
Classification of Computer Viruses

Using the Theory of Affordances

Matt Webster and Grant Malcolm∗

Abstract

We present a new ontology for the classification of computer viruses

and other forms of reproducing malware based on Gibson’s Theory of

Affordances. We show how an existing method for reproducer classifi-

cation can be specialised for malware classification, and give a worked

example of how one might classify a Unix shell script virus in three

different ways, depending on the particular reproductive model being

used. Finally we suggest possible applications of our classification to

the area of computer virus detection.

1 Introduction

There are many interesting and useful examples of computer virus classifi-
cations [1, 2, 4, 5, 6, 8], but the area will remain open as long as we can
gain new insights from new classifications. This paper describes a new ap-
proach to the classification of reproducing malware based on Gibson’s Theory
of Affordances [3]. This approach arose from work on the related problem
of reproducer classification, in which reproducers could be classified accord-
ing to whether or not their self-description and/or reproductive mechanism
— two essentials for reproduction [7] — are afforded to the reproducer by
an external agent or by the reproducer itself [9]. For reproducing malware,
“self-description” refers to the means by which a computer virus or worm
can obtain its own code for infection, and “reproductive mechanism” refers
to the means by which the self-description, in the form of viral code, is used
to create an offspring, e.g., in the case of a parasitic virus, the act of copying
viral code into another file in the file system.

∗Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK.

Email: {matt,grant}@csc.liv.ac.uk.

1

2 Affordance-based Classification

Affordances were introduced by Gibson as a theory of visual perception [3];
an affordance is an action possible for an animal when interacting with some
object in its environment. For a small mammal, for example, a cave affords
shelter and a tree affords the ability to climb for a better view of the sur-
roundings. We take the notion of affordances and use it metaphorically, e.g.,
an operating system (OS) affords disk input/output for a computer virus.

Before we attempt to classify computer viruses, we need a formal model
of reproduction and affordances.

Definition 1 A model of a reproductive system consists of:

• a labelled transition system (S,A, 7−→), where S is a set of states, A
is a set of actions (labels), and 7−→ is a ternary relation for labelled
transitions between states, s.t. if s

a
7−→ s′, the action a occurring in the

state s leads to the new state s′;
• a set Ent of entities and a relation : between entities and states,

where for e ∈ Ent and s ∈ S, e : s indicates that e is present in the
state s;

• a function Aff that assigns to two entities e and e′, a set Aff (e, e′) of
possible actions, in such a way that if a ∈ Aff (e, e′), then for all states
s with e′ : s, a is possible in s (i.e., s

a
7−→ s′ for some state s′) if and

only if e : s. Notionally, Aff (e, e′) is the set of affordances that e gives
to e′.

In the context of computer virus reproduction, we can say that the environ-
ment consists of the computer system in which the virus reproduces, e.g., a
computer file system for a parasitic virus. The set Ent of entities contains
the virus itself, as well as any agents in the virus’s environment which might
assist the virus in reproduction, e.g., OS application programmer interface
(API) functions that might allow a virus to write to a file, or a network
process (such as FTP) that allows data transit over the network. The set
S of states corresponds naturally to the states of the machine executing the
virus, but it is advantageous to allow some abstraction in the state transition
relation (7−→) between states, so that we can say that some state s′ follows
some other state s without explicitly modelling all intermediate states at the
level of the processor, for example. Since we have made the state transi-
tion relation abstract, it follows that the actions between these states are
abstract, so that we allow transitions like s

copy

7−→ s′, where copy is an action
that copies some file. Therefore it is not necessary to model the reproductive

2

st=’echo st=sq{st}$sq > .1;echo dq=$sq${dq}$sq >> .1; echo

sq=dq{sq}$dq >> .1;echo $st >> .1; chmod +x .1’

dq=’"’

sq="’"

echo st=sq{st}$sq > .1;

echo dq=sq{dq}$sq >> .1;

echo sq=dq{sq}$dq >> .1;

echo $st >> .1;

chmod +x .1

Figure 1: Unix shell script virus.

processes of computer viruses at the lowest level, but rather at some conve-
nient level of abstraction that lets us observe the defining features of that
virus’s reproductive process.

2.1 Reproductive Types

Let sd and rm be the abstract actions corresponding to the acquisition of
a self-description, and the reproductive mechanism, respectively, for some
virus v. Then we can define the four reproductive types as follows:

• Type I computer viruses are those who afford themselves a self-descrip-
tion and reproductive mechanism, i.e., sd , rm ∈ Aff (v, v).

• Type II reproducers are those who afford themselves a self-description,
but their reproductive mechanism is afforded by some external agent,
i.e., sd ∈ Aff (v, v), rm /∈ Aff (v, v).

