
Modularising and Promoting Interoperability for
Event-B Specifications using Institution Theory

Marie Farrell, Rosemary Monahan, and James F. Power

Maynooth University, Maynooth, Co. Kildare, Ireland
mfarrell@cs.nuim.ie

Abstract. We motivate the need for modularisation constructs in the
Event-B formal specification language. We utilise the specification build-
ing operators of the theory of institutions to provide these modularisa-
tion constructs and we present an example of a traffic-light simulation
to illustrate our approach.

Keywords: Event-B; institutions; refinement; formal methods; modular
specification

1 Introduction and Motivation

Modern software development focuses on model-driven engineering: the construc-
tion, maintenance and integration of software models, ranging from high-level
design documents (often expressed through diagrams) down to program code.
For example, a model-based approach to developing software might start with
the construction of a design model, such as a UML class diagram, developing
class functionality via state machines, and then forward engineering this to pro-
gram code.

In the field of formal software development we can prove the correctness
of a particular piece of software by reasoning logically about the system. Just
as for non-formal development, it can be beneficial to model the aspects of
a system using a variety of specialised formalisms to ensure different aspects
of its correctness. In formal software engineering we can map between these
levels of abstraction in a verifiable way through a process known as refinement,
which can take place within a single modelling language, or between languages
at different levels of abstraction [10]. The ideal scenario has been described as a
“theory supermarket”, in which a developer can shop for suitable theories with
confidence that they will work together [5].

This paper is centered around an illustrative example of a specification in
Event-B, inspired by one in the Rodin User’s Handbook [8]. In Section 2 we
provide an overview of the Event-B formalism, identify its limitations and dis-
cuss related work. We have identified the theory of institutions as a means of
enhancing the Event-B formalism and we define an institution for Event-B in
Section 3. The definition of EVT , our institution for Event-B, enables us to utilise
the specification-building operators provided by institutions and to re-cast our

example in modular form. We address refinement in Section 4 since this is of
central importance in Event-B, and show how this too can be modularised using
institutional specification building operations. We summarise our contributions
and outline future directions in Section 5.

2 Background: specification and refinement in Event-B

Many tools and formalisms have been developed to facilitate the process of soft-
ware specification, refinement and verification. Event-B is an industrial-strength
language for system-level modelling and verification that combines an event-
based logic with basic set theory [1]. A key feature of Event-B is its support for
formal refinement, which allows a developer to write an abstract specification
of a system and then to gradually add complexity in a provable correct way
[11]. The Rodin Platform, an integrated development environment for Event-B,
ensures the safety of system specifications and refinement steps by generating
appropriate proof-obligations, and then discharging these via support for various
theorem provers [8]. Event-B has been used extensively in a number industrial
projects, such as the Paris Métro Line 14, and is a relatively mature language.

2.1 Modelling the Traffic Lights

We have provided an illustrative example of an Event-B model of a traffic lights
system that is inspired by one in the Rodin User’s Handbook [8]. Figure 1 presents
an Event-B machine for a traffic lights system with one light signalling cars and
one light signalling pedestrians. In general, machine specifications model the
dynamic behaviour of a system and can contain variable declarations (lines 2-
3), invariants (lines 4-7) and event specifications (lines 8-33). The goal of the
specification is to ensure that it is never the case that both cars and pedestrians
receive the “go” signal at the same time (represented by boolean flags on line
3).

Figure 1 specifies five different events (including a starting event called Init-

ialisation (lines 9-13)). An event is composed of a guard (predicate) and an
action which is represented as a before-after predicate relating the new values
of the variables to the old. Events can happen in any order once their guards
evaluate to true and the theorem provers check that each invariant is not vi-
olated by any event. For example, the set peds go event as specified on lines
14-19, has one guard expressed as a boolean expression (line 16), and one action,
expressed as an assignment statement (line 18). In general an event can contain
many guards and actions, though a variable can only be assigned to once (and
assignments occur in parallel) [8].

