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Abstract. We consider a discrete system of n simple indistinguish-
able devices, called agents, forming a connected shape SI on a two-
dimensional square grid. Agents are equipped with a linear-strength
mechanism, called a line move, by which an agent can push a whole
line of consecutive agents in one of the four directions in a single time-
step. We study the problem of transforming an initial shape SI into a
given target shape SF via a finite sequence of line moves in a distributed
model, where each agent can observe the states of nearby agents in a
Moore neighbourhood. Our main contribution is the first distributed
connectivity-preserving transformation that exploits line moves within
a total of O(n log2 n) moves, which is asymptotically equivalent to that
of the best-known centralised transformations. The algorithm solves the
line formation problem that allows agents to form a final straight line SL,
starting from any shape SI , whose associated graph contains a Hamilto-
nian path.
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1 Introduction

The explosive growth of advanced technology over the last few decades has con-
tributed significantly towards the development of a wide variety of distributed
systems consisting of large collections of tiny robotic-units, known as monads.
These monads are able to move and communicate with each other by being
equipped with microcontrollers, actuators and sensors. However, each monad is
severely restricted and has limited computational capabilities, such as a constant
memory and lack of global knowledge. Further, monads are typically homoge-
neous, anonymous and indistinguishable from each other. Through a simple set
of rules and local actions, they collectively act as a single unit and carry out
several complex tasks, such as transformations and explorations.

In this context, scientists from different disciplines have made great efforts
towards developing innovative, scalable and adaptive collective robotic systems.

The full version of the paper with all omitted details is available on arXiv at:
http://arxiv.org/abs/2108.08953.
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This vision has recently given rise to the area of programmable matter, first
proposed by Toffoli and Margolus [35] in 1991, referring to any kind of materials
that can algorithmically change their physical properties, such as shape, colour,
density and conductivity through transformations executed by an underlying
program. This newborn area has been of growing interest lately both from a
theoretical and a practical viewpoint.

One can categorise programmable matter systems into active and passive.
Entities in the passive systems have no control over their movements. Instead,
they move via interactions with the environment based on their own structural
characteristics. Prominent examples of research on passive systems appear in
the areas of population protocols [7, 28, 29], DNA computing [1, 8] and tile self-
assembly [15, 33, 37]. On the other hand, the active systems allow computational
entities to act and control their movements in order to accomplish a given task,
which is our primary focus in this work. The most popular examples of active
systems include metamorphic systems [19, 30, 36], swarm/mobile robotics [10,
21, 31, 34, 39], modular self-reconfigurable robotics [5, 22, 40] and recent research
on programmable matter [12, 13]. Moreover, those robotic systems have received
an increasing attention from the the engineering research community, and hence
many solutions and frameworks have been produced for milli/micro-scale [9, 23,
26] down to nanoscale systems [16, 32].

Shape transformations (sometimes called pattern formation) can be seen as
one of the most essential goals for almost every system among the vast variety
of robotic systems including programmable matter and swarm robotic systems.
In this work, we focus on a system of a two-dimensional square grid containing
a collection of entities typically connected to each other and forming an initial
connected shape SI . Each entity is equipped with a linear-strength mechanism
that can push an entire line of consecutive entities one position in a single time-
step in a given direction of a grid. The goal is to design an algorithm that can
transform an initial shape SI into a given target shape SF through a chain of
permissible moves and without losing the connectivity. That is, in each interme-
diate configuration we always want to guarantee that the graphs induced by the
nodes occupied by the entities are connected. The connectivity-preservation is
an important assumption for many practical applications, which usually require
energy for data exchange as well as the implementation of various locomotion
mechanisms.

1.1 Related Work

Many models of centralised or distributed coordination have been studied in the
context of shape transformation problems. The assumed mechanisms in those
models can significantly influence the efficiency and feasibility of shape transfor-
mations. For example, the authors of [2, 17–19, 27] consider mechanisms called
sliding and rotation by which an agent can move and turn over neighbours
through empty space. Under these models of individual movements, Dumitrescu
and Pach [17] and Michail et al. [27] present universal transformations for any
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pair of connected shapes (SI , SF ) of the same size to each other. By restrict-
ing to rotation only, the authors in [27] proved that the decision problem of
transformability is in P; however, with a constant number of extra seed nodes
connectivity preserving transformation can be completed with Ω(n2) moves [27].

