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Abstract. We consider a discrete system of n devices lying on a 2-
dimensional square grid and forming an initial connected shape SI . Each
device is equipped with a linear-strength mechanism which enables it to
move a whole line of consecutive devices in a single time-step. We study
the problem of transforming SI into a given connected target shape SF of
the same number of devices, via a finite sequence of line moves. Our focus
is on designing centralised transformations aiming at minimising the to-
tal number of moves subject to the constraint of preserving connectivity
of the shape throughout the course of the transformation. We first give
very fast connectivity-preserving transformations for the case in which
the associated graphs of SI and SF are isomorphic to a Hamiltonian
line. In particular, our transformations make O(n logn) moves, which
is asymptotically equal to the best known running time of connectivity-
breaking transformations. Our most general result is then a connectivity-
preserving universal transformation that can transform any initial con-
nected shape SI into any target connected shape SF , through a sequence
of O(n

√
n) moves.
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1 Introduction

Over the past few years, many fascinating systems have been developed, lever-
aging advanced technology in order to deploy large collections of tiny monads.
Each monad is typically a highly restricted micro-robotic entity, equipped with
a microcontroller and some actuation and sensing capabilities. Through its col-
laborative complexity, the collection of monads can carry out tasks which are
well beyond the capabilities of individual monads. The vision is the development
of materials that will be able to algorithmically change their physical properties,
such as their shape, colour, conductivity and density, based on transformations
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executed by an underlying program. These efforts are currently shaping the re-
search area of programmable matter, which has attracted much theoretical and
practical interest. The implementation indicates whether the monads are op-
erated centrally or through local decentralised control. In centralised systems,
there is an external program which globally controls all monads with full knowl-
edge of the entire system. On the other hand, decentralised systems provide each
individual monad with enough autonomy to communicate with its neighbours
and move locally. There are an impressive number of recent developments for
collective robotic systems, demonstrating their potential and feasibility, starting
from the scale of milli or micro [9, 26, 29, 36] down to nano size of individual
monads [20, 34].

Recent research has highlighted the need for the development of an algorith-
mic theory of such systems. Michail and Spirakis [32] and Michail et al. [30]
emphasised an apparent lack of a formal theoretical study of this prospective,
including modelling, possibilities/limitations, algorithms and complexity. The
development of a formal theory is a crucial step for further progress in those
systems. Consequently, multiple theoretical computer science sub-fields have ap-
peared, such as metamorphic systems [23, 33, 37], mobile robotics [11, 13, 14, 18,
40], reconfigurable robotics [4, 10, 15, 17, 42], passively-mobile systems [6, 7, 31,
32], DNA self-assembly [19, 35, 38, 39], and the latest emerging sub-area of “Al-
gorithmic Foundations of Programmable Matter” [25].

Consider a system deployed on a two-dimensional square grid in which a
collection of spherical devices are typically connected to each other, forming a
shape SI . By a finite number of valid individual moves, SI can be transformed
into a desired target shape SF . In this prospective, a number of models are
designed and introduced in the literature for such systems. For example, Du-
mitrescu and Pach [21], Dumitrescu et al. [22, 23] and Michail et al. [30] consider
mechanisms where an individual device is capable to move over and turn around
its neighbours through empty space. Transformations based on similar moves
being assisted by small seeds, have also been considered in [1]. A new linear-
strength mechanism was introduced by Almethen et al. in [3], where a whole
line of consecutive devices can, in a single time-step, move by one position in a
given direction.

Since any two shapes with an equal number of elements can be transformed
into each other with line moves [3], the central question remains about under-
standing the bounds on reachability distances between different shapes (config-
urations) via line moves. Proving exact reachability bounds can influence the
design and analysis of both centralised and distributed algorithms. Our hypoth-
esis is that the reachability distances between any two shapes with n elements
can be bounded by O(n log n), and the bound cannot be improved for a simple
pair of shapes such as diagonal and horizontal lines.

In this paper, we embark from the line-pushing model of [3], which provided
sub-quadratic centralised transformations that may, though, arbitrarily break
connectivity of the shape during their course. As our main goal is to investigate
the power of the line-pushing model, we focus solely on centralised transfor-
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mations, as a first step. That is because distributed are model-dependent (e.g.,
knowledge, communication, etc.), while centralised show what is in principle
possible. Moreover some of the ideas in centralised might prove useful for dis-
tributed and of course lower bounds also transfer to the distributed case. The
only connectivity-preserving transformation in [3] was an O(n

√
n)-time trans-

formation for a single pair of shapes of order n, namely from a diagonal into a
straight line. All transformations that we provide in the present study preserve
connectivity of the shape during the transformation.

We first give very fast connectivity-preserving transformations for the case in
which the associated graphs of SI and SF are isomorphic to a Hamiltonian line. In
particular, our transformations make O(n log n) moves, which is asymptotically
equal to the best known running time of connectivity-breaking transformations.
Our most general result is then a connectivity-preserving universal transforma-
tion that can transform any initial connected shape SI into any target connected
shape SF , through a sequence of O(n

√
n) moves.

1.1 Related Work

For the models of individual moves where only one node moves in a single time-
step, [21, 30] show universality of transforming any pair of connected shapes
(A,B) having the same number of devices (called nodes throughout this paper)
to each other via sliding and rotation mechanisms. By allowing only rotation, [30]
proves that the problem of deciding transformability is in P. It can be shown that
in all models of constant-distance individual moves, Ω(n2) moves are required
to transform some pairs of connected shapes, due the inherent distance between
them [30]. This motivates the study of alternative types of moves that are rea-
sonable with respect to practical implementations and allow for sub-quadratic
reconfiguration time in the worst case.

There are attempts in the literature to provide alternatives for more efficient
reconfiguration. The first main approach is to explore parallel transformations,
where multiple nodes move together in a single time-step. This is a natural step
to tackle such a problem, especially in distributed systems where nodes can make
independent decisions and move locally in parallel to other nodes. There are a
number of theoretical studies on parallel and distributed transformations [15, 16,
18, 23, 30, 41] as well as practical implementations [36]. For example, it can be
shown that a connected shape can transform into any other connected shape, by
performing in the worst case O(n) parallel moves around the perimeter of the
shape [30].

The second approach aims to equip nodes in the system with a more power-
ful mechanism which enables them to reduce the inherent distance by a factor
greater than a constant in a single time-step. There are a number of models
in the literature in which individual nodes are equipped with strong actuation
mechanisms, such as linear-strength mechanisms. Aloupis et al. [4, 5] provide a
node with arms that are capable to extend and contract a neighbour, a subset
of the nodes or even the whole shape as a consequence of such an operation.
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Further, Woods et al. [39] proposed an alternative linear-strength mechanism,
where a node has the ability to rotate a whole line of consecutive nodes.

Recently, the line-pushing model of [3] follows a similar approach in which a
single node can move a whole line of consecutive nodes by simultaneously (i.e.,
in a single time-step) pushing them towards an empty position. The line-pushing
model can simulate the rotation and sliding based transformations of [21, 30] with
at most a 2-factor increase in their worst-case running time. This implies that
all transformations established for individual nodes, transfer in the line-pushing
model and their universality and reversibility properties still hold true. They
achieved sub-quadratic time transformations, including an O(n log n)-time uni-
versal transformation which does not preserve connectivity and a connectivity-
preserving O(n

√
n)-time transformation for the special case of transforming a

diagonal into a straight line.
Another relevant line of research has considered a single moving robot that

transforms an otherwise static shape by carrying its tiles one at a time [13, 24,
27]. Those models are partially centralised as a single robot (usually a finite
automaton) controls the transformation, but, in contrast to our perspective,
control in that case is local and lacking global information.

1.2 Our Contribution

In this work, we build upon the findings of [3] aiming to design very efficient and
general transformations that are additionally able to keep the shape connected
throughout their course. We first give an O(n log n)-time transformation, called
Walk-Through-Path, that works for all pairs of shapes (SI , SF ) that have the
same order and belong to the family of Hamiltonian shapes. A Hamiltonian
shape is any connected shape S whose associated graph G(S) is isomorphic to a
Hamiltonian path (see also [28]). At the heart of our transformation is a recursive
successive doubling technique, which starts from one endpoint of the Hamiltonian
path and proceeds in log n phases (where n denotes the order of the input shape
SI , throughout this paper). In every phase i, it moves a terminal line Li of length
2i a distance 2i higher on the Hamiltonian path through a LineWalk operation.
This leaves a new terminal sub-path Si of the Hamiltonian path, of length 2i.
Then the general procedure is recursively called on Si to transform it into a
straight line L′i of length 2i. Finally, the two straight lines Li and L′i which are
perpendicular to each other are combined into a new straight line Li+1 of length
2i+1 and the next phase begins.

A core technical challenge in making the above transformation work is that
Hamiltonian shapes do not necessarily provide free space for the LineWalk oper-
ation. Thus, moving a line has to take place through the remaining configuration
of nodes while at the same time ensuring that it does not break their and its
own connectivity, including keeping itself connected to the rest of the shape. We
manage to overcome this by revealing a nice property of line moves, according
to which a line L can transparently walk through any configuration S (indepen-
dently of the latter’s density) in a way that: (i) preserves connectivity of both
L and S and (ii) as soon as L has gone through it, S has been restored to its
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original state, that is, all of its nodes are lying in their original positions. This
property is formally proved in Proposition 1 (Section 2).

Finally, we develop a universal transformation, called UC-Box, that within
O(n
√
n) moves transforms any pair of connected shapes of the same order to

each other, while preserving connectivity throughout its course. Starting from
the initial shape SI , we first compute a spanning tree T of SI . Then we enclose
the shape into a square box of size n and divide it into sub-boxes of size

√
n, each

of which contains at least one sub-tree of T . By moving lines in a way that does
not break connectivity, we compress the nodes in a sub-box into an adjacent sub-
box towards a parent sub-tree. By carefully repeating this we manage to arrive
at a final configuration which is always a compressed square shape. The latter
is a type of a nice shape (a family of connected shapes introduced in [3]), which
can be transformed into a straight line in linear time. We provide an analysis
of this strategy based on the number of charging phases, which turns out to be√
n, each making at most n moves, for a total of O(n

√
n) moves.

Section 2 formally defines the model and the problems under consideration
and proves a basic proposition which is a core technical tool in one of our transfor-
mations. Section 3 presents our O(n log n)-time transformation for Hamiltonian
shapes. Section 4 discusses our universal O(n

√
n)-time transformation. Finally,

in Section 5 we conclude and discuss interesting problems left open by our work.

2 Preliminaries

All transformations in this study operate on a two-dimensional square grid, in
which each cell has a unique position of non-negative integer coordinates (x, y),
where x represents columns and y denotes rows in the grid. A set of n nodes
on the grid forms a shape S (of the order n), where every single node u ∈ S
occupies only one cell cell(u) = (ux, uy). A node u can be indicated at any given
time by the coordinates (ux, uy) of the unique cell that it occupies at that time.
A node v ∈ S is a neighbour of (or adjacent to) a node u ∈ S if and only if their
coordinates satisfy ux − 1 ≤ vx ≤ ux + 1 and uy − 1 ≤ vy ≤ uy + 1 (i.e., their
cells are adjacent vertically, horizontally or diagonally). A graph G(S) = (V,E)
is associated with a shape S, where u ∈ V iff u is a node of S and (u, v) ∈ E iff u
and v are neighbours in S. A shape S is connected iff G(S) is a connected graph.
We denote by T (S) (or just T when clear from context) a spanning tree of G(S).
In what follows, n denotes the number of nodes in a shape under consideration,
and all logarithms are to base 2.

In this paper, we exploit the linear-strength mechanism of the line-pushing
model introduced in [3]. A line L is a sequence of nodes occupying consecutive
cells in one direction of the grid, that is, either vertically or horizontally but
not diagonally. A line move is an operation of moving all nodes of L together
in a single time-step towards a position adjacent to one of L’s endpoints, in
a given direction d of the grid, d ∈ {up, down, right, left}. A line move may
also be referred to as step, move, or movement in this paper. Throughout, the
running time of transformations is measured in total number of line moves until
completion. A line move is formally defined below.
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Definition 1 (A permissible line move). A line L = (x, y), (x+1, y), . . . , (x+
k − 1, y) of length k, where 1 ≤ k ≤ n, can push all its k nodes rightwards in a
single move to positions (x+1, y), (x+2, y), . . . , (x+k, y) iff there exists an empty
cell at (x+k, y). The “down”, “left”, and “up” moves are defined symmetrically,
by rotating the whole shape 90◦ ,180◦ , and 270◦ clockwise, respectively.

We next define a family of shapes that are used in one of our transformation.

Definition 2 (Hamiltonian Shapes). A shape S is called Hamiltonian iff
G(S) = (V,E) is isomorphic to a Hamiltonian path, i.e., a path starting from a
node u ∈ V , visiting every node in V exactly once and ending at a node v ∈ V ,
where v 6= u. H denotes the family of all Hamiltonian shapes.

The following proposition proves a basic property of line moves which will
be a core technical tool in our transformation for Hamiltonian shapes.

Proposition 1 (Transparency of Line Moves). Let S be any shape, L ⊆ S
any line and P any path of cells in the grid (under the vertical and horizontal
neighbouring relation) starting from a position adjacent to one of L’s endpoints.
Let C(P ) denote the configuration of P defined by S. There is a way to move L
along P , while satisfying all the following properties:

1. No delay: The number of steps is asymptotically equal to that of an optimum
move of L along P in the case of C(P ) being empty (i.e., if no cells were
occupied). That is, L is not delayed, independently of what C(P ) is.

