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Abstract

We present an overview of the latest developments in the detection

of metamorphic and virtualization-based malware using an algebraic

specification of the Intel 64 assembly programming language. After

giving an overview of related work, we describe the development of a

specification of a subset of the Intel 64 instruction set in Maude, an ad-

vanced formal algebraic specification tool. We develop the technique

of metamorphic malware detection based on equivalence-in-context

so that it is applicable to imperative programming languages in gen-

eral, and we give two detailed examples of how this might be used in

a practical setting to detect metamorphic malware. We discuss the

application of these techniques within anti-virus software, and give a

proof-of-concept system for defeating detection counter-measures used

by virtualization-based malware, which is based on our Maude specifi-

cation of Intel 64. Finally, we compare formal and informal approaches

to malware detection, and give some directions for future research.
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1 Introduction

In this paper we present the latest developments on the detection of metamor-
phic and virtualization-based malware using an algebraic specification of a
subset of the Intel 64 assembly language instruction set. Both metamorphic
and virtualization-based malware present serious challenges for detection:
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undetectable metamorphic computer viruses are known to exist [4, 9], and
virtualization-based malware seem able to create a virtual computational
platform which is indistinguishable to the user under normal circumstances,
but which is completely under the control of the malware [21, 14].

There are currently many avenues of research into the detection of meta-
morphic computer viruses, both academic and industrial. Lakhotia & Mo-
hammed describe an algorithm for imposing order on high-level language
programs based on control- and data-flow analysis [18, 15]. Bruschi et al [1]
describe a similar method for malware detection to the one described by
Lakhotia & Mohammed, which uses code normalisation. Christodorescu et
al describe a formal approach to metamorphic computer virus detection using
a signature-matching approach, in which the signatures contain information
regarding the semantics, as well as the syntax, of the metamorphic computer
virus [6]. In a later paper Preda et al [19] are able to prove the correctness of
this approach with respect to instruction reordering, variable renaming and
junk code insertion. Bruschi et al [2, 3] and Walenstein et al [25] describe
approaches to code normalisation based on program rewriting. Chouchane
& Lakhotia describe an approach to metamorphic computer virus detection
based on the assumption that metamorphic computer often use the same
metamorphism engine, and that by assigning an engine signature it ought
to be possible to assign a probability that a suspect executable is an output
of that engine [5]. Yoo & Ultes-Nitsche [29, 30] present a unique approach
to metamorphic computer virus detection, which involves training a type of
artificial neural network known as a self-ordering map (SOM). Recent work
by Ször [23, 24] describes some of the industrial techniques for the detection
of metamorphic computer virus detection.

As virtualization-based malware is a relatively recent phenomenon [21,
14], there is less in the literature on the problem of its detection. King et
al [14] give a detailed overview of the state of the art in virtual machine-based
rootkits (VMBRs) through the demonstration of proof-of-concept systems,
and explore strategies for defending against VMBRs. Garkinkel et al [10]
describe a taxonomy of virtual machine detection methods, and describe
a fundamental trade-off between performance and transparency when de-
signing virtual machine monitors. Rutkowska [20] describes a technique for
detecting VMBRs called Red Pill, in which the Intel 64 instruction sidt is
used to reveal the presence of a virtual machine monitor through an altered
interrupt descriptor table.

Algebraic specification has been applied to the problem of metamorphic
malware detection previously [26]. Using a formal specification in OBJ of a
subset of the Intel 64 assembly language instruction set, it was shown that it
was possible to prove the equivalence and semi-equivalence of programs using
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equational term rewriting. When combined with the OBJ term rewriting en-
gine, the algebraic specification becomes an interpreter for the programming
language, and can be used to prove the equivalence of assembly language pro-
grams. Notions of equivalence and semi-equivalence were defined formally,
and it was shown that it is possible to extend semi-equivalence to equivalence
under certain conditions, known as ‘equivalence-in-context’. The present pa-
per builds upon this approach.

In Section 2 we describe a translation of the Intel 64 specification from
OBJ to Maude, a successor to OBJ which allows proofs based on rewriting
logic. We also extend the earlier specification by giving a semantics for condi-
tional and unconditional jumps. In the earlier work, the technique of proving
equivalence-in-context was only applicable to certain assembly language in-
structions for which we could prove (using a reduction in OBJ) that keeping
one set of variables constant would ensure that another set of variables would
have the same values after executing the instruction within two different
states [26]. In Section 3 we improve this result by showing that equivalence-
in-context is applicable to all instructions in imperative programming lan-
guages; i.e., the earlier restriction is not necessary. We then give concrete
examples of how equivalence-in-context can be used in practice to detect
metamorphic malware, using allomorphs taken from the Win9x.Zmorph.A,
Win95/Bistro and Win95/Zperm viruses. In Section 4 we discuss the applica-
bility of the algebraic approaches given in Section 3 and [26] to the practical
problem of detection of metamorphic malware based on formal static and
dynamic analysis, and in Section 5 we give a proof-of-concept system for
generating metamorphic variants of virtualization-detection programs (such
as Red Pill [20]), based on the additional proof tools available in Maude.

2 Specifying Intel 64 Assembly Language

The Intel 64 instruction set architecture [13] (an extension of the Intel 32-bit
architecture, IA-32) is used by the majority of personal computers world-
wide., and it follows that many computer viruses will be manifest at some
point in their reproductive cycle by a program in Intel 64. We have spec-
ified the syntax and semantics of a fragment of Intel 64 using Maude [7],
a formal specification and verification framework. Maude is a language in
the OBJ family of languages, which have been used for software specification
and verification for over thirty years [12]. The full Maude specification of our
fragment of Intel 64, which is described below, can be found in the appendix.

In this section we describe our approach to specifying the syntax and
semantics of the Intel 64 assembly language, and describe how algorithmic
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techniques can use this specification to reason about programs written in
the language. In Sections 2.1 and 2.2 we summarise the specification of
the syntax and semantics of non-looping instructions (i.e., instructions that
do not change the value of the instruction pointer), which has also been
described in [26, 28]. In Section 2.3 we describe how we have extended
this approach to include looping instructions (i.e., jumps and conditional
jumps). This extension of the specification describes a fragment of Intel 64
which is computationally more powerful, as we have conditional execution
and iteration as well as variable assignment.

2.1 Specifying the Syntax of Intel 64

The Intel 64 assembly language itself can be specified in Maude (see [7] for de-
tails of the Maude language; the present discussion does not, however, require
any specific knowledge of Maude). The specification of the language declares
sorts for the relevant syntactic categories, such as instructions, expressions,
variables, etc., and declares the constructs of the language as operations.
For example, the mov instruction is used in Intel 64 to assign the value of an
expression (either a program variable name or a value) to another program
variable, i.e., it ‘moves’ the value of the expression in its right-hand (source)
operand to the program variable in its left-hand (destination) operand. We
can specify the syntax of the mov instruction as follows:

mov_,_ : Variable Expression -> Instruction

The variables of the language are the registers eax, ebx, ecx, and edi, to-
gether with various ‘flags’, such as the instruction pointer ip, and the stack.
All of these variable names can be declared as constants of sort Variable;
for example

eax : -> Variable

An important feature of the language is that instructions can be com-
posed and put together to form programs. It is convenient to declare this
composition operation using a semi-colon notation rather than the standard
juxtaposition. In Maude this notation is declared as an operation

_;_ : Instruction Instruction -> Instruction

(throughout this paper we shall blur the distinction between sequences of
instructions and individual instructions).

The significance of specifying the syntax of the language in Maude is that
programs can then be represented as terms such as
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mov ecx, eax ; mov eax, ebx ; mov ebx, ecx

This can then be used as a basis for a formal specification of the semantics
of the language.

2.2 Specifying the Semantics of Intel 64

Following the approach of Goguen & Malcolm [11], the semantics of a pro-
gramming language can be specified by describing the effect of programs
upon the state of the machine that executes those programs. This state is
effectively captured by the values stored in the variables of the language:
programs update this state by manipulating these values. Our specification
declares a sort Store to represent these states, together with operations that
capture how stores and programs interact.

For example, evaluation of an expression in a given state is done by
declaring an operation

_[[_]] : Store Expression -> EInt

(where EInt represents integers together with ‘error values’ that might arise
through, for example, stack overflows). Expressions may include variables,
and for a store S and variable V, the term S[[V]] is intended to denote the
value stored in V in the state S.

The action of a program upon a state is captured by an operation

_;_ : Store Instruction -> Store

so that for a store S and instruction P, the term S ; P denotes the store
that results from executing P in the ‘starting state’ S. Putting all the above
together, a term such as

s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ ebx ]]

is intended to denote the value in the ebx register after the program has
executed in starting state s. Equations are used in the Maude specification
to stipulate exactly what such values should be. For example, the three
equations

S ; mov V,E [[V]] = S[[E]]

S ; mov V,E [[ip]] = S[[ip]] + 1

S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip
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state that a mov instruction assigns the given value to the given variable,
increments the instruction pointer by 1, and does not affect the value of any
other variables.

In practice, we can reduce a term like the one above to a simpler term
denoting the value of ebx after executing the program. Maude applies the
three equations above as rewrite rules, rewriting the term to a simpler term.
In this case, applying the above equations to the term results in the following
three-step simplification,

s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ ebx ]]

===>

s ; mov ecx, eax ; mov eax, ebx [[ ecx ]]

===>

s ; mov ecx, eax [[ ecx ]]

===>

s [[ eax ]]

indicating that the value of ebx in the final store is equal to the value of eax
in the initial store.

The semantics of non-looping instructions, such as mov, or, xor, test,
push, pop and nop can be captured in this way.

