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Abstract. Existing work on representing and reasoning about norms
has largely focused on a relational information model. However, the rela-
tional model is rigid and able to store only information and events that
match a predefined schema, or is simply not available in some IT settings.
We propose a new approach for realizing norms based on a document-
store model. In particular, we provide a language for specifying norms,
and an implementation that realizes this language and supports reason-
ing about norms stored as unstructured documents in CouchDB.

1 Introduction

Sociotechnical systems are multiagent systems that involve both social agents
or principals and technical elements such as computing systems. A norm is an
expectation about how agents in a social context ought to interact. One exam-
ple of a norm from healthcare is of a prohibition against a healthcare provider
disclosing private health information without consent. Protecting private infor-
mation is traditionally done by humans with knowledge of the relevant regu-
lations and policies. However, these social expectations can be formalized and
reasoned about computationally, enabling the development of socially aware soft-
ware agents capable of performing the same functions.

Abstractly specifying norms as regulations rather than rigidly enforcing them
via regimentation and automated systems preserves agent autonomy and flex-
ibility, enabling more robust and reliable systems. By autonomously reasoning
about norms, an agent can better handle exceptional circumstances. For ex-
ample, many electronic health record systems have access controls in place to
prevent personnel from accessing patient files unrelated to their work in accor-
dance with the prohibition against unauthorized disclosure. However, in the case
of an emergency, a doctor or nurse can override the protections, recording the
reason and their identity. After the emergency is over, the records can be re-
viewed to determine if the access was warranted, and sanctions imposed if it was
not. This approach preserves privacy, but not at the risk of a patient’s life.

Since norms are not directly enforced, they are effective only to the extent
that agents are aware of and act on them. The agents must not only know

louisedennis
Placed Image



2 Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh

that certain norms exist, but also how to apply them. For example, a healthcare
provider should not only know they ought to delete private data when the patient
requests it, but also be aware of such requests and the resulting obligation to
delete the data. Similarly, a patient should be able to identify and avoid providers
that violate commitments. Thus, agents need to be able to compute the state of
a norm based on observed events.

Reasoning about norms and using them to inform agent behavior is a well-
established idea in multiagent systems. Developments in engineering socially-
aware and norm aware agents include agent programming frameworks with social
reasoning capabilities [3], software engineering methodologies [1, 6], planning-
based [11, 12], and BDI [2] approaches to reasoning. Derakhshan et al. described
an architecture using a rules engine to reason over events, but only at a high
level without details about storage or format, or an example implementation [8].
Criado et al. developed a BDI-compatible framework for reasoning about con-
stitutive norms, and demonstrated that it helped the agents better understand
facts about the organization, and actions they could and should take in a given
situation, supporting agent autonomy [7].

Custard [5] and Cupid [4] are both prior approaches to representing and rea-
soning about norms using a relational model. However, the relational approach
has several limitations. For instance, most relational systems expect that the
number and names of the columns (that is, attributes) themselves remain con-
stant. Furthermore, there are environments in which the relational model is un-
desirable or even unavailable. For example, the Hyperledger Fabric blockchain
framework (in its current version) provides only a LevelDB based key-value
store, and a CouchDB-based document store. Enabling normative reasoning on
blockchain platforms will be important if more business relationships are instan-
tiated as “smart contracts” and in fact higher-level declarative specifications of
normative relationships may be essential to making such contracts viable [10].

In such document stores, documents do not (necessarily) have a schema; that
they may have fields added or removed at any time. This is what we mean by
unstructured data—data without a predefined schema or guaranteed structure,
as is commonly found in document stores. The lack of structure usually means
that the database does not have the kind of indexing required for arbitrary
and efficient join queries. Instead, more complex queries can be computed using
highly efficient and parallel map and reduce operations.