2. No effect: After L’s move along P , C ′(P ) = C(P ), i.e., the cell configuration
has remained unchanged. Moreover, no occupied cell in C(P ) is ever emptied
during L’s move (but unoccupied cells may be temporarily occupied).

3. No break: S remains connected throughout L’s move.

Proof. Whenever L walks through an empty cell (x, y) of P , a node u ∈ L fills
in (x, y). If L pushes the node u of a non-empty cell of P , a node v ∈ L takes
its place. When L leaves a non-empty cell (x, y) that was originally occupied by
node v, L restores (x, y) by leaving its endpoint u ∈ L in (x, y). Finally, Figure
1 shows how to deal with the case in which L turns at a non-empty corner-cell
(x, y) of P , which is only connected diagonally to a non-empty cell of S and is
not adjacent to any cell occupied by L.

We now formally define all problems considered in this work.
HamiltonianConnected. Given a pair of connected Hamiltonian shapes (SI ,
SF ) of the same order, where SI is the initial shape and SF the target shape,
transform SI into SF while preserving connectivity throughout the transforma-
tion.
DiagonalToLineConnected. A special case of HamiltonianConnected in
which SI is a diagonal and SF is a straight line.
UniversalConnected. Given any pair of connected shapes (SI , SF ) of the
same order, where SI is the initial shape and SF the target shape, transform SI

into SF while preserving connectivity throughout the transformation.
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Fig. 1: A line L moving through a path P and arriving at a turning point of P .
u occupies a corner cell of P and v occupies a cell of S and is only connected
diagonally to u while not being adjacent to any cell occupied by L. L pushes u
one position horizontally and turns all of its nodes vertically. Then u moves back
to its original position in P . All other orientations are symmetric and follow by
rotating the shape 90◦, 180◦ or 270◦.

3 An O(n log n)-time Transformation for Hamiltonian
Shapes

In this section, we present a strategy for HamiltonianConnected, called
Walk-Through-Path. It transforms any pair of shapes SI , SF ∈ H of the same
order to each other within O(n log n) moves while preserving connectivity of the
shape throughout the transformation. Recall that H is the family of all Hamil-
tonian shapes. Our transformation starts from one endpoint of the Hamiltonian
path of SI and applies a recursive successive doubling technique to transform
SI into a straight line SL in O(n log n) time. By replacing SI with SF in Walk-
Through-Path and reversing the resulting transformation, one can then go from
SI to SF in the same asymptotic time. We first demonstrate the core recursive
technique of this strategy in a special case which is sufficiently sparse to allow
local reconfigurations without the risk of affecting the connectivity of the rest
of the shape. In this special case, SI is a diagonal of any order and observe that
SI , SF ∈ H holds for this case. We then generalise this recursive technique to
work for any SI ∈ H and add to it the necessary sub-procedures that can per-
form local reconfiguration in any area (independently of how dense it is), while
ensuring that global connectivity is always preserved.

Li

D i

(a) A line Li

and a diagonal
segment Di

both of length
2i.

Li

(b) Li moves
through a
shortest path
towards the far
endpoint of Di.

D i

L′
i

Li

(c) Di re-
cursively
transforms into
a line L′i .

push Li

Li+1

(d) A line Li+1

of length 2i+1

formed by com-
bining Li and
L′i.

Fig. 2: A snapshot of phase i of Walk-Through-Path applied on a diagonal. Light
grey cells represent the ending positions of the corresponding moves depicted in
each sub-figure.



8 A. Almethen, O. Michail and I. Potapov

Let SI be a diagonal of n nodes un, un−1, . . . , u1, occupying cells (x, y), (x+
1, y+1), . . . , (x+n−1, y+n−1), respectively. Assume for simplicity of exposition
that n is a power of 2; this can be dropped later. As argued above, it is sufficient
to show how SI can be transformed into a straight line SL. In phase i = 0, the
top node u1 moves one position to align with u2 and form a line L1 of length
2. In any phase i, for 1 ≤ i ≤ log n, a line Li occupies 2i consecutive cells in a
terminal subset of SI (Figure 2 (a)). Li moves through a shortest path towards
the far endpoint of the next diagonal segment Di of length 2i (Figure 2 (b)).
Note that for general shapes, this move shall be replaced by a more general Line-
Walk operation (defined in the sequel). By a recursive call on Di, Di transforms
into a line L′i (Figure 2 (c)). Finally, the two perpendicular lines Li and L′i are
combined in linear time into a straight line Li+1 of length 2i+1 (Figure 2 (d)).
By the end of phase log n, a straight line SL of order n has been formed.

A core technical challenge in making the above transformation work in the
general case, is that Hamiltonian shapes do not necessarily provide free space,
thus, moving a line has to take place through the remaining configuration of
nodes while at the same time ensuring that it does not break their and its own
connectivity. In the more general LineWalk operation that we now describe, we
manage to overcome this by exploiting transparency of line moves, according to
which a line L can transparently walk through any configuration S (indepen-
dently of the latter’s density); see Proposition 1.

LineWalk. At the beginning of any phase i, there is a terminal straight
line Li of length 2i containing the nodes v1, . . . , v2i , which is connected to an
Si ⊆ SI , such that Si consists of the 2i subsequent nodes, that is v2i+1, . . . , v2i+1 .
Observe that Si is the next terminal sub-path of the remaining Hamiltonian path
of SI . We distinguish the following cases: (1) If Li and Si are already forming a
straight line, then go to phase i+ 1. (2) If Si is a line perpendicular to Li, then
combine them into a straight line by pushing Li to extend Si and go to phase
i + 1. Otherwise, (3) check if the (Manhattan) distance between v2i and v2i+1

is δ(v2i , v2i+1) ≤ 2i, then Li moves from v2i = (x, y) vertically or horizontally
towards either node (x, y′) or (x′, y) in which Li turns and keeps moving to
v2i+1 = (x′, y′) on the other side of SI . If not, (4) Li must first pass through a
middle node of SI at v2i+2i−1 = (x′′, y′′), therefore Li repeats (3) twice, from
v2i to v2i+2i−1 and then towards v2i+1 .

Note that cases (3) and (4) ensure that Li is not disconnected from the rest
of the shape. Moreover, moving Li must be performed in a way that respects
transparency (Proposition 1), so that connectivity of the remaining shape is
always preserved and its configuration is restored to its original state. These
details can be found in the Appendix.

Algorithm 1, HamiltonianToLine, gives a general strategy to transform
any Hamiltonian shape SI ∈ H into a straight line in O(n log n) moves. In every
phase i, it moves a terminal line Li of length 2i a distance 2i higher on the
Hamiltonian path through a LineWalk operation. This leaves a new terminal
sub-path Si of the Hamiltonian path, of length 2i. Then the general procedure
is recursively called on Si to transform it into a straight line L′i of length 2i.
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Finally, the two straight lines Li and L′i which are perpendicular to each other
are combined into a new straight line Li+1 of length 2i+1 and the next phase
begins. The output of HamiltonianToLine is a straight line SL of order n.

Algorithm 1: HamiltonianToLine(S)

S = (u0, u1, ..., u|S|−1) is a Hamiltonian shape
Initial conditions: S ← SI and L0 ← {u0}

for i = 0, . . . , log |S| do
LineWalk(Li)
Si ← select(2i) // select the next terminal subset of 2i

consecutive nodes of S
L′i ← HamiltonianToLine(Si) // recursive call on Si

Li+1 ← combine(Li, L
′
i) // combines Li and L′i into a new straight

line Li+1

end
Output: a straight line SL

Lemma 1. Given an initial Hamiltonian shape SI ∈ H of order n, Hamilto-
nianToLine transforms SI into a straight line SL in O(n log n) moves, without
breaking connectivity during the transformation.

Proof. It is not hard to see that the LineWalk operation does not break connec-
tivity in cases (1) and (2) in any phase i. For case (3), LineWalk moves a line Li

of 2i nodes, which are enough to fill a path of 2i empty cells and stay connected.
This holds also for case (4) by applying (3) twice. By a careful application of
Proposition 1, it can be shown that the argument also holds true for any config-
uration of the path (and its surrounding cells) along which Li moves. We now
analyse the running time of HamiltonianToLine. By induction on the number
of phases, Walk-Through-Path makes a total number of moves bounded by:

T =

logn∑
i=1

T (i) =

logn∑
i=1

2i−1(i− 1)− 2i =

logn−1∑
i=1

(i− 2)2i − 2logn ≤
logn−1∑
i=1

i · 2i − n

≤
logn∑
j=1

logn∑
i=j

2i − n ≤
logn∑
j=1

n− n ≤ n log n− n = O(n log n).

Finally, reversibility of line moves [3] and Lemma 1 together imply that:

Theorem 1. For any pair of Hamiltonian shapes SI , SF ∈ H of the same order
n, Walk-Through-Path transforms SI into SF (and SF into SI) in O(n log n)
moves, while preserving connectivity of the shape during its course.

4 An O(n
√
n)-time Universal Transformation

In this section, we develop a transformation that solves the UniversalCon-
nected problem in O(n

√
n) moves. It is called UC-Box and transforms any
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pair of connected shapes (SI , SF ) of the same order to each other, while preserv-
ing connectivity during its course.

Starting from the initial shape SI of order n with an associated graph G(SI),
compute a spanning tree T of G(SI). Then enclose the shape into an n×n square
box and divide it into

√
n×
√
n square sub-boxes. Each occupied sub-box contains

one or more maximal sub-trees of T . Each such sub-tree corresponds to a sub-
shape of SI , which from now on we call a component. Pick a leaf sub-tree Tl, let
Cl be the component with which it is associated, and Bl their sub-box. Let also
Bp be the sub-box adjacent to Bl containing the unique parent sub-tree Tp of
Tl. Then compress all nodes of Cl into Bp through line moves, while keeping the
nodes of Cp (the component of Tp) within Bp. Once compression is completed
and Cp and Cl have been combined into a single component C ′p, compute a new
sub-tree T ′p spanning G(C ′p). Repeat until the whole shape is compressed into a√
n ×
√
n square. The latter belongs to the family of nice shapes (a family of

connected shapes introduced in [3]) and can, thus, be transformed into a straight
line in linear time.

Given that, the main technical challenges in making this strategy work uni-
versally is that a connected shape might have many different configurations inside
the sub-boxes it occupies, while the shape needs to remain connected during the
transformation. In the following, we describe the compression operation, which
successfully tackles all of these issues by exploiting the linear strength of line
moves.

Compress. Let Cl ⊆ SI be a leaf component containing nodes v1, . . . , vk
inside a sub-box Bl of size

√
n×
√
n, where 1 ≤ k ≤ n, and Cp ⊆ SI the unique

parent component of Cl occupying an adjacent sub-box Bp. If the direction of
connectivity between Bl and Bp is vertical or horizontal, push all lines of Cl one
move towards Bp sequentially one after the other, starting from the line furthest
from Bp. Repeat the same procedure to first align all lines perpendicularly to
the boundary between Bl and Bp (Figure 3(b)) and then to transfer them com-
pletely into Bp (e.g., Figure 3(c)). Hence, Cl and Cp are combined into C ′p, and
the next round begins. The above steps are performed in a way which ensures
that all lines (in Cl or Cp) being pushed by this operation do not exceed the
boundary of Bp (e.g., Figure 3(d)). While Cl compresses vertically or horizon-
tally, it may collide with a component Cr ⊆ SI inside Bl. In this case Cl stops
compressing and combines with Cr into C ′r. Then the next round begins. If Cl

compresses diagonally towards Cp (vertically then horizontally or vice versa) via
an intermediate adjacent sub-box Bm and collides with Cm ⊆ SI inside Bm,
then Cl completes compression into Bm and combines with Cm into C ′m. Figure
3 shows how to compress a leaf component into its parent component occupying
a diagonal adjacent sub-box.

Algorithm 2, Compress, provides a universal procedure to transform an ini-
tial connected shape SI of any order into a compressed square shape of the same
order. It takes two arguments: SI and the spanning tree T of the associated
graph G(SI). In any round: Pick a leaf sub-tree of Tl corresponding to Cl inside
a sub-box Bl. Compress Cl into an adjacent sub-box Bp towards its parent com-
ponent Cp associated with parent sub-tree Tp. If Cl compressed with no collision,
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(a) (b) (c) (d)

Fig. 3: A leaf component Cl in blue compressing from the top-left sub-box to-
wards its parent component Cp in black inside a diagonal adjacent bottom-right
sub-box. Cl compresses first horizontally towards an intermediate top-right sub-
box, then vertically into the bottom-right. All other orientations are symmetric
and follow by rotating the shape 90◦, 180◦ or 270◦.

perform combine(Cp, Cl) which combines Cl with Cp into one component C ′p. If
Cl collides with another component Cr inside Bl, then perform combine(Cr, Cl)
into C ′r. If not, as in the diagonal compression in which Cl collides with Cm

in an intermediate sub-box Bm, then Cl compresses completely into Bm and
performs combine(Cm, Cl) into C ′m. Once compression is completed, update(T )
computes a new sub-tree and removes any cycles. The algorithm terminates
when T matches a single component of n nodes compressed into a single sub-box.