In addition to machine specifications, contexts in Event-B can be used to
model the static properties of a system (constants, axioms and carrier sets).
Figure 2 provides a context giving a specification for the data-type COLOURS
and uses the axiom on line 7 to explicitly restrict the set to only contain the
constants red, green and orange.

2

1 MACHINE mac1
2 VARIABLES
3 cars go, peds go
4 INVARIANTS
5 inv1 : cars go ∈ BOOL
6 inv2 : peds go ∈ BOOL
7 inv3 : ¬ (peds go = true ∧ cars go =
true)

8 EVENTS
9 Initialisation

10 begin
11 act1 : cars go := false
12 act2 : peds go := false
13 end
14 Event set peds go =̂
15 when
16 grd1 : cars go = false
17 then
18 act1 : peds go := true
19 end
20 Event set peds stop =̂
21 begin
22 act1 : peds go := false
23 end
24 Event set cars go =̂
25 when
26 grd1 : peds go = false
27 then
28 act1 : cars go := true
29 end
30 Event set cars stop =̂
31 begin
32 act1 : cars go := false
33 end
34 END

Fig. 1: Event-B machine specification for
a traffic system, with cars and pedestrians
controlled by boolean flags.

1 CONTEXT ctx1
2 SETS
3 COLOURS
4 CONSTANTS
5 red, green, orange
6 AXIOMS
7 axm1 : partition(COLOURS, {red}, {green},

{orange})
8 END

Fig. 2: Event-B context specification for
the colours of a set of traffic lights.

1 MACHINE mac2
2 refines mac1
3 SEES ctx1
4 VARIABLES
5 cars colour, peds colour, buttonpushed
6 INVARIANTS
7 inv1 : peds colour ∈ {red, green}
8 inv2 : (peds go = TRUE) ⇔ (peds colour =
green)

9 inv3 : cars colour ∈ {red, green}
10 inv4 : (cars go = TRUE)⇔ (cars colour =

green)
11 inv5 : buttonpushed ∈ BOOL
12 EVENTS
13 Initialisation
14 begin
15 act1 : cars colour := red
16 act2 : peds colour := red
17 end
18 Event set peds green =̂
19 refines set peds go
20 when
21 grd1 : cars colour = red
22 grd2 : buttonpushed = true
23 then
24 act1 : peds colour := green
25 act2 : buttonpushed := false
26 end
27 Event set peds red =̂
28 refines set peds stop
29 begin
30 act1 : peds colour := red
31 end
32 Event set cars green =̂
33 refines set cars go
34 when
35 grd1 : peds colour = red
36 then
37 act1 : cars colour := green
38 end
39 Event set cars red =̂
40 refines set cars stop
41 begin
42 act1 : cars colour := red
43 end
44 Event press button =̂
45 begin
46 act1 : buttonpushed := true
47 end
48 END

Fig. 3: A refined Event-B machine spec-
ification for a traffic system, with cars
and pedestrians controlled by a button-
activated pedestrian light.

3

Figure 3 shows an Event-B machine specification, mac2, which refines mac1

from Figure 1. mac2 refines mac1 by first introducing the new context on line 3
and then by replacing the truth values used in the abstract machine with new
values from the carrier set COLOURS. During refinement, the user typically
supplies a gluing invariant relating properties of the abstract machine to their
counterparts in the concrete machine [8]. The gluing invariants shown in lines 8
and 10 of Figure 3 define a one-to-one mapping between the concrete variables
introduced in mac2 and the abstract variables of mac1. As specified in lines 7
and 9, the new variables (peds colour and cars colour) can be either red or
green, thus the gluing invariants map true to green and false to red.

Event-B permits the addition of new variables and events - buttonpushed on
line 5 and press button on lines 44-47. Also, the existing events from mac1 are
renamed to reflect refinement; for example, on lines 18-19 the event set peds

green is declared to refine set peds go. This event has also been altered via
the addition of a guard (line 22) and an action (line 25) which incorporate the
functionality of a button-controlled pedestrian light.