2.3 Specifying the Semantics of (Conditional) Loops

We described in the previous subsection how the semantics of non-looping in-
structions can be captured. To capture the semantics of looping instructions
requires an extension of the specification which allows an arbitrary nesting
and ordering of looping instructions. This extension uses an exec_of_in_

operator, where exec p1 of p2 in s denotes that we are executing program
p1 in the store s, and that p2 is the listing of the program from which we have
derived p1 (i.e., p1 is the fragment of p2 that follows the instruction pointer).
We can make this clearer with an example. Suppose that we wish to execute
the code

mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in an arbitrary store s. This would be captured by the following term:

exec mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

of mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in s
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Execution of the first instruction, mov eax, 0, results in an updated store
s’. Then execution proceeds to the second instruction. Notionally, we have
rewritten the term above to a second term:

exec jmp label1 ; label1: mov ebx, 1

of mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in s’

which says that the next instruction to be executed is the jump to label1.
(Notice that the store has been updated to s’, and that we have removed
the first instruction from the list appearing after exec, but that the second
list after of has stayed the same. The utility of this constant second list
will soon become clear.) Next, execution proceeds to the third instruction,
which is a jmp instruction, and can redirect the flow of control to anywhere
else in the program. Our knowledge of the behaviour of jmp l is that it will
execute the instruction that follows the label l. To capture the semantics of
jmp l, we wish to update the first instruction list p1 so that it starts at the
point following the label l. This is where the second, constant list p2 becomes
useful. We specify a function that searches p2 for an occurrence of the label
l and updates the value of p1 to the program that appears after the label l.
In our running example, the term above rewrites as follows:

exec jmp label1 ; label1: mov ebx, 1

of mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in s’

===>

exec mov ebx, 1

of mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in s’’

where s’’ is the state s’ but with the instruction pointer updated to point
to the instruction following label1.

Now suppose that we wish to capture the semantics of the je l instruc-
tion. Usually, je will appear after a calculation and will jump to label l if
and only if the result of the last calculation is zero. In practice, the Intel 64
processor checks the results of all calculations and sets the zero flag (zf) to
1 if the calculation is equal to zero. The je l instruction is designed to jump
if and only if the zero flag is equal to 1 (as a shorthand, we say that the zero
flag is ‘set’). Therefore the behaviour of je l is conditional on the value of
the zero flag.

As described in the previous subsection, we associate variables with their
values using the notion of a store, which is a function mapping variable names
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to values. Therefore, to capture the semantics of je l, we must query the
store to check the value of the zero flag, and if it is set, then je l behaves
exactly as jmp l. If the zero flag is not set, then je l behaves exactly as the
nop (‘no operation’) instruction.

Therefore, to execute je l we must know the value of the zero flag.
Within our specification, we know the value of any variable if (i) we know the
initial value of the store, and (ii) we have a list of every instruction that has
been executed thus far. Therefore, each time we evaluate exec p1 of p2 in s
we do one of three things:

1. If the first instruction in p1 is a non-looping instruction, then we remove
it from the list p1 and append it to s;

2. If the first instruction in p1 is an unconditional jump (e.g., jmp), then
we search for the place in the instruction following the target jump
location, and update p1 so that it contains the everything after this
point;

3. If the first instruction in p1 is a conditional jump (e.g., je), then we
test the value of the variable(s) upon which the jump is conditional
(e.g, the zero flag) relative to the current store s using the semantics
of non-looping instructions given in the previous subsection.

Once again, we will make this clear with an example. Suppose we wish to
execute the following:

sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

Now, we start to execute the program as before, but following the three rules
above. The first instruction is non-looping, and therefore we invoke condition
1:

exec sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

of sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

in s

===>

exec je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

of sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

in s ; sub eax, eax

Now, we want to execute the conditional jump je label1. To test whether
je label1 jumps to label1 or not, we evaluate the value of the zero flag
relative to the current store. To do this, we evaluate the value of the zero
flag relative to the current store:
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s ; sub eax, eax [[ zf ]]

We do this using our semantics of non-looping instructions. In this case,
sub eax, eax assigns zero to the eax register, and therefore the zero flag is
set, so the jump is performed:

exec je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

of sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

in s ; sub eax, eax

===>

exec mov ebx, 1

of sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

in s ; sub eax, eax

Execution of the next mov instruction proceeds as above, and we are left with
an empty list in p1:

exec

of sub eax, eax ; je label1 ; mov eax, 0 ; label1 ; mov ebx, 1

in s ; sub eax, eax ; mov ebx, 1

Therefore we have obtained a list of instructions which specifies the resulting
state of the machine executing the instructions,

s ; sub eax, eax ; mov ebx, 1

where s is the initial state of the machine.

2.4 Specifications as Interpreters, and Virtualization

Meseguer and Roşu [16, 17] give an overview of the many languages whose
semantics have been specified in Maude, and reiterate the point made by
Goguen and Malcolm [11] that term rewriting provides interpreters for these
languages: using equations to simplify terms effectively simulates the execu-
tion of programs. For example, the equations above give us

s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ ebx ]]

= s ; mov ecx, eax ; mov eax, ebx [[ ecx ]]

= s ; mov ecx, eax [[ ecx ]]

= s [[ eax ]]

which calculates that the program sets ebx to the value initially stored in
eax; similarly, we could calculate that the program increments the instruc-
tion pointer by 3. Maude has a rewriting engine that automates this process
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of simplification using equations, and which can therefore be viewed as in-
terpreting Intel 64 programs.

In a very precise sense, this specification virtualizes Intel 64 programs: it
provides a virtual machine on which these programs can be run. In our earlier
work [26] we explored the ramifications of this for static and dynamic analysis
of metamorphic viruses, and we further develop these ideas in the following
sections. We will also argue that virtualization, to some extent, turns the
tables in the battle between malware and anti-malware: on gaining control of
a host machine, virtualizing malware becomes a defender of the resources that
the virtualized anti-malware may use to detect its virtualized status, while
the anti-malware may use stealth, obfuscation, or any of the techniques more
usually associated with malware, to circumvent these countermeasures. The
formal basis provided by a Maude specification of Intel 64 semantics allows
us to reason rigorously about both malware and anti-malware.

3 Equivalence of Programs

Our earlier work [26] showed that a Maude specification of the Intel 64 assem-
bly programming language can be used for detection by dynamic analysis.
In this section we demonstrate how equivalence of behaviour can be used for
detection by static analysis. We present an improved form of a theorem from
[26] and show how this can be used to reason about allomorphs of meta-
morphic computer viruses, using the Win9x.Zmorph.A, Win95/Zperm and
Win95/Bistro viruses as examples.

3.1 Equivalence of States and Programs

Our end goal is to be able to prove that two allomorphic sequences of viral
code are equivalent, in that they behave in the same way. The notions of
equivalence and behaviour are semantic notions, so our goal can be rephrased
as being able to prove that two allomorphic sequences of viral code have the
same semantics. In classical denotational semantics, programs denote func-
tions from states to states, and a state is itself a function from variables to
values. Our algebraic approach is less concrete in allowing states to be im-
plemented in any way that satisfies the Maude specification of the semantics
of the language, but the notion of equivalence is still the same: two programs
are equivalent if they have the same effect on all variables. The technical ma-
chinery that we develop in this subsection applies to any imperative language
with variables, though of course we are primarily interested in Intel 64, and
this is the language used in the examples of Sections 3.2 and 3.3. For the
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remainder of this section we assume there is a countable set V of variables in
the language (for Intel 64, this would include the registers, flags, stack and
memory addresses). We also write S for the set of states, which we refer to
throughout as ‘stores’, following the terminology of the previous section. We
write s; p for the state that results from running program p in store s, and
we write s[[v]] for the value that the store s assigns to the variable v. Thus,
for example, s; p[[v]] represents the value of the variable v after p has been
run in starting state s. We also assume that the language has sequential
composition, which we also denote with a semicolon, e.g., p1; p2.

Any program affects only a finite set of variables, and two programs may
be ‘partially equivalent’ in that they have the same effect on some variables,
but not necessarily all variables. We begin by defining partial equivalence of
states.

Definition 1. For W ⊆ V , stores s1 and s2 are W -equivalent, written
s1 ≡W s2, iff for all variables v ∈W :

s1[[v]] = s2[[v]] .

In the case that W = V , we say that s1 is equivalent to s2, and write s1 ≡ s2.
Similarly, programs p1 and p2 are W -equivalent, written p1 ≡W p2, iff for

all stores s, and all variables v ∈W :

s; p1[[v]] = s; p2[[v]] .

In the case that W = V , we say that p1 is equivalent to p2, and write p1 ≡ p2.

For the purposes of static analysis, we identify the variables that are read
or written to by programs. We identify Vout(p) as the set of variables that
could be modified by the program p.

Definition 2. For program p, define Vout(p) by v ∈ Vout(p) iff there is an
s ∈ S such that s; p[[v]] 6= s[[v]].

For example, Vout(mov eax, ebx) = {eax, ip} because the values in eax

and ip are modified by this program.
A straightforward consequence of this definition is

Proposition 3. Let p = p1; . . . ; pn. If v /∈
n⋃

i=1

Vout(pi), then v /∈ Vout(p), and

so for all stores s we have s; p[[v]] = s[[v]].

Similarly, we want Vin(p) to be the set of variables that could affect the
behaviour of some program p in some way. We find it more convenient to
express this by saying when a variable has no effect on the behaviour of p:
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Definition 4. For program p, define Vin(p) by v /∈ Vin(p) iff for all s, s′ ∈ S,
s ≡V \{v} s

′ implies s; p ≡Vout (p) s
′; p.

That is, v has no effect on p if running p in two states that differ only
in the value of v has no effect on the variables that p affects (attention is
restricted to Vout(p) because the stores s; p and s′; p may of course differ at
v itself).

In our earlier work [26] we presented some basic results that allow the
notion of equivalence to be applied to metamorphic viruses, principally Corol-
lary 9 below. Their proof, however, uses a lemma that is proved by case-
analysis on Intel 64 programs, and therefore only holds for those specific
programs: the proof we give below removes this dependency on a particular
language, since it uses only the abstract properties of Vin and Vout . First, we
introduce a slight generalisation of the notion of equivalence, that allows us
to ignore certain variables (for example, in Intel 64, we may wish to prove the
equivalence of two instruction sequences of different lengths, which means we
need to disregard the value of the instruction pointer after execution of the
programs). For a subset W ⊆ V we write W for the complement V \W .

