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Abstract. We describe an extension to the AJPF agent program model-
checker so that it may be used to generate models for input into other,
non-agent, model-checkers. We motivate this adaptation, arguing that it
improves the efficiency of the model-checking process and provides access
to richer property specification languages.
We illustrate the approach by describing the export of AJPF program
models to Spin and Prism. In the case of Spin we also investigate, ex-
perimentally, the effect the process has on the overall efficiency of model-
checking.

1 Introduction

Agent Java Pathfinder (AJPF) [1] is a program model-checker for programs writ-
ten in a range of Belief–Desire–Intention (BDI) agent programming languages. It
is built on top of Java Pathfinder (JPF), an explicit state program model-checker
for Java programs [2], and checks the execution of Java based interpreters for
BDI languages. AJPF has a property specification language based upon Linear
Temporal Logic (LTL) extended with descriptions of beliefs, intentions, etc.

AJPF (and JPF) are “program” model-checkers, meaning that they work
directly on the program code, rather than on a mathematical model of the pro-
gram’s execution (as is typical for model-checking). In fact, these program model-
checkers utilise symbolic execution to internally build a model to be analysed.
Thus, using a program model-checker gives the advantage that results derived
apply directly to the program under consideration. However, AJPF is slow when
compared to traditional model-checkers and, in general, it is the internal gener-
ation of the program model (created by executing all possible paths through the
Java program) that causes a significant bottleneck.

Hunter et al. [3] suggested the use of JPF to generate models of agent pro-
grams that could then be checked in other model-checkers. We expand upon this
idea showing how AJPF can be adapted to output models in the input languages
of both Spin and Prism tools. While such model generation remains slow, there
are still efficiency gains, especially when the property becomes more complex.
More importantly, such translations give access to a wider range of property
specification languages. This means that AJPF can be used as an automated
link between programs written in BDI languages and a range of model-checkers
appropriate for verifying properties of those programs.



The key advantages of this approach are potential improvements in the ef-
ficiency and scope of model checking; and access to a richer set of logics for
specifying program properties.

2 Background

2.1 AJPF

Java PathFinder (JPF) is an explicit state program model-checker for Java
programs [2]. This means that it takes as input an executable Java program
rather than a model of a Java program. It then explores all possible execution
paths through this program to ensure that some property holds. For example,
using JPF, it is possible to explore all possible thread scheduling options for a
multi-threaded program to ensure that deadlock between threads never occurs.

AJPF [1] is a program model-checker for linear temporal logic (LTL) built
on top of JPF. AJPF is specially designed for model-checking programs for
rational agents, that is agents that use the BDI paradigm (see [4]) and whose
execution can be described in terms of rational, goal-directed behaviour.

AJPF extends JPF with an LTL model-checking algorithm based on [7,
6]1. The property specification language contains shallow modalities for agent
concepts such as belief (B), goal (G), intention (I), etc., as well as the standard
LTL modalities (♦ (eventually), � (always), etc., but not © (next)2). The agent
concepts are mapped to specific data structures in the Java program, and allow
properties such as the following to be verified:

�♦Ba reached(destination)

This property states that it is always the case that, eventually, agent a believes
it has reached its destination.

AJPF is intended for use with BDI agent programming languages which
have an explicit operational semantics. The language’s operational semantics is
implemented in the Agent Infrastructure Layer (AIL): a set of Java classes that
support AJPF allowing the rapid construction of interpreters for BDI agent pro-
gramming languages [1]. The AIL also provides support for the Belief, Goal and
Intention modalities used by the property specification language. The property
specification language is discussed more fully in [1] and summarised in Fig. 1.

There are two key (and related) advantages to using a program model-checker
such as AJPF instead of one with a specialised modelling language for input.
Firstly, it avoids the need for the programmer (or designer) to create a separate

1 JPF does not currently support LTL model-checking, focusing instead on searching
for deadlocks and exception freedom. However it has had LTL support in the past
and work is currently in progress to re-instate this support.

2 © was omitted partly because it isn’t straightforward to determine the correct se-
mantics for “next step” in a BDI program execution and partly because it compli-
cates the model checking algorithm.