Our motivation to build a normative computation service on top of document
stores such as CouchDB is motivated by the possibility of efficiency and better
scaling to larger data sets, as well as simply the ability to process existing data
that may be stored in such systems. Using an unstructured event model has
minimal impact on the norm specification language, and instead primarily affects
the communication between an agent and the reasoner. As will be demonstrated,
the difference is primarily that the unstructured approach does not require an
event schema, but does require an enactment identifier to associate events that
need to be processed together.
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1.1 Contributions

We examine the conceptualization of a normative system in terms of the doc-
ument data model, provide a norm specification language specialized for the
model, and develop a prototype service for reasoning about norms using events
in a document store.

1.2 Case Study

The examples in this paper are drawn from the setting of health care and clin-
ical trials. Specifically, patient consent for participation in clinical trials. Many
healthcare providers (HCPs) have electronic health record (EHR) data about
their patients that could be useful in research, but privacy regulations prevent
them from sharing that data outside of the organization, unless specifically au-
thorized by the patient. Getting a patient’s approval and securely sharing data
with external researchers is a complex problem, but for illustration purposes we
will be using a simplified construction.

The requirements are as follows:
1. Storage: After a patient visits an HCP, the HCP should store the data so

that the patient’s doctor can access it at any time.
2. Destruction: The HCP should destroy a patient’s data upon request by the

patient
3. Sharing: An agent authorized by the patient to access their data should

receive requested data in a timely fashion, unless access was revoked before
the request was made.

4. Privacy: No other agent should be able to access the documents except the
patient, their doctor, and those authorized by the patient.

2 Social Norms

For clarity, we use terminology and semantics based on the existing literature on
norms [14]. A norm is a directed expectation between two agents, the subject
and object. Each norm has an antecedent—the condition under which it takes
effect—and a consequent—the condition under which it is fully satisfied. A spe-
cific instance of a norm can exist in one of several states: created, when the
norm is instantiated for particular agents, detached when the antecedent holds,
discharged when the consequent holds, and violated when the norm is detached
but cannot be discharged, because time limits have passed.

In a commitment, the subject or creditor commits to the object or debtor
that they will ensure the consequent holds when the antecedent is true.

An authorization is a norm describing that the object allows the subject
to bring about the consequent when the antecedent is true. A friend or relative
can be authorized to access a patient’s health records (consequent) if the patient
submits a release form (antecedent).

A prohibition is a norm that forbids the subject from bringing about the
consequent if the antecedent holds. A healthcare provider is prohibited from
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sharing patient data with an agent (consequent) if the patient has not granted
access (antecedent).

Although various authors have defined other kinds of norms and norm states,
the above is sufficient for our purposes of demonstrating basic reasoning about
norms.

3 Technical Framework

Hercule is a service for both specifying and running a normative system. Specifi-
cally, the offline portion of Hercule uses norm specifications written in a domain-
specific language to generate queries. The online portion then uses those queries
to compute current norm states based on events reported to it by an agent.

3.1 Architecture

At a high level, the architecture of a multiagent system using Hercule for nor-
mative reasoning should look something like the following diagram.

Agent

Agent

Agent

Hercule

CouchDB

Hercule

CouchDB

Hercule

CouchDB

messages

events

events

events

Fig. 1. Architecture diagram for a multiagent system using Hercule

Hercule does not provide any of the other features necessary for building
or operating a multiagent system, such as the messaging and communication
between agents. Each Hercule instance operates independently, providing rea-
soning capabilities to its agent based on the information it is provided, from
the perspective of that agent. The Hercule instances do not share any data, but
operate exclusively on information known by their agent.

Hercule computes norm states from events which are reported to it by the
agent, and then stored internally in an encapsulated document store. These
events can have any structure, as they are not constrained by a schema. Whereas
a system specification in Hercule may define norms and their states in terms of
fields on an event, these identified fields do not constrain the stored events in
any way. Also, each field can contain any type of data, though some types are
more amenable to comparison than others.