Algorithm 2: Compress(S)

S = (u1, u2, ..., u|S|) is a connected shape, T is a spanning tree of G(S) repeat

Cl ← pick(Tl) // select a leaf component associated with a leaf

sub-tree

Compress(Cl) // start compressing the leaf component

if Cl collides then
C′r ← combine(Cr, Cl) or C′m ← combine(Cm, Cl) // as described

in text

else
C′p ← combine(Cp, Cl) // combine Cl with a parent component

end
update(T ) // update sub-trees and remove cycles after

compression

until the whole shape is compressed into a
√
n×
√
n square

Output: a square shape SC

Lemma 2. Any square box of size
√
n can hold at most 2

√
n components.

Proof. Observe that any component Cl ⊆ SI inside a sub-box Bl must be con-
nected via a path to one of the

√
n/2 cells on one of the length-

√
n boundaries

of Bl, resulting in 2
√
n for the four boundaries. Hence, a square sub-box can

contain at most 2
√
n disconnected components.

Lemma 3. Starting from an initial connected shape SI of order n divided into√
n square sub-boxes of size

√
n, Compress compresses a leaf component Cl ⊆

SI of k ≥ 1 nodes, while preserving the global connectivity of the shape.
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The compression cost of this transformation could be very low taking only
one move or being very high in some cases up to linear steps. To simplify the
analysis, we divide the total cost of UC-Box into charging phases. We then
manage to upper bound the cost of each charging phase independently of the
order of compressions.

Lemma 4. Compress compresses any connected shape SI of order n into a√
n×
√
n square shape, in O(n

√
n) steps without breaking connectivity.

Hence, by Lemmas 3, 4 and reversibility of nice shapes (from [3]), we have:

Theorem 2. For any pair of connected shapes (SI , SF ) of the same order n,
UC-Box transforms SI into SF (and SF into SI) in O(n

√
n) steps, while pre-

serving connectivity during its course.

5 Conclusions and Open Problems

We have presented efficient transformations for the line-pushing model intro-
duced in [3]. Our first transformation works on the family of all Hamiltonian
shapes and matches the running time of the best known O(n log n)-time trans-
formation while additionally managing to preserve connectivity throughout its
course. We then gave the first universal connectivity preserving transformation
for this model. Its running time is O(n

√
n) and works on any pair of connected

shapes of the same order. This work opens a number of interesting problems and
research directions. An immediate next goal is whether it is possible to develop
an O(n log n)-time universal connectivity-preserving transformation. If true, the
existence of lower bound above linear is not known, then a natural question
is whether a universal transformation can be achieved in o(n log n)-time (even
when connectivity can be broken) or whether there exists a general Ω(n log n)-
time matching lower bound. As a first step, it might be easier to develop lower
bounds for the connectivity-preserving case.

We establish Ω(n log n) lower bounds for two restricted sets of transforma-
tions, which have been shown in our full report [2]. These are the first lower
bounds for this model and are matching the best known O(n log n) upper bounds.
For example, it can be shown that any such transformation has a labelled tree
representation, and by restricting the consideration to the sub-set of those trans-
formations in which every leaf-to-root path has length at most 2, this captures
tranformations in which every node must reach its final destination through at
most 1 meeting-hop and at most 2 hops in total. Interestingly, by disregarding the
fact that our initial and target instances have specific geometric arrangements, it
is known that computing a 2-HOPS MST in the Euclidean 2-dimensional space
is a hard optimisation problem and the best known result is a PTAS by Arora
et al. [8] (cf. also [12]). There are also a number of interesting variants of the
present model. One is a centralised parallel version in which more than one line
can be moved concurrently in a single time-step. Another, is a distributed ver-
sion of the parallel model, in which the nodes operate autonomously through
local control and under limited information.
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Abstract. We consider a discrete system of n devices lying on a 2-
dimensional square grid and forming an initial connected shape SI . Each
device is equipped with a linear-strength mechanism which enables it to
move a whole line of consecutive devices in a single time-step. We study
the problem of transforming SI into a given connected target shape SF of
the same number of devices, via a finite sequence of line moves. Our focus
is on designing centralised transformations aiming at minimising the to-
tal number of moves subject to the constraint of preserving connectivity
of the shape throughout the course of the transformation. We first give
very fast connectivity-preserving transformations for the case in which
the associated graphs of SI and SF are isomorphic to a Hamiltonian
line. In particular, our transformations make O(n logn) moves, which
is asymptotically equal to the best known running time of connectivity-
breaking transformations. Our most general result is then a connectivity-
preserving universal transformation that can transform any initial con-
nected shape SI into any target connected shape SF , through a sequence
of O(n

√
n) moves. Finally, we establish Ω(n logn) lower bounds for two

restricted sets of transformations. These are the first lower bounds for
this model and are matching the best known O(n logn) upper bounds.

1 Introduction

Over the past few years, many fascinating systems have been developed, lever-
aging advanced technology in order to deploy large collections of tiny monads.
Each monad is typically a highly restricted micro-robotic entity, equipped with
a microcontroller and some actuation and sensing capabilities. Through its col-
laborative complexity, the collection of monads can carry out tasks which are
well beyond the capabilities of individual monads. The vision is the development
of materials that will be able to algorithmically change their physical properties,
such as their shape, colour, conductivity and density, based on transformations
executed by an underlying program. These efforts are currently shaping the re-
search area of programmable matter, which has attracted much theoretical and
practical interest.
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The implementation indicates whether the monads are operated centrally or
through local decentralised control. In centralised systems, there is an external
program which globally controls all monads with full knowledge of the entire
system. On the other hand, decentralised systems provide each individual monad
with enough autonomy to communicate with its neighbours and move locally.
There are an impressive number of recent developments for collective robotic
systems, demonstrating their potential and feasibility, starting from the scale of
milli or micro [8, 25, 30, 36] down to nano size of individual monads [19, 34].

Recent research has highlighted the need for the development of an algorith-
mic theory of such systems. Michail and Spirakis [32] and Michail et al. [31]
emphasised an apparent lack of a formal theoretical study of this prospective,
including modelling, possibilities/limitations, algorithms and complexity. The
development of a formal theory is a crucial step for further progress in those
systems. Consequently, multiple theoretical computer science sub-fields have ap-
peared, such as metamorphic systems [22, 33, 37], mobile robotics [10, 12, 13, 17,
40], reconfigurable robotics [4, 9, 14, 16, 42], passively-mobile systems [6, ?,?,32],
DNA self-assembly [18, 35, 38, 39], and the latest emerging sub-area of “Algo-
rithmic Foundations of Programmable Matter” [24].

Consider a system deployed on a two-dimensional square grid in which a
collection of spherical devices are typically connected to each other, forming a
shape SI . By a finite number of valid individual moves, SI can be transformed
into a desired target shape SF . In this prospective, a number of models are
designed and introduced in the literature for such systems. For example, Du-
mitrescu and Pach [20], Dumitrescu et al. [21, 22] and Michail et al. [31] consider
mechanisms where an individual device is capable to move over and turn around
its neighbours through empty space. Transformations based on similar moves
being assisted by small seeds, have also been considered in [1]. A new linear-
strength mechanism was introduced by Almethen et al. in [3], where a whole
line of consecutive devices can, in a single time-step, move by one position in a
given direction.

In this paper, we embark from the line-pushing model of [3], which pro-
vided sub-quadratic centralised transformations that may, though, arbitrarily
break connectivity of the shape during their course. The only connectivity-
preserving transformation in [3] was an O(n

√
n)-time transformation for a sin-

gle pair of shapes of order n, namely from a diagonal into a straight line.
All transformations that we provide in the present study preserve connectivity
of the shape during the transformations. We first give very fast connectivity-
preserving transformations for the case in which the associated graphs of SI

and SF are isomorphic to a Hamiltonian line. In particular, our transformations
make O(n log n) moves, which is asymptotically equal to the best known running
time of connectivity-breaking transformation. Our most general result is then a
connectivity-preserving universal transformation that can transform any initial
connected shape SI into any target connected shape SF , through a sequence of
O(n
√
n) moves. Finally, we establish Ω(n log n) lower bounds for two restricted
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sets of transformations. These are the first lower bounds for this model and are
matching the best known O(n log n) upper bounds.

1.1 Related Work

For the models of individual moves where only one node moves in a single time-
step, [20, 31] show universality of transforming any pair of connected shapes
(A,B) having the same number of devices (called nodes throughout this paper)
to each other via sliding and rotation mechanisms. By allowing only rotation, [31]
proves that the problem of deciding transformability is in P. It can be shown that
in all models of constant-distance individual moves, Ω(n2) moves are required
to transform some pairs of connected shapes, due the inherent distance between
them [31]. This motivates the study of alternative types of moves that are rea-
sonable with respect to practical implementations and allow for sub-quadratic
reconfiguration time in the worst case.

There are attempts in the literature to provide alternatives for more efficient
reconfiguration. The first main approach is to explore parallel transformations,
where multiple nodes move together in a single time-step. This is a natural step
to tackle such a problem, especially in distributed systems where nodes can make
independent decisions and move locally in parallel to other nodes. There are a
number of theoretical studies on parallel and distributed transformations [14, 15,
17, 22, 31, 41] as well as practical implementations [36]. For example, it can be
shown that a connected shape can transform into any other connected shape, by
performing in the worst case O(n) parallel moves around the perimeter of the
shape [31].

The second approach aims to equip nodes in the system with a more power-
ful mechanism which enables them to reduce the inherent distance by a factor
greater than a constant in a single time-step. There are a number of models
in the literature in which individual nodes are equipped with strong actuation
mechanisms, such as linear-strength mechanisms. Aloupis et al. [4, 5] provide a
node with arms that are capable to extend and contract a neighbour, a subset
of the nodes or even the whole shape as a consequence of such an operation.
Further, Woods et al. [39] proposed an alternative linear-strength mechanism,
where a node has the ability to rotate a whole line of consecutive nodes.

Recently, the line-pushing model of [3] follows a similar approach in which a
single node can move a whole line of consecutive nodes by simultaneously (i.e.,
in a single time-step) pushing them towards an empty position. The line-pushing
model can simulate the rotation and sliding based transformations of [20, 31] with
at most a 2-factor increase in their worst-case running time. This implies that
all transformations established for individual nodes, transfer in the line-pushing
model and their universality and reversibility properties still hold true. They
achieved sub-quadratic time transformations, including an O(n log n)-time uni-
versal transformation which does not preserve connectivity and a connectivity-
preserving O(n

√
n)-time transformation for the special case of transforming a

diagonal into a straight line.
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Another relevant line of research has considered a single moving robot that
transforms an otherwise static shape by carrying its tiles one at a time [12, 23,
26]. Those models are partially centralised as a single robot (usually a finite
automaton) controls the transformation, but, in contrast to our perspective,
control in that case is local and lacking global information.

1.2 Our Contribution

In this work, we build upon the findings of [3] aiming to design very efficient and
general transformations that are additionally able to keep the shape connected
throughout their course.

We first give an O(n log n)-time transformation, called Walk-Through-Path,
that works for all pairs of shapes (SI , SF ) that have the same order and belong
to the family of Hamiltonian shapes. A Hamiltonian shape is any connected
shape S whose associated graph G(S) is isomorphic to a Hamiltonian path (see
also [29]). At the heart of our transformation is a recursive successive doubling
technique, which starts from one endpoint of the Hamiltonian path and proceeds
in log n phases (where n denotes the order of the input shape SI , throughout
this paper). In every phase i, it moves a terminal line Li of length 2i a distance
2i higher on the Hamiltonian path through a LineWalk operation. This leaves
a new terminal sub-path Si of the Hamiltonian path, of length 2i. Then the
general procedure is recursively called on Si to transform it into a straight line
L′i of length 2i. Finally, the two straight lines Li and L′i which are perpendicular
to each other are combined into a new straight line Li+1 of length 2i+1 and the
next phase begins.

A core technical challenge in making the above transformation work is that
Hamiltonian shapes do not necessarily provide free space for the LineWalk oper-
ation. Thus, moving a line has to take place through the remaining configuration
of nodes while at the same time ensuring that it does not break their and its
own connectivity, including keeping itself connected to the rest of the shape. We
manage to overcome this by revealing a nice property of line moves, according
to which a line L can transparently walk through any configuration S (indepen-
dently of the latter’s density) in a way that: (i) preserves connectivity of both
L and S and (ii) as soon as L has gone through it, S has been restored to its
original state, that is, all of its nodes are lying in their original positions. This
property is formally proved in Proposition 1 (Section 2).

We next develop a universal transformation, called UC-Box, that within
O(n
√
n) moves transforms any pair of connected shapes of the same order to

each other, while preserving connectivity throughout its course. Starting from
the initial shape SI , we first compute a spanning tree T of SI . Then we enclose
the shape into a square box of size n and divide it into sub-boxes of size

√
n,

each of which contains at least one sub-tree of T . By moving lines in a way that
does not break connectivity, we compress the nodes in a sub-box into an adja-
cent sub-box towards a parent sub-tree. By carefully repeating this we manage
to arrive at a final configuration which is always a compressed square shape.
The latter is a type of a nice shape (a family of connected shapes introduced in
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[3]), which can be transformed into a straight line in linear time. We provide an
analysis of this strategy based on the number of charging phases, which turns
out to be

√
n, each making at most n moves, for a total of O(n

√
n) moves.

