COMP 519 Web Programming

A Complex JavaScript Example

Here’s a complicated JavaScript example, one that I’ll consider working up
from a static page to a fully working dynamic page (with some additional “con-
veniences” for the user). This is a JavaScript application to generate random
permutations, where a permutation is an arrangement of the integers {1,...,n}
for some chosen value of 1 < n < 40. (I choose the upper bound of 40 as the
browser starts to “hang” on bigger values.) You need not be overly concerned
with the method used for generating the permutations, this can be thought of
as the typical “black box” routine for which you supply an integer for input,
and receive a string that contains the permutation. (I will explain the method
a bit, but not the precise mathematical reasoning behind it.)

The examples given below are the files permutationl.html - permutation10
which can all be found in the directory

http://www.csc.liv.ac.uk/~martin/teaching/comp519/JS/.

(So a complete hyperlink is

http://www.csc.liv.ac.uk/~martin/teaching/comp519/JS/permutationl

for example.) Keep in mind that you can always look at the source code of the
pages by right-clicking on them with the mouse and selecting the “View Source”
option.

Take a look at permutationl.html. This defines the structure of the web-
page. There’s a text input box (designed, funnily enough for user input), a
textarea which will eventually be used for the output (but the user can also
edit this area), and a button which, for now, does absolutely nothing. So at
the moment, this page is essentially static. Yes, a client can type in text in the
input box and textarea, but there’s no way of using this information.

The only difference between the first file and permutation2.html is that
the button does something when it’s clicked on (but something that’s not very
exciting). This is just a reminder how you can capture such an event as a button
being clicked on the page (by setting an event handler to call a function when
the button is clicked). The point is that we want to write a function that will
use the input to eventually find a permutation and insert the result into the
textarea (output) element.

permutation3.html demonstrates how you can get the value from the input
area, namely by using the JavaScript function document.getElementByld. As
the name suggests, this returns the DOM element that has the supplied “id”
associated with it. (Hence this is why it’s useful to assign (unique) ids to input
boxes, text areas, and so forth. There are other ways to find these elements,
but this is one of the easiest and most direct ways to do it.) All this file does
is find the input box area, and retrieve the value that’s in it. Recall that it’s
stored as a string. This string is then output in the alert box. So even if you

.html,

.html

enter a couple of characters, there’s no error (yet). We’ll see how to check if it’s
an integer in a moment.

The next file (permutation4.html) uses the function verifyIntInRange, found
in the external file verify. js in the same directory. You can view that file just
by typing its name into the browser navigation bar. As you can see from the
function call, this takes three inputs, a variable that is a text box (or textarea),
and a lower and upper bound. Looking at the source code, you can see that
this is first parsed as a floating point number (using the parseFloat command,
and then we check if it’s an integer (with the second part of the “if” conditional
test) and is in the specified range. If not, an error message is displayed and the
text box is cleared.

The next file (permutation5.html) includes the Permutation function to
generate the permutation, given an integer. The idea behind this function is
that you start with the list of numbers 1,2, ..., n (in that order) and, for a large
number of times, pick a position and swap the two numbers in adjacent posi-
tions. For example, you might start with 1,2,3,4,5 and perform the following
(pseudo)random choices that will swap elements:

12345 (starting configuration)
13245 swap numbers at positions 2 and 3
13425 swap numbers at positions 3 and 4

31425 swap positions 1 and 2
31245 swap positions 3 and 4
31254 swap positions 4 and 5
31524 positions 3 and 4

31542 positions 4 and 5

Hopefully, you might be convinced that doing this transposition operation
a large number of times will lead to a (nearly) random permutation. Showing
this is the case is a mathematical task, as well as figuring out what exactly is
meant by the word “large”. (But I won’t talk about that here.) Simply use
this function as shown, namely pass it an integer, and you will receive back a
string that contains the permutation. In this case the permutation is simply
inserted into the alert box output. Note that checking that the input value is
an integer assures that the argument passed to the Permutation function is a
valid argument (so that function need not do any checking itself).

The next page (permutation6.html) changes from the previous one in the
display of the output. How do we do this? It’s similar to retrieving the input
value. We use the getElementById function to locate the textarea element, and
then assign its value property using the string returned from Permutation.
Voila! Dynamic insertion of text into an existing element of a webpage!

Okay, so now you have a fully working page that “does exactly what it says
on the tin”. But I'm lazy (as those who know me well can attest to). And
the page doesn’t fully behave how I'd like it to behave. Namely, I'd like to
insert a number in the input area, press the “Enter” key, and have it give me
a permutation back. I don’t want to have to reach for the mouse and click the

button if I don’t want to do so. How can I do this? Well, you can check for
keyboard events, and if the user presses the “Enter” key you can proceed as
before (get the input value, check that it’s an integer, and, if so, generate a
permutation, and output it to the screen).

The file permutation7.html implements this functionality. To do this, we
assign another event handler to look for keyboard events. Note that this event
handler needs to be assigned to the text input element, as that’s what will
trigger the (important and relevant) keyboard events that we want to capture.
The user-defined function checkForEnter does the job. This takes two inputs,
the relevant element in which the events occur, and the event itself. The “this”
keyword refers to the “input” element itself in this case (the JavaScript way of
performing a self-reference to an object while “inside” that object). The variable
“evt” will contain a JavaScript event object variable that is set when an event
occurs (any sort of event, like moving or clicking the mouse, or hitting a key).
We can capture keyboard events using any of three event handlers, namely
keydown, keyup, or keypress. I chose to use the keyup event handler (partly
because Internet Explorer handles the keypress events slightly differently from
other browsers and I want this to work in all browsers, or so I hope).