An instance of Hercule does not have direct access to the environment or
messages received by the agent; it is simply a reasoning tool, not a fully-featured
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MAS implementation framework. As such, relevant events must be reported to
Hercule by the agent. Decoupling events from messages gives the MAS developer
full control over integration, adding Hercule reasoning to agents in an existing
system on an as-needed basis.

However, decoupling means that event replication is not automatic between
agents. Rather, each agent must independently observe or receive any relevant
events and report them to its Hercule instance. Relying only on each agent’s
local perspective naturally avoids problems due to scaling and over-sharing of
information.

While the proposed architecture is the simplest and best suited to scalable
multiagent systems, there is nothing preventing Hercule from being used as a
shared resource among multiple agents, or treated as an artifact in the environ-
ment. The current implementation assumes for simplicity that the agent submit-
ting events is honest, which is reasonable in a single-agent case; it would deceive
no one but itself. If used as a service by multiple agents, either the assumption
of honesty must hold or access controls should be implemented to prevent agents
from submitting events using false identities. Timestamp falsification is already
protected against, because Hercule handles all time internally anyway.

3.2 Syntax

The syntax used by Hercule is loosely inspired by Custard and Cupid. Table 1
shows the formal syntax that we adopt for Hercule, taken almost directly from
the parser specification of our implementation.

An example specification in Hercule of the norms described in Section 1.2 is
given in Listing 1:

Listing 1. Norm specifications in Hercule

con t e x t Con s u l t a t i o n ( pa t i e n t , doctor , h o s p i t a l ) {
commitment StoreData ( h o s p i t a l−>p a t i e n t ) :
c r e a t e d : p a t i e n t . V i s i t { date }
detached : doc to r . Record { pa t i e n t , i tem }
d i s c h a r g e d : h o s p i t a l . S to r e { i t em }

commitment DestroyData ( h o s p i t a l−>p a t i e n t ) :
c r e a t e d : h o s p i t a l . S to r e { i t em }
detached : p a t i e n t . Reque s tDe l e t i o n { i t em }
d i s c h a r g e d : h o s p i t a l . De l e t ed { i t em }

a u t h o r i z a t i o n Access ( p a t i e n t−>r e c i p i e n t , i tem ) :
c r e a t e d :
p a t i e n t . GrantAcces s { r e c i p i e n t , i tem } @ t

detached :
r e c i p i e n t . Reques tAcces s { i t em } @ t2 > t
e x cep t p a t i e n t . RevokeAccess { r e c i p i e n t , i tem } @ [ t , t2 ]

d i s c h a r g e d :
h o s p i t a l . Shared { i tem , r e c i p i e n t } @ [ t2 , t2+10]
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p r o h i b i t i o n D i s c l o s u r e ( p a t i e n t−>h o s p i t a l ) :
c r e a t e d : h o s p i t a l . S to r e { pa t i e n t , i tem }
v i o l a t e d :
h o s p i t a l . Shared { i tem , r e c i p i e n t }
excep t Access ( p a t i e n t−>r e c i p i e n t , i tem ) : detached

}

Listing 1 specifies a context named Consultation containing four norms: a
commitment by the hospital to store patient data (StoreData), a commitment
by the hospital to destroy data upon request (DestroyData), an authorization
by the patient to allow a recipient to access their health data (Access), and a
prohibition against a hospital disclosing information to an unauthorized agent
(Disclosure).

A context is a collection of related norms that conceptually captures the
setting in which the norms are defined, and when instantiated as an enactment
provides a scope for storing event instances and their attributes. Any names
such as event attributes in the same context refer to the same information;
different contexts may reuse names with different meanings. In addition, each
context identifies a set of roles that must be bound to initiate an enactment. In
Consultation, patient, doctor, and hospital must all be identified.