AJPF Property Specification Language Syntax The syntax for property
formulæ φ is as follows, where ag is an “agent constant” referring to a specific
agent in the system, and f is a ground first-order atomic formula:

φ ::= Bag f | Gagf | Aagf | Iagf | P(f) | φ ∨ φ | ¬φ | φ Uφ | φRφ

Here, Bag f is true if ag believes f to be true, Gagf is true if ag has a goal to
make f true, and so on (with A representing actions, I representing intentions,
and P representing percepts, i.e., properties that are true in the environment).

AJPF Property Specification Language Semantics We summarise those
aspects of the semantics of property formulæ relevant to this paper. Consider
a program, P , describing a multi-agent system and let MAS be the state of
the multi-agent system at one point in the run of P . MAS is a tuple consisting
of the local states of the individual agents and of the environment. Let ag ∈
MAS be the state of an agent in the MAS tuple at this point in the program
execution. Then

MAS |=MC Bag f iff ag |= Bag f

where |= is logical consequence as implemented by the agent programming
language. The semantics of Gagf and Iagf similarly refer to internal imple-
mentations of the language interpreter. The interpretation of Aagf is:

MAS |=MC Aagf

if, and only if, the last action changing the environment was action f taken
by agent ag. Finally, the interpretation of P(f) is given as:

MAS |=MC P(f)

if, and only if, f is a percept that holds true in the environment.

The other operators in the AJPF property specification language have stan-
dard PLTL semantics [5] and are implemented as Büchi Automata as described
in [6, 7]. Thus, the classical logic operators are defined by:

MAS |=MC ϕ ∨ ψ iff MAS |=MC ϕ or MAS |=MC ψ
MAS |=MC ¬φ iff MAS 6|=MC φ.

The temporal formulæ apply to runs of the programs in the JPF model
checker. A run consists of a (possibly infinite) sequence of program states
MAS i, i ≥ 0 where MAS0 is the initial state of the program (note, however,
that for model checking the number of different states in any run is assumed
to be finite). Let P be a multi-agent program, then

MAS |=MC ϕ Uψ iff in all runs of P there exists a state MAS j

such that MAS i |=MC ϕ for all 0 ≤ i < j
and MAS j |=MC ψ

MAS |=MC ϕRψ iff either MAS i |=MC ϕ for all i or there
exists MAS j such that MAS i |=MC ϕ
for all 0 ≤ i ≤ j and MAS j |=MC ϕ ∧ ψ

The common temporal operators ♦ (eventually) and � (always) are, in turn,
derivable from U and R in the usual way [5].

Fig. 1. Overview of the the AJPF Property Specification Language (Syntax and Se-
mantics)



model of the implementation for verification. Secondly, in cases where certifica-
tion of the program is required (e.g., [8, 9]), it increases the value of the evidence
submitted to the certification authority since it provides direct information about
the system that will be deployed, rather than some idealised model.

These advantages come at a cost, however. The main disadvantage of program
model-checking, particularly in AJPF, is that it is very slow in comparison
with existing specialised model-checkers such as Spin [10]. This has been (and
continues to be) mitigated through updates to AJPF which have decreased
the amount of time taken for model-checking. However, the fact remains that
programs tend to be more complex than models of programs and this causes
program model-checking to be much slower. Typically, to verify a program using
AJPF requires minutes, hours or even days in extreme cases.

AIL-based implementations of well-known agent programming languages
(e.g., GOAL [11]) are separate from the interpreters generally associated with
those languages. Since, in theory, both interpreters use the same operational se-
mantics, choosing an AIL based interpreter instead of the standard interpreter
should be similar to choosing between different C compilers and an AIL inter-
preter can be preferred where certification is an issue. In practice, the standard
interpreters are often more efficient, user-friendly and up-to-date.

One issue to consider is whether it is preferable to use just JPF to verify
agent programs given that most standard interpreters are written in Java. This
approach is certainly feasible, although the interpreters would probably need
significant modification to work with JPF. For example, adaptations would be
needed to access the AJPF Property Specification Language (or create some-
thing similar). Also, in order to minimize the state space explored by JPF careful
use of Java data structures is necessary (e.g., all sets must be stored in a canon-
ical form for state matching).