2.2 Limitations of Event-B

Although a very mature formalism, we believe there are two main areas where
the Event-B language needs further improvement:

Modularity: The given example highlights features of the Event-B language,
but notice how, in Figure 1 the same specification has to be provided twice.
The events set peds go and set peds stop are equivalent, modulo renam-
ing of variables, to set cars go and set cars stop. Ideally, writing and
proving the specification for these events should only happen once. There-
fore, we can identify one weakness of Event-B as its lack of well-developed
modularisation constructs and it is not easy to combine specifications in
Event-B with those written in other formalisms [7].

Interoperability: Large software systems are often at such a level of com-
plexity that no single formalisation, encoding or abstraction of can aptly
represent and reason about the whole system. This results in the system be-
ing modelled numerous times, often in separate formalisms, thus requiring
proof repetition. For example, when developing software using Event-B, it is
at least necessary to transform the final concrete specification into a different
language to get an executable implementation.

2.3 Related Work

One suggested method of providing modularity for Event-B specifications is
model decomposition, originally proposed by Abrial (shared variable [2]) and
Butler (shared event [15]), and later developed as a plugin for the Rodin Plat-
form [16]. The shared variable approach partitions the model into sub-models
based on events sharing the same variables. The shared event method partitions

4

the model based on variables participating in the same events. This approach
is quite restrictive in that it is not possible to refer to the same element across
sub-models. Also, it is impossible to select which invariants are allocated to
each sub-model, currently, only those relating to variables of the sub-model are
included.

Another approach is the modularisation plugin for Rodin [7], which is based
on the shared variable method outlined above. Here, modules split up an Event-
B model and are paired with an interface describing conditions for incorporating
the module into another. Module interfaces list the operations contained in the
module. Modules are similar to machines but they may not specify events. The
events of a machine which imports an interface can see the visible constants,
sets and axioms, call the imported operations, and the interface variables and
invariants are added to the machine. Although similar to the shared variable
approach proposed by [2] this method is less restrictive, as invariants can be
included in the module interface.

Both of these Rodin plugins provide some degree of modularisation for Event-
B but they do not directly enhance the Event-B formalism itself nor do they
provide scope for the interoperability of Event-B with other formalisms and/or
logics.

Current approaches to interoperability in Event-B consist of a range of Rodin
plugins to translate to/from Event-B but these lack a solid logical foundation.
Examples include UML-B [17] and EventB2JML [3].

In summary, the existing approaches to addressing modularity and interop-
erability issues in Event-B tend to be somewhat ad hoc, causing difficulties for
interaction, proof sharing and maintainability. The goal of our research is to
develop a set of modularisation constructs for Event-B that will be sufficiently
generic, so that they are well understood (particularly in formal terms), and so
that they can map easily to similar constructs in other formalisms. We also in-
tend to provide scope for the interoperability of Event-B with other formalisms
as part of our solution.

The core to ensuring modularisation and interoperability in model-driven
engineering is meta-modelling : the modelling of modelling languages. Similarly,
when dealing with logic-based formalisms that include specification, refinement
and proof, the key to ensuring interoperability is a suitable meta-logical frame-
work, that will allow for the specification of specification languages. These ideas
have a long history in logic, going back at least to Tarski’s work in the 1930s on
the definition and classification of consequence relations [18].

3 Institutions - a Meta-Logical Framework

Originating from Tarski’s work on metamathematics and consequence, the the-
ory of institutions provides a meta-logical framework in which a set of specifi-
cation building operators can be defined allowing you to write, modularise and
build up specifications in a formalism-independent manner [6, 18]. In order to
represent a formalism/logic in this way, the syntax and semantics for it must first

5

be defined in a uniform way using some basic constructs from category theory
[14]. Institutions have been defined for many logics and formalisms, including
programming-related formal languages such as UML and CSP [9, 13].