The alternative less costly reconfiguration solutions can be designed by em-
ploying some parallelism, where multiple movements can occur at the same
time, see theoretical studies in [11, 14] and more practical implementation in
[34]. Moreover, it has been shown that there exists a universal transformation
with rotation and sliding that converts any pair of connected shapes to each
other within O(n) parallel moves in the worst case [27]. Also fast reconfiguration
might be achieved by exploiting actuation mechanisms, where a single agent is
now equipped with more strength to move many entities in parallel in a single
time-step. A prominent example is the linear-strength model of Aloupis et al. [5,
6], where an entity is equipped with arms giving it the ability to extend/extract
a neighbour, a set of individuals or the whole configuration in a single operation.
Another elegant approach by Woods et al. [38] studied another linear-strength
mechanism by which an entity can drag a chain of entities parallel to one of the
axes directions.

A more recent study along this direction is shown in [4], and introduces
the line-pushing model. In this model, an individual entity can push the whole
line of consecutive entities one position in a given direction in a single time-
step. As we shall explain, this model generalises some existing constant-strength
models with a special focus on exploiting its parallel power for fast and more
general transformations. Apart from the purely theoretical benefit of exploring
fast reconfigurations, this model also provides a practical framework for more
efficient reconfigurations in real systems. For example, self-organising robots
could be reconfiguring into multiple shapes in order to pass through canals,
bridges or corridors in a mine. In another domain, individual robots could be
containers equipped with motors that can push an entire row to manage space
in large warehouses. Another future application could be a system of very tiny
particles injected into a human body and transforming into several shapes in
order to efficiently traverse through the veins and capillaries and treat infected
cells.

This model is capable of simulating some constant-strength models. For ex-
ample, it can simulate the sliding and rotation model [17, 27] with an increase in
the worst-case running time only by a factor of 2. This implies that all univer-
sality and reversibility properties of individual-move transformations still hold
true in this model. Also, the model allows the diagonal connections on the grid.
Several sub-quadratic time centralised transformations have been proposed, in-
cluding an O(n

√
n)-time universal transformation that preserves the connectiv-

ity of the shape during its course [3]. By allowing transformations to disconnect
the shape during their course, there exists a centralised universal transformation
that completes within O(n log n) time.

Another recent related set of models studied in [10, 20, 24] consider a single
robot which moves over a static shape consisting of tiles and the goal is for the
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robot to transform the shape by carrying one tile at a time. In those systems,
the single robot which controls and carries out the transformation is typically
modelled as a finite automaton. Those models can be viewed as partially cen-
tralised as on one hand they have a unique controller but on the other hand that
controller is operating locally and suffering from a lack of global information.

1.2 Our Contribution

In this work, our main objective is to give the first distributed transformations
for programmable matter systems implementing the linear-strength mechanism
of the model of line moves. All existing transformations for this model are cen-
tralised, thus, even though they reveal the underlying transformation complexi-
ties, they are not directly applicable to real programmable matter systems. Our
goal is to develop distributed transformations that, if possible, will preserve all
the good properties of the corresponding centralised solutions. These include the
move complexity (i.e., the total number of line moves) of the transformations and
their ability to preserve the connectivity of the shape throughout their course.

However, there are considerable technical challenges that one must deal with
in order to develop such a distributed solution. As will become evident, the lack
of global knowledge of the individual entities and the condition of preserving
connectivity greatly complicate the transformation, even when restricted to spe-
cial families of shapes. Timing is an essential issue as the line needs to know
when to start and stop pushing. When moving or turning, all agents of the line
must follow the same route, ensuring that no one is being pushed off. There is
an additional difficulty due to the fact that agents do not automatically know
whether they have been pushed (but it might be possible to infer this through
communication and/or local observation).