2.2 Spin

Spin [10] is a popular model-checking tool originally developed by Bell Labora-
tories in the 1980s. It has been in continuous development for over thirty years
and is widely used in both industry and academia (e.g., [12–14]). Spin uses an
input language called Promela. Typically a model of a program and the prop-
erty (as a “never claim” – a sequence of transitions that should never occur) are
provided in Promela, but Spin also provides tools to convert formulae written
in LTL into never claims for use with the model-checker. Spin works by auto-
matically generating programs written in C which carry out the exploration of
the model relative to an LTL property. Spin’s use of compiled C code makes
it very quick in terms of execution time, and this is further enhanced through
other techniques like partial order reduction.

2.3 Prism

Prism [15] is a probabilistic symbolic model-checker developed primarily at the
Universities of Birmingham and Oxford since 1999. Prism provides broadly sim-



ilar functionality to Spin but also allows for the model-checking of probabilistic
models, i.e., models whose behaviour can vary depending on probabilities built
into the model. Developers can use Prism to create a probabilistic model (writ-
ten in the Prism language) which can then be model-checked using Prism’s
own probabilistic property specification language, which subsumes several well-
known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
Prism has been used to formally verify a variety of systems in which reliability
and randomness play a role, including communication protocols, cryptographic
protocols and biological systems [16].

2.4 Related Work

Hunter et al. [3] first suggested using JPF to generate models of programs
that could then be used with alternative model-checkers. Their work targets
the Brahms [17] agent programming language. They implemented a simulator
for Brahms in Java and used JPF to produce a Promela model of a Brahms
program. They used this system to investigate examples in air traffic control and
health-care and demonstrated that it is feasible to use JPF as a model build-
ing tool. Their work did not, however, directly address the key BDI concepts of
beliefs, intentions, etc., and it was a customised tool specifically aimed at the
verification of Brahms programs.

The work reported here takes the ideas from Hunter et al. [3] as a starting
point and aims to use them within AJPF’s more generic framework in order to
provide a general tool in which BDI programs, and BDI concepts can be verified
in a wide range of model-checkers.

3 Exporting Models from AJPF

JPF is implemented as a specialised Java virtual machine which stores, among
other things, backtracking points which allow the program model-checking al-
gorithm to explore the entire execution space of a Java program. It is highly
customisable providing numerous hooks for listeners that monitor and control
the progress of model-checking. In what follows we will refer to the specialised
Java virtual machine used by JPF as the JPFJVM. JPF is implemented in Java
itself, therefore the JPFJVM is a program that executes in some underlying na-
tive Java virtual machine. We refer to this native virtual machine as NatJVM.
Listeners execute in the NatJVM.

AJPF’s checking process is constructed using a JPF listener. As JPF exe-
cutes, it labels each state explored by the JPFJVM with a number. The AJPF
listener tracks these numbers as well as the transitions between them and uses
this information to construct a Kripke structure in the NatJVM. The LTL model-
checking algorithm is then executed on this Kripke structure. This is partly
for reasons of efficiency (the NatJVM naturally executes much faster than the
JPFJVM) and also to account for the need for LTL to explore states in the
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Fig. 2. The operation of AJPF wrt. the two Java Virtual Machines

model several times if the model contains a looping path and an until expression
(e.g., true U p) exists in the LTL3 property (see [7] and [6] for details).

In order to determine whether the agents in the original program have par-
ticular beliefs, goals, etc., it is necessary for the LTL model-checking algorithm
to have access to these. However, they are not stored in the state graph of the
Kripke structure accessible to the NatJVM. At the start of a model-checking
run AJPF analyses the property being verified in order to produce a list of
propositions that are needed for checking that property (e.g., agent 1 believes
it has reached its destination, agent 2 intends to win the auction etc.). AJPF
creates objects representing each of these propositions in both the JPFJVM and
NatJVM. In the JPFJVM these propositional objects can access the state of the
multi-agent system and explicitly check that the relevant propositions hold (e.g.,
that the Java object representing agent 1 contains, in its belief set, an object
representing the formula reached(destination)).