Finally, we establish Ω(n log n) lower bounds for two restricted sets of trans-
formations. These are the first lower bounds for this model and are matching the
best known O(n log n) upper bounds. The first set consists of transformations
from an initial diagonal into a target straight line. If every node on the diagonal
only meets through shortest paths with other nodes at their original positions
and every such meeting results in an irreversible merging (i.e., nodes that merge
cannot split in future steps), then it can be shown that any such transformation
has a labelled tree representation. The nodes of the tree are the nodes of the
shape, the edges represent mergings between the corresponding nodes at some
point in the transformation and the labels of the edges represent the shortest
path distances between the original positions of the corresponding nodes. Then
the total cost of the transformation is equal to the sum of the labels plus the
sum of the sizes of all sub-trees of the tree. The latter additive factors capture
the cost of turning (i.e., changing the orientation of) a line of merged nodes,
which is always equal to its length, and every meeting through a shortest path
on the grid requires at least one turn.

We further restrict attention to the sub-set of those transformations in which
every leaf-to-root path has length at most 2. This captures tranformations in
which every node must reach its final destination (on the target straight line)
through at most 1 meeting-hop and at most 2 hops in total. Interestingly, by
disregarding the sub-tree additive costs and the fact that our initial and target
instances have specific geometric arrangements, it is known that computing a 2-
HOPS MST in the Euclidean 2-dimensional space is a hard optimisation problem
and the best known result is a PTAS by Arora et al. [7] (cf. also [11]). By working
on the tree representation, we show that any transformation in this set requires
at least Ω(n log n) moves. Our second lower bound is also Ω(n log n) time, for
an alternative set of one-way transformations.

Section 2 formally defines the model and the problems under consideration
and proves a basic proposition which is a core technical tool in one of our trans-
formations. Section 3 presents our O(n log n)-time transformation for Hamilto-
nian shapes. Section 4 discusses our universal O(n

√
n)-time transformation. In

Section 5, our lower bounds are proved. Finally, in Section 6 we conclude and
discuss interesting problems left open by our work.

2 Preliminaries

All transformations in this study operate on a two-dimensional square grid, in
which each cell has a unique position of non-negative integer coordinates (x, y),
where x represents columns and y denotes rows in the grid. A set of n nodes
on the grid forms a shape S (of the order n), where every single node u ∈ S
occupies only one cell cell(u) = (ux, uy). A node u can be indicated at any given
time by the coordinates (ux, uy) of the unique cell that it occupies at that time.
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A node v ∈ S is a neighbour of (or adjacent to) a node u ∈ S if and only if their
coordinates satisfy ux − 1 ≤ vx ≤ ux + 1 and uy − 1 ≤ vy ≤ uy + 1 (i.e., their
cells are adjacent vertically, horizontally or diagonally).

Definition 1. A graph G(S) = (V,E) is associated with a shape S, where u ∈ V
iff u is a node of S and (u, v) ∈ E iff u and v are neighbours in S.

A shape S is connected iff G(S) is a connected graph. We denote by T (S) (or
just T when clear from context) a spanning tree of G(S), and whenever we state
that such a tree is given we make use of the fact that T (S) can be computed in
polynomial time.

Definition 2 (A tree). A tree (T, r), or T whenever clear in the context, is
rooted at a node r ∈ V , such that there is a unique path P from r to each node
v ∈ V denoted by PT (r, v) on which the distance δT (r, v) is the number of edges
between them. A node v is a successor of u iff PT (r, v) ⊃ PT (r, u), and u is a
parent of v iff δT (u, v) = 1.

The size of a tree, size(T ), denotes the number of all nodes in T , includes
the root r and all its successors. In what follows, n denotes the number of nodes
in a shape under consideration, and all logarithms are to base 2.

In this paper, we exploit the linear-strength mechanism of the line-pushing
model introduced in [3]. A line L is a sequence of nodes occupying consecutive
cells in one direction of the grid, that is, either vertically or horizontally but
not diagonally. A line move is an operation of moving all nodes of L together
in a single time-step towards a position adjacent to one of L’s endpoints, in
a given direction d of the grid, d ∈ {up, down, right, left}. A line move may
also be referred to as step, move, or movement in this paper. Throughout, the
running time of transformations is measured in total number of line moves until
completion. A line move is formally defined below.

Definition 3 (A permissible line move). A line L = (x, y), (x+1, y), . . . , (x+
k − 1, y) of length k, where 1 ≤ k ≤ n, can push all its k nodes rightwards in a
single move to positions (x+1, y), (x+2, y), . . . , (x+k, y) iff there exists an empty
cell to (x+k, y). The “down”, “left”, and “up” moves are defined symmetrically,
by rotating the whole shape 90◦, 180◦, and270◦ clockwise, respectively.

We next define a family of shapes that are used in one of our transformations.

Definition 4 (Hamiltonian Shapes). A shape S is called Hamiltonian iff
G(S) = (V,E) is isomorphic to a Hamiltonian path, i.e., a path starting from a
node u ∈ V , visiting every node in V exactly once and ending at a node v ∈ V ,
where v 6= u. H denotes the family of all Hamiltonian shapes. Figure 1 shows
some examples of Hamiltonian shapes.

The following proposition proves a basic property of line moves which will
be a core technical tool in one of our transformation for Hamiltonian shapes.
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(a) A double-spiral. (b) A shape of two differ-
ent Hamiltonian paths in
yellow.

Fig. 1: Examples of Hamiltonian shapes.

Proposition 1 (Transparency of Line Moves). Let S be any shape, L ⊆ S
any line and P any path of cells in the grid (under the vertical and horizontal
neighbouring relation) starting from a position adjacent to one of L’s endpoints.
Let C(P ) denote the configuration of P defined by S. There is a way to move L
along P , while satisfying all the following properties:

1. No delay: The number of steps is asymptotically equal to that of an optimum
move of L along P in the case of C(P ) being empty (i.e., if no cells were
occupied). That is, L is not delayed, independently of what C(P ) is.

2. No effect: After L’s move along P , C ′(P ) = C(P ), i.e., the cell configuration
has remained unchanged. Moreover, no occupied cell in C(P ) is ever emptied
during L’s move (but unoccupied cells may be temporarily occupied).

3. No break: S remains connected throughout L’s move.

Proof. Given L ⊆ S and P , place additional nodes that occupy cells in P , possi-
bly with gaps, in any configuration C(P ), see Figure 2 for example. Whenever L
walks through an empty cell (x, y) of P , a node u ∈ L fills in (x, y). If L pushes
the node u of a non-empty cell of P , a node v ∈ L takes its place. When L leaves
a non-empty cell (x, y) that was originally occupied by node v, L restores (x, y)
by leaving its endpoint u ∈ L in (x, y).

LP

Empty cell

Occupied cell

corner cell (x, y)

Fig. 2: A path P of a given configuration C(P ). A line L will pass along p.

Now assume that L turns at a non-empty corner cell (x, y) of P (say with-
out loss of generality, from horizontal to vertical direction). Typically the node
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occupying the corner cell(x, y) moves vertically one step along P , and then L
pushes one move to fill in the empty cell (x, y) by a node u ∈ L. Unless (x, y)
is being only connected diagonally to a non-empty cell that is not a neighbour
of any node u ∈ L. Figure 3 shows how to deal with the case in which L turns
at a non-empty corner-cell (x, y) of P , which is only connected diagonally to a
non-empty cell of S and is not adjacent to any cell occupied by L.

LP

Empty cell

Occupied cell

u
v

(a)

u
v

u
v

u
v

u
v

(b)

Fig. 3: A line L moving through a path P and arriving at a turning point of P .
u occupies a corner cell of P and v occupies a cell of S and is only connected
diagonally to u while not being adjacent to any cell occupied by L. L pushes u
one position horizontally and turns all of its nodes vertically. Then u moves back
to its original position in P . All other orientations are symmetric and follow by
rotating the shape 90◦, 180◦ or 270◦.

Therefore, it always temporarily maintain global connectivity and restores
all of those nodes to their original positions. Hence, L’s move takes a number
of moves to pass through any C(P ) equal to or even less than its optimum
move in the case of empty C(P ). Therefore, L can transparently walk through
any configuration S (independently of the latter’s density) in a way that: (i)
preserves connectivity of both L and S and (ii) as soon as L has gone through
it, S has been restored to its original state, that is, all of its nodes are lying in
their original positions.

We now formally define all problems considered in this work.

HamiltonianConnected. Given a pair of connected Hamiltonian shapes (SI , SF )
of the same order, where SI is the initial shape and SF the target shape, trans-
form SI into SF while preserving connectivity throughout the transformation.

DiagonalToLineConnected. A special case of HamiltonianConnected in
which SI is a diagonal line and SF is a straight line.

UniversalConnected. Given any pair of connected shapes (SI , SF ) of the
same order, where SI is the initial shape and SF the target shape, transform SI

into SF while preserving connectivity throughout the transformation.
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3 O(n logn)-time Transformations for Hamiltonian
Shapes

In this section, we present a strategy for HamiltonianConnected, called
Walk-Through-Path. It transforms any pair of shapes SI , SF ∈ H of the same
order to each other within O(n log n) moves while preserving connectivity of the
shape throughout the transformation. Recall that H is the family of all Hamil-
tonian shapes. Our transformation starts from one endpoint of the Hamiltonian
path of SI and applies a recursive successive doubling technique to transform
SI into a straight line SL in O(n log n) time. By replacing SI with SF in Walk-
Through-Path and reversing the resulting transformation, one can then go from
SI to SF in the same asymptotic time.

We first demonstrate the core recursive technique of this strategy in a special
case which is sufficiently sparse to allow local reconfigurations without the risk
of affecting the connectivity of the rest of the shape. In this special case, SI is
a diagonal of any order and observe that SI , SF ∈ H holds for this case. We
then generalise this recursive technique to work for any SI ∈ H and add to it
the necessary sub-procedures that can perform local reconfiguration in any area
(independently of how dense it is), while ensuring that global connectivity is
always preserved.

u1

L1 = 2

push 1 step

un

(a) First phase.

L
′ 2
=

2
i
=

4

L1 = 2i−1 = 2

D 2
=
2

(b) Second phase.

Fig. 4: First and second phase of Walk-Through-Path on the diagonal shape.

Let SI be a diagonal of n nodes un, un−1, . . . , u1, occupying cells (x, y), (x+
1, y+1), . . . , (x+n−1, y+n−1), respectively. Assume for simplicity of exposition
that n is a power of 2; this can be dropped later. As argued above, it is sufficient
to show how SI can be transformed into a straight line SL. In phase i = 0, the
top node u1 moves one position to align with u2 and form a line L1 of length
2, as depicted in Figure 4 (a). Next phase, L1 moves two positions and turns
to align with u4, then repeat whatever done in phase i = 0 again on nodes u3
and u4 (where both form a diagonal segment D1) to create a line L′1, and then
combine the two perpendicular line L1 and L′1 into a line L2 of length 4, as
shown in Figure 4 (b).

In any phase i, for 1 ≤ i ≤ log n, a line Li occupies 2i consecutive cells in a
terminal subset of SI (Figure 5 (a)). Li moves through a shortest path towards
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the far endpoint of the next diagonal segment Di of length 2i (Figure 5 (b)).
Note that for general shapes, this move shall be replaced by a more general Line-
Walk operation (defined in the sequel). By a recursive call on Di, Di transforms
into a line L′i (Figure 5 (c)). Finally, the two perpendicular lines Li and L′i are
combined in linear time into a straight line Li+1 of length 2i+1 (Figure 5 (d)).
By the end of phase log n, a straight line SL of order n has been formed.

Li

D i

(a) A line Li and
a diagonal seg-
ment Di both of
length 2i.

Li

(b) Li moves
through a short-
est path towards
the far endpoint
of Di.

D i

L′
i

Li

(c) Di recursively
transforms into a
line L′

i .

push Li

Li+1

(d) A line Li+1

of length 2i+1

formed by com-
bining Li and
L′

i.

Fig. 5: A snapshot of phase i of Walk-Through-Path applied on a diagonal. Light
grey cells represent the ending positions of the corresponding moves depicted in
each sub-figure.

A core technical challenge in making the above transformation work in the
general case, is that Hamiltonian shapes do not necessarily provide free space,
thus, moving a line has to take place through the remaining configuration of
nodes while at the same time ensuring that it does not break their and its own
connectivity. In the more general LineWalk operation that we now describe, we
manage to overcome this by exploiting transparency of line moves, according to
which a line L can transparently walk through any configuration S (indepen-
dently of the latter’s density); see Proposition 1.

LineWalk. At the beginning of any phase i, there is a terminal straight
line Li of length 2i containing the nodes v1, . . . , v2i , which is connected to an
Si ⊆ SI , such that Si consists of the 2i subsequent nodes, that is v2i+1, . . . , v2i+1 .
Observe that Si is the next terminal sub-path of the remaining Hamiltonian path
of SI . We distinguish the following cases: (1) If Li and Si are already forming a
straight line, then go to phase i+ 1. (2) If Si is a line perpendicular to Li, then
combine them into a straight line by pushing Li to extend Si and go to phase
i + 1. Otherwise, (3) check if the (Manhattan) distance between v2i and v2i+1

is δ(v2i , v2i+1) ≤ 2i, then Li moves from v2i = (x, y) vertically or horizontally
towards either node (x, y′) or (x′, y) in which Li turns and keeps moving to
v2i+1 = (x′, y′) on the other side of SI . If not, (4) Li must first pass through a
middle node of SI at v2i+2i−1 = (x′′, y′′), therefore Li repeats (3) twice, from
v2i to v2i+2i−1 and then towards v2i+1 .
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Note that cases (3) and (4) ensure that Li is not disconnected from the rest
of the shape. Moreover, moving Li must be performed in a way that respects
transparency (Proposition 1), so that connectivity of the remaining shape is
always preserved and its configuration is restored to its original state. These
details are described later in this section.