When an keyup event is triggered, a property called keyCode is set in the
event that indicates which key was pressed (stored as a number in the ASCII
standard). The relevant key we want, the “Enter” key, has value 13. So what
we do is relatively straightforward, that is we check the keyCode property (of
the event object) to see if it’s the “Enter” key and return true or false as
appropriate. Then, if true, we start up the sequence of events as before (exactly
as if the button had been clicked). Again, see permutation7.html for this
version.

So I'm happier now since my laziness is (somewhat) satisfied. But what
happens if I do choose to use the mouse to click the button? If I then want to
insert a different value, I have to either use the mouse to select the input box or
use the “Tab” key to move all the way around the webpage to get to the input
box again. My laziness again rebels against this. How can I alter this behavior
of the page? Here’s where I use a function to change the “focus”. What is this?
For such a page like this where there’s input boxes and buttons (and similar
pages containing checkboxes, radio buttons, and the like), one element is said to
have the “focus”. For example, when you're inputting text in the input box, it’s
that box that has the focus (or is “in focus”). When you click the button with
the mouse, that button receives the focus (and whatever other element that had
the focus is “blurred”). Clicking the button transfers the focus to the button,
and after the output is displayed, the button still has the focus. So to get back
to the input box, you have to put the focus back on that are by selecting it with
the mouse, or using the “Tab” key to get there. I don’t want to do this.

A fix for this problem is easy. In this case, after the button is clicked, the
permutation generated and displayed, call the focus function of the text input
box to transfer focus back to the input box, so then I can change the value
there without having to first use the mouse (say) to get back to the input box.
(See permutation8.html and compare that to permutation7.html, and what

happens when you click the button, to see the difference.) Hooray! My laziness
is once again (more) satisfied. This behavior isn’t necessarily ideal, as in some
browsers the focus is transferred to the input text box, but the cursor appears
at the beginning of the input field instead of at the end. (We can work to get
the cursor at the end of the input field, but this is surprisingly complicated to
do so in a cross-compatible fashion, i.e. so that it will work in all (or most)
browsers. So I have left the behavior as it is.)

Well, it’s almost satisfied. What happens when you first load the page?
What has the focus? It’s not the input box. :(I want it to be the in-
put box!! Let’s use the load event handler that can appear as a property
of the body element of the page. T’ll call the focus function to transfer fo-
cus to the text input box when the page loads. As you can see you use the
document . getElementById function to locate the input area and then call the
function to transfer focus there. Hooray (again)! Laziness prevails! When I
load (or reload) the page, the input box has the focus and I can go to change
the input immediately instead of having to use the mouse to get to the input
box. (Note: This has the same problematic behavior as before, namely that the
cursor can appear at the start of the text input, rather than at the end. Again,
I haven’t implemented the surprisingly complicated fix to get the cursor at the
end of the input field.)

The final version (permutation10.html) doesn’t use a jtextarea; element
on the page, but I have instead used the JavaScript methods for creating a new
HTML element and inserting it into the page. To do this, I have replaced the
itextarea; element with a simple jspan; element called “Output”. Even though
there seems to be nothing in the element, in the Document Object Model, this
ispan;, area has a child. So the idea is that when a new permutation is made, I
create a new “text node” that consists of the string for the permutation (which
I get back from the “Permutation” function), and replace the existing child
of the “Output” jspan; element. Just for illustrative purposes, I've made the
background of that jspan; element to be light blue in color. As I said, this
uses some of the built-in JavaScript methods for creating new elements and
manipulating the DOM.

Annoyingly (but not surprisingly), Internet Explorer and Firefox implement
the DOM in different fashions. In particular, Firefox creates a child node of
the “Output” jspan; element when it first loads the page, but Internet Explorer
does not. Hence, this is why the code for the “onload” event handler is written
the way it is. For Firefox, we generate a permutation and replace the (already
existing) child of the “Output” jspan; element. In Internet Explorer (appar-
ently) this jspan; element has no children, so we instead append the newly
created text node as a child to that element. Having written code and tested it
on those two browsers, I have already tried it out on Google’s Chrome browser
and it appears to work correctly. You might also notice that the colored back-
ground box appears differently in Firefox and Internet Explorer. (Chrome shows
it similarly to Firefox.) I believe this might stem from how Internet Explorer
implemented the so-called W3C “box model” in its Cascading Style Sheet im-
plementation differently than the other browsers. I haven’t fully explored this

issue, nor considered/found ways to correct that.

This is as far as I've taken this page. You might have other ideas. If you
don’t want to start with a default value in the text input box, you can simply
change the value property of the <input> element to be an empty string (or
some other value if you wanted it). As you can see, you can add as much, or as
little, as you want to such a page. Part of what you want to consider is what
will the user(s) want, what will be useful to them, or just extraneous.

P.S. In terms of JavaScript programming, sometimes “debugging” your pro-
grams might be more difficult than if you're programming in Java or C. If you
use Firefox, then (depending upon the version of Firefox) there is an exten-
sion that can be installed called FireBug, that can prove useful in debugging
JavaScript code. There’s also a JavaScript error console that can give some
error messages (or warnings). Select the “Error Console” under the “Tools”
menu.

Internet Explorer and Chrome (and likely other browsers) have some tools
for debugging JavaScript, but I am less familiar with them. You generally want
to look in the menu options for phrases like “Developer tools” or something
similar. It is worthwhile checking for such tools to help debug JavaScript code
if you intend to write large and complex scripts.

My general advice is to proceed somewhat slowly with your coding, and test
your programs incrementally, i.e. often so that you can detect and correct errors
as they occur instead of having a large mess of code that might have multiple
errors that can be hard to fix.