Every time the interpreter for the agent programming language executes one
step4, all of the proposition objects are updated with their current truth value. In
the NatJVM, propositional objects are created that track those in the JPFJVM.
It is moderately straightforward to access an object in the JPFJVM from the

3 “aUp” means that “a is true continuously up until b becomes true”.
4 The meaning of a “step” in the semantics — as in the next point of interest to

verification — is determined by the person implementing the semantics. Typically
this is either the application of a single rule from the semantics, or of a whole
reasoning cycle. This issue is discussed further in [1].



NatJVM5. Once an object has been accessed, inspecting the values of its fields is
similarly straightforward providing they contain values of a primitive data type
(such as bool or int). All this is done using JPF’s Model Java Interface (MJI)
interface [18] (the precise details of this implementation are specific to JPF and
MJI). The implementation itself is available via the SourceForge distribution
for AJPF (http://mcapl.sourceforge.net). The process allows, however, the
modal agent properties (i.e., those related to beliefs, desires, intentions, etc.)
that can be determined in the JPFJVM to be converted into state labels in the
Kripke structure stored in the NatJVM. When the listener detects that a new
state has been generated in the JPFJVM, the state in the Kripke structure in
the NatJVM is annotated with the truth value of all the required propositions.

The process of adapting this system to produce a model for use with an
alternative model checker now involves: (i) bypassing the LTL model-checking
algorithm6 but continuing to generate and maintain a set of propositional objects
in order to label states in the Kripke structure, and (ii) exporting the Kripke
structure in a format that can be used by another model checker.

3.1 Advantages

Ideally, a program is only model-checked once against a full set of requirements
consisting of a conjunction of many properties. However, it is our experience that
it is more common to check programs several times against smaller properties.
For AJPF, this results in the program model being generated from the Java
bytecode for each property. Our experiences with AJPF suggested that the
most computationally complex part of the model-checking was in the generation
of this program model, and that this was the chief cause of the slow performance
of AJPF compared with other model-checkers. (This is unsurprising since in
AJPF the generation of a transition in the program model can involve the
symbolic execution of significant amounts of Java bytecode.)

The first advantage of the approach described above, therefore, is that ex-
porting the program model prior to model-checking allows us to generate the
program model only once, and thereafter we can use the far more compact Kripke
structure representation, meaning that the time to model-check each property
is reduced (on average).

The second advantage is that other model-checkers (such as Spin) have many
years of development invested in an accurate and efficient implementation of
LTL model-checking. Compared to model-checkers like Spin, there is a much
weaker level of assurance that the LTL model-checking implemented in AJPF
is correct (although it has been tested against well-known “gotchas”). Also, the

5 The documentation for this mechanism is somewhat opaque and the process itself is
complicated, but conceptually is it a simple matter of identifying the current object
in the JPFJVM stack in order to obtain a reference for it. This can then be stored
for future use in the NatJVM.

6 This is not strictly necessary but it increases the speed of model generation, and
avoids the pruning of some model states based on the property under consideration.



AJPF LTL model-checking algorithm is not highly optimised, being a direct
adaptation of the algorithms in [7, 6]. Consequently, it seems desirable, both for
reasons of confidence and efficiency, to use a more well-developed implementation
of model-checking (such as Spin) where possible.

The third advantage is that this technique will allow us to use richer speci-
fication languages than LTL. For instance when verifying hybrid systems, prob-
abilistic values frequently appear both in terms of the reliability of sensors, and
the chances that an action will achieve the expected outcome. Exporting an
AJPF program model into a probabilistic model-checker such as Prism will al-
low us to verify properties stated in more expressive logics, such as probabilistic
computation tree logic (PCTL).

3.2 Disadvantages

While there are advantages to using AJPF just for model generation, there are
some disadvantages as well.

Firstly, it is arguable that the direct link between the implemented program
and the system being verified described in Section 2.1 has been lost. However,
the LTL model-checking algorithm used in AJPF was already operating upon
an automatically-generated abstraction of the system stored in the NatJVM.
Therefore taking this abstracted model and exporting it to a different system
does not, in our view, have a significant effect on the correctness of any verifica-
tion result. However it has introduced a further step into the process which could
cause an issue with software certification concerning tool qualification. Specifi-
cally, we have introduced another tool (Spin) to the existing verification system
(AJPF) which would mean that both tools would now need to be qualified sep-
arately, and possibly again as a combined tool, with additional associated costs
(tool qualification can be very costly in terms of time and finance). We do, nev-
ertheless, provide a fully automatic route from implemented code, through an
abstraction of that code, to a formal verification result, which itself is preferable
to systems in which the abstraction from the implementation must be done “by
hand.”