Algorithm 1, HamiltonianToLine, gives a general strategy to transform
any Hamiltonian shape SI ∈ H into a straight line in O(n log n) moves. In every
phase i, it moves a terminal line Li of length 2i a distance 2i higher on the
Hamiltonian path through a LineWalk operation. This leaves a new terminal
sub-path Si of the Hamiltonian path, of length 2i. Then the general procedure
is recursively called on Si to transform it into a straight line L′i of length 2i.
Finally, the two straight lines Li and L′i which are perpendicular to each other
are combined into a new straight line Li+1 of length 2i+1 and the next phase
begins. The output of HamiltonianToLine is a straight line SL of order n.

Algorithm 1: HamiltonianToLine(S)

S = (u0, u1, ..., u|S|−1) is a Hamiltonian shape
Initial conditions: S ← SI and L0 ← {u0}

for i = 0, . . . , log |S| do
LineWalk(Li)
Si ← select(2i) // select the next terminal subset of 2i

consecutive nodes of S
L′i ← HamiltonianToLine(Si) // recursive call on Si

Li+1 ← combine(Li, L
′
i) // combines Li and L′i into a new

straight line Li+1

end
Output: a straight line SL

Now, we are ready to show correctness of Walk-Through-Path in the following
lemmas.

Lemma 1. Starting from an initial Hamiltonian shape SI ∈ H of order n,
HamiltonianToLine forms a straight line SL ∈ H of length n.

Proof. By the beginning of the final phase, the shape configuration consists of
two parts, a straight line L of length 2logn−1 and a shape S of 2logn−1 nodes.
During this phase, L performs a LineWalk operation, S transforms recursively
into L′ and then L combines with L′ into a straight line SL of length 2logn = n.
Consequently, SL shall occupy n consecutive cells on the grid, either vertically
or horizontally.

Lemma 2. The operation of Line-Walk preserves the whole connectivity of the
shape during phase i.

Proof. Let SI ∈ H be a Hamiltonian shape of order n in phase i, which termi-
nates at a straight line Li of length 2i nodes, starting from v1 to v2i . During
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phase i, this transformation doubles the size of Li by merging its nodes with the
following 2i nodes on the Hamiltonian path that are forming a shape Si from
v2i+1 to v2i+1 .

We now show case (1) and (2) of the Line-Walk operation on a horizontal
Li (the other cases are symmetric by rotating the shape 90◦, 180◦ or 270◦). In
case 1, Li and Si are already forming a straight line Li+1 of length 2i+1, hence
the whole configuration of the shape left unchanged. In case (2), Li and Si are
forming two perpendicular straight lines in which Li can easily push into Si and
extend it by 2i. As Li pushes and Si extends, they are replacing and restoring
any occupied cell along their way through any configuration (independently of
how density is) by exploiting transparency of line moves in Proposition 1. As a
result, the Line-Walk operation preserves connectivity of Li, Si and the whole
shape.

Now, let Li and Si be of the same configuration of case (3) or (4) described
above, where Li has a length of 2i and Si consists of 2i nodes v2i+1, . . . , v2i+1

that occupy multiple rows and columns. Assume that Li is horizontal and oc-
cupies (x, y), (x + 1, y), . . . , (x + 2i, y), this is sufficient as the other cases are
symmetric if one rotates the whole shape 90◦, 180◦ or 270◦. Observe that Si is
the next terminal sub-path of the remaining Hamiltonian path. Consequently,
the Manhattan distance between v2i and v2i+1 specifies the path that Li will
follow to meet and align with the far endpoint of Si.

Recall that the minimum Manhattan (taxicab) distance of any path in a
square grid, which starts from point u and ends at v, δ(u, v) = |ux− vx|+ |uy −
vy|, will always have the same length and this transamination picks a path of
minimum turns (aiming for low cost). Hence, there are two feasible L-shaped
paths from u to v, each of which has one turn. The first path starts horizontally
from point (ux, uy) towards (vx, uy) then turns vertically to (vx, vy), and the
second one starts from (ux, uy) vertically to (ux, vy) then turns horizontally
towards (vx, vy).

In case (3), the Manhattan distance between v2i and v2i+1 is δ(v2i , v2i+1) ≤ 2i,
then Li moves horizontally from v2i = (x, y) along (x′, y) in which Li changes its
direction towards v2i+1 = (x′, y′). In a worst-case configuration, a path may con-
sists of at 2i empty cells Li must pass to reach the destination cell (x′, y′). Recall
that Li contains 2i nodes, hence Li shall arrive at (x′, y′), occupy all 2i cells and
still connected. Once Li arrived there, it can safely change its direction to line
up with v2i+1 and occupy the column x′, while being connected too. Moreover,
assume the path along which Li has moved contains non-empty cells, therefore
all of them are restored by transparency of line moves shown in Proposition 1.

That is, as Li moves along a path of non-empty cells within phase i, it pushes
a node u /∈ Li and replaces it by node u ∈ Li. When Li leaves this path during
phase i+ 1, it rosters any non-empty cell occupied by a pre-existing node u /∈ L.
The same argument holds for (4) by applying (3) twice. Figure 6 demonstrates
an example of case (3) and (4). As a result, The operation of Line-Walk keeps
the whole shape connected during any phase i of this transformation.

As a result of Lemma 1 and 2, we obtain the following lemma:
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L = 2i

u1 u2 u2i

LHP = 2i

v2i

v1
2i

u1 u2 u2i

(a) The case when
δ(v2i , v2i+1) ≤ 2i.

L = 2i

u1 u2 u2i

LHP = 2i

v1

q

v2i

2i+1

(b) The case when δ(v2i , v2i+1) >
2i, where node v2i+2i−1 at the
middle of Si.

Fig. 6: The two cases of applying Line-Walk operation on L.

Lemma 3. Given an initial Hamiltonian shape SI ∈ H of order n, Hamilto-
nianToLine transforms SI into a straight line SL in O(n log n) moves, without
breaking connectivity during the transformation.

Now, we are ready to analyse the running time of HamiltonianToLine.

Lemma 4. By the end of phase i, for all 0 ≤ i ≤ log n, HamiltonianToLine
forms a straight line L of 2i nodes in at most O(n log n) steps, without breaking
connectivity of the whole shape.

Proof. The bound O(n) trivially holds for case (1) and (2), so we analyse a
worst-case in which the transformation matches the maximum running time in
every phase i, for all 1 ≤ i ≤ log n. In phase i, a straight line Li of length 2i

traverses along a path of at most 2 · (2i− 2) = 2i+1− 4 cells in which Li changes
its direction twice by at most 2i+2 − 4 moves. There is an additive factor of 2
for the special-case of turning Li on a non-empty corner as in Figure 3. Then
the operation of Line-Walk takes at total moves of at most:

(t1)i = (2i+1 − 4) + (2i+2 − 4) + 2 = 6(2i − 1).

Next, a recursive call of the algorithm, HamiltonianToLine, on Si of 2i to
transform it into a straight line L′i, requires the total sum given by:

(t2)i =

i−1∑
i=1

T (i− 1).

By the end of phase i, Li and L′i combine together into a straight line Li+1

of length 2i+1, in a total cost of at most:
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(t3)i = 2(2i − 1),

steps. Hence, HamiltonianToLine completes phase i in a total moves T (i)
of at most:

T (i) = (t1)i + (t2)i + (t3)i

= 6(2i − 1) +
( i−1∑

i=1

T (i− 1)
)

+ 2(2i − 1)

≈ 2(2i) +
( i−1∑

i=1

T (i− 1)
)

Now, we compute the recursion of (t2)i as follows:

T (1) = 2(2)

T (2) = 2(22) + 2(2) = 2(22 + 2)

.

.

T (i− 1) = 2
(

2i−1 + 2i−2 + 2(2i−3) + 22(2i−4) + . . .+ 2i−4(22) + 2i−3(2)
)

< 2
(

2i−1 + 2i−1 + 2i−1 + 2i−1 + . . .+ 2i−1 + 2i−1
)

= 2
(
2i−1(i− 1)

)
.

Finally, in phase i, HamiltonianToLine takes a total moves T (i) at most:

T (i) = (t1)i + (t2)i + (t3)i

= 6(2i − 1) + 2
(
2i−1(i− 1) + 2(2i − 1)

≤ 2logn−1(log n− 1)− 2logn =
n(log n− 1)

2
− n =

n log n− n
2

− n

= O(n log n),

steps.

Lemma 5. Given an initial Hamiltonian shape SI ∈ H of order n, Hamilto-
nianToLine transforms SI into a straight line SL in O(n log n) moves, without
breaking connectivity during the transformation.

Proof. By Lemma 4, we use induction to analyse the running time of this trans-
formation. The base case is holds trivially for the first phase. Assume that it
holds for phase i, and we prove this must hold also for phase i+ 1.

T (i+ 1) = (2(i+1)−1((i+ 1)− 1
)
− 2i+1 = 2i(i)− (2i · 2) = 2i(i− 2)

≤ 2logn(log n− 2) = n log n− 2n

= O(n log n).
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The assumption is also true for phase i. Hence, HamiltonianToLine makes a
total number of moves bounded by:

T =

logn∑
i=1

T (i) =

logn∑
i=1

2i−1(i− 1)− 2i =

logn−1∑
i=1

(i− 2)2i − 2logn

≤
logn−1∑
i=1

i · 2i − n ≤
logn∑
j=1

logn∑
i=j

2i − n ≤
logn∑
j=1

n− n ≤ n log n− n

≤ O(n log n).

Finally, reversibility of line moves [3], Lemmas 3 and 5 together imply that:

Theorem 1. For any pair of Hamiltonian shapes SI , SF ∈ H of the same order
n, Walk-Through-Path transforms SI into SF (and SF into SI) in O(n log n)
moves, while preserving connectivity of the shape during its course.

4 O(n
√
n)-time Universal Transformation

In this section, we introduce a transformation that solves the UniversalCon-
nected problem in O(n

√
n) moves. It is called UC-Box and transforms any pair

of connected shapes (SI , SF ) of the same order to each other, while preserving
connectivity during its course.

Starting from the initial shape SI of order n with an associated graph G(SI),
compute a spanning tree T of G(SI). Then enclose the shape into an n×n square
box and divide it into

√
n×
√
n square sub-boxes. Each occupied sub-box contains

one or more maximal sub-trees of T . Each such sub-tree corresponds to a sub-
shape of SI , which from now on we call a component. Pick a leaf sub-tree Tl, let
Cl be the component with which it is associated, and Bl their sub-box. Let also
Bp be the sub-box adjacent to Bl containing the unique parent sub-tree Tp of
Tl. Then compress all nodes of Cl into Bp through line moves, while keeping the
nodes of Cp (the component of Tp) within Bp. Once compression is completed
and Cp and Cl have been combined into a single component C ′p, compute a new
sub-tree T ′p spanning G(C ′p). Repeat until the whole shape is compressed into a√
n ×
√
n square. The latter belongs to the family of nice shapes (a family of

connected shapes introduced in [3]) and can, thus, be transformed into a straight
line in linear time.

Given that, the main technical challenges in making this strategy work uni-
versally is that a connected shape might have many different configurations inside
the sub-boxes it occupies, while the shape needs to remain connected during the
transformation. In the following, we describe the compression operation, which
successfully tackles all of these issues by exploiting the linear strength of line
moves.

Compress. Let Cl ⊆ SI be a leaf component containing nodes v1, . . . , vk
inside a sub-box Bl of size

√
n×
√
n, where 1 ≤ k ≤ n, and Cp ⊆ SI the unique

parent component of Cl occupying an adjacent sub-box Bp. If the direction of
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connectivity between Bl and Bp is vertical or horizontal, push all lines of Cl one
move towards Bp sequentially one after the other, starting from the line furthest
from Bp. Repeat the same procedure to first align all lines perpendicularly to
the boundary between Bl and Bp (Figure 8(b)) and then to transfer them com-
pletely into Bp (e.g., Figure 8(c)). Hence, Cl and Cp are combined into C ′p, and
the next round begins. The above steps are performed in a way which ensures
that all lines (in Cl or Cp) which are being pushed by this operation do not
exceed the boundary of Bp (e.g., Figure 8(d)). While Cl compresses vertically or
horizontally, it may collide with a component Cr ⊆ SI inside Bl. In this case Cl

stops compressing and combines with Cr into C ′r. Then the next round begins. If
Cl compresses diagonally towards Cp (vertically then horizontally or vice versa)
via an intermediate adjacent sub-box Bm and collides with Cm ⊆ SI inside Bm,
then Cl completes compression into Bm and combines with Cm into C ′m. Figure
8 shows how to compress a leaf component into its parent component occupying
a diagonal adjacent sub-box.

Examples 1 and 2 depict the compression in different directions. The formal
description of UC-Box is illustrated in Algorithm 2.

Example 1: Let Cl and Cp be components occupying two horizontal sub-
boxes, Bl and Bp, respectively. Cl transfers completely to join Cp in Bp, as in
Figure 7. The vertical compression holds by rotating the system 90◦ clockwise
or counter-clockwise.