A huge benefit of this approach is that it facilitates the use of specification
building operators that provide modularisation constructs to any logic/formalism
presented in this way. Examples of formalisms that have been improved by using
institutions are those for UML state machines [9] and CSP[13]. Readers familiar
with Unifying Theories of Programming may note that the notion of institutions
in this way is similar to the notion of a “theory supermarket” in which one can
shop for theories with confidence that they will work together [5].

Once a formalism/logic has been described using institutions a range of spec-
ification building operators become available [14]. These operators facilitate the
modularisation of specifications and describe how specifications can be combined
in different formalisms/logics. They facilitate the combination (and, +, ∪), ex-
tension (then), hiding (hide via, reveal) and renaming (with) of specifications.

We have represented Event-B as a logic in the theory of institutions, as such,
we gain the use of specification building operators to increase modularity and an
embedding in a framework designed to promote and facilitate interoperability
with other formalisms. Since a key feature of Event-B is refinement, it is vital
that any representation of Event-B maintain the same notion of refinement. The
theory of institutions already accounts for this so there is no need to redefine it
[14]. Another major benefit of representing Event-B in terms of institutions is
that it provides a formal semantics for Event-B that is fully rooted in a mathe-
matical foundation.

3.1 Defining EVT , an institution for Event-B

EVT , our formalisation of Event-B in terms of institutions is based on splitting
an Event-B specification into two parts:

– A data part, which can be defined using some standard institution such as
that for algebra or first-order logic. We have chosen FOPEQ, the institution
for first order predicate logic with equality [14], since it most closely matches
the kind of data specification needed.

– An event part, which defines a set of events in terms of formula constraining
their before- and after- states. Our specification here is closely based on
UML, an institution for UML state machines [9].

While we do not have space to present the details fully formally here, they are not
more complex than those normally used for first-order logic, with appropriate
assignments for the free variables named in the event specification variables.

In order to build an institution for Event-B, which we call EVT , it is necessary
to specify and verify a series of definitions (using category theory) for its syntax
and semantics. Once these language elements have been specified, the next step is
to verify that the resulting metalogical structure is actually a valid institution.
This is ensured by proving the satisfaction condition which states, in formal
terms, the basic maxim of institutions, that “truth is invariant under change of

6

notation”. We can only outline this process here, but full details of the institution
EVT and the associated proofs are available from our website.1

I. Signatures. A signature over EVT describes the vocabulary that we are al-
lowed to use when writing Event-B specifications, and consists of names for sorts,
operations, predicates, events and variables. We assume that each operation,
predicate and variable name is appropriately indexed by its sort and arity. Sig-
nature morphisms provide a mechanism for moving between vocabularies while
repspecting arities, sort-indexing and initialisation events. By construction, these
morphisms can be extended in a uniform way to models and sentences.

II. Models. A data state consists of a set of values for each of the variables
in the signature corresponding to the declared sort of the variable. A possible
execution of a machine is then represented by a trace, which is just a sequence
of data states, with each step in this sequence being labelled by an event name.
Finally, a model of an EVT signature is a set of such traces, specified as a relation
over the states whose constituent tuples are labelled by event names.

III. Sentences. A sentence over EVT is then an element of an Event-B specifica-
tion written using the names from the signature. In the Rodin Platform Event-B
sentences are presented (with suitable syntactic sugaring) as:

I(x)
Event e =̂

when
guard-name : G(x)

then
act-name : A(x, x′)

end

where I(x) andG(x) are predicates representing the invariant(s) and guard(s)
respectively over the set of variables x. In Event-B, actions are interpreted as
before-after predicates i.e. the statement x := x+1 is interpreted as the predicate
x′ = x + 1. Therefore, a predicate of the form A(x, x′) represents the action(s)
over the sets of variables x and x′. Here x′ is the same set of variables as x but
with all of the names primed.

Based on this we can define the syntax of EVT in terms of two types of
sentence.

– The first kind of sentence is an invariant definition, which is simply a pred-
icate φ(x) over the variables in the signature.