Within each context are one or more norm definitions. The first is a commit-
ment named StoreData. Whereas Hercule does use special semantics for well-
known norm kinds such as commitments, authorizations, and prohibitions, any
name can be used for the kind of norm. StoreData is a commitment from hos-
pital to patient; that is, hospital is the debtor and thus accountable for the
commitment, and patient is the creditor. If it is violated, hospital is at fault.
No consequences immediately or necessarily apply, but other agents can observe
the fault and adjust their behavior accordingly.

Within each norm are defined one or more states. As with norms, there are
default relationships between the well-known states but any name can be used.
For example, a norm cannot be detached until it is created, regardless of the
type of norm. However, new states such as active or canceled can easily be
defined. Each state contains an expression used to select matching enactments
from the database. The basic expression is an event expression. The first event
expression, in the created state of StoreData, specifies an event named Visit
which is created by patient and contains an attribute named date. Thus, any
enactment containing a Visit event matching this description is considered as
creating an instance of StoreData. More complex expressions can be formed
using operators such as and, or, and except.

Event expressions can be extended by time expressions, appended with the
‘@’ symbol, which either label the time at which an event occurs (as in Ac-
cess.created, which occurs at time t) or constrain it. The time expression may
perform a simple comparison, as in t2 > t1, or restrict it to an interval, such as
[t2, t2 + 10].

Using these concepts, we can interpret the specification above as follows:
StoreData is defined as a commitment with three states: created, detached, and
discharged. StoreData is created when a patient visits the doctor—that is, when
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the agent whose Hercule instance we are considering reports a Visit event con-
taining the patient and the date of the visit. StoreData is detached when the
doctor produces a record of the visit and reports the Record event with at-
tributes describing both which patient the record is for, and what item is being
recorded. Finally, StoreData is discharged when the hospital permanently stores
the item, as indicated when the hospital reports a Store event with the item as
an attribute.

DestroyData is also defined as a commitment, and is created when the hos-
pital stores patient data, using the same Store event as above. DestroyData is
then detached when the patient requests that their data be deleted with the
RequestDeletion event, and discharged when the hospital deletes the data as
indicated by a Deleted event.

Access is defined as an authorization, and created when the patient grants
another agent access to their data. This occurs when the patient reports the
GrantAccess event with the designated recipient and the item they are autho-
rized to access as attributes. Access is detached when the recipient requests the
data by reporting the RequestAccess event, so long as they make the request
before the patient revokes their access by reporting the RevokeAccess event. Fi-
nally, Access is discharged when the hospital shares the data with the recipient
within a certain amount of time.

The last norm in this context, Disclosure, is a prohibition created when the
hospital stores patient data. Disclosure is violated if the hospital shares the data
with an agent that is not authorized to access it. Disclosure does not reference
any new events, and uses a reference to the Access norm for concision.

3.3 Semantics

Semantically, Hercule is flexible, and enables the designer to define custom norms
using any name, with custom states that may have any desired logical relation-
ship. There is no restriction on the names that can be used for a norm’s kind or
its states.

However, to reduce repetition and make norm design easier, several common
norm types are treated as special cases, with predefined states and relationships
between them. These predefined states and relationships are based on established
definitions from the literature [13, 14].

The predefined kinds of norms are the commitment, authorization, and pro-
hibition. Each of these norms has four states: created, detached, discharged, and
violated. The designer can define additional states as needed.

For all norms, the created state is assumed to be provided by the designer.
The other states are automatically extended to save repetition and guard against
false positives. For example, the detached state, if provided, is modified to depend
on the created state. That is, an enactment will not be considered to detach an
instance of the norm unless it also creates an instance.

For commitments, the created and detached states must be provided by the
designer. The discharged state is then extended so that a commitment can only
be discharged if it is already created or detached. The violated state is unique,
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Table 1. Syntax of Hercule.