Definition 5. Let p be a program and W ⊆ V a set of variables; we say
that p has local effect at W iff for all stores s1 and s2, if s1 ≡W s2 then
s1; p ≡W s2; p.

Note that s1 ≡W s2 says that stores s1 and s2 differ only on the values
of variables in W , so p has local effect at W means that any differences that
can be observed after running p in the two stores are kept within W . For
example, most Intel 64 programs have local effect on the instruction pointer:
execution of each instruction will increase the instruction pointer, and two
programs of different length will increase the instruction pointer by different
amounts, but that might well be the only difference between the programs.
The notion of local effect allows us to disregard such differences if we so
desire. Note also that in the special case W = ∅, local effect simply states
that a program produces the same results when run in equivalent stores.

Lemma 6. For all programs p with local effect at W ⊆ V and for all states
s1, s2:

s1 ≡Vin (p)\W s2 implies s1; p ≡Vout (p)\W s2; p .

Proof. Let x1, . . . , xn be an enumeration of (V \ Vin(p)) \W , and let s1,1 be
some state identical to s1, except

s1,1[[x1]] = s2[[x1]] .
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Inductively, let s1,i+1 be some state identical to si except

s1,i+1[[xi+1]] = s2[[xi+1]] .

Then s1,n ≡W s2, so by local effect at W we have s1,n; p ≡W s2; p. Moreover,
by Definition 4, s1; p ≡Vout (p) s1,1; p ≡Vout (p) s1,2; p ≡Vout (p) · · · ≡Vout (p) s1,n; p.
It follows that for any v ∈ Vout(p) \W , s1; p[[v]] = s1,n; p[[v]] = s2; p[[v]], as
desired.

As a technical remark, the above proof assumes that (V \Vin(p))\W is finite.
For classical denotational semantics, where a store is a function from variables
to values, it is straightforward to allow the set to be countably infinite: the
required store s1,n is just the uniquely determined function that agrees with
s2 on (V \Vin(p)) \W , and with s1 everywhere else. In our algebraic setting,
we need to take more care that the required store exists. The simplest way
of doing so is to have a default value, such as 0, for all variables, and impose
a reachability constraint on stores, so that we consider only those stores that
assign the default value to all but a finite number of variables. In the proof,
we need then consider only the finite subset of (V \ Vin(p)) \W on which s1

and s2 differ.
The use of local effect at W gives a greater generality than our earlier

results [26], and allows us to ignore differences at W . For the sake of clarity,
however, it is worthwhile stating the special case where W = ∅:

Corollary 7. For all programs p and for all states s1, s2:

s1 ≡Vin (p) s2 implies s1; p ≡Vout (p) s2; p .

This states that running p in stores that agree on all the variables that
can affect the behaviour of p gives results that agree on all the variables that
can be affected by p.

As in [26], the above lemma allows us to incrementally chain together
sets of variables into equivalences for programs. The key result, in a general
statement with local effects is

Theorem 8. Let q be a program with local effect at W , and let p1 and p2 be
programs with p1 ≡U\W p2. If Vin(q) ⊆ U , then p1; q ≡(U∪Vout (q))\W p2; q.

Proof. For any store s, we have s; p1 ≡U\W s; p2, so s; p1 ≡Vin (q)\W s; p2

because Vin(q) ⊆ U . It follows from Lemma 6 that s; p1; q ≡Vout (q)\W s; p2; q.
Now for v ∈ U \W and v /∈ Vout(q), we have s; p1; q[[v]] = s; p1[[v]] = s; p2[[v]] =
s; p2; q[[v]], so we conclude that p1; q ≡(U∪Vout (q))\W p2; q as desired.

Taking W = ∅, and allowing for general sequential compositions, we get
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Corollary 9. Let q be a program such that q = q1; q2; . . . ; qm. If p1 ≡U p2

and for all j with 1 ≤ j ≤ m

Vin(qj) ⊆ U ∪
j−1⋃

i=1

Vout(qi)

then p1; q ≡U∪Vout (q) p2; q.

It is possible to recover equivalence of programs from U -equivalence in
some cases. If p1 ≡U p2, then p1 and p2 may have different effects on variables
in U ; but if all variables in U are overwritten in the same way by some
program q, then this theorem allows us to ‘add’ those variables until we
cover all of V , in which case we say that p1 and p2 are equivalent-in-context
of q.

Corollary 10 (Equivalence-in-Context). If p1 ≡U p2 and Vin(q) ⊆ U and
U ∪ Vout(q) = V , then p1; q ≡ p2; q.

All of the above provides some technical support for static analysis of
programs written in any imperative language. Of course, the determination
of the sets Vin(p) and Vout(p) will depend upon the particular program p.
We conclude this section by showing that our Maude specification of Intel 64
allows us to determine these sets for instructions of the assembly language.

Example 11. Suppose we wish to know the value of Vout(mov v1, v2). By
Definition 2, we must show that for every program variable v ∈ Vout(mov v1, v2)
that v is different after executing mov v1,v2 in some store s. The semantics
of mov is given by the following equations:

eq S ; mov V,E [[V]] = S[[E]] .

ceq S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

From these, we may suspect that v1 is in Vout(mov v1, v2). We can prove this
by assuming that the values of program variables v1 and v2 in some store s

are different. We can express this in Maude notation as

eq s[[v1]] = value1 .

eq s[[v2]] = value2 .

where value1 and value2 are the (numeric) values of v1 and v2 respectively.
Then, by performing reductions in Maude we can calculate the value of v1
before and after executing mov v1,v2:
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reduce s[[v1]] .

result Int: value1

reduce s ; mov v1, v2[[v1]] .

result Int: value2

These reductions tell us that the value of v1 has changed from value1 to
value2 by executing mov v1,v2. Therefore, we know that v1 ∈ Vout(mov v1, v2).

Example 12. We can determine Vin(θ) for an instruction θ based on the
Maude specification of Intel 64. By the definition of Vin , we know that if
there exist stores s, s′ ∈ S such that s ≡V \{v} s

′ and s; θ 6≡Vout (θ) s
′; θ then v ∈

Vout(θ). Inspection of the Maude specification might result in the suspicion
that v2 ∈ Vin(mov v1, v2). We can prove this by assuming that s ≡V \{v2} s

′,
which we can specify in Maude as follows:

eq s[[v2]] = value1 .

eq s’[[v2]] = value2 .

ceq s[[V]] = s’[[V]]

if V =/= v2 .

The first two equations say that v2 is different in stores s and s’, and
the last equation says that every variable apart from v2 has the same value
in stores s and s’. Now, we can test using reductions in Maude whether
the variables in Vout(mov v1, v2) are equal after executing mov v1,v2. Since
Vout(mov v1, v2) = {v1, ip}, we can test these values using reductions:

reduce s ; mov v1, v2 [[v1]] .

result: value1

reduce s’ ; mov v1, v2 [[v1]] .

result: value2

reduce s ; mov v1, v2 [[ip]] .

result: 1 + s’[[ip]]

reduce s’ ; mov v1, v2 [[ip]] .

result: 1 + s’[[ip]]

We can see that the value of ip after executing mov v1, v2 is the same
in both stores, but the value of v1 is different. Therefore, we know that
v2 ∈ Vin(mov v1, v2).
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g h

mov edi, 2580774443 mov ebx, 535699961

mov ebx, 467750807 mov edx, 1490897411

sub ebx, 1745609157 xor ebx, 2402657826

sub edi, 150468176 mov ecx, 3802877865

xor ebx, 875205167 xor edx, 3743593982

push edi add ecx, 2386458904

xor edi, 3761393434 push ebx

push ebx push edx

push edi push ecx

Figure 1: Allomorphic fragments of Win9x.Zmorph.A.

3.2 Examples Using Win9x.Zmorph.A

The following code excerpts were taken from the entry point of two dif-
ferent executables infected with Zmorph. This virus reconstructs its code
instruction-by-instruction, pushing each one onto the stack [22]. Therefore
the code samples g and h in Figure 1 exhibit a part of Zmorph’s decryp-
tion algorithm. In the following examples we will show that g and h are
equivalent-in-context of two different instruction sequences, p and p′, by ap-
plying the result from Corollary 10.

Example 13. By inspection of the Maude specification of Intel 64, we know
that

Vout(g) ∪ Vout(h) = {stack, ip, edi, ebx, ecx, edx}

By Proposition 3, we know that s; g[[v]] = s[[v]] for all v /∈ Vout(g), and
s;h[[v′]] = s[[v′]] for all v′ /∈ Vout(h). Therefore, s; g[[v]] = s;h[[v]] for all
v /∈ Vout(g) ∪ Vout(h). Using the dynamic analysis approach of our earlier
work[26] (i.e., using reductions in Maude), we can show that s; g[[stack]] =
s;h[[stack]] and s; g[[ip]] = s;h[[ip]]. Therefore we know that s; g ≡W s;h
where W = {edi, ebx, ecx, edx}. (Note that for the sake of brevity, we have
omitted the EFLAGS register in this example.)

We will show how an instruction sequence p executed immediately after g
and h results in an equivalent store, which allows the metamorphic computer
virus to freely swap g and h as long as p executes next.

Let p = mov edi, 0 ; mov ebx, 0 ; mov ecx, 0 ; mov edx, 0. In order to
apply Corollary 9, we must first check the values of Vin(pi) and Vout(pi) for
all instructions pi in p (these can be inferred easily by inspection of the Maude
specification of Intel 64):
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Vin(mov edi, 0) = {ip}

Vin(mov ebx, 0) = {ip}

Vin(mov ecx, 0) = {ip}

Vin(mov edx, 0) = {ip}

Vout(mov edi, 0) = {edi, ip}

Vout(mov ebx, 0) = {ebx, ip}

Vout(mov ecx, 0) = {ecx, ip}

Vout(mov edx, 0) = {edx, ip}

The following therefore hold:

Vin(mov edi, 0) ⊆ W

Vin(mov ebx, 0) ⊆ W ∪ Vout(mov edi, 0)

Vin(mov ecx, 0) ⊆ W ∪ Vout(mov edi, 0) ∪ Vout(mov ebx, 0)

Vin(mov edx, 0) ⊆ W ∪ Vout(mov edi, 0) ∪ Vout(mov ebx, 0)

∪Vout(mov ecx, 0)

Therefore by Corollary 9, g; p ≡W∪Vout (p) h; p, and since W ⊆ Vout(p), we
know by Corollary 10 that g; p ≡ h; p.