– The second kind of sentence represents an event definition and consists of
a pairing e =̂ ψ(x, x′) where e is an event name and ψ(x, x′) is a FOPEQ
predicate corresponding to G(x) ∧A(x, x′) in the above Event-B sentence.

IV. Satisfaction. The satisfaction of EVT -sentences by EVT -models is split into
satisfaction for each kind of sentence.

1 http://www.cs.nuim.ie/∼mfarrell/

7

1 spec TwoBools over FOPEQ
2 Bool
3 then
4 ops
5 i go, u go : Bool
6 preds
7 ¬ (i go = true ∧ u go = true)

8 spec LightAbstract over EVT
9 TwoBools

10 then
11 Initialisation
12 begin
13 act1 : i go := false
14 end
15 Event set go =̂
16 when
17 grd1 : u go = false
18 then
19 act1 : i go := true
20 end
21 Event set stop =̂
22 then
23 act1 : i go := false
24 end

25 spec mac1 over EVT
26 (LightAbstract with σ1)
27 and (LightAbstract with σ2)
28
29 where
30 σ1 = {i go 7→ cars go,
31 u go 7→ peds go,
32 set go 7→ set cars go,
33 set stop 7→ set cars stop}
34
35 σ2 = {i go 7→ peds go,
36 u go 7→ cars go,
37 set go 7→ set peds go,
38 set stop 7→ set peds stop}

Fig. 4: A modular institution-based presentation corresponding to the abstract ma-
chine mac1 in Fig 1.

Satisfaction of invariant sentences: If some predicate φ(x) is given as an
invariant, then an EVT -model m satisfies φ(x) if that formula evaluates to
true in each data state of the model.

Satisfaction of event sentences: Given an definition of an event e by some
predicate ψ(x, x′), then an EVT -model m satisfies this sentence if the pred-
icate ψ(x, x′) evaluates to true for every pair of states in the model labelled
by e.

In order to ensure that an institution EVT has good modularity proper-
ties it is necessary to carry out some category theoretic proofs. In particular,
pushouts must exist in the category of signatures and the institution must have
the amalgamation property [14].

3.2 An Example of specification-building in EVT

Defining EVT , an institution for Event-B, allows us to restructure Event-B spec-
ifications using the standard specification building operators for institutions [14].
Thus EVT provides a means for writing down and splitting up the components of
an Event-B system, facilitating increased modularity for Event-B specifications.
Figure 4 is a presentation (set of sentences) over the institution EVT correspond-
ing to the Event-B machine mac1 defined in Figure 1. The presentation in Figure
4 consists of three specifications:

Lines 1-7: The specification TwoBools, technically in EVT , can be presented
as a pure specification over FOPEQ, declaring two boolean variables con-

8

strained to have different values. The predicate on line 7 here corresponds to
the invariant on line 7 of Figure 1.

Lines 8-24: LightAbstract is a specification over EVT for a single traf-
fic light that extends TwoBools (then). It contains the events set go and
set stop, with a constraint that a light can only be set to “go” if its opposite
light is not.

Lines 25-38: The specification mac1 combines (and) two versions of LightAb-
stract each with a different signature morphism (σ1 and σ2) mapping the
specification variables and event names to those in the Event-B machine.

Notice that the specification for each individual light had to be explicitly
written down twice in the Event-B machine in Fig 1. In our modular institution-
based presentation it is only necessary to have one light specification and simply
supply the required variable and event mappings. In this way, EVT adds much
more modularity than is currently present in Event-B, and these constructs
are well defined in the theory of institutions providing a formal mathematical
foundation for modularisation in Event-B.

4 Refinement in the EVT institution

Event-B supports three forms of machine refinement: the refinement of event
internals (guards and actions) and invariants; the addition of new events; and
the decomposition of an event into several events [4, 8]. It is therefore essential
that any formalisation of Event-B be capable of capturing these concepts. The
theory of institutions provides support for all three types of Event-B refinement
as it is, in fact, equipped with a well-defined notion of refinement [14].