• Type III reproducers are those who afford themselves a reproduc-
tive mechanism, but their self-description is afforded by some external
agent, i.e., sd /∈ Aff (v, v), rm ∈ Aff (v, v).

• Type IV reproducers are those whose self-description and reproductive
mechanism are afforded by some external agent, i.e., sd , rm /∈ Aff (v, v).

2.2 Example: Unix Shell Script Virus

We shall now demonstrate classification of a Unix shell script virus (see
Fig. 1), adapted from a similar virus1 by Bruce Ediger.

The first three lines of the virus define three variables that contain the
program code and aliases for single and double quotation marks. The first
three statements of the program code output these data into a new file called
.1. The fourth statement of the program appends the program code to .1,

1Available from http://www.nyx.net/~gthompso/self_sh.txt.

3

and the final statement of the program changes the file permissions of .1 so
that it is executable. At this point the reproductive process is complete.

We sketch2 a model of a reproductive system M as follows. Let the set
of entities Ent = {vB, bash}, which contains the virus vB and the bash shell
program. Let the set of actions A = {osd , out , sp} where osd is the means by
which the virus obtains its self-description for the purposes of output to a file
(the variable assignments at the start of the file); out is the output process
itself (the echo statements), and sp is the “set permissions” action (the chmod
statement). Then, the states of the reproductive process S = {s1, s2, s3, s4}

and we define the relation 7−→ as follows: s1

osd
7−→ s2

out
7−→ s3

sp
7−→ s4. We assume

that for all s ∈ S and e ∈ Ent , e : s.
Classification of the shell script virus is as follows. The abstract action sd

corresponds to the action osd , which is an abstraction of the data (variables)
stored within the virus. These data provide a self-description, and therefore
sd ∈ Aff (vB, vB). This means that the virus is either Type I or II. The
abstract action rm corresponds to actions out and sp. Since out and sp
use echo and chmod respectively, which are commands provided by bash, we
know that rm /∈ Aff (vB, vB) and therefore vB is a Type II reproducer.

If we do not consider bash to be external to vB, then all of the actions that
it affords the virus are effectively afforded by the virus to itself. We therefore
form a new reproductive model M ′ which includes a new entity, v′

B
, as the

conglomeration of vB and bash. We can see that sd , rm ⊆ Aff (v′

B
, v′

B
) and

therefore in this new model v′

B
is a Type I reproducer.

If we consider that all actions of the reproductive process are afforded
by bash, perhaps because the virus could not execute without its presence,
then we form another model M ′′ in which osd , out , sp ∈ Aff (bash, vB), so
sd , rm /∈ Aff (vB, vB) and therefore in M ′′ the virus is classified as Type IV.

3 Conclusion

We have shown that computer viruses, as a subclass of the class of repro-
ducers, can be classified using our ontology. Additionally, we have shown
that the classification of a particular virus depends on the granularity of the
reproductive model used. Therefore there are no implicit assumptions about
the attribution of actions to external agents, but once a schema has been de-
cided on, the classification gives insight into the reliance of a virus on those
agents. We demonstrated this by classifying a Unix shell script virus using
three different reproductive models.

2We will define these models fully in an extended version of this paper.

4

We anticipate that our ontology will be beneficial in the classification of
computer viruses according to their degree of reliance on external agents. For
example, some viruses use a compiler in their reproductive processes. The
compiler can be recognised as an external agent, and thus by disabling the
agent (e.g., by deleting the compiler) we can also disable the virus. However,
this would not be possible if the virus was not reliant on the compiler. There-
fore we might consider a virus that does not rely on any external agents to
be more dangerous. Within our classification, viruses like this can be classi-
fied as Type I, and thus our ontology could allow rational prioritisation for
antivirus scanners on systems where resources are limited.

References

[1] L. M. Adleman. An abstract theory of computer viruses. In Advances in
Cryptology — CRYPTO ‘88, volume 403 of Lecture Notes in Computer
Science, pages 354–374, 1990.

[2] E. Filiol. Computer Viruses: from Theory to Applications. Springer,
2005. ISBN 2287239391.

[3] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, 1979. ISBN 0395270499.

[4] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Con-
structing computer virus phylogenies. Journal of Algorithms, 26(1):188–
208, 1998.

[5] E. H. Spafford. Computer viruses as artificial life. Journal of Artificial
Life, 1(3):249–265, 1994.

[6] P. Ször. The Art of Computer Virus Research and Defense. Addison-
Wesley, 2005. ISBN 0321304543.

[7] J. von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, 1966.

[8] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of
computer worms. In WORM ’03: Proceedings of the 2003 ACM Workshop
on Rapid Malcode, pages 11–18. ACM Press, 2003.

[9] M. Webster and G. Malcolm. Reproducer classification using the theory
of affordances. In Proceedings of the First IEEE Symposium on Artificial
Life (IEEE-ALife’07). To appear.

5