Consider a discrete system of n simple indistinguishable devices, called agents,
forming a connected shape SI on a two-dimensional square grid. Agents act as
finite-state automata (i.e., they have constant memory) that can observe the
states of nearby agents in a Moore neighbourhood (i.e., the eight cells surround-
ing an agent on the square gird). They operate in synchronised Look-Compute-
Move (LCM) cycles on the grid. All communication is local, and actuation is
based on this local information as well as the agent’s internal state.

Let us consider a very simple distributed transformation of a diagonal line
shape SD into a straight line SL, |SD| = |SL| = n, in which all agents execute the
same procedure in parallel synchronous rounds. In general, the diagonal appears
to be a hard instance because any parallelism related to line moves that might
potentially be exploited does not come for free. Initially, all agents are occupying
the consecutive diagonal cells on the grid (x1, y1), (x1 + 1, y1 + 1), . . . , (x1 + n−
1, y1 + n − 1). In each round, an agent pi = (x, y) moves one step down if
(x − 1, y − 1) is occupied, otherwise it stays still in its current cell. After O(n)
rounds, all agents form SL within a total number of 1 + 2 + . . . + n = O(n2)
moves, while preserving connectivity during the transformation (throughout,
connectivity includes horizontal, vertical, and diagonal adjacency). See Figure
1.
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Fig. 1. A simulation of the simple procedure. From left to right, rounds 0, 1, 2, . . . , n.

The above transformation, even though time-optimal has a move complexity
asymptotically equal to the worst-case single-move distance between SI and
SF . This is because it always moves individual agents, thus not exploiting the
inherent parallelism of line moves. Our goal, is to trade time for number of
line moves in order to develop alternative distributed transformations which will
complete within a sub-quadratic number of moves. Given that actuation is a
major source of energy consumption in real programmable matter and robotic
systems, moves minimisation is expected to contribute in the deployment and
implementation of energy-efficient systems.

We already know that there is a centralised O(n log n)-move connectivity-
preserving transformation, working for a large family of connected shapes [3].
That centralised strategy transforms a pair of connected shapes (SI , SF ) of the
same order (i.e., the number of agents) to each other, when the associated graphs
of both shapes contain a Hamiltonian path (see also Itai et al. [25] for rectilinear
Hamiltonian paths), while preserving connectivity during the transformation.
This approach initially forms a line from one endpoint of the Hamiltonian path,
then flattens all agents along the path gradually via line moves, while successively
doubling the line length in each round. After O(n log n) moves, it arrives at the
final straight line SL of length n, which can be then transformed into SF by
reversing the transformation of SF into SL, within the same asymptotic number
of moves.

In this work, we introduce the first distributed transformation exploiting
the linear-strength mechanism of the line-pushing model. It provides a solution
to the line formation problem, that is, for any initial Hamiltonian shape SI ,
form a final straight line SL of the same order. It is essentially a distributed
implementation of the centralised Hamiltonian transformation of [3]. We show
that it preserves the asymptotic bound of O(n log n) line moves (which is still
the best-known centralised bound), while keeping the whole shape connected
throughout its course. This is the first step towards distributed transformations
between any pair of Hamiltonian shapes. The inverse of this transformation (SL

into SI) appears to be a much more complicated problem to solve as the agents
need to somehow know an encoding of the shape to be constructed and that in
contrast to the centralised case, reversibility does not apply in a straightforward
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way. Hence, the reverse of this transformation (SL into SI) is left as a future
research direction.

We restrict attention to the class of Hamiltonian shapes. This class, apart
from being a reasonable first step in the direction of distributed transformations
in the given setting, might give insight to the future development of universal
distributed transformations, i.e., distributed transformations working for any
possible pair of initial and target shapes. This is because geometric shapes tend to
have long simple paths. For example, the length of their longest path is provably
at least

√
n. We here focus on developing efficient distributed transformations for

the extreme case in which the longest path is a Hamiltonian path. However, one
might be able to apply our Hamiltonian transformation to any pair of shapes,
by, for example, running a different or similar transformation along branches of
the longest path and then running our transformation on the longest path. We
leave how to exploit the longest path in the general case (i.e., when initial and
target shapes are not necessarily Hamiltonian) as an interesting open problem.