Secondly, the opportunity to exploit features of the property under test in or-
der to prune model-checking has been lost. In particular, when checking liveness
properties (of the form “eventually p will happen”, or ♦p) it is possible to prune
the LTL model-checking search tree as soon as p occurs. It would obviously still
be possible to do this, if the user were confident that only this property will be
checked on the resulting model. Where the model may be used to check a num-
ber of properties such pruning is no longer a possibility and the entire program
state space must be explored. Similarly, although we have not explored tech-
niques such as property-based slicing [19] in AJPF these would also be difficult
to exploit if a full model were to be exported. However, it is likely that in many
cases where there are more than a few properties to be checked the additional
time taken to produce a complete model will be offset by the time saved in not
having to reproduce this model each time a new property needs to be verified.
Similarly, the fact that we export the model as a Kripke Structure, means that



we may not be able to exploit potential optimisations available within the target
model checker. It should be noted, however, that some optimisations such as
partial order reduction will already have been applied by JPF.

4 Exporting AJPF Models to Promela/Spin

In this section we describe the process used to translate AJPF models to
Promela for verification in the Spin model-checker, and some results of Spin
verification of the Promela models generated.

4.1 Translation Details

Both Spin and AJPF’s LTL algorithm operate on Kripke structures so trans-
lating between the two is straightforward.

As mentioned above, within AJPF’s NatJVM each state is assigned a num-
ber, e.g, 12. This is converted to state12 in the Spin input file. Then the list of
propositional objects is examined recursively. Each proposition is converted into
a simple string (without spaces or brackets), and assigned either the value true or
false, depending upon its value in the state. The transitions in the AJPF model
graph are kept separately from the states while Promela represents them as
goto statements attached to states.

Example Fig. 3 shows the NatJVM model of a very simple agent program with
one property (agent 1 believes “bad”) compared to the result of exporting this
model in Promela.

Model States:

=============

0:

B(ag1,bad()) = false;

1:

B(ag1,bad()) = false;

2:

B(ag1,bad()) = false;

Model Edges:

=============

0-->1

1-->2

bool bag1bad

active proctype JPFModel()

{

state0:

bag1bad = false;

goto state1;

state1:

bag1bad = false;

goto state2;

state2:

bag1bad = false;

printf("end state\n");

}

Fig. 3. Equivalent program models in AJPF (left) and Promela (right)



4.2 Results

We tested our Spin implementation on the verification of a simple “leader”
agent intended to coordinate a formation of satellites as described in [20]. This
program was implemented in a version of the Gwendolen language [21]. We
implemented a non-deterministic environment for the agent in which messages
from the satellite agents randomly arrived (or not) each time the agent took
an action. This caused model-checking to explore all possible combinations of
messages that the leader agent could receive. The agent was designed to assign
positions to four satellites and then wait for responses. Since our hypothesis
was that we would see gains in performance as the LTL property to be checked
became more complex we tested the system against a sequence of properties:

1. �¬Blead bad
(The agent never believes something bad has happened).

2. (�(Blead informed(ag1)→ ♦Blead maintaining pos(ag1)))→ �¬Blead bad
(If it is always the case that when the leader has informed agent 1 of its
position then eventually the leader will believe agent 1 is maintaining that
position, then it is always the case that the leader does not believe something
bad has happened).