Alternatively, we can check directly using the Maude specification of Intel 64
that this is the case, using the above definitions of g, h and p. We can use
Maude’s term rewriting to simplify terms such as the following:

s ; g ; p[[stack]] == s ; h ; p[[stack]]

s ; g ; p[[ip]] == s ; h ; p[[ip]]

s ; g ; p[[edi]] == s ; h ; p[[edi]]

Each of these terms tests the equality of the two programs on the variables
stack, ip, edi, etc. By testing for all the variables in Intel 64, we can take
these Maude reductions as a second proof that g; p ≡ h; p [27].

In the example above we showed that by overwriting the non-equivalent
variables from the semi-equivalent programs g and h in the instruction se-
quence p, that we can show that g and h are equivalent-in-context of p. In the
following example we will show that equivalence can also be demonstrated
where an instruction sequence p′ contains instructions which overwrite the
non-equivalent variables, as long as the instructions in p′ are not dependent
on the non-equivalent variables.

Example 14. Let p′ = pop edi ; pop ebx ; pop ecx ; mov ecx, edx. Once
again we must check the values of Vin(p′i) and Vout(p

′
i) for all instructions p′i

in p′ before we can apply Corollary 10:
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push ebp push ebp

mov ebp, esp push esp

mov esi, dword ptr [ebp + 08] pop ebp

test esi, esi mov esi, dword ptr [ebp + 08]

je 401045 or esi, esi

je 401045

Figure 2: Allomorphic fragments of Win95/Bistro. [24]

Vin(p′1) = {ip, stack}

Vin(p′2) = {ip, stack}

Vin(p′3) = {ip, stack}

Vin(p′4) = {ip, ecx}

Vout(p
′
1) = {edi, ip}

Vout(p
′
2) = {ebx, ip}

Vout(p
′
3) = {ecx, ip}

Vout(p
′
4) = {edx, ip}

The following therefore hold:

Vin(p′1) ⊆ W

Vin(p′2) ⊆ W ∪ Vout(p
′
1)

Vin(p′3) ⊆ W ∪ Vout(p
′
1) ∪ Vout(p

′
2)

Vin(p′4) ⊆ W ∪ Vout(p
′
1) ∪ Vout(p

′
2) ∪ Vout(p

′
3)

Therefore by Corollary 9, g; p′ ≡W∪Vout (p′) h; p
′, and since W ⊆ Vout(p

′), we
know by Corollary 10 that g; p′ ≡ h; p′.

As with the previous example, it is also possible to verify this directly
using a reduction in Maude [27].

3.3 Example Using Win95/Bistro

Win95/Bistro applies equivalent sequence replacement to generate syntac-
tic variants. Figure 2 shows two allomorphic fragments from Win95/Bistro.
Previously we proved equivalence of the two Bistro fragments by dividing
them into sub-fragments [26]. However, using our semantics of looping in-
structions (see Section 2.3) we can now prove equivalence in a simpler, more
natural way.

In both fragments, the instruction je 401045 will jump if and only if the
value of esi (which itself depends on the value of ebp) is equal to zero. Since
there is no way to determine the value of ebp, we replace the source operand
dword ptr [ebp + 08] with a constant, dword1. Then, if dword1 is equal
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to zero, the instruction je 401045 will cause a jump; if not, no jump will
occur.

In order to prove equivalence of the two fragments, we assign the two
fragments of Bistro to two different constants as follows:

eq prog1 = push ebp ; mov ebp, esp ; mov esi, dword1 ;

test esi, esi ; je 401045 ;

jmp l1 ; label 401045: mov flag, 1 ; label l1: end .

eq prog2 = push ebp ; push esp ; pop ebp ; mov esi, dword1 ;

or esi, esi ; je 401045 ;

jmp l1 ; label 401045: mov flag, 1 ; label l1: end .

(In each case we append a sequence of instructions that will test whether the
jump has occurred. If the jump is successful, then the variable flag is set.)

To determine equivalence of the two fragments, we need only test that the
values of the variables in Vout(prog1) and Vout(prog2) are the same. Using
a similar method to Example 11, we know that

Vout(prog1) = Vout(prog2) = {ebp, esp, esi, stack, zf, sf, pf, cf, of} ,

(neglecting the instruction pointer). In the first case, we assume that dword1
is equal to zero.

eq dword1 = 0 .

Then, we perform reductions to test whether the variables in Vout(prog1) are
equal. In addition, we test that the value of flag is the same after execut-
ing both fragments, showing that the je 401045 instruction had the same
behaviour in both fragments:

reduce exec prog1 of prog1 in s[[ebp]] is

exec prog2 of prog2 in s[[ebp]] .

result: true

reduce exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]] .

result: true

reduce exec prog1 of prog1 in s[[flag]] is

exec prog2 of prog2 in s[[flag]] .

result: true

...
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We therefore know that all variables are treated in the same way by the
two fragments, and therefore the two fragments are equivalent when dword1

is equal to zero. Similarly, when we assume that dword1 is not equal to
zero, we find that the values of the variables are the same after executing
both fragments. Therefore, the two fragments of Bistro are equivalent. (The
complete proof script can be found in the appendix.) It is also possible to
use Theorem 8 to show that the two program fragments of Figure 2 are {ip}-
equivalent; i.e., they have the same effect except on the instruction pointer,
since the two fragments are of different length.

3.4 Example using Win95/Zperm

The Win95/Zperm metamorphic computer virus generates syntactic variants
by separating its code into fragments, which are joined using unconditional
jump statements. In addition, junk code is inserted within the fragments.
Szor & Ferrie [24] describe this process, and give three different examples
of the Zperm obfuscation process. In their example, a five-instruction pro-
gram is obfuscated by jumps. The original code is not given, so we simulate
Zperm’s obfuscation using a five-instruction program called zperm1. We then
generate three different zperm1 variants (see Figure 3) using the schemas set
out graphically by Szor & Ferrie. Wherever the authors indicate garbage
code, we have inserted a nop instruction.

We can demonstrate the equivalence of these programs in a similar way
to Win95/Bistro. First, we calculate

Vout(zperm1) = Vout(zperm2) = Vout(zperm3) = Vout(zperm4) = {eax, ebx, ecx}

(neglecting the instruction pointer). Then, we prove equivalence of the four
programs using reductions in Maude.

Each of the programs has a different start (entry) point, which we are
able to specify using the exec p1 of p2 in s described in Section 2.3. We
assign the code appearing after start: to p1, whilst p2 and s contain the
usual full program and store (respectively). For example, we can simulate
execution of zperm2 with the following:

exec mov eax, 0 ; mov ebx, 1 ; jmp l2 ; nop ; label l2:

mov ecx, ebx ; jmp l1 ; nop ; label out ; end

of label l1: mov ebx, eax ; mov eax, ecx ; jmp out ;

nop ; mov eax, 0 ; mov ebx, 1 ; jmp l2 ; nop ;

label l2: mov ecx, ebx ; jmp l1 ; nop ; label out: end

in s
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<<zperm1>>

start:

mov eax, 0

mov ebx, 1

mov ecx, ebx

mov ebx, eax

mov eax, ecx

<<zperm2>>

label l1:

mov ebx, eax

mov eax, ecx

jmp out

nop

start:

mov eax, 0

mov ebx, 1

jmp l2

nop

label l2:

mov ecx, ebx

jmp l1

nop

label out:

<<zperm3>>

label l1:

mov ebx, 1

jmp l2

nop

label l2:

mov ecx, ebx

jmp l3

nop

label l4:

mov eax, ecx

jmp out

start:

mov eax, 0

jmp l1

label l3:

mov ebx, eax

jmp l4

label out:

<<zperm4>>

label l1:

mov ecx, ebx

mov ebx, eax

jmp l2

nop

label l2:

mov eax, ecx

jmp out

start:

mov eax, 0

jmp l3

nop

label l3:

mov ebx, 1

jmp l1

nop

label out:

Figure 3: Allomorphic fragments of Win95/Zperm.

In general, we can describe the above as exec startn of progn in s, where
n corresponds to the number of the fragment from Figure 3. To prove equiv-
alence of these fragments we perform reductions with respect to the different
variables in Vout(zperm1). We start with variable eax:

reduce exec start1 of prog1 in s[[eax]] .

result: 1

reduce exec start2 of prog2 in s[[eax]] .

result: 1

reduce exec start3 of prog3 in s[[eax]] .

result: 1

reduce exec start4 of prog4 in s[[eax]] .

result: 1

Therefore, the four different variants of Zperm are equivalent with respect
to eax. We can prove equivalence with respect to ebx and ecx in a similar
way, thus proving that all four variants are equivalent. The full Maude proof
script is available in the appendix.
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4 Detecting Metamorphism

In the previous sections we have shown how the formal specification in Maude
of the Intel 64 assembly programming language enables static and dynamic
analysis to prove equivalence and semi-equivalence of code. We have shown
how metamorphic computer viruses use equivalent and semi-equivalent code
in order to avoid detection by signature scanning. Therefore, given the tech-
niques for code analysis described above, it seems reasonable that static and
dynamic analysis based on the formal specification of Intel 64 should give
ways to detect metamorphic computer viruses by proving the equivalence of
different generations of the same virus to some virus signature, thus enabling
detection of metamorphic computer viruses by a signature-based approach.

Implementation of a industrial tool for metamorphic computer virus de-
tection is beyond the scope of this work, but a discussion of the application
of the technique presented earlier to the problem of detecting metamorphic
and virtualized malware is given below.