Context −→ ‘context’ Name ‘(’ roles:NameList ‘)’
‘{’ Norm+ ‘}’

NameList −→ first ‘,’ rest:NameList | Name
Norm −→ Kind Name ‘(’ Relationship (‘,’ ParamList)? ‘):’

State+
Name −→ String
Kind −→ String
Relationship −→ Name ‘->’ Name
State −→ Name ‘:’ EventConjunction
EventConjunction −→ EventDisjunction

(‘and’ | ‘except’) EventConjunction
| EventDisjunction

EventDisjunction −→ EventUnary ‘or’ EventDisjunction
| EventUnary

EventUnary −→ (‘not’ | ‘unless’) EventClause
| EventClause

EventClause −→ ‘(’ EventConjunction ‘)’
| Event
| Reference

Event −→ Role ‘.’ Name ‘’ ParamList ‘’ TimeClause?
Reference −→ Name ‘(’ Relationship (‘,’ ParamList)? ‘):’ State
ParamList −→ Param (‘,’ ParamList)?
Param −→ Name Match?
Match −→ ‘:’ Name
TimeClause −→ ‘@’ TimeComp

| ’@’ ‘[’ TimeExpr ‘,’ TimeExpr ‘]’
TimeComp −→ TimeExpr (‘>’ | ‘<’ | ‘==’) TimeComp

| TimeExpr
TimeExpr −→ TimeTerm (‘+’ | ‘-’) TimeExpr

| TimeTerm
TimeTerm −→ TimeFactor (‘*’ | ‘/’) TimeTerm

| TimeFactor
TimeFactor −→ ‘(’ TimeExpr ‘)’

| Time
Time −→ Integer | Name

in that it may be explicitly specified instead of a discharge clause. If a violated
state is provided explicitly, it is guarded so that a commitment cannot be vio-
lated unless it is created. If a violated state is not provided, it is automatically
generated so that a commitment is violated if it is detached but not discharged.

Authorizations are simpler, in that a discharge can only follow detachment,
and violation is never provided explicitly but always derived from the discharged
state.

Conversely, prohibitions do not expect an explicit discharge, but derive it
from the violated state.

These relationships are summarized in Figure 2.
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4 Representation

4.1 Unstructured Data

Events in Hercule are stored as unstructured data; that is, data that does not
have a predefined and fixed schema. To be relevant to a specific norm an event
will need fields with certain names, but there is no requirement that each event
have any particular field, and fields can be added as needed.

Whereas there are many document store databases, we implement Hercule
on top of CouchDB [15], as a representative unstructured database with a map-
reduce query system. As a document store, CouchDB stores objects or docu-
ments, instead of rows in a table with a schema. These documents are key-value
dictionaries, where the values may themselves be complex data such as nested
documents. CouchDB, for example, uses the JSON data format for its docu-
ments. An example document is given in Listing 2. Using complex formats for
the documents allows the database to exchange them directly with an applica-
tion. However, because a given document could have any set of keys—that is,
there are no fixed schema—CouchDB does not automatically index for each key
the way a relational database would index each column. Instead it provides the
massively parallel map and reduce operations to enable a user to generate their
own indexes or, as CouchDB names them, views of the data. The map function
is applied to each document in the database, and can emit one or more out-
put documents that are saved in a separate collection. The logic it uses can be
as complicated as necessary, as the map functions are implemented using the
full JavaScript programming language. However, the map process is designed to
work in parallel, and so must operate on each document in isolation—it cannot
join or compare fields across documents, as one might do in a complex SQL
query. Optionally, a reduce function may combine all of the result documents to
compute something like a count, sum, or average over all the results.

In CouchDB, the JavaScript map and reduce functions are stored as strings in
documents alongside the other data in the database, in documents called design
documents. Any time a design document is modified, the database detects the

Fig. 2. Norm Semantics

Commitment:
detached = detached ∧ created
discharged = (created ∧ discharged) ∨ (detached ∧ discharged)
violated = detached ∧ violated

or
violated = detached ∧ ¬discharged

Authorization:
discharged = detached ∧ discharged
violated = detached ∧ ¬discharged

Prohibition:
discharged = detached ∧ ¬violated
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change and recomputes the associated view. The first time a view is queried, it
batch processes all of the documents in the database. Subsequent queries reuse
the previous results, only applying the map and reduce functions to documents
that have not been processed yet.

