Rafael H. Bordini, Louise A. Dennis and Yves Lespérance (eds)

Pre-proceedings of the 7th International Workshop on Engineering Multi-Agent Systems (EMAS 2019)
13th-14th May 2019, Montreal, Canada
cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_8.pdf

Jacamo-web is on the fly: an interactive
Multi-Agent System IDE*

Cleber Jorge Amaral’? and
Jomi Fred Hiibner!

Federal University of Santa Catarina (UFSC), Florianépolis, SC, Brazil
jomi.hubner@ufsc.br
Federal Institute of Santa Catarina (IFSC), Sao José, SC, Brazil
cleber.amaral@ifsc.edu.br

Abstract. This paper presents jacamo-web, an interactive program-
ming IDE to develop Multi-Agent Systems. The standard programming
method usually follows the sequence of compile, link and execute the
application. Alternatively, so-called interactive programming provides a
way to modify a system while it is running. Besides saving developing
time, it maintains the system’s availability since the application is kept
running while it is being changed. To illustrate jacamo-web interactive
functions, we have developed a MAS for the financial market. It checks
data of companies and applies known formulae to suggest whether to
buy assets or not.

Keywords: Interactive programming - Just-in-time programming - Multi-
Agent Oriented Programming - On-the-fly programming.

1 Introduction

Interactive programming is a form to develop a program while it is running,
without stopping or restarting, acting directly over its instance [6]. It allows
rapid prototyping, debugging and learning, as well as facilities for incremental
development. On the interactive approach, the programmer can enter a program
or a fragment directly into an already running system, reducing system devel-
opment time since the usual compile-link-execute process is done in a single
step [5]. This method is also useful in cases where there is no clear specification
of the problem at design phase and adaptations are required at run-time. This
feature is particularly useful for systems that perform critical missions needing
high availability.

For long term running systems, such as some open systems, interactive pro-
gramming gives tools to improve partly or the whole system at run-time. For
example, imagine stock market autonomous agents buying and selling all sorts
of assets. It is usual that one needs to enhance some functions of the agents,
for instance, their prediction models and decision-making rules. Interactive pro-
gramming allows to instantly apply such changes.

* Supported by Petrobras project AG-BR, IFSC and UFSC.

louisedennis
Placed Image

2 C.J. Amaral et al.

This paper presents jacamo-web an Integrated Development Environment
(IDE)! which uses the concept of interactive programming for development of
Multi-Agent Systems. It extends JaCaMo platform [3] adding facilities to create,
modify and destroy agents, artifacts, and organisations at running time. This
IDE is showed by demonstrating an application of financial market consultants.

2 Jacamo-web

JaCaMo is a Multi-Agent Oriented Programming (MAOP) platform that splits
programming concerns of a MAS by the parts responsible for autonomous deci-
sions: (i) the agents which are developed in Jason; (ii) their shared environment,
programmed in CArtAgO, a java-based framework; and, (iii) the coordination of
global behaviour, which is developed in MOISE, that uses artifacts to represent
organisational entities [3]. Jacamo-web adds a web interface allowing users to
create, modify, interact with, and destroy agents, artifacts, and organisations.
Although we have MAS IDEs where the agents themselves can modify the run-
ning system (by dynamically adding plans, changing beliefs of others, changing
its organisation and environment), jacamo-web brings this feature for the (de-
veloper) user using a web interface.

Jacamo-web provides interactive functions of Read-Eval-Print Loop (REPL).
The acronym REPL refers to: Read user insertions, Evaluates them, Print the
result for the user, all of this, repeatedly in a Loop [7]. This technology allows
the user to send commands to agents, to insert new instructions or full blocks
of code. Jason’s API is equipped with REPL functions which are processed by
Jason’s internal interpreter.

In case of environmental artifacts, jacamo-web brings a built-in Java com-
piler. It allows the development of new artifacts by coding java files which are
compiled automatically. These new or changed artifacts can be used in the run-
ning system.

In the case of the organisation, jacamo-web allows the user to create new
organisations and change those that are already running. For instance, the user
can create, modify and remove roles, shared goals, coordination schemes, and
norms.

3 Demonstration

The facilities provided by jacamo-web for developers are demonstrated by the
implementation of a MAS for the financial market. The organisation of the MAS
has two roles: consultants, which read assets data to apply a particular formu-
lae to suggest whether to buy it or not; and, assistants, which receive users
requests, asking to consultants their opinion, compiling a final suggestion and
replying to the user. The interface with final users is implemented using the Tele-
gram cell phone application, which is being integrated through Apache Camel
framework [1]. Fig. 1 shows the architecture of the application and jacamo-web.