4.1 Dynamic Analysis for Detection of Metamorphic
Code

4.1.1 Signature Equivalence

The most obvious application for detection is based on the techniques de-
scribed in our earlier work [26], and in Section 3, to prove by dynamic analysis
the equivalence of code fragments. Suppose that a signature σ is stored in
a disassembled form, and that there is a fragment of suspect code c within
a disassembled executable file. Then, the effects of c and σ on a generalised
store could be discovered by performing Maude reductions. The resulting
stores could be compared, and if equal, would prove that c ≡ σ. Computer
virus signatures must be sufficiently discriminating and non-incriminating,
meaning that they must identify a particular virus reliably without falsely
incriminating code from a different virus or non-virus [8]. If a suspect code
block was proven to have equivalent behaviour to a signature, this would re-
sult in identification to the same degree of accuracy as the original signature.
(Since a signature uses a syntactic representation of the semantics of a code
fragment to identify a viral behavioural trait, any equivalent signature must
therefore identify the same trait.) If the code block is only semi-equivalent,
then the accuracy of detection could be reduced. However if equivalence-in-
context could be proven then accuracy would again be to the same degree as
the original signature.
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4.1.2 Signature Semi-Equivalence

It might be the case that a given metamorphic computer virus is known
to write certain values onto the stack, and therefore the state of the stack
at a certain point in the execution of the metamorphic virus could be a
possible means of detection. In our previous work [26], two variants of the
Win9x.Zmorph.A metamorphic computer virus were shown to be equivalent
with respect to the stack, meaning that the state of the stack was affected in
the same way by both generations of the virus. Therefore, the same technique
could be used for detection. In this case, equivalence need not be proven,
as the detection method relies on equivalence with respect to a subset of
variables, i.e., semi-equivalence.

4.2 Static Analysis for Detection of Metamorphic Code

4.2.1 Formally-Verified Equivalent Code Libraries

One important result in the field of algebraic specification is the Theorem
of Constants (p.38, [11]). Informally, the theorem states that any nullary
operator (i.e., constant) used in a reduction within an algebraic specification
system such as Maude, can be used as a variable in that reduction. This holds
because the definition of variables within Maude is that they are actually
constants within a supersignature, i.e., a variable in a Maude module is
a constant within another module that encompasses it. This lets us use
constants in place of variables, e.g., for the reductions used in Examples 13
and 14 we use a constant s to denote any store s.

This means that the proofs of equivalence and semi-equivalence of the
code fragments in Sections 3.2–3.4 still hold if we swap the program variable
names for other program variable names of the same sort (e.g., we don’t
interchange stack variables and “ordinary” variables such as the eax register).
For example, if

push ebp ; mov ebp,esp ≡W push ebp ; push esp ; pop ebp (1)

where W = V − {ip}, then by the Theorem of Constants we can replace
ebp with eax, and esp with edx, for example, and the statement of semi-
equivalence still holds. Therefore, we might rephrase the above with a more
standard mathematical notation, e.g.,

push x; mov x, y ≡W push x; push y; pop x (2)

with the additional requirement that x 6= y (which was implicit in Equa-
tion 1).
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Therefore, if we know that metamorphic computer viruses might use a set
of equations similar to Equation 2, then we may wish to build up a library
of equivalent instruction lists based on those equations. In doing so we could
decide, for instance, that all instances of the left-hand side of Equation 2
should be “replaced by” the right-hand side. If there was a metamorphic
computer virus that exhibited only this kind of metamorphism, then we
would have effectively created a normal form of the virus that would enable
detection by straightforward signature scanning. Of course, this example
is kept simple intentionally, and many metamorphic computer viruses will
employ code mutation techniques which are far more complex, but the general
idea of code libraries which are formally verified using a formal specification
language, such as Maude, may be useful.

4.2.2 Equivalence in Context

As shown in Section 3 and in earlier work by ourselves [26], metamorphic
computer viruses can use semi-equivalent code replacement in order to pro-
duce syntactic variants in order to evade signature-based detection. The
obvious advantage of this stratagem is that restricting metamorphism to
code sequences that are equivalent limits the number of syntactic variants.
An obvious example is that metamorphic computer viruses may wish to use
code that treats all variables equivalently except the instruction pointer, i.e.,
equivalent code of differing length that is semi-equivalent with respect to
every variable except the instruction pointer. Clearly, this will not pose a
problem for the metamorphic computer virus as long as there is no part of
its program that is dependent on the value of the instruction pointer at a
given point after the mutated code.

It is likely, therefore, that a code segment c of a suspect executable will be
semi-equivalent to some signature σ of a metamorphic computer virus. If it
were possible to prove equivalence-in-context, i.e., that c;ψ ≡ σ;ψ, where ψ
is some code appearing immediately after c in the suspect executable, then it
would be known that σ was a successful match to c and detection of the virus
would be achieved. (See Figure 4 for an illustrated example.) Another possi-
ble application of equivalence-in-context would be in the scenario where dy-
namic analysis was computationally-expensive. Equivalence-in-context can
be proven using only static analysis, and therefore could limit the use of
dynamic analysis.
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Figure 4: Signature-based detection of a metamorphic computer virus, by
application of equivalence-in-context. Instruction sequences c and σ are semi-
equivalent with respect to W . Applying the result in Corollary 10 to c, σ
and ψ reveals that in fact c;ψ ≡ σ;ψ and therefore c has been identified as
equivalent to signature σ, resulting in detection of the virus. This method
could result in a false positive as there may be a non-malware instruction
sequence which is equivalent-in-context of some signature.

5 Detection of Virtualization by Metamor-

phic Code Generation

In the previous sections we used our formal algebraic specification of the
Intel 64 assembly programming language to prove that different generations
of a metamorphic code were equivalent, i.e., we used reductions in Maude to
simplify an Intel 64 instruction sequence to a term denoting the state of the
computer after executing that instruction sequence. Here, we will show how
we can essentially do the opposite: we can specify some end-condition for
the state after executing some sequence of instructions, and using Maude’s
built-in search function, find sequences of instructions which satisfy that
end-condition.

This is applicable to virtualization-based detection as follows. Suppose we
have some Intel 64 instruction sequence which, when executed, can highlight
the presence of virtualization-based malware. Naturally, virtualization-based
malware will try to detect this instruction by signature matching, as part of
a detection counter-measure. Therefore, it would be useful to be able to gen-
erate automatically sequences of instructions which we know are equivalent,
and therefore would be difficult for the malware detect. In other words, we
can use metamorphism to improve the performance of the detection method.

We can specify an end-condition in which the detection instruction se-
quence is stored in memory. Then, by applying the Maude search function-
ality, we can find sequences of instructions which generate this instruction
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sequence. The advantage of using the Intel 64 specification in Maude is
that it is formal, and so any instruction sequence generated is automatically
proven to work.

We will now describe the more technical details of this application of the
Intel 64 specification.

5.1 Virtual Machine Rootkits

Virtual machine rootkits can be used to force the user to use an operating
system that executes within a virtual machine [20, 14, 21, 10]. The advan-
tages to the potential attacker are obvious; the user would be oblivious to
any malicious programs executing outside the virtual machine. Rutkowska
describes an approach to detection of virtualized malware from within the
virtualized operating system, based on the execution of an Intel 64 assem-
bly language instruction called sidt x [20]. When executed, this instruction
stores the contents of the interrupt descriptor table register into the desti-
nation operand x. The value of x varies depending on whether the sidt

instruction has been executed inside or outside a virtual machine, and there-
fore detection is possible. This method is called Red Pill.

However, this detection method is not always guaranteed to work, as the
user’s interaction with the operating system can be controlled and manipu-
lated in order to avoid detection using methods akin to Red Pill. King et al
describe a counter-measure to Red Pill based on emulation [14]. The virtual
machine monitor (VMM), which controls execution of the virtual machine,
detects when the Red Pill executable is being loaded into memory, and sets
a breakpoint to trap the execution of sidt. When the breakpoint is reached,
the VMM will emulate the instruction, setting the value of the destination
operand of sidt to a value not indicating detection. The authors note that
this detection counter-measure could be defeated by a program R that gen-
erates the sidt instruction dynamically.

At this point the writers of the malware have two options: they can re-
write the virtualization-based malware so that it can detect R, as well as
Red Pill, by static analysis. Alternatively, they can trace the execution of
programs in order to detect by dynamic analysis any occurrence of Red Pill.
King et al note that the latter could be computationally expensive, adding
overhead which might result in detection by timing methods (see, e.g., [10]).

Suppose that the former option were chosen. Then, all the malware
writers need do in order to avoid detection of their malware is to adjust
their program to detect R′ as well as R and Red Pill. Therefore, from the
perspective of the writers of the Red Pill program, a means of automatic
generation of programs that have the same behaviour as Red Pill would
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be desirable. In other words, we would like to use a metamorphic version
of Red Pill, that changes its syntax at run-time in order to evade detection.
Clearly, metamorphic engines as seen in metamorphic computer viruses could
be used, but they are not reliable, in that the syntactic variants generated are
not guaranteed to preserve the semantics of the original program. Therefore,
we propose a solution to this problem based on our formal description of Intel
64 assembly language, which could be employed as a means of generating Red
Pill variants before or during run-time.

5.2 Detecting Virtualization using the Intel 64 Speci-
fication

As was discussed in Section 2, the Maude specification of Intel 64 denotes a
term rewriting system. The usual application of such a system is to apply
equations and rewrite rules in order to reduce terms to some terminal form,
i.e., to rewrite terms until they can no longer be rewritten. However, it is
also possible to perform a search of the rewriting space of a term rewriting
system in order to determine whether it is possible to reduce one term to
another, and if there are non-deterministic aspects to the term rewriting
system, whether there are multiple ways of performing such a reduction. It
is also possible to test for some conditional value, and find all rewriting routes
that lead to a term satisfying that condition.