As a service for reasoning about norm states, Hercule generates map and
reduce functions from norm specifications, so that the norm states can simply
be queried as needed.

4.2 Context and Enactments

The documents that Hercule stores are enactments, or instances of the social
context. Each enactment identifies the agents performing each of the roles in the
social context. An enactment includes one or more events that monotonically
bind information attributes.

For example, the Consultation context specified above in Listing 1 contains
all of the norms and information related to the healthcare privacy setting.

An instance of this context might look like the example enactment document
given in Listing 2.

Listing 2. An example enactment document.

{
” i d ” : ”7 c4f054dc8740698c93a9452e856cc87 ” ,
” p a t i e n t ” : ”P” ,
” doc to r ” : ”D” ,
” h o s p i t a l ” : ”H” ,
” date ” : ”2018−11−16”,
” i tem ” : ” D i a gno s i s ” ,
” V i s i t ” : {

”$by ” : ”P” ,
” date ” : ”2018−11−16”,
”$ t ime ” : 1 ,

} ,
”Record ” : {

”$by ” : ”D” ,
” p a t i e n t ” : ”P” ,
” i tem ” : ” D i a gno s i s ”
”$ t ime ” : 2 ,

} ,
” S to r e ” : {

”$by ” : ”H” ,
” i tem ” : ” D i a gno s i s ”
”$ t ime ” : 3 ,

}
}

Listing 2 clearly illustrates several of the important features of the way en-
actments are represented. First, it contains a unique identifier, in this case the id

field. Second, it has a set of bindings for each of the roles declared in the context
specification. For example, patient is bound to P, and doctor to D. Finally, each
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of the events that have occurred in the enactment are represented as a single
object attached as a top-level property.

Note that all of the events necessary for determining the state of a norm must
be stored in the same context document, because map and reduce operate only on
individual documents in isolation. Correlation of information across documents
would require additional processing after querying the database.

Also, Hercule does not automatically identify new enactments or match
events to them. Instead, the agent must generate an enactment ID, and attach
it to all events it deems part of that enactment.

4.3 Events

Events are stored as top-level properties of enactment documents, which can be
easily matched against, and each event is itself an object containing information
attributes.

Listing 3 focuses on a single event instance.

Listing 3. Example event object.

” Sto r e ” : {
”$by ” : ”H” ,
” i tem ” : ” D i a gno s i s ” ,
”$ t ime ” : 1

}

The information payload of the event is copied into the parent enactment
document, because the information is monotonically bound and cannot be con-
tradicted or overwritten within a single enactment. In this way, an attribute can
contribute to the state of a norm, regardless of the event the attribute came
from.

Time of occurrence is an important and distinctive attribute of an event.
Without time it would be impossible to have a concept of events, as there would
be no frame of reference for detecting change [9]. In Hercule, the timestamp of
each event is represented simply as an integer for ease of manipulation and com-
parison, and is injected by the service when it is reported to ensure a consistent
concept of time.

4.4 Norm Instances

Norm instances are not reified objects stored in the database, but rather expecta-
tions derived from stored events. Thus, a norm instance is realized in Hercule as
a map-reduce process that collects all of the relevant events and then computes
the resulting state from them.

Some norms are defined in terms of the states of other norms. For example,
the Disclosure prohibition described in Listing 1 refers to the Access authoriza-
tion, which is itself a norm. Unfortunately, the map-reduce implementation pro-
vided by CouchDB cannot directly reference another view or query, so Hercule
compiles the referenced logical expression into a single query.
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5 Implementation

A proof of concept for Hercule has been implemented in JavaScript using the
pegjs parser generator, and the astring code generator.