1 A demo application is running at http://191.36.8.42:8080/

Jacamo-web is on the fly: an interactive Multi-Agent System IDE 3

Financial Agents

jacamo-web
Apache
Rest Camel

Java Virtual Machine

Operating System

Fig. 1. Financial agents and jacamo-web architecture

In the financial market, there are some known investors that have shared
the way they decide to buy an asset or not. For this demo, we adapt Benjamin
Grahan’s, Decio Bazin’s and Joel Greenblatt’s formulas [2,4]%. Each of these
decision rules is coded into agents with the same name as the original authors’
formulas. These agents are connected to an artifact that gets financial data of
assets from an external web-site. The assistant agent sends to the user consultant
opinions as well as a summarised recommendation. The final recommendation is
to buy the asset if at least two of the consultants are suggesting to buy.

Fig. 2 shows a diagram generated by jacamo-web according to the current
system’s state. The agents are represented by round shapes. The roles they
are playing are represented by connections with the organisation finantialteam.
The missions they are committed to are represented by connections with the
organisational scheme finantialsch. The consultants are also connected with the
artifact fundamentus which contains a parser for consulting asset data.

responsible

Fig. 2. Application overview showing runtime organisation, agents and environment

2 Buying conditions: Graham: Price < \ﬂ22.5 * EPS % BV PS); Greenblatt:
EBIT/(MarketCap + NetDebt) < 0.1 and ROIC < 0.1; Bazin: DY >= 0.06
and Debt/EV <= 1.

4

C.J. Amaral et al.

Jacamo-web allows programmers to exploit the following features:

Inspect the current state of the agent’s belief base, plan library and relations.
Change the agent’s belief base without stopping the agent.

Modify the agent’s plan library while running.

Create a new agent by command box (Fig. 3) and by menu.

Kill an agent and recreate him.

Send a new plan to an agent using tellHow performative.

Consult directory facilitator.

Inspect workspaces and artifacts seeing agents which are focusing on them.
Create an artifact based on a new java file.

Modify an artifact, dispose and create an new instance.

Inspect organisations.

Change organisation’s structure and schemes.

=
[} JaCamo-web x [4 =
< C 1t @ 127.0.1.1:808¢ -4 9 i
JaCaMo (O AGENTS [EJ ENVIRONMENT] ORGANISATION

.create
bazin
.create_agent(name[,source,customisations]) //creates agent using the referred AgentSpeak source code

grahan

greenblatt
myPA _

financialteam

responsible

financialagents

fundamentus :
dynamic.stock. FundamentusArtifact

consultant

directory
facilitator

greenblatt

create agent
3 mConsultant

mConsultant
—

Fig. 3. Text box with code completion. Diagram of agent greenblatt’s relations.

4 Conclusions

We have presented jacamo-web; an extension of JaCaMo MAS platform. Jacamo-
web has shown that it can shorten project life cycle. We could take advantage
of instantiated contexts and quickly get responses from new code insertions.
While developing the financial application, we have faced common situations
that needed changes on agents, environment and organisation that could be
applied at running time, and the results have been shown instantly. In case of
open systems, they are supposed to be available for new entrants where IDE like
jacamo-web are useful to help maintain the system’s availability. In addition, we
think it also facilitate to understand programming aspects, being an important
tool for didactic purposes. As far as we know, jacamo-web is the first interactive
MAOQP IDE where the user can interact with the system while it is running.

Jacamo-web is on the fly: an interactive Multi-Agent System IDE 5

References

. Amaral, C., Cranefield, S., Roloff, M.L.: Development of a Multi-Agent Sys-
tem in the Industry 4.0 Context - Using JaCaMo and Apache Camel. In:
Anais do IX Congresso Brasileiro de Engenharia de Fabricagdo. ABCM (2017).
https://doi.org/10.26678 / ABCM.COBEF2017.COF2017-0027

. Bazin, D.: Faga Fortuna com Agoes, Antes que seja Tarde. CLA Cultural, 6a edn.
(2006)

. Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A.: Dimensions in program-
ming multi-agent systems. The Knowledge Engineering Review 34, e2 (2019).
https://doi.org/10.1017/S026988891800005X

. Reese, J., Forehand, J.: The Guru Investor: How to Beat the
Market Using History’s Best Investment Strategies. Wiley (2009),
https://books.google.es/books?id=Z77J sg9iX5IC

. Tung, S.H.S.: Interactive modular programming in Scheme. ACM SIGPLAN Lisp
Pointers V(1), 86-95 (1992). https://doi.org/10.1145/141478.141512

. Wang, G., Cook, P.R.: On-the-fly Programming: Using Code as an Ex-
pressive Musical Instrument. NIME ’04 Proceedings of the 2004 con-
ference on New interfaces for musical Expression pp. 138-143 (2004).
https://doi.org/http://dx.doi.org/10.1017/5S1092852916000900

. Wenzel, M.: READ-EVAL-PRINT in Parallel and Asynchronous Proof-checking.
Electronic Proceedings in Theoretical Computer Science 118, 57-71 (2013).
https://doi.org/10.4204/EPTCS.118.4, http://arxiv.org/abs/1307.1944v1