Using the Maude specification of Intel 64, it is possible to rewrite a term
such as S[[eax]], which denotes the value of eax in some store S, using a
variety of rewrite rules, and check using a breadth-first search of the term
rewriting system whether a condition such as S[[eax]] = "sidt" is true,
which says that the value of eax in some store S is equal to "sidt". In
other words, it is possible to create a term rewriting system in Maude that
constructs programs based on rewrite rules, and search the rewriting space
for constructed programs that are satisfy the requirement that "sidt" is
stored in some variable. Figure 5 shows such a term rewriting system that
generates different ways of constructing a program that satisfies the condition
that S[[eax]] = "sidt". Therefore, it is possible to create a metamorphic
code engine based on our formal specification of Intel 64 in Maude.

The previous example also shows how we can automatically generate
programs that assign the number corresponding to the opcode of sidt x to
some variable, e.g., register eax. Therefore this technique could be used to
generate automatically syntactically-mutated forms of a Red Pill program in
order to evade detection of the Red Pill program by the VMM. This approach
is advantageous to applying a metamorphic engine from a computer virus,
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rl [1] : S[[eax]] => S ; mov ebx, "sidt" [[eax]] .

rl [2] : S[[eax]] => S ; mov eax, ebx [[eax]] .

rl [3] : S[[eax]] => S ; mov ecx, ebx [[eax]] .

rl [4] : S[[eax]] => S ; mov eax, ecx [[eax]] .

Let the end condition be s[[eax]] = "sidt".
Then, apply any of the following to reach the end condition from s[[eax]]:

(1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 3, 4), (1, 3, 3, 4), (1, 3, . . . , 3, 4).

Figure 5: A metamorphic engine based on the Maude specification of Intel 64.
The four lines beginning with rl are rewrite rules that construct programs
by appending an instruction to an instruction sequence. The search of the
rewriting space then reveals sequences of rewrite rule applications that result
in programs that assign "sidt" to eax. The Maude specification for this
proof-of-concept engine can be found in the appendix.

which tend to be buggy, because the formality of the Intel 64 specification
assures that any metamorphic code generated satisfies a given condition. If
that condition is equivalence with respect to some variables, then we can
generate syntactic variants of code which preserve semantics with respect to
those variables.

5.3 A Note on Tractability

We described above how term rewriting systems can be specified in Maude,
and used to generate metamorphic code. It is interesting to note that certain
term rewriting systems, such as the one in Figure 5, there are an infinite
number of terms satisfying the condition we have specified. Since each of
these is generate by applying the rewriting rules in different sequences, we
know that the set of terms satisfying the condition is infinite and recursively
enumerable. Therefore, if we directed the Maude term rewriting engine to
enumerate all the different terms satisfying a condition, the engine would
never halt.

Therefore, it may appear that tractability is an issue in this regard. How-
ever, our aim is not to enumerate all of the different metamorphic programs
that have the desired property, but to generate as many as we require in
order to evade the detection counter-measures of the virtualization-based
malware. For example, in Maude we can specify that we want only the
first n programs that have the desired property. For example, we specified
the rewriting system in Figure 5 in Maude version 2.3, and produced 1,000
programs satisfying the condition of assigning "sidt" to variable eax in ap-
proximately 0.36 seconds [27]. (The computer used was a Linux PC with a
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3.2 GHz Intel Pentium 4 CPU and 1 GB of RAM.)
Therefore, it is practical to use Maude to generate programs with dif-

ferent syntax in order to evade the detection counter-measures employed by
virtualization-based malware. In addition, this method is based on a for-
mal specification of Intel 64, and therefore each of the generated programs is
formally verified by Maude as it is generated.

6 Conclusion

In this paper we have demonstrated the applicability of formal algebraic spec-
ification to detection of metamorphic and virtualization-based malware. In
order to improve the detection of metamorphic code, we have extended the
applicability of equivalence-in-context to all programs in imperative program-
ming languages through a redefinition of Vout and a new proof of Corollary 6.
To show the applicability to metamorphic computer virus detection, we
gave worked examples of equivalence of allomorphs of the Win9x.Zmorph.A,
Win95/Bistro and Win95/Zperm viruses, and discussed the role of a for-
mal model of the Intel 64 assembly language within the practical setting of
anti-virus software. Finally, we gave a proof-of-concept system for gener-
ating metamorphic code in order to assist detection of virtualization-based
malware by disabling detection counter-measures such as those used in the
SubVirt system described by King et al [14].

6.1 Formal and Informal Approaches

Most of the approaches to metamorphic computer virus detection described
above are based on some description of the syntax and semantics of a pro-
gramming language. (The only exception is the approach of Yoo & Ultes-
Nitsche [29, 30] to the detection of metamorphic computer viruses using
neural networks, in which the semantics of the program being analysed are
completed ignored, as the program code is treated only as data.) Perhaps
then, the most distinctive feature of our approach to metamorphic computer
virus detection is that the description of the programming language is both
explicit and formal, i.e., it is based on a formal specification of the syntax and
semantics of an assembly programming language written in a formal speci-
fication language. In contrast, many of the other approaches to detection,
perhaps with the exception of the work by Christodorescu et al [6], are infor-
mal. For example, in control-flow analysis (e.g., [18, 15]), the flow of control
is extracted from a program based on an implicit assumption about the way
that looping instructions work, i.e., they update the value of the instruction
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pointer. Based on this assumption, the control-flow graph is constructed.
Another example is Bruschi et al’s approach to program rewriting and nor-
malisation, in which a program is translated into a meta-representation based
on an implicit knowledge of the behaviour of the program’s instructions [1].

The advantage of a formal specification of the virus’s programming lan-
guage is that it is possible to prove properties of a section of code, which
in turn allows for the development of methods of analysis which themselves
are formally verifiable. A good example is the proofs of the equivalence of
viral code in Section 3. Assuming that we know that the implicit formal
specification in Maude is accurate, then given the existence of reduction as
proof, then by performing reductions within Maude we can prove a property
of a program (in this example, its equivalence to another program) using a
number of reduction in Maude. Checking the accuracy of the formal specifi-
cation is equivalent to checking the accuracy of the axioms within a logical
system, that is, we formulate the formal specification of the Intel 64 assem-
bly language with truths (i.e., axioms) that we hold to be self-evident. For
example, in the specification of the MOV a, b instruction which assigns the
value of variable b to variable a, then we specify that this the value of variable
a after executing MOV a, b as equal to the value of b before we executed the
instruction using the following equational rewrite rule, which expresses this
truth formally:

eq S ; mov V,E [[V]] = S[[E]] .

The danger in using an implicit and/or informal description of the program-
ming language is that our assumptions are not made clear, and therefore any
detection method or program analysis based on the description may not do
the job it is designed to do.

However, there is an obvious disadvantage to using a formal approach to
program specification, verification and analysis. In order to reap the rewards
of a formal specification of a programming language, first we must create
it, which itself can be a time-consuming, but nevertheless straightforward,
process. For example, in order to define the syntax and semantics of a 10-
instruction subset of the Intel 64 assembly language instruction set for the
proofs in Section 3, a Maude specification of around 180 lines had to be
produced [27]. The main difficulty was not in the writing or debugging of
the Maude specification, but rather in the translation from the informal and
implicit definitions of the instructions given in the official Intel literature
(see [13]).

Once created, though, a formal specification of an assembly programming
language could be applied to a number of different problems in the field of
computer virology. For example, the approach of Lakhotia and Mohammed
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to control- and data-flow analysis resulted in a rewritten version of a program
called a zero form [18, 15]. The specification of Intel 64 could be used to prove
the equivalence of the original program and its zero form through dynamic
analysis in manner of Section 3. Another example would be in the code
normalisation procedure described by Bruschi et al, in which the code is
transformed into a meta-representation [1]. A formal specification of the
syntax and semantics of the meta-representation could be written in Maude
in a similar manner to the Maude specification of Intel 64, and the translation
of the Intel 64 into the meta-representation could be then formally verified
through proofs that an instruction and the translated form have the same
effect on a generalised store.

6.2 Future Work

6.2.1 Combination With Other Approaches

An obvious further application of the methods for computer virus detection
described in Sections 3–5, and in [26], is to combine them with other means
of metamorphic computer virus detection. For instance, the formally-verified
equivalent code library described in Section 4.2.1 may not always result in
reduction of every generation of a metamorphic computer virus to a normal
form. However, the overall syntactic variance of the set of all generations may
be significantly reduced, so that another technique may be used to enable
detection. For instance, the neural network-based approach of Yoo & Ultes
Nitsche [29, 30] relies on the identification of similar code structures, and
therefore may be assisted by an equivalent code library.

6.2.2 Analysis of Virtualization-based Malware

As described in Section 2, a subset of the Intel 64 instruction set has been
specified using algebraic specification in Maude. Expanding the current spec-
ification of 10 instructions to the full instruction set would provide a way of
formally proving properties of programs written in the Intel 64 assembly lan-
guage. In addition to this, the formal specification is executable, and there-
fore once we have fully described the syntax and semantics of the language,
we obtain an interpreter “for free” [17]. The development of such a specifi-
cation is well within the reach of specification languages like Maude [17, 11],
and therefore we propose the use of Maude for the formal proofs on assembly
language programs, e.g., [26].

In addition, a specification in Maude of the full Intel 64 instruction set
would be a virtual machine (in a very precise sense), because it would simu-
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late an Intel 64 processor. Whilst the advanced features of virtual machine
software (e.g., full operating system simulation), such as would be more dif-
ficult to specify, the Maude specification of the whole instruction set would
enable the simulation of virtualization-based malware at a low-level of ab-
straction without major modification. For example, we could simulate the
modification of the boot sector, a critical phase of the infection process of
some virtualization-based malware (e.g., SubVirt [14]).
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A Maude Specification

The specification described in this paper was used with Maude 2.3 (built: Feb
14 2007 17:53:50). Maude is available online from http://maude.cs.uiuc.

edu/. To input the Maude specification, it must be saved to some file f .
Then, execute Maude and type in f . The same applies for the examples for
Win95/Bistro, Win95/Zperm and the metamorphic engine for virtualization
detection.