3. (�(Blead informed(ag2) → ♦Blead maintaining pos(ag2))) ∧
�(Blead informed(ag1)→ ♦Blead maintaining pos(ag1)))→ �¬Blead bad

4. (�(Blead informed(ag3) → ♦Blead maintaining pos(ag3)) ∧
�(Blead informed(ag2)→ ♦Blead maintaining pos(ag2)) ∧
�(Blead informed(ag1)→ ♦Blead maintaining pos(ag1)))→ �¬Blead bad

5. (�(Blead informed(ag4) → ♦Blead maintaining pos(ag4)) ∧
�(Blead informed(ag3) → ♦Blead maintaining pos(ag3)) ∧
�(Blead informed(ag2)→ ♦Blead maintaining pos(ag2)) ∧
�(Blead informed(ag1)→ ♦Blead maintaining pos(ag1)))→ �¬Blead bad

6. (�(Blead informed(ag4) → ♦Blead maintaining pos(ag4)) ∧
�(Blead informed(ag3) → ♦Blead maintaining pos(ag3)) ∧
�(Blead informed(ag2) → ♦Blead maintaining pos(ag2)) ∧
�(Blead informed(ag1) → ♦Blead maintaining pos(ag1))) ∧
�(Blead formation(square)→ ♦Blead informed(ag1)))→ �¬Blead bad

This sequence of increasingly complex properties was constructed so that each
property had the form P1 ∧ . . . ∧ Pn → Q for some n ≥ 0 and each Pi was
of the form (�(P ′

i → ♦Qi)). With the addition of each such logical antecedent
the property automata became considerably more complex. Furthermore, the
antecedents were chosen so that we were confident that on at least some paths
through the program P ′

i would be true at some point, necessitating that the LTL
checker explore the product automata for ♦Qi. We judged that this sequence of
properties provided a good test for the way each model-checker’s performance
scaled as the property under test became more complicated.

Spin model-checking requires a sequence of steps to be undertaken: the LTL
property must be translated to a “never claim” (effectively representing the
automaton corresponding to the negation of the required property), then it is



compiled together with the Promela description into C, which is then compiled
again before being run as a C program. We used the Ltl3ba tool [22] to compile
the LTL property into a never claim since this is more efficient than the built-
in Spin compiler. In our results we present the total time taken for all Spin
operations (Spin Time) and the total time taken overall including generation of
the model in AJPF.

Property AJPF Spin

AJPF model generation Spin Time Total Overall Time

1 5m25s 5m17s 1.972s 5m19s
2 5m54s 5m50s 3.180s 5m53s
3 7m9s 6m28s 4.369s 6m32s
4 8m50s 7m34s 6.443s 7m40s
5 9m22s 8m27s 10.015s 8m37s
6 — 8m51s 22.361s 9m13s

Table 1. Results Comparing AJPF with and without Spin Model Checking

Table 1 shows the running times for model-checking the six properties on a 2.8
GHz Intel Core i7 Macbook running MacOS 10.7.4 with 8 GB of memory. Fig. 4
shows the same information as a graph. There is no result for AJPF model-
checking of the final property since the system suffered a stack overflow error
when attempting to build the property automata.

The results show that as the LTL property becomes more complex, model-
checking using the AJPF to Promela/Spin translation tool is marginally more
efficient than using AJPF alone. It should be noted that in the Spin case,
where AJPF is not performing LTL model-checking, and is using a simple list
of propositions (rather than an LTL property) the time to generate the model
still increases as the property becomes more complex. This is explained by the
overhead involved in tracking the proposition objects in the JPFJVM and the
NatJVM: as more propositions are involved this time increases.

If only one AJPF model were to be generated then Spin would give consider-
able time savings overall. (NB. In this case it would need to be the AJPF model
with all relevant propositions, i.e., the one taking nearly 9 minutes to generate.)

We note that the simple fact that AJPF cannot generate a property au-
tomata for property 6 is a compelling argument that combining AJPF with
Spin or some other model-checker is sometimes necessary. It also illustrates the
point that Spin is well optimised for working with LTL where AJPF is not.

5 Exporting AJPF Models to Prism

5.1 Translation Details

Both AJPF’s NatJVM and Spin operate on Kripke structures so it was a
straightforward process to translate between them. The Prism input language
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is based on probabilistic timed automata. In the examples we are particularly
interested in exploring, we can consider the model to be a Kripke structure
enhanced by labels on the transitions representing probabilities.