We assume that a pre-processing phase provides the Hamiltonian path, i.e.,
a global sense of direction is made available to the agents through a labelling of
their local ports (e.g., each agent maintains two local ports incident to its pre-
decessor and successor on the path). Similar assumptions exist in the literature
of systems of complex shapes that contain a vast number of self-organising and
limited entities. A prominent example is [34] in which the transformation relies
on an initial central phase to gain some information about the number of entities
in the system.

Now, we are ready to sketch a high-level description of the transformation. A
Hamiltonian path P in the initial shape SI starts with a head on one endpoint
labelled lh, which is leading the process and coordinating all the sub-procedures
during the transformation. The transformation proceeds in log n phases, each
consisting of six sub-phases (or sub-routines) and every sub-phase running for
one or more synchronous rounds. Figure 2 gives an illustration of a phase of this
transformation when applied on the diagonal line shape. Initially, the head lh
forms a trivial line of length 1. By the beginning of each phase i, 0 ≤ i ≤ log n−1,
there exists a line Li starting from the head lh and ending at a tail lt with 2i−2
internal agents labelled l in between. By the end of phase i, Li will have doubled
its length as follows.

First, it identifies the next 2i agents on P . These agents are forming a segment
Si which can be in any configuration. To do that, the head emits a signal which
is then forwarded by the agents along the line. Once the signal arrives at Si, it
will be used to re-label Si so that it starts from a head in state sh, has 2i − 2
internal agents in state s, and ends at a tail st; this completes the DefineSeg
sub-phase. Then, lh calls CheckSeg in order to check whether the line defined
by Si is in line or perpendicular to Li. This can be easily achieved through a
moving state initiated at Li and checking for each agent of Si its local directions
relative to its neighbours. If the check returns true, then lh starts a new round
i+ 1 and calls Merge to combine Li and Si into a new line Li+1 of length 2i+1.
Otherwise, lh proceeds with the next sub-phase, DrawMap.
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Fig. 2. From [3], a snapshot of phase i of the Hamiltonian transformation on the shape
of a diagonal line. Each occupied cell shows the current label state of an agent. Light
grey cells show ending cells of the corresponding moves.

In DrawMap, lh designates a route on the grid through which Li pushes itself
towards the tail st of Si. It consists of two primitives: ComputeDistance and
CollectArrows. In ComputeDistance, the line agents act as a distributed counter to
compute the Manhattan distance between the tails of Li and Si. In CollectArrows,
the local directions are gathered from Si’s agents and distributed into Li’s agents,
which collectively draw the route map. Once this is done, Li becomes ready to
move and lh can start the Push sub-phase. During pushing, lh and lt synchronise
the movements of Li’s agents as follows: (1) lh pushes while lt is guiding the
other line agents through the computed route and (2) both are coordinating any
required swapping of states with agents that are not part of Li but reside in Li’s
trajectory. Once Li has traversed the route completely, lh calls RecursiveCall to
apply the general procedure recursively on Si in order to transform it into a line
L′i. Figure 3 shows a graphical illustration of the core recursion on the special
case of a diagonal line shape. Finally, the agents of Li and L′i combine into a
new straight line Li+1 of 2i+1 agents through the Merge sub-procedure. Then,
the head lh of Li+1 begins a new phase i+ 1.
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Fig. 3. A zoomed-in picture of the core recursive technique RecursiveCall in Figure 2(c).

Section 2 formally defines the model and the problem under consideration.
Section 3 presents our distributed connectivity-preserving transformation that
solves the line formation problem for Hamiltonian shapes, achieving a total of
O(n log n) line moves.