Example 2: Let Cl and Cp be components occupying two sub-boxes, Bl and
Bp that are connected diagonally, respectively. Cl transfers completely via an
intermediate sub-box Bm, as shown in Figure 8.

Algorithm 2: Compress(S)

S = (u1, u2, ..., u|S|) is a connected shape, T is a spanning tree of G(S)

repeat
Cl ← pick(Tl) // select a leaf component associated with a

leaf sub-tree

Compress(Cl) // start compressing the leaf component

if Cl collides then
C ′r ← combine(Cr, Cl) or C ′m ← combine(Cm, Cl) // as

described in text

else
C ′p ← combine(Cp, Cl) // combine Cl with a parent

component

end
update(T ) // update sub-trees and remove cycles after

compression

until the whole shape is compressed into a
√
n×
√
n square

Output: a square shape SC

Algorithm 2, Compress, provides a universal procedure to transform an ini-
tial connected shape SI of any order into a compressed square shape of the same
order. It takes two arguments: SI and the spanning tree T of the associated
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Fig. 7: Horizontal and vertical compression.

graph G(SI). In any round: Pick a leaf sub-tree of Tl corresponding to Cl inside
a sub-box Bl. Compress Cl into an adjacent sub-box Bp towards its parent com-
ponent Cp associated with parent sub-tree Tp. If Cl compressed with no collision,
perform combine(Cp, Cl) which combines Cl with Cp into one component C ′p. If
Cl collides with another component Cr inside Bl, then perform combine(Cr, Cl)
into C ′r. If not, as in the diagonal compression in which Cl collides with Cm

in an intermediate sub-box Bm, then Cl compresses completely into Bm and
performs combine(Cm, Cl) into C ′m. Once compression is completed, update(T )
computes a new sub-tree and removes any cycles. The algorithm terminates when
T matches a single component of n nodes compressed into a single sub-box.
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(a) (b) (c)

(d)

Fig. 8: Diagonal compression.

4.1 Correctness

In this section, we show that all properties of connectivity-preserving, trans-
formability and universality hold in UC-Box, which is capable to transform any
pair of connected shapes (SI , SF ) of the same order n to each other, without
breaking connectivity during its course.

Given a an initial connected shape SI holding n nodes, then SI can be always
bounded by a square box of size n×n, placed in a appropriate position to include
all nodes in SI . This box can be divided into at most

√
n sub-boxes (proved in

[3]), B1, B2, · · · , B√n, of size
√
n×
√
n, each occupied sub-box may contain one

or more sub-shapes (called components) of at least one node u ∈ SI . As the
shape SI is connected, all occupied sub-boxes are connected too. This relation of
connectivity can be defined as follows;

Definition 5 (Connectivity of sub-boxes). By the above partitioning, two
occupied sub-boxes, B1 and B2, are connected iff there are two distinct nodes
u1, u2 ∈ SI , such that u1 occupies B1 and u2 occupies B2 where u1 and u2 are
two adjacent neighbours connected vertically, horizontally or diagonally.

Next, we define connectivity between the components (sub-shapes).

Definition 6 (Connectivity of components). By the above partitioning, two
connected components, C1, C2 ∈ S1 are connected iff there are two distinct el-
ements u ∈ C1 and v ∈ C2, such that u and v are two adjacent neighbours
connected vertically, horizontally or diagonally.
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Corollary 1. Given the above partitioning dividing SI into a number of compo-
nents. Then, it holds that all components can be computed into a spanning tree
T .

In the following lemmas, we prove that any connected shape S1 of n nodes
can be compressed into a square box of dimension

√
n.

Lemma 6. Any square box of size
√
n can hold at most 2

√
n connected compo-

nents.

Proof. Assume SI is a connected shape enclosed by a box of size n that is
partitioned into

√
n square sub-boxes of dimension

√
n. Then, a component

C ⊆ SI of at least 1 node can occupy a sub-box, B. The component C must be
connected to one of the four length-

√
n boundaries of B. Assume for the sake

of contradiction that C is not connected to any boundaries. This means that S1

is disconnected and therefore C * SI , which contracts our assumption. Observe
that based in our setting, C can be connected via a path to any of the four
length-

√
n boundaries through at most

√
n/2 cells, as shown in Figure 9. Thus,

one boundary can hold
√
n/2 distinct components, resulting in 2

√
n for the four

boundaries. Therefore, the sub-box B can contain at most 2
√
n disconnected

components.

√
n
2

√
n
2

√
n
2

√
n
2

Fig. 9: A square box of four length-
√
n boundaries, each can hold up to 2

√
n

different components.

Lemma 7. Let SI be a connected shape of order n occupies
√
n sub-boxes of

size
√
n ×
√
n each. Then, it is always possible to compress all n nodes into a

single sub-box.

Proof. It is sufficient to show that the number of cells inside any sub-box,
√
n×√

n = n is enough to be filled by at most n nodes.

Now, we show that transformation UC-Box form a nice shape by the end of
the final phase.
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Lemma 8. Starting from any connected shape SI of order n, Compress forms
a nice shape of order n.

Proof. The strategy will eventually compress all components of n ∈ SI nodes into
a
√
n×
√
n square sub-box. Regardless on which sub-box the final compressing

is, the resulting final shape will be a compressed square of size
√
n, which is a

nice shape.

Lemma 9. Starting from an initial connected shape SI of order n divided into√
n square sub-boxes of size

√
n, Compress compresses a leaf component Cl ⊆

SI of k ≥ 1 nodes, while preserving the global connectivity of the shape.

Proof. Given an initial connected shape SI of order n enclosed into a box of
length n, which is divided into

√
n sub-boxes of size

√
n ×
√
n, each occupied

sub-box contains at least one component of a total C, for all 1 ≤ C ≤ n. By
Corollary 1, SI is computed into a spanning tree T = (V,E) of its associated
graphG(SI), where V represents components C inside the sub-boxes and E is the
neighbouring relation of connectivity between those sub-boxes (see Definitions 5
and 6). Say that a component Cl ∈ C, occupies a sub-box Bl and represented
by a leaf v ∈ V , compresses into a parent component Cp occupies an adjacent
sub-box Bp and corresponds to a parent u ∈ V . We shall discuss all possible
cases of moving all k ∈ Cl lines from Bl towards Bp vertically, horizontally
and diagonally, for all 1 ≤ k ≤

√
n. Due to symmetry, we only present all

transformations in one direction, which holds for all other directions by rotating
the shape 90◦, 180◦, and 270◦.

Assume a left Bl and right sub-box Bp are connected horizontally. Then, all
horizontal lines (rows) k ∈ Cl push a single move right towards Bp sequentially
one after the other, starting from the furthest line from the boundary between
Bl and Bp. A single line l ∈ k of length i, 1 ≤ i ≤

√
n, can occupy a row in Bl

in one of the following cases:

– Case 1. The line l of length
√
n starts from the left and finishes at the right

boundary of Bl. Regardless of the current configuration, l pushes one move
the right from (x, y), . . . , (x +

√
n, y) to (x + 1, y), . . . , (x +

√
n + 1, y) and

decreases its length by 1. This move is just like simple position permutations
of the l’s elements to their right neighbours positions. As a result, l stays
connected to any nodes at cells (x, y ± 1), . . . , (x +

√
n, y ± 1), creates an

empty cell at (x+ 1, y) and dose not break connectivity of all other lines in
SI . See an example in Figure 10 (a) and (b).

– Case 2. Similar of Case 1 but with a line l of length less than
√
n. l

pushes one move the right, and the length of l dose not decrease in this case.
Therefore, the whole connectivity of the shape is not effected. See Figure 11.

– Case 3. Similar of Case 2 in which there is two horizontal lines, l1 and l2,
where l1 starts from the leftmost column x and ends at x + i of Bl, and l2
occupies (x + i + 2, y), . . . , (x +

√
n, y). Now, l1 pushes one move to fill the

empty cell (x + i + 1, y), a new empty cell has been created at (x, y) and
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√
n

√
n

B1 B2

xix1

y

x2

(a) A line l of length
√
n occupyis

a whole row in Bl.

√
n

√
n

B1 B2

xix1

y

x2

(b) l pushes one move towards Bl.

Fig. 10: Case 1. A line l of length
√
n of a leaf component that occupies the whole

dimension of a sub-box.

√
n

√
n

B1 B2

x1

y

x2 xi

(a) A line l of length i <
√
n

√
n

√
n

B1 B2

x1

y

x2 xi

(b) l pushes one move towards B1.

Fig. 11: Case 2. A line l of length i <
√
n of a child component.

then both lines combines into a single line in of length
√
n− 1, as in Figure

12. Still, this move dose not violate connectivity of the whole shape.

√
n

√
n

B1 B2

x1

y

x2 xi xi+2 x√
n

(a) Two horizontal lines occupy row
y, both of lengths less than

√
n.

√
n

√
n

B1 B2

x1

y

x2 xi xi+2 x√
n

(b) l pushes one move towards Bl.

Fig. 12: Case 3. Two lines of a child component occupy a row, both of lengths
less than

√
n.

As mentioned earlier, when a component Cl ∈ Bl moves to merge with its
parent Cp ∈ Bp, no line exceeds the four boundary of Bp. This shall preserves
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connectivity as well, and the following cases show how Compress accomplishes
this task, if l occupies a row in Bp.

– Case 4. The line l of length i <
√
n starts from the leftmost column x and

ends at x+ i, where there is an empty cell to the right at (x+ i+ 1, y). Once
l is pushed a single move to the right, l fills in that empty cell and occupies
positions (x+ 1, y), . . . , (x+ i+ 1, y). Therefore, the length of l increases by
1, while the connectivity is preserved. See an example of this move in Figure
13.

√
n

√
n

B1 B2

x1

y

x2 xi

(a) The line l starts from a bound-
ary between (Bl, Bp) and ends at
(x+ i, y), where i <

√
n.

√
n

√
n

B1 B2

x1

y

x2 xi

(b) l is moved one positon right to
occupy the empty cell to its right.

Fig. 13: Case 4. A line l of length i <
√
n in a parent component.

– Case 5. The line l of length
√
n starts from the left and finishes at the right

boundary of Bp. Once l is pushed towards the right, it turns to fill empty
cells at the right boundary of Bp, starting from the rightmost column to the
left. The line l needs two moves per node to change its orientation. Figures
14 and 15 depicts two different examples of filling a boundary. Hence, this
case preserves connectivity of the whole shape.

Finally, in all above cases, l pushes one move towards the right without breaking
connectivity of SI . As an immediate observation: whenever a line l ⊂ SI inside a
sub-box of dimension

√
n, for all 1 ≤ l ≤

√
n, that starts (perpendicularly) from

a boundary pushes one move towards the opposite boundary between (Bl, Bp),
the global connectivity of the whole shape is preserved. Further, this holds also
for all l lines that are pushing one move from Bl towards Bp, sequentially one
after another at any order, starting from the furthest-to-nearest line from that
boundary between Bl and Bp. Therefore, this must hold for a finite number of
line moves a leaf Cl requires to merge with its parent Cp in Bp.
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√
n

√
n

B1 B2

x1

y

x2 xi

(a) A line l of length i =
√
n occu-

pyis a whole row in Bp.

√
n

√
n

B1 B2

x1

y

x2 xi

y + 1

y − 1

(b) l starts to fill in an empty cell
(x+ i, y+ 1) at the boundary of Bp

by pushing the node at (x+i, y) one
move up.

√
n

√
n

B1 B2

x1

y

x2 xi

y + 1

y − 1

(c) l pushes one move right.

Fig. 14: Case 5 - Example 1. A line l of length
√
n of a parent component occupies

the whole dimension of a sub-box., where there is empty cell at the rightmost
column.

√
n

√
n

B1 B2

x1

y

x2 xi

y + 1

y − 1

y − w

(a) A line l of length i =
√
n occu-

pyis a whole row in Bp.

√
n

√
n

B1 B2

x1

y

x2 xi

y + 1

y − 1

y − w

(b) l turns to fill in the first empty
cell at the right boundary of Bp, cell
(x + i − 1, y + w). Then, l pushes
one move right to occupy the new
empty cell (x+ i− 1, y).

Fig. 15: Case 5 - Example 2. A line l of length
√
n of a parent component occupies

the whole dimension of a sub-box., where there is no empty cell at the rightmost
column. In this case, l fills in an empty cell at the column x+ i− 1 of Bp.

4.2 Running Time

Now, we are ready to analyse the time complexity of Compress. The following
lemmas provide a rough upper bound for all possible shape configurations. Given



24 APPENDIX

a uniform partitioning of any initial connected shape S1 of order n, let us first
show the total steps required to compress a leaf component Cl in a sub-box Bl

into a parent Cp occupying an adjacent sub-box Bp, in a worst-case.

Lemma 10. Given a pair of components Cl, Cp of kl and kp nodes, 1 ≤ kl+kp ≤
n, occupying adjacent sub-boxes Bl, Bp of size

√
n each, receptively. Then, Cl

requires at most O(n) steps to move from Bl and compress into Cp in Bp, without
breaking connectivity.

Proof. Assume Bl, Bp are connected diagonally (see Definition 5), where a com-
ponent Cl occupies

√
n lines in Bl and Cp consists of

√
n lines in Bp as well.