We therefore needed to make some alterations to AJPF. JPF, and hence
AJPF, is able to branch the search space when a random element is selected
from a finite set. However the system does not record the probabilities of each
branch created in a manner accessible to the NatJVM. We developed a new
class Choice in Java which represented a probabilistic choice from a finite set
of options. This class provided a method pickChoice which would perform a
choice on a probabilistic basis. If this class was used in programming at the
JPFJVM level, then a NatJVM native peer could detect invocations of methods
in this class, intercept such invocations and use a customised choice generator,
to branch the search space in the JPFJVM while annotating the edges of the
model graph in the NatJVM with the appropriate probabilities. The use of na-
tive peers and choice generators are standard JPF customisation processes for
controlling and recording search in model-checking (see [18] for a discussion of
their use). In short, programming with the Choice class, in the normal execution
of the program, simply picks an element from a set based on some probability
distribution. When executed within AJPF, the Choice class causes the system
to explore all possible choices and label each branch with its probability.

After this the process of translating these models into Prism’s input language
is straightforward.



1. First we initialise the model: We input it as a discrete time Markov chain
(dtmc); We list the numbers of all states and state the initial state (0); We
list all the properties initialise them to false.

2. We then iterate through the states in the AJPF model. For each state we:
(a) Print out state = num where num is the state number.
(b) Iterate over all its outgoing edges, for each edge:

i. Print out the probability of that edge being traversed
ii. Print out the state number, and values of the properties for the state

at the far end of the edge.

As an example we consider a simple program based on [8] in which an un-
manned aerial vehicle (UAV) must detect potential collisions. The UAV’s radar
is only 90% reliable, so it does not always perform an ‘evade’ maneouvre when
a collision is possible. The agent controlling the UAV is implemented in Gwen-
dolen which does not contain any probabilistic aspects. However the agent was
placed in an environment programmed in Java and we used the Choice class
to represent the unreliability of the sensor when the agent requested incoming
perceptions 7.

The model is tracking two properties P(collision) which means a potential
collision is perceptible in the environment and Auavevade which means the last
action performed was the uav agent taking an evade maneouvre. The agent was
programmed to make evade maneouvres when it believed there would be a col-
lision. It only believed there would be a collision if a potential collision was
perceptible and the sensor conveyed that information to the agent.

A fragment of the AJPF model for this program, adapted to show the prob-
ability of transitions is shown in Fig. 5 alongside the full model exported to
the Prism input language8. Fig. 6 gives a brief outline of some key features of
Prism’s property specification language, its full semantics can be found in [23].

5.2 Results

We do not provide performance results since AJPF and Prism are incomparable
using, as they do, different input languages (AJPF does not support probabilistic
reasoning and Prism does not support non-probabilistic LTL model checking).
We model-checked the above program in Prism against the property

P=?�(P(collision)→ ♦Auavevade)

to establish that the probability that the UAV would evade a collision, if one
were possible, was 90%.

We also investigated a more complex model, again based on [8], in which the
probability of a potential collision arising was also 90% (where it was certain

7 We would also be able to investigate properties of BDI programming languages with
probabilistic features, providing their AIL implementation used the Choice class —
see Further Work.

8 Note that the nature of rounding in Java means that 0.1 is, in several places, repre-
sented as 0.09999999999999998.



AJPF Model

Model States:

=============

....

3:

A(uav,evade()) = false;

P(collision()) = false;

4:

A(uav,evade()) = false;

P(collision()) = true;

5:

A(uav,evade()) = true;

P(collision()) = false;

6:

A(uav,evade()) = true;

P(collision()) = false;

7:

A(uav,evade()) = true;

P(collision()) = true;

...

Model Edges:

=============

...

0.9 ::: 3-->4

0.09999999999999998 ::: 3-->12

1.0 ::: 4-->5

1.0 ::: 5-->6

0.9 ::: 6-->7

0.09999999999999998 ::: 6-->10

Prism Model

dtmc

module jpfModel

state : [0 ..13] init 0;

auavevade: bool init false;

pcollision: bool init false;

[] state = 1 -> 1.0:(state’=2) & (auavevade’= false) & (pcollision’= false);

[] state = 2 -> 1.0:(state’=3) & (auavevade’= false) & (pcollision’= false);

[] state = 3 -> 0.9:(state’=4) & (auavevade’= false) & (pcollision’= true)