2 Model

We consider a system consisting of n agents forming a connected shape S on a
two-dimensional square grid in which each agent p ∈ S occupies a unique cell
cell(p) = (x, y), where x indicates columns and y represents rows. Throughout,
an agent shall also be referred to by its coordinates. Each cell (x, y) is surrounded
by eight adjacent cells in each cardinal and ordinal direction, (N, E, S, W, NE,
NW, SE, SW ). At any time, a cell (x, y) can be in one of two states, either empty
or occupied. An agent p ∈ S is a neighbour of (or adjacent to) another agent
p′ ∈ S, if p′ occupies one of the eight adjacent cells surrounding p, that is their
coordinates satisfy p′x−1 ≤ px ≤ p′x +1 and p′y−1 ≤ py ≤ p′y +1. For any shape
S, we associate a graph G(S) = (V,E) defined as follows, where V represents
agents of S and E contains all pairs of adjacent neighbours, i.e, (p, p′) ∈ E iff
p and p′ are neighbours in S. We say that a shape S is connected iff G(S) is a
connected graph. The distance between agents p ∈ S and p′ ∈ S is defined as
the Manhattan distance between their cells, ∆(p, p′) = |px − p′x| + |py − p′y|. A
shape S is called Hamiltonian shape iff G(S) contains a Hamiltonian path, i.e.,
a path starting from some p ∈ S, visiting every agent in S and ending at some
p′ ∈ S, where p 6= p′.
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In this work, each agent is equipped with the linear-strength mechanism
introduced in [4], called the line pushing mechanism. A line L consists of a
sequence of k agents occupying consecutive cells on the grid, say w.l.o.g, L =
(x, y), (x+ 1, y), . . . , (x+ k− 1, y), where 1 ≤ k ≤ n. The agent p ∈ L occupying
(x, y) is capable of performing an operation of a line move by which it can push
all agents of L one position rightwards to positions (x+ 1, y), (x+ 2, y), . . . , (x+
k, y) in a single time-step. The line moves towards the “down”, “left” and “up”
directions are defined symmetrically by rotating the system 90◦, 180◦ and 270◦

clockwise, respectively. From now on, this operation may be referred to as move,
movement or step. We call the number of agents in S the size or order of the
shape, and throughout this work all logarithms are to the base 2.

We assume that the agents share a sense of orientation through a consistent
labelling of their local ports. Agents do not know the size of S in advance neither
they have any other knowledge about S. Each agent has a constant memory (of
size independent of n) and a local visibility mechanism by which it observes
the states of its eight neighbouring cells simultaneously. The agents act as finite
automata operating in synchronous rounds consisting of LCM steps. Thus, in
every discrete round, an agent observes its own state and for each of its eight
adjacent cells, checks whether it is occupied or not. For each of those occupied, it
also observes the state of the agent occupying that cell. Then, the agent updates
its state or leaves it unchanged and performs a line move in one direction d
∈ {up, down, right, left} or stays still. A configuration C of the system is a
mapping from Z2

≥0 to {0} ∪Q, where Q is the state space of agents. We define
S(C) as the shape of configuration C, i.e., the set of coordinates of the cells
occupied in S. Given a configuration C, the LCM steps performed by all agents
in the given round, yield a new configuration C ′ and the next round begins. If
at least one move was performed, then we say that this round has transformed
S(C) to S(C ′).

Throughout this work, we assume that the initial shape SI is Hamiltonian
and the final shape is a straight line SL, where both SI and SL have the same
order. We also assume that a pre-elected leader is provided at one endpoint of
the Hamiltonian path of SI . It is made available to the agents in the distributed
way that each agent pi knows the local port leading to its predecessor pi−1 and
its successor pi+1, for all 1 ≤ i ≤ n.

An agent p ∈ S is defined as a 5-tuple (X,M,Q, δ,O), where Q is a finite set
of states, X is the input alphabet representing the states of the eight cells that
surround an agent p on the square grid, so |X| = |Q|8, M = {↑, ↓,→,←, none}
is the output alphabet corresponding to the set of moves, a transition function
δ : Q×X → Q×M and the output function O : δ ×X →M .

We now formally define the problem considered in this work.

HamiltonianLine. Given any initial Hamiltonian shape SI , the agents must
form a final straight line SL of the same order from SI via line moves while
preserving connectivity throughout the transformation.
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3 The Distributed Hamiltonian Transformation

In this section, we develop a distributed algorithm exploiting line moves to form
a straight line SL from an initial connected shape SI which is associated to a
graph that contains a Hamiltonian path. As we will argue, this strategy performs
O(n log n) moves, i.e., it is as efficient w.r.t. moves as the best-known centralised
transformation [3], and completes within O(n2 log n) rounds, while keeping the
whole shape connected during its course.