Cl pushes from Bi via an intermediate sub-box Bm towards Bp. Then, the
√
n

lines of Cl moves a distance of at most
√
n to cross the boundary between Bl

and Bp, in a total of at most n moves to completely occupy Bm. Again, Cl takes
additional n to move into Bp and join Cp. Moreover, assume that Cl requires
additional 2n steps to fill in a boundary at Bp. Therefore and by Lemma 9, Cl

compresses into Cp in a total of at most:

t = n+ n+ 2n = 4n

= O(n),

moves, while preserving connectivity of the shape during transformations.

The compression cost of this transformation could be very low taking only
one move or being very high in some cases up to linear steps. To simplify the
analysis, we divide the total cost of UC-Box into charging phases. We then
manage to upper bound the cost of each charging phase independently of the
sequential order of compressions.

Lemma 11. Compress compresses any connected shape SI of order n into a√
n×
√
n square shape, in O(n

√
n) steps without breaking connectivity.

Proof. Let us compute a spanning tree T = (V,E) of the associated graph G(SI),
where nodes V correspond to elements linked by edges E representing relation
connectivity between them. Recall that the partitioning process of SI into small√
n ×
√
n sub-boxes shall provide at most O(

√
n) occupied sub-boxes (proved

in [3]). Observe that each component inside theses occupied sub-boxes matches
a subtree in T . In each charging phase, the strategy compresses a single or
multiple components of at most O(

√
n) nodes distance O(

√
n), which incurring

a total cost of at most O(n) (the worst-case is analysed in Lemma 10). Once
this computed, a single or multiple subtrees of

√
n nodes are removed form T .

By repeating the same argument for at most O(
√
n) charging phases, then we

arrive at the case where all nodes are removed from T , which means that all
components have been compressed into a single sub-box in a total cost at most
O(n
√
n) moves, while the whole connectivity of the shape is not broken (consult

Lemma 9).



APPENDIX 25

Similar to Lemma 11 but of different perspective, assume that SI is hidden
of which we cannot see the actual configuration. Colour black all the O(

√
n)

occupied sub-boxes by SI . Each black sub-box consists of n cells in a total of
n
√
n cells for all black occupied sub-boxes. Given that, in each charging phase

the strategy moves
√
n lines

√
n distance of a total cost at most O(n) moves

to compress all nodes inside a black sub-box. This might happen in any order
throughout the transformation. As the cost O(n) is mostly sufficient to compress
all nodes inside a single black sub-box and by Lemma 9, a total of at most
O(
√
n) charging phases are fairly enough to compress all components inside the

O(
√
n) occupied black sub-boxes, in a maximum total cost O(n

√
n) moves, while

preserving connectivity during the transformations.
There are a number of connected shapes which can be divided, by some parti-

tionings, into n connected components. This kind of dividing brings a wort-case
complexity in which Compress meets its maximum cost, due to several reasons.
First, it splits the shape into the maximum possible number of components n.
Moreover, the diameter of the shape is spread over the largest space to cover
n (rows or columns). Unlike other dense connected shapes of shorter diameters,
outspread shapes are harder to compress due to the lack of long lines and the
additional cost required for individuals and short lines. The following lemma
shows that there are a finite number of specific shapes that has n components
produced by some artificial partitionings.

Lemma 12. There are a finite number of initial shapes denoted SI that can
be divided into n components by some uniform partitionings. It holds that Com-
press compresses any instance A ∈ SI into a single square sub-box in a total
of O(n

√
n) steps, while preserving connectivity during its course.

Proof. Given A ∈ SI of n nodes with a particular partitioning positioned to
divide A into n connected components. See partitioning examples of a zigzag line
in Figure 16 and diagonal zigzag in Figure 17. By Lemma 6, a sub-box can have
at most 2

√
n components, and with a given partitioning, A can occupy at most

2
√
n/n = 2

√
n = O(

√
n) sub-boxes. As A is connected, each occupied sub-box

contains at most
√
n/2 components of size 1 each.

√
n

√
n

n

Fig. 16: A zigzag line with a partitioning positioned to cross the middle through
every two nodes of A ∈ SI .
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√
n

√
n

d < n

Fig. 17: A diagonal zigzag line with a partitioning positioned to cross the middle
through every two nodes in A ∈ SI of dimension d < n.

We investigate how the current strategy behaves in the worst scenario. In
any given charging phase i, for all 1 ≤ i ≤

√
n, Compress compresses

√
n lines

of a single of multiple components to their parent by moving them
√
n distance

in a total of O(n) steps, with preserving connectivity. More, the compression
may be via two diagonal sub-boxes occurring at most 2 · i

√
n. Additional cost is

also given for rearrangements of at most 2 ·
√
n/2 =

√
n moves. Therefore, the

charging phase i takes a total moves t1 of at most:

t =

√
n∑

i=1

i+ (2 · i
√
n) +

√
n =

√
n(
√
n+ 1)

2
+ (2 · i

√
n) +

√
n =

n+
√
n

2
+ (2 · i

√
n) +

√
n

=
n+
√
n+ (4 · i

√
n) + 2

√
n

2
=
n+ 3

√
n+ (4 · i

√
n)

2
=

5n+ 3
√
n

2
= O(n).

For the upper bound, we will assign the cost t for each of the 2
√
n occupied

sub-boxes in those particular shapes of Figures 16 and 17. Hence, the total
running time T in moves is as follows:

T = t · 2
√
n

=
5n+ 3

√
n

2
· 2
√
n =

10n
√
n+ 6n

2
= 5n

√
n+ 3n

= O(n
√
n).

By Lemma 9, Compress compresses any shape A ∈ SI of n nodes with a
particular partitioning that dividing A into n components in at most O(n

√
n)
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steps with preserving the whole connectivity of the shape during the transfor-
mations.

By Lemma 8, the resulting compressed square shape of Compress is a nice
shape. Hence, Lemma 9, Lemma 11, and reversibility of nice shapes (from [3]),
we therefore have:

Theorem 2. For any pair of connected shapes (SI , SF ) of the same order n,
UC-Box transforms SI into SF (and SF into SI) in O(n

√
n) steps, while pre-

serving connectivity during its course.

5 Lower Bounds

In this section, we discuss a necessary minimum cost to transform the diagonal
of order n into a line exploiting the parallelism of line moves in a two dimen-
sional grid. The Input is a diagonal shape SD of n nodes occupying (x1, y1),
(x2, y2), . . . , (xn, yn), and the output is a straight line SL of n nodes occupying
n consecutive cells at a column yi or row xi, for all 1 ≤ i ≤ n. Observe that SD

matches the maximum number of steps a transformation takes to transform it
into SL, due to the inherent distance between these two pairs of shapes.

Given a complete graph G = (V,E) in which V is a set of nodes in SD and
E is non-negative edge weights (Manhattan distance between nodes). Then, a
simplification of this problem is collect all nodes on SD at the bottom-most node.
That is, every node in SD must perform one or more hops through other nodes
and end up at the bottom-most node. When going through a node the two or
more nodes can continue traveling together and exploit parallelism.

Any such solution to the problem forms a spanning tree T ⊆ G, where every
leaf to root path corresponds to the hops of a specific node until it reached the
end. The cost of each subtree is: c(T ) is the total sum of the distances of its
edges plus the cost of nodes c(V ). Every edge E(u, v) has a cost equal to the
distance of moving u to v, where each node has a cost of paying for each internal
node of a subtree the number of nodes in its subtree. The latter cost is due to
not being able to exploit parallelism whenever turning, and any hop requires
another turn. The cost due to distances is just:

c(E) =
∑

e∈E(T )

cost(e), (1)

The cost of internal nodes is equal to:

c(V ) =

d(T )∑
i=1

i · v ∈ d(T )i, (2)

Where d(T ) is the depth of tree T and d(T )i is the number of nodes at level i.
The total cost in number of moves given by such a tree T is the sum of 1 and 2:

c(T ) = c(E) + c(V ). (3)
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Now, the two sums seem to give some trade-off. If the depth is very small, then
the cost due to distances seems to increase (e.g., if all nodes travel into one
hop, they all pay their distances and the cost is quadratic). This approach is
similar to any sequential transformation of individual movements which pays a
cost of Θ(n2) to transform SD into SL. The summation of the total individual
distances is, Σ∆ = 0 + 1 + 2 + . . .+ (n− 1) = Θ(n2), independently of whether
connectivity is preserved or not during transformations. This is because of the
inherent individual distance between SD and SL. On the other hand, the tree
T of very large depths looks as a spanning line where a lot of parallelism must
be exploited. The distance in this case would cost only c(E) = n− 1. While the
sum of turns at each node becomes quadratic, c(V ) = n2. Therefore, we observe
that more balanced trees of logarithmic depth, such as binary trees, manage
to balance both sums and give total cost n log n. Due to the trade-off, it does
not seem easy to lower bound in the general case. Further, it does not seem
easy to lower bound the edges-sum even by some parameters depending on the
depth (so that both sums will be using similar parameters). It might not even be
related to that parameter. Therefore, we tried to further simplify the problem by
restricting the solutions to extremely limited depths. Below, we have successfully
managed to establish some special-case lower bounds for this problem.

It can be easily seen that no uniform strategy can achieve better bound than
the O(n log n)-time strategy of [3], by simply increasing the number of lines that
are merging in every phase to decrease the number of phases. Hence, we have
the following proposition.

Proposition 2. Any strategy represented by a balanced tree performs Ω(n log n)
moves.

Proof. Observe that such a strategy is essentially trying to increase the degrees
of the nodes of a balanced tree and decrease its depth. For example, take any
merging parameter k ≥ 2. Notice that the O(n log n)-time transformation of [2]
(called DL-Doubling) has k = 2, as it is merging pairs of lines and get log n
phases. So, in every phase i we are going to partition the L lines into L/k groups
of k consecutive lines each and merge the lines within each group into a single
line.

First , in phase 1, L = n, and we are partitioning into n/k groups. For
each group we are paying at least k2 asymptotically to merge the lines in it.
Therefore for phase 1 we pay (n/k)k2 = nk (this is similar also to the O(n

√
n)-

time transformation in [3], but there it only did it once and gathered all the
lines to the bottom and not in any further phases). Then in phase 2 L = n/k,
we are partitioning into L/k = n/k2 groups. Each group is paying at least k3

asymptotically, because the distance between consecutive lines has now increased
to k (roughly). Thus gives again cost at least nk. This should hold for the other
phases.

Now, Observe that this strategy gives logk n = log n log k phases. If each is
paying nk, then the total cost is (nk)(log n log k) = n log n(k log k), which for all
k ≥ 2 is at least 2n log n = Ω(n log n). This would be helpful because it excludes
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any attempts to get a better than the O(n log n)-time transformation by simply
playing with the degrees of the tree in a uniform way (which in turn decreases
its depth and thus the number of phases).

5.1 An Ω(n logn) Lower Bound for The 2-HOP Tree

We start to study a special case lower bound for all solutions that represented
by a tree T of a minimum depth. Assume any such solution moves all nodes
in only one-way via shortest paths towards the target node. As a node joins
other nodes, they do not split after that during the transformation. Let d(T )
denotes the depth of the tree. For d(T ) = 1, the tree becomes a star, and the
total cost is quadratic in this case, due to the summation of individual distances
c(E) = 0 + 1 + 2 + . . .+ (n− 1) = Θ(n2).

Then, we investigate the tree T of depth at most 2, d(T ) = 2. Observe that for
any node in the tree we are paying “asymptotically” at least the square of number
of children that it has. The reason is that at most 2 of its children can be nodes
at distance 1, then at most 2 can be nodes of distance 2, at most 2 of distance
i in general due to the neighbouring properties of the diagonal. Thus, it gives a
total cost for any such tree which is similar to c(T ) =

∑
i d(ui)

2, where d(ui) is
the number of children of ui. That is, the squares of the degrees of all internal
nodes, excluding their parent (the root ui). When taking into account all nodes,
this gives a graph-theoretic measure related to chemical compounds, known as
the Zagreb index [28, 27]. A great amount of bounds have been established for
it, but none of which could be directly used in our case.

Let T of k nodes be a tree of depth 1, as shown in Figure 18. Then, the total
asymptotic cost of the tree c(T ) is at least:

c(T ) ≥
k∑

i=0

d(ui)
2, (4)

Where d(ui) is the degree of node ui.

u0

u1 u2 uk

Fig. 18: A tree T of k nodes.

Given the tree T of k we show the first case of a minimum total cost T must
pay if it has a node ui ∈ T with degree at least n log n;

Lemma 13. If ∃ d(ui) ≥
√
n log n, then c(T ) ≥ n log n, for all 0 ≤ i ≤ k.
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Proof. The proof is straightforward. Consider the tree T of k nodes in Figure
18. If k ≥

√
n log n, then the tree shall have a minimum total cost of c(T ) ≥

d(u0)2 = k2 = (
√
n log n)

2
= n log n. In general, if there exists a node ui ∈ T ,

for all 0 ≤ i ≤ k, such that d(ui) ≥
√
n log n, then the total cost of the tree must

be at least c(T ) ≥ n log n.

Now, let us assume that all nodes in the tree have degrees less than n log n.
Thus, we show the lower bound of Lemma 13 holds in this case.

Lemma 14. Let d(ui) <
√
n log n ∀i, where 0 ≤ i ≤ d(u0) = k. Then, c(T ) >

n log n.