4.1 A modular, refined specification

Figure 5 contains a presentation over EVT corresponding to the main elements
of the Event-B specification mac2 presented in Figures 2 and 3. Here, we present
three data specifications over FOPEQ and three event specifications over EVT .
Lines 1-11: We specify the Colours data type with a standard data specifi-
cation, as can be seen in Figure 2. The specification TwoColours describes
two variables of type Colours constrained not both be green at the same time.
This corresponds to the gluing invariants on lines 8 and 10 of Figure 3. The
specification modularisation constructs used in Figure 5, allow these properties
to be handled distinctly and in a manner that facilitates comparison with the
TwoBools specification on lines 1-7 of Figure 4.

Lines 12-28: A specification for a single light is provided in LightRefined
which uses TwoColours to describe the colour of the lights. As was the case
with LightAbstract in Figure 4, the specification makes clear how a single
light operates. An added benefit here is that a direct comparison with the
abstract specification can be done on a per-light basis.

Lines 29-46: The specifications BoolButton and ButtonSpec account for
the part of the mac2 specification that requires a button. These details were

9

1 spec Colours over FOPEQ
2 then
3 sorts
4 Colours free with red|green|orange

5 spec TwoColours over FOPEQ
6 Colours
7 then
8 ops
9 icol, ucol : Colours

10 preds
11 ¬(icol = green ∧ ucol = green)

12 spec LightRefined over EVT
13 TwoColours
14 then
15 Initialisation
16 begin
17 act1 : icol := red
18 end
19 Event set green =̂
20 when
21 grd1 : ucol = red
22 then
23 act1 : icol := green
24 end
25 Event set red =̂
26 then
27 act1 : icol := red
28 end

29 spec BoolButton over FOPEQ
30 Bool
31 then
32 ops
33 button : Bool

34 spec ButtonSpec over EVT
35 BoolButton
36 then
37 Event gobutton =̂
38 when
39 grd1 : button = true
40 then
41 act1 : button := false
42 end
43 Event pushbutton =̂
44 then
45 act1 : button := true
46 end

47 spec mac2 over EVT
48 (LightRefined with σ3)
49 and
50 (LightRefined and
51 (ButtonSpec with σ5)
52 with σ4)
53
54 where
55 σ3 = {i col 7→ cars colour,
56 u col 7→ peds colour,
57 set green 7→ set cars green,
58 set red 7→ set cars red}
59
60 σ4 = {i col 7→ peds colour,
61 u col 7→ cars colour,
62 set green 7→ set peds green,
63 set red 7→ set peds red}
64
65 σ5 = {gobutton 7→ press button}

Fig. 5: A modular institution-based presentation corresponding to the refined machine
mac2 specified in Fig 3.

woven through the code in Figure 3 (lines 5, 11, 22, 25, 45) but the specification-
building operators allow us to modularise the specification and group these
related definitions together, clarifying how the button actually operates.

Lines 47-65: Finally, to tie this all together we must combine a copy of Light-
Refined with a specification corresponding to the sum (and) of LightRefined
and ButtonSpec with appropriate signature morphisms. This second specifi-
cation combines the event gobutton in ButtonSpec with the event set green

in LightRefined thus accounting for set peds green in Figure 3. One small
issue involves making sure that the name replacements are done correctly, and
in the correct order, hence the bracketing on lines 48-52 is important.

The combination of these specifications involves merging two events with
different names: gobutton from ButtonSpec with the event set green from
LightRefined. To ensure that these differently-named events are combined into
an event of the same name we use the signature morphism σ5 to give gobutton

the same name as set green before combining them. By ensuring that the events
have the same name, and combines both events’ guards and actions and the mor-
phism σ4 names the resulting event set peds green. The resulting specification
will also contain the event pushbutton.

10

Note that the labels given to guards/actions are syntactic sugar to make the
specification aesthetically resemble the usual Event-B notation for guards/actions.