We assume that through some pre-processing the Hamiltonian path P of the
initial shape SI has been made available to the n agents in a distributed way. P
starts and ends at two agents, called the head p1 and the tail pn, respectively.
The head p1 is leading the process (as it can be used as a pre-elected unique
leader) and is responsible for coordinating and initiating all procedures of this
transformation. In order to simplify the exposition, we assume that n is a power
of 2; this can be easily dropped later. The transformation proceeds in log n
phases, each of which consists of six sub-phases (or sub-routines). Every sub-
phase consist of one or more synchronous rounds. The transformation starts
with a trivial line of length 1 at the head’s endpoint, then it gradually flattens
all agents along P gradually while successively doubling its length, until arriving
at the final straight line SL of length n.

A state q ∈ Q of an agent p will be represented by a vector with seven
components (c1, c2, c3, c4, c5, c6, c7). The first component c1 contains a label λ of
the agent from a finite set of labels Λ, c2 is the transmission state that holds a
string of length at most three, where each symbol of the string can either be a
special mark w from a finite set of marks W or an arrow direction a ∈ A = {→
,←, ↓, ↑,↖,↗,↙,↘} and c3 will store a symbol from c2’s string, i.e., a special
mark or an arrow. The local Hamiltonian direction a ∈ A of an agent p indicating
predecessor and successor is recorded in c4, the counter state c5 holds a bit from
{0, 1}, c6 stores an arrow a ∈ A for map drawing (as will be explained later) and
finally c7 is holding a pushing direction d ∈M . The “·” mark indicates an empty
component; a non-empty component is always denoted by its state. An agent p
may be referred to by its label λ ∈ Λ (i.e., by the state of its c1 component)
whenever clear from context.

By the beginning of phase i, 0 ≤ i ≤ log n−1, there exists a terminal straight
line Li of 2i active agents occupying a single row or column on the grid, starting
with a head labelled lh and ending at a tail labelled lt, while internal agents
have label l. All agents in the rest of the configuration are inactive and labelled
k. During phase i, the head lh leads the execution of six sub-phases, DefineSeg,
CheckSeg, DrawMap, Push, RecursiveCall and Merge. For simplicity and due to
space restrictions, we shall only mention the affected components of the state
of the agents. The high-level idea of this strategy has already been provided
in Section 1.2 and illustrated in Figure 2, therefore we can now immediately
proceed with the detailed description of each sub-phase.

DefineSeg. The line head lh transmits a special mark “ H○” to go through all
active agents in the Hamiltonian path P . It updates its transmission component
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c2 as follows: δ(lh, ·, ·, a ∈ A, ·, ·, ·) = (lh, H○, ·, a ∈ A, ·, ·, ·). This is propagated by
active agents by always moving from a predecessor pi to a successor pi+1, until it
arrives at the first inactive agent with label k, which then becomes active and the
head of its segment by updating its label as δ(k, H○, ·, a ∈ A, ·, ·, ·) = (sh, ·, ·, a ∈
A, ·, ·, ·). Similarly, once a line agent pi passes “ H○” to pi+1, it also initiates and
propagates its own mark “ l○” to activate a corresponding segment agent s. The
line tail lt emits “ T○” to activate the segment tail st, which in turn bounces off a
special end mark “⊗” announcing the end of DefineSeg. By that time, the next
segment Si consisting of 2i agents, starting from a head labelled sh, ending at
a tail st and having 2i − 2 internal agents with label s, has been defined. The
“⊗” mark is propagated back to the head lh along the active agents, by always
moving from pi+1 to pi.

Lemma 1. DefineSeg correctly activates all agents of Si in O(n) rounds.