Proof. Given a tree T of n nodes that has depth of 2, and a subtree T ′ ⊆ T of k
nodes as in Figure 18. So, let d(ui) <

√
n log n , for all 0 ≤ i ≤ d(u0) = k. Assume

without loss of generality that the nodes ui ∈ T ′, for all 1 ≤ i ≤ d(u0) = k, are
ordered in non-increasing degrees from left to right (increasing order i), that is,
d(u1) ≥ d(u2) ≥ . . . ≥ d(uk). Hence, there are n−(k+1) ∈ T nodes remaining to

be assigned. As d(u1) ∈ T ′ is the maximum, it must hold that, d(u1) ≥ n−(k+1)
k ,

thus n−(k+1)
k ≤ d(u1) <

√
n log n.

Next, there are n−(k+1)−d(u1) ∈ T nodes need to be allocated. As d(u2) ∈
T ′ is the maximum among the rest, it must hold that d(u2) ≥ n−(k+1)−d(u1)

k−1 ,

thus n−(k+1)−d(u1)
k−1 ≤ d(u2) <

√
n log n. In general, if a node d(ui) ∈ T ′ is the

maximum, then the following must hold that,

d(ui) ≥
n−

(∑i−1
j=0 d(ui)

)
− 1

k − (i− 1)
, (5)

Thus,

n−
(∑i−1

j=0 d(ui)
)
− 1

k − (i− 1)
≤ d(ui) <

√
n log n, (6)

Now, plug i = 1 and k = d(u0) in (5) yields,

d(u1) ≥ n− d(u0)− 1

d(u0)
>
n−
√
n log n− 1√
n log n

, (7)

When i = 2, we will get,

d(u2) ≥ n− (d(u0) + d(u1))− 1

d(u0)
>
n− 2

√
n log n− 1√

n log n− 1
, (8)

For all 1 ≤ i ≤ d(u0) = k, we shall obtain,

d(ui) ≥
n−

(∑i−1
j=0 d(ui)

)
− 1

d(u0)− (i− 1)
>
n− i

√
n log n− 1√

n log n− (i− 1)
, (9)
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Then, we plug (9) into (4) of Observation ??, which implies,

c(T ) >

d(u0)∑
i=0

[
n− i

√
n log n− 1√

n log n− (i− 1)

]2
> (
√
n log n)

−1
d(u0)∑
i=0

(n− i
√
n log n− 1)

2

(10)

' (
√
n log n)

−1
d(u0)∑
i=0

(n− i
√
n log n)

2
(11)

= (
√
n log n)

−1
d(u0)∑
i=0

(n2 + i2 · n log n− 2i · n
√
n log n) (12)

= (
√
n log n)

−1
[
d(u0) · n2 +

d(u0)∑
i=0

n(i2 log n− 2i
√
n log n)

]
(13)

= (
√
n log n)

−1
[
d(u0) · n2 + n

d(u0)∑
i=0

(i2 log n− 2i
√
n log n)

]
. (14)

We need to bound the summation of (14):

d(u0)∑
i=0

n(i2 log n− 2i
√
n log n) =

d(u0)∑
i=0

i2 log n−
d(u0)∑
i=0

2i
√
n log n (15)

=

(
log n

d(u0)∑
i=0

i2

)
−

(
2
√
n log n

d(u0)∑
i=0

i

)
(16)

= log n

(
d(u0)

3

3
+
d(u0)

2

2
+
d(u0)

6

)
(17)

− 2
√
n log n · d(u0)(d(u0 + 1))

2
(18)

' log n
(
d(u0)

3
+ d(u0)

2
+ d(u0)

)
(19)

− 2
√
n log n · d(u0)

2
. (20)

Now, plug (20) into (14), then it will give a total cost of the tree c(T ) that
asymptotically bounded on:

c(T ) > (
√
n log n)

−1(
n2 · d(u0) + n log n · d(u0)

3 −
√
n log n · d(u0)

2
)

(21)

=
n2 · d(u0) + n log n · d(u0)

3

√
n log n

− d(u0)
2

(22)

>
n2 · d(u0) + n log n · d(u0)

3

√
n log n

− n log n (23)
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Finally, since d(u0) > 1, it implies that,

c(T ) >
n2√
n log n

− n log n =
n2 · n log n√
n log n · log n

− n log n =
n2√
n log n

− n log n

(24)

=
n · n√
n
√

log n
− n log n =

n ·
√
n√

log n
− n log n =

n log n ·
√
n

log n ·
√

log n
− n log n (25)

>
n log n ·

√
n

log2n
− n log n =

( √
n

log2n
− 1

)
n log n = (26)

= Ω(n log n). (27)

As a result, both Lemmas 13 and 14 show that the total cost of any spanning
tree c(T ) of n nodes and depth at most d(T ) ≤ 2 is always bounded byΩ(n log n).

Theorem 3. Any 2-HOP spanning tree c(T ) of n nodes and depth at most
d(T ) ≤ 2 has a total cost c(T ) of Ω(n log n).

5.2 A conditional Ω(n logn) Lower Bound - One way transformation

Now we present another special case lower bound for transformations that are
exploiting line moves. Again, our techniques is based on one-way assumption
in which all nodes move in one direction via shortest paths towards the target
node (e.g., from top to bottommost node in the diagonal). Whenever a node
joins other nodes, they continue travelling together and do not split thereafter.

Let SD be a diagonal connected shape occupies of order n nodes (lines of
length 1) on positions (x1, y1), (x2, y2), . . . , (xn, yn). The argument starts by
deciding a potential target position of the final straight line, SL. Assume a
potential placement of SL horizontally on the bottommost row y1 or vertically
at the leftmost column x1 of the shape. With this, and without loss of generality,
we therefore assume that lines only move down and leftwards. This is convenient
as they always push a minimum distance towards the target potential placement,
i.e, in our assumption at row y1 or column x1 of SL.

Enclose each individual node of SD into a square box of dimension d = 1 to
have a total of n boxes, see the black squares boxes in Figure 19. Then, double
the dimension of the square boxes to surround every two nodes in a total of n/2
boxes of d = 2, such as the red squares boxes in Figure 19. Repeat doubling
dimensions each of different colours log n times, until arriving at 1 square box of
d = n, which contains all nodes of SD. Assume that n is a power of 2, therefore,
the total number of all square boxes shall be exactly n+n/2+n/4+. . .+1 = 2n−1
boxes, where there are n boxes of d = 1, n/2 boxes of d = 2, . . . and 1 box of
d = n.

Now, observe that such a transformation at any order during its course, must
pay at least n steps to push n nodes out from their black boxes of dimension 1.
Likewise, when a line l1 of 1 node occupying a cell (x, y) (e.g, Figure 20 (a)) is
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d = 1

8

4

2

n

n

1

n

2

Fig. 19: An initial diagonal shape SD on positions (x1, y1), (x2, y2), . . . , (xn, yn)
enclosed into log n boxes of dimensions 1, 2, 4, . . . , n.

pushed one step to cross the boundary of its black box of dimension 1, no one
will be pushed for free to move from any box of any size. The same argument
follows, when a line l2 of 2 nodes at (x − 1, y) and (x − 1, y − 1) pushes 2
steps, say to the left, and leaves its red box of size 2× 2, then no line is pushed
to leave their red box of dimension 2 for free, see an example in Figure 20 (b).
More formally, by this observation, any transformation exploiting linear-strength
pushing mechanism requires at least d · n/d steps, where the dimension d = 2k

for all 0 ≤ k ≤ log n, to evacuate all lines from n/d boxes of dimension d, without
pushing any other lines for free in any arrangements during its course.

d = 1

4

2

y
x

(a)

d = 1

4

2

y
x

(b)

Fig. 20: Artificial boxes of dimensions 1, 2 and 4 enclosing nodes of SD.

There is another case might happen during transformations of any strategy
based on line moves. Consider a square box of dimension d = 2k, for all 0 ≤
k ≤ log n, consists of four sub-boxes of dimension 2k−1 each, say without loss
of generality, a blue box of size 8 × 8 holds four green sub-boxes of length-4
dimension, as depicted in Figure 21. Here, one can say that the line of length
4 in the top-right corner pushes 4 steps towards the left, which consequently
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moves the one in top-left for no cost. In such case, we should not forget the
cost of forming the two length-4 line is prepaid previously. That is, the strategy
already paid a cost of forming them initially from sub-boxes of dimensions 1 and
2. Further, one of the length-4 line is incurred the transformation a cost of 4
steps at least, to change its direction completely to occupy new 4 consecutive
columns, that is, to line up vertically with the other length-4 line. Recall that
any line of length 2k occupying a box of d = 2k and crosses a boundary of
that box vertically or horizontally, no line is pushed originally for free. This
holds for any initial sub-lines of lengths less than 2k. With this, we can then

8

4

Fig. 21: An example of the special case when nodes push others for free (on the
same row of column).

calculate the total minimum steps that must be paid to evacuate all lines (of
various lengths) from the 2n− 1 square boxes. In each box, any strategy has to
pay a minimum number of steps equals to the box’s dimension d = 2k, for all
0 ≤ k ≤ log n, at any order during transformations. Thus the total minimum
steps will be (1 ·n)+(2 ·n/2)+(4 ·n/4)+ . . .+(n ·1) = n+n+ . . .+n. Now, since
we have log n different dimensions, we obtain a total of n log n minimum number
of steps. Hence, any transformation exploits linear-strength pushing mechanism
asks for at least Ω(n log n) steps to form all n nodes at the potential placement
and transform SD into SL.

Then, we try to apply a recursive transformation to check whether this will
yield a better lower bound. That is, let SL be an initial straight line of n nodes
(say horizontal) which occupies the bottommost row y1 and SD is a target diago-
nal of order n (lines of length 1) occupies positions (x1, y1), (x2, y2), . . . , (xn, yn).
By reversibility, the pair (SD, SL) are transformable to each other, such that if
SD → SL (“→” means “is transformed to”) then SL → SD via a sequence of
line moves. Then the cost of SD → SL is equivalent to SL → SD.

We define two independent sets, S1
n/2 and S2

n/2, each of which contains arbi-

trary n/2 nodes during configurations, such that S1
n/2 6= S2

n/2 and S1
n/2∩S

2
n/2 =

φ, see Figure 22. Given a transformation A, then pick any n/2 nodes randomly
chosen from SL. At any time, A must pay a cost of at least n/2 for these specific
n/2 nodes to cross a boundary of the S2

n/2 box and get inside it, through the

two shaded areas. This cost is based of the minimum distance any group of n/2
nodes have to pay, in order to reach their final positions inside the S2

n/2 box.
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n/2

n

n/2

n/2

n/2

S1
n/2

S2
n/2

∆ = n/2

∆ = n/2

Fig. 22: All nodes are initially placed on the bottom. Two independent sets S1
n/2

and S2
n/2 are defined.

n/2

n/2

n/2

n/2

n/2

S1
n/2

S2
n/2 S4

n/4

S3
n/4

S2
n/4

S1
n/4

n/2

∆ = n/2

∆ = n/4

∆ = n/4

∆ = n/4

∆ = n/4

Fig. 23: The two sets S1
n/2 and S2

n/2 are divided into four independent sets

S1
n/4, S

2
n/4 ⊂ S

1
n/2 and S3

n/4, S
4
n/4 ⊂ S

2
n/2.

Similarly, we split the two boxes into half, by defining four independent sets
S1
n/4, S

2
n/4 ⊂ S1

n/2 and S3
n/4, S

4
n/4 ⊂ S2

n/2. At any time, A chooses two random
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group of nodes, each of size n/4. Then, A has to pay a cost of at least 2 · n/4
for these nodes to cross boundaries and get inside the S2

n/4 and S4
n/4 boxes.

See Figure 23. Repeat the same argument for the rest of log n charging phases,
until each nodes occupies its final target positions in the diagonal SD. As every
node in each independent set will eventually reach its final position, then it
will be contained into log n boxes. Therefore, the total amortized cost will be
(1 · n/2) + (2 · n/4) + (4. · n/8) + . . .+ (n/2 · 1) = n log n/2. As a result, we state
that:

Theorem 4. Any transformation strategy exploiting line moves requires Θ(n log n)
steps to transform the diagonal into a line.

6 Conclusions and Open Problems

We have presented efficient transformations for the line-pushing model intro-
duced in [3] and some first lower bounds for restricted sets of transformations.
Our first transformation works on the family of all Hamiltonian shapes and
matches the running time of the best known transformations (O(n log n)) while
additionally managing to preserve connectivity throughout its course. We then
gave the first universal connectivity preserving transformation for this model.
Its running time is O(n

√
n) and works on any pair of connected shapes of the

same order. Our Ω(n log n) lower bounds match the best known upper bounds,
still they are valid only for restricted sets of transformations.

This work opens a number of interesting problems and research directions.
An immediate next goal is whether it is possible to develop an O(n log n)-time
universal connectivity-preserving transformation. If true, then a natural question
is whether a universal transformation can be achieved in o(n log n)-time (even
when connectivity can be broken) or whether there exists a general Ω(n log n)-
time matching lower bound. As a first step, it might be easier to develop lower
bounds for the connectivity-preserving case. There are also a number of inter-
esting variants of the present model. One is a centralised parallel version in
which more than one line can be moved concurrently in a single time-step. An-
other, is a distributed version of the parallel model, in which the nodes operate
autonomously through local control and under limited information.
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Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal
coating for programmable matter. Natural Computing, 17(1):81–96, 2018.

15. Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa Richa, Christian
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