 s1 s2
B 7→ S: Request()

B 7→ S: Payment()[unbound(paid)]/bind(paid,T)

S 7→ B: Shipment()[unbound(shipped)]/bind(shipped,T)

[bound(paid)∧bound(shipped)]
P:

Fig. 3: FlexiblePurchase in HAPN.

Listing 8 gives a BSPL protocol. It supports the enactment in Figure 2c
because after B sends Request, it has the information needed to send Payment
and, upon receiving Request, S has the information needed to send Shipment.

Listing 8: A protocol exhibiting concurrency.

F l e x i b l e Purchase {
role B, S
parameter out ID key , out item , out sh ipped , out p a i d

B 7→ S : Request [ out ID , out i tem ]
S 7→ B : Shipment [ i n ID , i n item , out s h i p p e d ]
B 7→ S : Payment [ i n ID , i n item , out p a i d ] }

4 Asynchrony
Whereas synchronous communication couples a sender and receiver (they must
be ready to receive and send at the same time), asynchronous communication
does not. Asynchrony is supported by the Internet and promotes decentraliza-
tion: agents do not need to know of each other’s states or wait for each other.
Scribble, Trace, and BSPL support asynchrony; HAPN [17, p. 61] does not.
However, digging deeper, we uncover significant differences between Scribble
and Trace on the one hand and BSPL on the other. The differences stem from
the fact that Scribble and Trace both require pairwise-FIFO delivery of messages
whereas BSPL does not.

A consequence of the end-to-end principle [13] is that a protocol should not
rely on message ordering guarantees from the communication infrastructure since
the appropriate constraints are to be checked in an upper layer. Relying on such
guarantees naturally limits the kinds of communication infrastructures upon
which a protocol may be used. Further, protocols for lightweight communications
(e.g., for IoT) or fast interactions (e.g., in financial transactions) cannot support
FIFO. And, FIFO is inadequate for settings of more than two parties as the
following scenario demonstrates.

Scenario. In an indirect-payment purchase protocol, after receiving an Offer
B sends Accept to S and then Instruct (a payment instruction) to bank K. Upon
receiving Instruct, K does a funds Transfer to S.
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B S K

Offer

Accept Instruct

Transfer

(a) In-order delivery.

B S K

Offer

Accept

Instruct

Transfer

(b) Out-of-order delivery.

Fig. 4: FIFO does not guarantee stable ordering.

Figure 4 shows two enactments for this scenario. In Figure 4a, S receives
Accept before Transfer whereas in Figure 4b, S receives it after Transfer. Both
enactments satisfy pairwise FIFO. The enactments illustrate that even with
FIFO ordering, asynchrony makes ordering indeterminate for protocols involving
more than two agents. Listing 9 gives a protocol that supports both enactments
in Figure 4.

Listing 9: Indirect payment protocol in BSPL.

I n d i r e c t Payment {
role B, S , K // K i s bank
parameter out ID key , out item , out p r i c e , out acc , out i n s t ,

out OK

S 7→ B : O f f e r [ out ID , out item , out p r i c e ]
B 7→ S : Accept [ i n ID , i n item , i n p r i c e , out acc ]
B 7→ K: I n s t r u c t [ i n ID , i n p r i c e , i n acc , out i n s t ]
K 7→ S : T r a n s f e r [ i n ID , i n p r i c e , i n i n s t , out OK] }

Listing 10 is an attempt to capture the scenario in Trace. Following Trace
[5, p. 16], this protocol is not well-formed, which means that the correctness of
its projections, also given in Listing 10, cannot be guaranteed. Specifically, the
projection for S expects Accept before Transfer and therefore does not support
the enactment in Figure 4b, which may arise despite using FIFO channels.

Listing 10: A plausible indirect payment protocol and its projections in Trace.

// P r o t o c o l

S Offer−−→ B ; B Accept−−−→ S ; B Instruct−−−−→ K; K Transfer−−−−→ S
// P r o j e c t i o n s
B : S? O f f e r . S ! Accept .K! I n s t r u c t
S : B! O f f e r . B? Accept .K? T r a n s f e r
K: B? I n s t r u c t . S ! T r a n s f e r

Listing 11 gives a Scribble protocol to capture the scenario. The projections
given are produced by Scribble tooling, which verifies the specification. The
projections are analogous to the Trace projections in Listing 10; in particular, S
cannot receive Transfer before Accept; it blocks on the reception of Accept on
the channel from B even if Transfer may have arrive earlier on the channel from
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K. Effectively, the projection reorders the receptions of the two messages. The
listing shows S’s projection (other roles’ projections are elided).

Listing 11: Indirect payment in Scribble.

p r o t o c o l I n d i r e c t P a y m e n t ( r o l e S , r o l e C , r o l e B) {
O f f e r ( ) from S to B ;
Accept ( ) from B to S ;
I n s t r u c t ( ) from B to K;
T r a n s f e r ( ) from K to S ; }

p r o j e c t i o n I n d i r e c t P a y m e n t S ( r o l e B, r o l e S , r o l e K) {
O f f e r ( ) to B ;
Accept ( ) from B ;
T r a n s f e r ( ) from K; }

Reordering messages as Scribble does undesirable for many reasons. One,
processing of messages that have arrived earlier is unnecessarily delayed. Two,
blocking paves the way for deadlocks. For example, imagine a scenario where an
agent is waiting for m1 to arrive, with m2 already in its buffer waiting to be
received by the agent. If m2 disables the emission of m1, then the agent is dead-
locked. What the foregoing scenario shows is that despite the FIFO assumption,
both Scribble and Trace (unnecessarily) rule out realistic message orders that
are simply the result of asynchrony.

5 Summary

Table 1: Summary of evaluation.

Criterion Scribble Trace HAPN BSPL

Concurrency No No No Yes
Asynchrony Yes Yes No Yes
Unordering No No – Yes

Table 1 summarizes our findings. Our criteria and scenarios are elementary,
motivated from fundamental challenges for interaction protocols. And our se-
lected approaches represent recent research into protocols. Our evaluation is
concrete and comparative, driven by the specification of scenarios in the se-
lected approaches, followed by their analysis. Our evaluation shows significant
advantages of BSPL over the other approaches. The results presented here can
be a starting point for a more extensive comparison of protocol languages.
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