CheckSeg. Once lh observes “⊗”, it propagates its own local direction stored in
component c4 = a ∈ A by updating c2 ← c4. Then, all active agents on the path
forward a from pi to pi+1 via their transmission components. Whenever a pi
having a local direction c4 = a′ ∈ A observes a′ 6= a, it combines a with its local
direction a′ and changes its transmission component to c2 ← aa′. After that, if a
p′i having c4 = a′′ ∈ A observes a′′ 6= a′, it updates its transmission component
into a negative mark, c2 ← ¬. All signals are to be reflected by the segment tail
st back to lh, which acts accordingly as follows: (1) starts the next sub-phase
DrawMap if it observes “¬”, (2) calls Merge to combine the two perpendicular
lines if it observes aa′ or (3) begins a new phase i+ 1 if it receives back its local
direction a.

Lemma 2. CheckSeg correctly checks the configuration of Si in O(n) rounds.

DrawMap. This sub-phase computes the Manhattan distance ∆(lt, st) between
the line tail lt and the segment tail st, by exploiting ComputeDistance in which
the line agents implement a distributed binary counter. First, the head lh broad-
casts “ C○” to all active agents, asking them to commence the calculation of the
distance. Once a segment agent pi observes “ C○”, it emits one increment mark
“⊕” if its local direction is cardinal or two sequential increment marks if it is
diagonal. The “⊕” mark is forwarded from pi to pi−1 back to the head lh. Cor-
respondingly, the line agents are arranged to collectively act as a distributed
binary counter, which increases by 1 bit per increment mark, starting from the
least significant at lt. When a line agent observes the last “⊕” mark, it sends
a special mark “ 1○” if ∆(lt, st) ≤ |Li| or “ 2○” if ∆(lt, st) > |Li| back to lh.
As soon as lh receives “ 1○” or “ 2○”, it calls CollectArrows to draw a route that
can be either heading directly to st or passing through the middle of Si towards
st. In CollectArrows, lh emits “V” to announce the collection of local directions
(arrows) from Si. When “V” arrives at a segment agent, it then propagates its
local direction stored in c4 back towards lh. Then, the line agents distribute and
rearrange Si’s local directions via several primitives, such as cancelling out pairs
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of opposite directions, priority collection and pipelined transmission. Finally, the
remaining arrows cooperatively draw a route map for Li, see a demonstration in
Figure 4. The following lemma shows that this procedure calculates ∆(lt, st) in
linear time.

Lemma 3. ComputeDistance requires O(|Li|) rounds to compute ∆(lt, st).

Lemma 4. CollectArrows completes within O(|Li|) rounds.

By Lemmas 3 and 4, we conclude that:

Lemma 5. DrawMap draws a map within O(|Li|) rounds.

lh ltl sh ltlh l sh

s

s
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c4(→) c4(→) c4(→) c4(→)
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l

c6(·)

Fig. 4. Drawing a map: from top-left a path across occupied cells and corresponding
local arrows stored on state c4 in top-tight, where the diagonal directions, “↘” and
“↗”, are interpreted locally as, “↓→” and “↑→”. The bottom shows a route map
drawn locally on state c6 of each line agent.

Push. After some communication, lh observes that Li is ready to move and can
start Push now. It synchronises with lt to guide line agents during pushing. To
achieve this, it propagates fast “ p1○” and slow “ p2○” marks along the line, “ p1○”
is transmitted every round and “ p2○” is three rounds slower. The “ p1○” mark
reflects at lt and meets “ p2○” at a middle agent pi, which in turn propagates two
pushing signals “ P○” in either directions, one towards lh and the other heading
to lt. This synchronisation liaises lh with lt throughout the pushing process,
which starts immediately after “ P○” reaches both ends of the line at the same
time. Recall the route map has been drawn starting from lt, and hence, lt moves
simultaneously with lh according to a local map direction â ∈ A stored in its
map component c6. Through this synchronisation, lt checks the next cell (x, y)
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that Li pushes towards and tells lh, whether it is empty or occupied by an agent
p 6∈ Li in the rest of the configuration. If (x, y) is empty, then lh pushes Li one
step towards (x, y), and all line agents shift their map arrows in c6 forwardly
towards lt. If (x, y) is occupied by p 6∈ Li, then lt swaps states with p and tells lh
to push one step. Similarly, in each round of pushing a line agent pi swaps states
with p until the line completely traverses the drawn route map and restores it
to its original state. Figure 5 shows an example of pushing Li through a route
of empty and occupied cells. In this way, the line agents can transparently push
through a route of any configuration and leave it unchanged (see Appendix for
more details). Once Li has traversed completely through the route and lined
up with st, then RecursiveCall begins. Below, we show that under this model
there is a way to sync a Hamiltonian path of n agents in which all can preform
concurrent actions in linear time.