A.1 Intel 64 Specification

*** This module defines the syntax of a subset of I-64.

fmod I-64-SYNTAX is

protecting INT .

sorts Variable Expression Stack EInt Label .

sorts Instruction InstructionSequence .

subsort Instruction < InstructionSequence .

subsorts Variable EInt < Expression .

subsort Int < EInt .

op dadd_,_ : Variable Expression -> Instruction [prec 20] .

op dsub_,_ : Variable Expression -> Instruction [prec 20] .

*** I-64 instructions

op mov_,_ : Variable Expression -> Instruction [prec 20] .

op add_,_ : Variable Expression -> Instruction [prec 20] .

op sub_,_ : Variable Expression -> Instruction [prec 20] .

op nop : -> Instruction .

op push_ : Expression -> Instruction [prec 20] .

op pop_ : Variable -> Instruction [prec 20] .

op and_,_ : Variable Expression -> Instruction [prec 20] .

op or_,_ : Variable Expression -> Instruction [prec 20] .

op xor_,_ : Variable Expression -> Instruction [prec 20] .

op test_,_ : Variable Expression -> Instruction [prec 20] .

op label_ : Label -> Instruction [prec 20] .

op jmp_ : Label -> Instruction [prec 20] .

op je_ : Label -> Instruction [prec 20] .

*** helper operations

op stackPush : Expression Stack -> Stack .

op stackPop : Stack -> Stack .

op stackTop : Stack -> EInt .
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op _next_ : EInt Stack -> Stack [prec 15] .

op stackBase : -> Stack .

op msb : EInt -> EInt .

op isZero : Expression -> EInt .

op isZero : EInt -> EInt .

op parity : EInt -> EInt .

*** error messages

op emptyStackError1 : -> Stack .

op emptyStackError2 : -> EInt .

*** I-64 registers

ops eax ebx ecx edx ebp esp esi edi ip : -> Variable .

*** I-64 EFLAGS register

ops cf of sf af zf pf : -> Variable .

*** equality operation

op _is_ : EInt EInt -> Bool .

op _is_ : Stack Stack -> Bool .

*** extending the Int sort to include "undef"

op undef : -> EInt .

*** overloaded Boolean operations

op _band_ : EInt EInt -> EInt [prec 35] .

op _bor_ : EInt EInt -> EInt [prec 35] .

endfm

*** This module defines the semantics of the I-64 instructions

*** whose syntax is defined in I-64-SYNTAX.

fmod I-64-SEMANTICS is

protecting I-64-SYNTAX .

sort Store .

*** stores

ops s : -> Store .

op initial : -> Store .

*** operators for defining the semantics of I-64

op _[[_]] : Store Expression -> EInt [prec 30] .

op _[[stack]] : Store -> Stack [prec 30] .

op _;_ : Store Instruction -> Store [prec 25] .

op _;_ : InstructionSequence InstructionSequence ->

InstructionSequence [gather (e E) prec 26] .

*** variables for equations

vars S S1 S2 S3 : Store .

vars I I1 I2 I3 : EInt .
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vars INT INT1 INT2 : Int .

vars V V1 V2 V3 : Variable .

vars E E1 E2 E3 : Expression .

vars ST ST1 ST2 : Stack .

vars P P1 P2 : InstructionSequence .

vars L L1 L2 L3 : Label .

*** evaluation of instruction sequences

eq S ; (P1 ; P2 ) = (S ; P1) ; P2 .

*** _is_ semantics

eq I1 is I2 = (I1 == I2) .

eq ST1 is ST2 = (ST1 == ST2) .

*** the value of any integer in a store is the integer itself

eq S[[I]] = I .

*** initial values of variables and the stack

eq initial[[stack]] = stackBase .

ceq initial[[V]] = undef

if V =/= ip .

eq initial[[ip]] = 0 .

*** Axioms to deal with static analysis of primitive

*** operators such as +, -, |, &, xor .

eq isZero(0) = 1 .

eq I | I = I .

eq I & I = I .

eq (I1 + I2) is (I3 + I2) = I1 is I3 .

eq (I1 + I2) is (I1 + I2) = true .

eq (I1 - I2) is (I1 - I2) = true .

eq (I1 | I2) is (I1 | I2) = true .

eq (I & S1[[V1]]) is (I & S2[[V2]]) = S1[[V1]] is S2[[V2]] .

eq isZero(I1 & I2) is isZero(I1 & I2) = true .

eq parity(I1 & I2) is parity(I1 & I2) = true .

eq msb(I1 & I2) is msb(I1 & I2) = true .

eq isZero(I1 | I2) is isZero(I1 | I2) = true .

eq parity(I1 | I2) is parity(I1 | I2) = true .

eq msb(I1 xor I2) is msb(I1 xor I2) = true .

eq isZero(I1 xor I2) is isZero(I1 xor I2) = true .

eq parity(I1 xor I2) is parity(I1 xor I2) = true .

eq msb(I1 | I2) is msb(I1 | I2) = true .

eq (I1 xor I2) is (I1 xor I2) = true .

*** I-64 instruction semantics
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eq S ; and V,E [[V]] = S[[V]] & S[[E]] .

ceq S ; and V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; and V,E [[stack]] = S[[stack]] .

eq S ; and V,E [[ip]] = S[[ip]] + 1 .

eq S ; and V,E [[sf]] = msb( S[[V]] & S[[E]] ) .

eq S ; and V,E [[zf]] = isZero( S[[V]] & S[[E]] ) .

eq S ; and V,E [[pf]] = parity( S[[V]] & S[[E]] ) .

eq S ; and V,E [[cf]] = 0 .

eq S ; and V,E [[of]] = 0 .

eq S ; or V,E [[V]] = S[[V]] | S[[E]] .

ceq S ; or V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; or V,E [[stack]] = S[[stack]] .

eq S ; or V,E [[ip]] = S[[ip]] + 1 .

eq S ; or V,E [[sf]] = msb( S[[V]] | S[[E]] ) .

eq S ; or V,E [[zf]] = isZero( S[[V]] | S[[E]] ) .

eq S ; or V,E [[pf]] = parity( S[[V]] | S[[E]] ) .

eq S ; or V,E [[cf]] = 0 .

eq S ; or V,E [[of]] = 0 .

eq S ; xor V,E [[V]] = S[[V]] xor S[[E]] .

ceq S ; xor V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; xor V,E [[stack]] = S[[stack]] .

eq S ; xor V,E [[ip]] = S[[ip]] + 1 .

eq S ; xor V,E [[sf]] = msb( S[[V]] xor S[[E]] ) .

eq S ; xor V,E [[zf]] = isZero( S[[V]] xor S[[E]] ) .

eq S ; xor V,E [[pf]] = parity( S[[V]] xor S[[E]] ) .

eq S ; xor V,E [[cf]] = 0 .

eq S ; xor V,E [[of]] = 0 .

eq S ; test V,E [[V]] = S[[V]] .

ceq S ; test V1,E [[V2]] = S[[V2]]

if V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; test V,E [[stack]] = S[[stack]] .

eq S ; test V,E [[ip]] = S[[ip]] + 1 .

eq S ; test V,E [[sf]] = msb( S[[V]] & S[[E]] ) .
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eq S ; test V,E [[zf]] = isZero( S[[V]] & S[[E]] ) .

eq S ; test V,E [[pf]] = parity( S[[V]] & S[[E]] ) .

eq S ; test V,E [[cf]] = 0 .

eq S ; test V,E [[of]] = 0 .

eq S ; mov V,E [[V]] = S[[E]] .

ceq S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; mov V,E [[stack]] = S[[stack]] .

eq S ; mov V,E [[ip]] = S[[ip]] + 1 .

eq S ; add V,E [[V]] = (S[[V]] + S[[E]]) .

ceq S ; add V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; add V,E [[stack]] = S[[stack]] .

eq S ; add V,E [[ip]] = S[[ip]] + 1 .

*** special version of add ("dynamic add") that keeps

*** results of additions within I-64 limits (2^32-1).

eq S ; dadd V,E [[V]] = (S[[V]] + S[[E]]) & 4294967295 .

ceq S ; dadd V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; dadd V,E [[stack]] = S[[stack]] .

eq S ; dadd V,E [[ip]] = S[[ip]] + 1 .

eq S ; sub V,E [[V]] = (S[[V]] - S[[E]]) .

ceq S ; sub V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; sub V,E [[stack]] = S[[stack]] .

eq S ; sub V,E [[ip]] = S[[ip]] + 1 .

*** special version of add ("dynamic sub") that keeps

*** results of additions within I-64 limits (2^32-1).

eq S ; dsub V,E [[V]] = (S[[V]] - S[[E]]) & 4294967295 .

ceq S ; dsub V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; dsub V,E [[stack]] = S[[stack]] .

eq S ; dsub V,E [[ip]] = S[[ip]] + 1 .

eq S ; push E [[stack]] = stackPush(S[[E]],S[[stack]]) .

ceq S ; push E [[V]] = S[[V]]

if V =/= ip .

eq S ; push E [[ip]] = S[[ip]] + 1 .
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eq S ; pop V [[stack]] = stackPop(S[[stack]]) .

eq S ; pop V [[V]] = stackTop(S[[stack]]) .

ceq S ; pop V1 [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; pop V [[ip]] = S[[ip]] + 1 .

ceq S ; nop [[V]] = S[[V]]

if V =/= ip .

eq S ; nop [[stack]] = S[[stack]] .

eq S ; nop [[ip]] = S[[ip]] + 1 .

eq S ; label L [[V]] = S[[V]] .

eq S ; label L [[stack]] = S[[stack]] .

*** Stack helper operations semantics

eq stackPush(I,ST) = I next ST .

eq stackPop(I next ST) = ST .

eq stackPop(stackBase) = emptyStackError1 .

eq stackTop(I next ST) = I .

eq stackTop(stackBase) = emptyStackError2 .

endfm

*** This module gives some helper operations for looping

*** instructions.

fmod HELPER-OPERATIONS is

pr I-64-SEMANTICS .