In CouchDB, the map-reduce model is provided via views [16]: indexes over
the data computed by JavaScript map and reduce functions stored in design
documents.

Hercule processes a context specification to produce a design document for
each norm, with one view for each state. When loaded into the database, each
view is applied to the data to produce a collection of matching norm instances.
These collections can then be queried to discover the current states of various
norm instances and inform agent behavior, e.g., by detecting past violations by
a potential provider. The specific agent behavior in response to norm states is
outside Hercule’s scope.

Hercule can operate both on and offline. This flexibility results from the ar-
chitecture as a simple interface to CouchDB, computing a view from unmodified
events. If used offline, CouchDB will perform the map-reduce computations in an
efficient batch operation, while online usage will appropriately operate incremen-
tally on any recent changes to the data. The computation does not modify any
of the documents, so either the data or the norm specification can be updated
and the query results recalculated at any time without repercussion. Though we
have not implemented it, CouchDB also provides a change notification API, so
that Hercule could easily be extended to push notifications of norm state changes
to an agent as they occur in real time, instead of waiting for the agent to query
the latest state.

Listing 4 shows part of the design document generated by Hercule for the
Consultation context specification given in Listing 1.

Listing 4. StoreData design document (generated from Listing 1)

” StoreData ” : {
” language ” : ” j a v a s c r i p t ” ,
” v i ews ” : {
” c r e a t e d ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . V i s i t && emit ( doc )
}”

} ,
” detached ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . V i s i t && doc . Record && emit ( doc )
}”

} ,
” d i s c h a r g e d ” : {
”map” :
” f u n c t i o n ( doc ) {

( doc . V i s i t && doc . S to r e
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| | doc . V i s i t && doc . Record && doc . S to r e )
&& emit ( doc )
}”

} ,
” v i o l a t e d ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . V i s i t
&& ( doc . V i s i t && doc . Record
&& ! ( doc . V i s i t && doc . S to r e

| | doc . V i s i t && doc . Record && doc . S to r e ) )
&& emit ( doc )
}”

}
}
}

Listing 4 contains the code generated for the StoreData commitment.

As a design document, StoreData consists of two keys, language and views.
Each view has the name of the state as its key, and a single map function
implementing the query logic. Each map function is applied to every document
in the database, via the parameter doc, to produce one or more results via emit.

Each map function contains a single Boolean expression testing whether a
given doc matches the specified norm state. For example, the created function in
StoreData simply emits all documents that contain the Visit event.

According to the semantics of a commitment, the detached state requires the
norm to already be in the created state. For simplicity, Hercule compiles the two
conditions into a single expression. Thus, the detached function checks that both
Visit and Record have occurred. Similarly, discharged requires that either created

or detached be true. Finally, violated need not be explicitly specified, but rather
is generated automatically—if created and detached are true but discharged is not,
the commitment is violated.

Listing 5. Access design document

”Access ” : {
” language ” : ” j a v a s c r i p t ” ,
” v i ews ” : {
” c r e a t e d ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . GrantAcces s && doc . GrantAcces s . $ t ime == doc . t
&& emit ( doc )
}”

} ,
” detached ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . GrantAcces s
&& doc . GrantAcces s . $ t ime == doc . t
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&& ( doc . Reques tAcces s && doc . t2 > doc . t )
&& ! ( doc . RevokeAccess

&& ( doc . RevokeAccess . $ t ime > doc . t
&& doc . RevokeAccess . $ t ime < doc . t2 ) )

&& emit ( doc )
}”

} ,
” d i s c h a r g e d ” : {
”map” :
” f u n c t i o n ( doc ) {

doc . GrantAcces s
&& doc . GrantAcces s . $ t ime == doc . t
&& ( doc . Reques tAcces s && doc . t2 > doc . t )
&& ! ( doc . RevokeAccess

&& ( doc . RevokeAccess . $ t ime > doc . t
&& doc . RevokeAccess . $ t ime < doc . t2 ) )

&& ( doc . Shared
&& ( doc . Shared . $ t ime > doc . t2
&& doc . Shared . $ t ime < doc . t2 + 10) )
&& emit ( doc )
}”

} ,
” v i o l a t e d ” : {
”map” :
” f u n c t i o n ( doc ) {

f a l s e && emit ( doc )
}”

}
}
}

Rather significantly, the Access norm includes time constraints on the events.
The compiled view function checks that the event attributes match those in the
document, and that the timestamp is within the specified range.