lh l l lt k

→
k k

→↑
lh l l lt k k

↑
klt

sync
push lh l l lt k kkltkl lt lh l l lt k

↑
kltkl lt kltc

→→ →

↑ →

sync
push lh l lt kkl kltc

kltlt
l

sync
push lh lt kkl kltc

kltlt

l

kltl

Fig. 5. A line Li of agents inside grey cells (of labels lt, l, and lt), with map directions
above, pushing and turning through empty and non-empty cells in blue (of label k).

Lemma 6 (Agents synchronisation). Let P denote a a Hamiltonian path
of n agents on the square grid, starting from a head p1 and ending at a tail
pn, where p1 6= pn. Then, all agents of P can be synchronised in at most O(n)
rounds.

Let R denote a rectangular path consisting of a set of cells R = [c1, . . . , c|R|]
on Z2, where ci and ci+1 are two cells adjacent vertically or horizontally, for all
1 ≤ i ≤ |R| − 1. Let C be a system configuration, CR denotes the configuration
of R where CR ⊂ C defined by [c1, . . . , c|R|]. Then, we give the following lemma:

Lemma 7. Let Li denote a terminal straight line and R be a rectangular path
of any configuration CR, starting from a cell adjacent to the tail of Li, where
R ≤ 2|Li| − 1. Then, there exists a distributed way to push Li along R without
breaking connectivity.

In the following lemma, we provide the complexity of Push on the number
of line moves and the communication rounds.
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Lemma 8. A straight line Li traverses a route R of any configuration CR, tak-
ing at most O(|Li|) line moves in O(|Li| · |R|) rounds.

RecursiveCall. When a segment tail st swaps states with lh, it accordingly acts
as follows: (1) propagates a special mark transmitted along all segment agents
towards the head sh, (2) deactivates itself by updating label to c1 ← k, (3) resets
all of its components, except local direction in c4. Similarly, once a segment agent
pi observes this special mark, it propagates it to its successor pi+1, deactivates
itself, and keeps its local direction in c4 while resetting all other components.
When the segment head sh notices this special mark, it changes to a line head
state (c1 ← lh) and then recursively repeats the whole transformation from round
1 to i− 1. Figure 3 presents a graphical illustration of RecursiveCall applied on
a diagonal line shape.

Merge. This sub-phase begins once RecursiveCall has transformed Si into a
straight line L′i, with the tail of L′i occupying a cell adjacent to the head lh of
Li. First, Merge calls CheckSeg to check whether L′i is in line or perpendicular to
Li. If the latter is true (that is both Li and L′i are perpendicular to each other),
then lh calls Push to move Li towards L′i and form a new line Li+1. Otherwise,
they swap states and elect one head lh and tail lt of Li+1. Thus, all agents require
linear cost of communications and movements during this sub-phase:

Lemma 9. An execution of Merge requires at most O(|Li|) line moves and
O(|Li|) rounds of communication.

Overall, given a Hamiltonian path of individuals with limited knowledge in
an initial connected shape SI . Then, the following lemma states that SI can be
transformed into a straight line SL through a series of line moves that match
the optimal centralised transformation and satisfy the connectivity-preserving
condition.

Lemma 10. Given an initial Hamiltonian shape SI of n agents, this strategy
transforms SI into a straight line SL of the same order in O(n log2 n) moves and
O(n2 log2 n) rounds, while preserving connectivity during transformation.

Thus, we can finally provide the following theorem:

Theorem 1. The above distributed transformation solves HamiltonianLine
within O(n log2 n) line moves and O(n2 log2 n) rounds.
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