*** variables for equations

vars S S1 S2 S3 : Store .

vars I I1 I2 I3 : EInt .

vars IN IN1 IN2 IN3 : Instruction .

vars INT INT1 INT2 : Int .

vars V V1 V2 V3 : Variable .

vars E E1 E2 E3 : Expression .

vars ST ST1 ST2 : Stack .

vars P P1 P2 : InstructionSequence .

vars L L1 L2 L3 : Label .

op findSubProgram : Label InstructionSequence ->

InstructionSequence .

op labelNotFoundError : -> InstructionSequence .

op end : -> Instruction .
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eq findSubProgram(L, label L ; P) = P .

eq findSubProgram(L, IN ; P) = findSubProgram(L, P) .

eq findSubProgram(L, end) = labelNotFoundError .

endfm

*** This module gives the semantics of looping instructions.

fmod I-64-JUMPS is

pr I-64-SEMANTICS .

pr HELPER-OPERATIONS .

ops l1 l2 l3 : -> Label .

op exec_of_in_ : InstructionSequence InstructionSequence Store

-> Store [prec 30] .

*** variables for equations

vars S S1 S2 S3 : Store .

vars I I1 I2 I3 : EInt .

vars INT INT1 INT2 : Int .

vars V V1 V2 V3 : Variable .

vars E E1 E2 E3 : Expression .

vars ST ST1 ST2 : Stack .

vars P P1 P2 : InstructionSequence .

vars L L1 L2 L3 : Label .

*** NON-LOOP INSTRUCTIONS

eq exec mov V,E ; P1 of P2 in S = exec P1 of P2 in S ; mov V,E .

eq exec or V,E ; P1 of P2 in S = exec P1 of P2 in S ; or V,E .

eq exec xor V,E ; P1 of P2 in S = exec P1 of P2 in S ; xor V,E .

eq exec and V,E ; P1 of P2 in S = exec P1 of P2 in S ; and V,E .

eq exec test V,E ; P1 of P2 in S = exec P1 of P2 in S ; test V,E .

eq exec add V,E ; P1 of P2 in S = exec P1 of P2 in S ; add V,E .

eq exec dadd V,E ; P1 of P2 in S = exec P1 of P2 in S ; dadd V,E .

eq exec sub V,E ; P1 of P2 in S = exec P1 of P2 in S ; sub V,E .

eq exec push E ; P1 of P2 in S = exec P1 of P2 in S ; push E .

eq exec pop V ; P1 of P2 in S = exec P1 of P2 in S ; pop V .

eq exec nop ; P1 of P2 in S = exec P1 of P2 in S ; nop .

eq exec label L ; P1 of P2 in S = exec P1 of P2 in S ; label L .

*** LOOP INSTRUCTIONS

eq exec jmp L ; P1 of P2 in S =

exec findSubProgram(L, P2) of P2 in S .

ceq exec je L ; P1 of P2 in S =
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exec findSubProgram(L, P2) of P2 in S

if S[[zf]] == 1 .

ceq exec je L ; P1 of P2 in S = exec P1 of P2 in S

if S[[zf]] =/= 1 .

eq exec end of P2 in S = S .

endfm

A.2 Win95/Bistro Example

[2]

fmod BISTRO1 is

pr I-64-JUMPS .

ops prog prog1 prog2 : -> InstructionSequence .

ops dword1 dword2 : -> EInt .

ops flag : -> Variable .

ops 401045 : -> Label .

*** dword1 is equal to zero

eq dword1 = 0 .

*** BISTRO FRAGMENT 1

eq prog1 = push ebp ; mov ebp, esp ; mov esi, dword1 ;

test esi, esi ; je 401045 ; jmp l1 ;

label 401045 ; mov flag, 1 ; label l1 ; end .

*** BISTRO FRAGMENT 2

eq prog2 = push ebp ; push esp ; pop ebp ; mov esi, dword1 ;

or esi, esi ; je 401045 ; jmp l1 ; label 401045 ;

mov flag, 1 ; label l1 ; end .

endfm

*** should all be true

red exec prog1 of prog1 in s[[ebp]] is

exec prog2 of prog2 in s[[ebp]] .

red exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]] .

red exec prog1 of prog1 in s[[stack]] is

exec prog2 of prog2 in s[[stack]] .

red exec prog1 of prog1 in s[[flag]] is

exec prog2 of prog2 in s[[flag]] .

red exec prog1 of prog1 in s[[zf]] is

exec prog2 of prog2 in s[[zf]] .

red exec prog1 of prog1 in s[[sf]] is
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exec prog2 of prog2 in s[[sf]] .

red exec prog1 of prog1 in s[[pf]] is

exec prog2 of prog2 in s[[pf]] .

red exec prog1 of prog1 in s[[cf]] is

exec prog2 of prog2 in s[[cf]] .

red exec prog1 of prog1 in s[[of]] is

exec prog2 of prog2 in s[[of]] .

fmod BISTRO2 is

pr I-64-JUMPS .

ops prog prog1 prog2 : -> InstructionSequence .

ops dword1 dword2 : -> EInt .

ops flag : -> Variable .

ops 401045 : -> Label .

*** dword1 is not equal to zero

*** BISTRO FRAGMENT 1

eq prog1 = push ebp ; mov ebp, esp ; mov esi, dword1 ;

test esi, esi ; je 401045 ; jmp l1 ;

label 401045 ; mov flag, 1 ; label l1 ; end .

*** BISTRO FRAGMENT 2

eq prog2 = push ebp ; push esp ; pop ebp ; mov esi, dword1 ;

or esi, esi ; je 401045 ; jmp l1 ; label 401045 ;

mov flag, 1 ; label l1 ; end .

endfm

*** should all be true

red exec prog1 of prog1 in s[[ebp]] is

exec prog2 of prog2 in s[[ebp]] .

red exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]] .

red exec prog1 of prog1 in s[[stack]] is

exec prog2 of prog2 in s[[stack]] .

red exec prog1 of prog1 in s[[flag]] is

exec prog2 of prog2 in s[[flag]] .

red exec prog1 of prog1 in s[[zf]] is

exec prog2 of prog2 in s[[zf]] .

red exec prog1 of prog1 in s[[sf]] is

exec prog2 of prog2 in s[[sf]] .

red exec prog1 of prog1 in s[[pf]] is

exec prog2 of prog2 in s[[pf]] .

red exec prog1 of prog1 in s[[cf]] is
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exec prog2 of prog2 in s[[cf]] .

red exec prog1 of prog1 in s[[of]] is

exec prog2 of prog2 in s[[of]] .

A.3 Win95/Zperm Example

[2]

fmod ZPERM is

pr I-64-JUMPS .

ops prog1 prog2 prog3 prog4 start2 start3 start4 :

-> InstructionSequence .

ops out l4 : -> Label .

*** ZPERM GENERATION 0

eq prog1 = mov eax, 0 ; mov ebx, 1 ; mov ecx, ebx ;

mov ebx, eax ; mov eax, ecx ; end .

*** ZPERM GENERATION 1

eq prog2 = label l1 ; mov ebx, eax ; mov eax, ecx ;

jmp out ; nop ; mov eax, 0 ; mov ebx, 1 ;

jmp l2 ; nop ; label l2 ; mov ecx, ebx ;

jmp l1 ; nop ; label out ; end .

*** ZPERM GENERATION 1 start point

eq start2 = mov eax, 0 ; mov ebx, 1 ; jmp l2 ; nop ;

label l2 ; mov ecx, ebx ; jmp l1 ; nop ;

label out ; end .

*** ZPERM GENERATION 2

eq prog3 = label l1 ; mov ebx, 1 ; jmp l2 ; nop ; label l2 ;

mov ecx, ebx ; jmp l3 ; nop ; label l4 ;

mov eax, ecx ; jmp out ; mov eax, 0 ; jmp l1 ;

label l3 ; mov ebx, eax ; jmp l4 ; label out ; end .

*** ZPERM GENERATION 2 start point

eq start3 = mov eax, 0 ; jmp l1 ; label l3 ; mov ebx, eax ;

jmp l4 ; label out ; end .

*** ZPERM GENERATION 3

eq prog4 = label l1 ; mov ecx, ebx ; mov ebx, eax ; jmp l2 ;

nop ; label l2 ; mov eax, ecx ; jmp out ; mov eax, 0 ;

jmp l3 ; nop ; label l3 ; mov ebx, 1 ; jmp l1 ; nop ;

label out ; end .

*** ZPERM GENERATION 3 start point

eq start4 = mov eax, 0 ; jmp l3 ; nop ; label l3 ; mov ebx, 1 ;

jmp l1 ; nop ; label out ; end .

endfm
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*** should be equal to 1

red exec prog1 of prog1 in s[[eax]] .

red exec start2 of prog2 in s[[eax]] .

red exec start3 of prog3 in s[[eax]] .

red exec start4 of prog4 in s[[eax]] .

*** should be equal to 0

red exec prog1 of prog1 in s[[ebx]] .

red exec start2 of prog2 in s[[ebx]] .

red exec start3 of prog3 in s[[ebx]] .

red exec start4 of prog4 in s[[ebx]] .

*** should be equal to 1

red exec prog1 of prog1 in s[[ecx]] .

red exec start2 of prog2 in s[[ecx]] .

red exec start3 of prog3 in s[[ecx]] .

red exec start4 of prog4 in s[[ecx]] .

A.4 Virtualization Detection Example

mod METAMORPHIC is

pr I-64-SEMANTICS .

op "sidt" : -> EInt . *** "sidt" is a special integer

op s : -> Store .

var S : Store .

rl [1] : S => S ; mov ebx, "sidt" .

rl [2] : S => S ; mov eax, ebx .

rl [3] : S => S ; mov ecx, ebx .

rl [4] : S => S ; mov eax, ecx .

endm

search [1000] in METAMORPHIC :

S =>+ S such that S[[eax]] is "sidt" .
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