6 Performance

To estimate the practicality of this system, we measured the time it takes for
CouchDB to produce views for the example norms using randomly generated
enactments. We first filled the database with lots of random enactments and then
triggered the view generation process, sampling periodically as it processed to
get a report from CouchDB of how many “changes per second” the database was
performing. In this case, changes mean documents generated by the map function
to populate the view. Thus, we can use the changes-per-second measure as an
estimate for how quickly the map-reduce approach can process incoming events.
We used a large number of pregenerated enactments so that the processing time
would take long enough to actually sample multiple times.
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Each enactment was generated based on a uniformly-distributed random
number from 0 to 9. Enactments with higher numbers progressed further, and
included more events. A bar plot of the results is displayed in Figure 3.

Fig. 3. View construction performance of the example norms
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CouchDB does not generate a view until it is first retrieved. This data was
collected by creating a new database to prevent caching and data reuse, loading
200,000 randomly generated enactments, and probing the changes per second
statistic multiple times while the database created the view. The number of
enactments was arbitrary, selected to achieve a reasonable minimum number of
performance samples. This result was obtained from a multiprocess, single node
CouchDB installation running in docker on a laptop.

The measured throughput ranges from 3-6k changes per second across up
to 8 parallel tasks. For each norm, created is faster than detached, which is
faster than discharged. This seems reasonable, given that each state depends
on the previous ones, and therefore subsumes all of their logic. However, the
later norms have higher throughput in a given state than the earlier ones. One
possible explanation is that because of the way the enactments are generated,
with lower odds of later events such as GrantAccess occurring, Access was able
to quickly reject a larger percentage of the enactments as not having the required
events, and consequently not spend further time checking the values or writing
the enactments to the view. One exception is Disclosure’s created state, which
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is identical to that of DestroyData, except that it requires an additional patient
attribute on the Store event and so slightly slower.

These results indicate that performance is affected by the complexity of the
generated code, and is not limited by write speed. How norms are written by
the designer and optimized by the the query generator can have an effect on
performance, but should not negatively impact most use cases.

The results correspond to a throughput of three thousand norm-state changes
per second. That could be one event and three thousand norms, or three thou-
sand events and a single norm. The more complex norms were more efficient,
because their states were not triggered as frequently. This seems more than suf-
ficient for a practical real-time norm processing environment. Even VisaNet, the
largest transaction processing system in the world, handles on average about
1736 transactions per second worldwide [17]. Plus, Hercule only computes the
states for norms that the agents using it actually query, not necessarily all of the
norms it has specifications for.

7 Discussion

Hercule demonstrates a possible approach to realizing normative reasoning over
events and information stored in scalable, document-based databases.

A significant disadvantage compared to relational databases is the difficulty
of composing or joining queries. In the current implementation, there is no way
to reason about norms affected by events that occur across multiple interactions,
since they are stored in separate documents.

To some extent this limitation can be circumvented using a thicker client
architecture. Instead of leaving all of the querying and reasoning up to the
database, the Hercule service could act as an intermediary that receives higher
level queries from an agent, and computes the answer using information from
multiple database queries.

7.1 Future Work

Extending Hercule to support communication protocol specifications and di-
rectly ingest messages would help with automatically identifying enactments,
and storing events in the correct enactment. It could also simplify adopting Her-
cule in an existing multiagent system, and reduce duplication in specifications.
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