5 Conclusion and Future Work

Our specification of EVT has enabled us to address the limitations in the Event-
B language that we have identified in Section 2.2 as follows:

Modularity: By defining EVT and carrying out the appropriate proofs, we
gain access to an array of generic specification building operators [14]. These
facilitate the combination (and, +, ∪), extension (then), hiding (hide via,
reveal) and renaming via signature morphism (with) of specifications. Rep-
resenting Event-B in this way provides us with a mechanism for combining
and parameterising specifications. Most importantly, these constructs are
formally defined, a crucial issue for a language used in formal modelling.

Interoperability: Institution comorphisms can be defined enabling us to move
between different institutions, thus providing a mechanism by which a spec-
ification written over one institution can be represented as a specification
over another. Devising meaningful institutions and corresponding morphisms
to/from Event-B provides a mechanism for not only ensuring the safety of a
particular specification but also, via morphisms, a platform for integration
with other formalisms and logics.

Another benefit of developing an institution-based specification for Event-B
is that it provides a formal semantics for the language, something that has not
been explicitly developed thus far, although developed informally [1].

We have successfully specified an institution for the Event-B formalism and
proved the relevant properties that allow for the use of the modularisation con-
structs. Our current task is that of implementation using the Heterogeneous
Tool-Set, Hets, a framework for institution-based heterogeneous specifications
[12]. A significant future challenge is the integration of proofs for Event-B, de-
veloped using the Rodin platform, into the more general Hets environment.

Devising meaningful institutions and corresponding morphisms to/from Event-
B provides a mechanism for not only ensuring the safety of a particular specifica-
tion but also, via morphisms, a potential for integration with other formalisms.
Interoperability and heterogeneity are significant goals in the field of software
engineering, and we believe that the work presented in this paper provides a
basis for the integration of Event-B with other formalisms based on the theory
of institutions.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

11

2. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28,
2007.

3. N. Cataño, T. Wahls, C. Rueda, V. Rivera, and D. Yu. Translating B machines
to JML specifications. In 27th Annual ACM Symposium on Applied Computing,
pages 1271–1277, New York, NY, USA, 2012. ACM.

4. K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree-
structured file system in Event-B and Rodin. In Formal Methods and Software
Engineering, volume 5256 of LNCS, pages 25–44. 2008.

5. J. Fitzgerald, P. G. Larsen, and J. Woodcock. Foundations for model-based engi-
neering of systems of systems. In Complex Systems Design & Management, pages
1–19. Springer, 2014.

6. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

7. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting reuse in Event-B development: Modularisation ap-
proach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages
174–188. 2010.

8. M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. Cre-
ateSpace Independent Publishing Platform, USA, 2014.

9. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution for
simple UML state machines. In Fundamental Approaches to Software Engineering,
volume 9033 of LNCS, pages 3–18. 2015.

10. C. Morgan. Programming from Specifications. Prentice Hall, U.K., 2nd edition,
1998.

11. C. Morgan, K. Robinson, and P. Gardiner. On the Refinement Calculus. Springer,
1988.

12. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of LNCS, pages 519–522, 2007.

13. T. Mossakowski and M. Roggenbach. Structured CSP - a process algebra as an
institution. In Recent Trends in Algebraic Development Techniques, volume 4409
of LNCS, pages 92–110. 2007.

14. D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

15. R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In
International Symposium on Formal Methods for Components and Objects, pages
122–141. Springer, 2010.

16. R. Silva, C. Pascal, T. S. Hoang, and M. Butler. Decomposition tool for Event-B.
Software: Practice and Experience, 41(2):199–208, 2011.

17. C. Snook and M. Butler. UML-B: Formal modeling and design aided by UML.
ACM Trans. on Software Engineering and Methodology, 15(1):92–122, 2006.

18. A. Tarski. On some Fundamental Concepts of Metamathematics. In Logic, seman-
tics, metamathematics: papers from 1923 to 1938, chapter 3. Hackett Publishing,
1983.

12