+ 0.09999999999999998:(state’=12) & (auavevade’= false) & (pcollision’= true);

[] state = 4 -> 1.0:(state’=5) & (auavevade’= true) & (pcollision’= false);

[] state = 5 -> 1.0:(state’=6) & (auavevade’= true) & (pcollision’= false);

[] state = 6 -> 0.9:(state’=7) & (auavevade’= true) & (pcollision’= true)

+ 0.09999999999999998:(state’=10) & (auavevade’= true) & (pcollision’= true);

[] state = 7 -> 1.0:(state’=8) & (auavevade’= false) & (pcollision’= false);

[] state = 8 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);

[] state = 10 -> 1.0:(state’=11) & (auavevade’= false) & (pcollision’= false);

[] state = 11 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);

[] state = 12 -> 1.0:(state’=13) & (auavevade’= false) & (pcollision’= false);

[] state = 13 -> 1.0:(state’=9) & (auavevade’= false) & (pcollision’= false);

endmodule

Fig. 5. Comparison of Models for AJPF and Prism



The syntax of the fragment of the Prism property specification language rel-
evant here is given by the following grammar:

φ ::= true | a | φ ∧ φ | ¬φ | P./p[ψ]
ψ ::= φUφ

where a is an atomic proposition, ./∈ {≤, <,≥, >}, p ∈ Q≥0, and k ∈ N.

The semantics of the propositional logic statements and the CTL until operator
are standard and allow � (always) and ♦ (eventually) to be defined. P is a
probabilistic operator and indicates the probability that some property is true
along all paths from some state s where the operator is evaluated. For instance
P≥0.98ψ means “the probability that ψ is satisfied by the paths from state s is
greater than 0.98”.

It is also possible to take a quantitative approach so P=?ψ will return a value
for the probability that ψ is satisfied for all paths from state s.

Fig. 6. The Prism Property Specification language

in the simple model above) and the UAV had to interact with an air traffic
control agent, and go through take off procedures. The environment contained
a navigation manager which, on a probabilistic basis, would either tell the UAV
to change its current heading or land. In this situation the probability of the
UAV making an evade maneouvre when a collision was perceptible (rather than
landing, or spontaneously changing its heading following an instruction from the
navigation manager) dropped to 30%.

6 Further Work

One of our primary motivations in performing this work was to enable the prob-
abilistic model-checking of BDI agents, particularly in practical health-care and
hybrid systems scenarios. We intend therefore to explore more sophisticated and
realistic examples in which an implemented BDI based agent program is exe-
cuted in AJPF and then model-checked in Prism. Our interest is in producing
results about the overall reliability of systems based on probabilistic analyses of
the reliability of sensors and actuators derived through testing.

We are also interested in exploring the verification of multi-agent properties
involving strategies. This would involve both adapting our output format for an
ATL model-checker, such as MCMAS [24], and adapting the internal models so
that transitions are labelled with actions. We may also wish to extend the AIL
so that agents can explicitly reason about their own strategies. We would also
like to investigate the verification of properties of BDI programming languages
that incorporate probabilistic features, something which will likely require that
their AIL implementation uses the Choice class.

It would also be possible to adapt AJPF to save and then re-import its
own models, avoiding the model generation bottleneck while retaining the entire



verification process within a single system. While this would lose some of the
benefits (e.g., assurance and efficiency), it would provide a simpler tool and
might be more attractive in certification situations.

7 Conclusion

We have shown how the ideas of Hunter et. al [3] for the use of JPF to gen-
erate models of Brahms programs for export into Spin, can be generalised and
integrated within the AJPF tool for model-checking BDI programs.

This provides a generic tool for generating models of agent programs imple-
mented in a wide range of BDI languages. These models can then be exported
into the input languages of the model-checker of choice. Where such a model-
checker operates on Kripke structures there is a direct translation from AJPF’s
own internal model to that of the target model-checker. For model-checkers using
richer input structures it is still relatively easy, using the customisation options
available with JPF, to enrich AJPF’s models so that they can be exported
appropriately. We provided an example of one such adaptation allowing BDI
programs to be probabilistically model-checked via the Prism model-checker.
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