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—— Abstract

In this work, we study theoretical models of programmable matter systems. The systems under
consideration consist of spherical modules, kept together by magnetic forces and able to perform
two minimal mechanical operations (or movements): rotate around a neighbor and slide over
a line. In terms of modeling, there are n nodes arranged in a 2-dimensional grid and forming
some initial shape. The goal is for the initial shape A to transform to some target shape B
by a sequence of movements. Most of the paper focuses on transformability questions, meaning
whether it is in principle feasible to transform a given shape to another. We first consider the
case in which only rotation is available to the nodes. Our main result is that deciding whether
two given shapes A and B can be transformed to each other is in P. We then insist on rotation
only and impose the restriction that the nodes must maintain global connectivity throughout the
transformation. We prove that the corresponding transformability question is in PSPACE and
study the problem of determining the minimum seeds that can make feasible otherwise infeasible
transformations. Next we allow both rotations and slidings and prove universality: any two
connected shapes A, B of the same number of nodes, can be transformed to each other without
breaking connectivity. The worst-case number of movements of the generic strategy is ©(n?).
We improve this to O(n) parallel time, by a pipelining strategy, and prove optimality of both by
matching lower bounds. We next turn our attention to distributed transformations. The nodes
are now distributed processes able to perform communicate-compute-move rounds. We provide
distributed algorithms for a general type of transformation.
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On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1 Introduction

Programmable matter refers to any type of matter that can algorithmically change its physical
properties. For a concrete example, imagine a material formed by a collection of spherical
nanomodules kept together by magnetic forces. Each module is capable of storing (in some
internal representation) and executing a simple program that handles communication with
nearby modules and that controls the module’s electromagnets, in a way that allows the
module to rotate or slide over neighboring modules. Such a material would be able to adjust
its shape in a programmable way. Other examples of physical properties of interest for real
applications would be connectivity, color [25, 5], and strength of the material.

There are already some first impressive outcomes towards the development of pro-
grammable materials (even though it is evident that there is much more work to be done
in the direction of real systems), such as programmed DNA molecules that self-assemble
into desired structures [28, 14] and large collectives of tiny identical robots that orchestrate
resembling a single multi-robot organism (e.g., the Kilobot system [30]). Other systems for
programmable matter include [21, 23]. Ambitious long-term applications of programmable
materials include molecular computers, collectives of nanorobots injected into the human cir-
culatory system for monitoring and treating diseases, or even self-reproducing and self-healing
machines (see also [27]).

Apart from the fact that systems work is still in its infancy, there is also an apparent lack
of unifying formalism and theoretical treatment. Still there are some first theoretical efforts
aiming at understanding the fundamental possibilities and limitations of this prospective.
The area of algorithmic self-assembly tries to understand how to program molecules (mainly
DNA strands) to manipulate themselves, grow into machines and at the same time control
their own growth [14]. The theoretical model guiding the study in algorithmic self-assembly
is the Abstract Tile Assembly Model (aTAM) [33, 29] and variations. Recently, a model,
called the nubot model, was proposed for studying the complexity of self-assembled structures
with active molecular components [34]. Another very recent model, called the Network
Constructors model, studied what stable networks can be constructed by a population of
finite-automata that interact randomly like molecules in a well-mixed solution and can
establish bonds with each other according to the rules of a common small protocol [26].
The development of Network Constructors was based on the Population Protocol model of
Angluin et al. [2], that does not include the capability of creating bonds and focuses more on
the computation of functions on inputs. A very interesting fact about population protocols
is that they are formally equivalent to chemical reaction networks (CRNs), “which model
chemistry in a well-mized solution and are widely used to describe information processing
occurring in natural cellular regulatory networks” [15]. Also the recently proposed Amoebot
model, “offers a versatile framework to model self-organizing particles and facilitates rigorous
algorithmic research in the area of programmable matter” [10, 12, 11, 13]. Other related
work includes mobile and reconfigurable robotics [6, 24, 31, 20, 32, 8, 7, 4, 36, 1, 35], puzzles
[9, 22], and passive systems [2, 3, 26, 19, 33, 29].

It seems that the right way for theory to boost the development of more refined real
systems is to reveal the transformation capabilities of mechanisms and technologies that are
available now, rather than by exploring the unlimited variety of theoretical models that are not
expected to correspond to a real implementation in the near future. In this paper, we follow
such an approach, by studying the transformation capabilities of models for programmable
matter, which are based on minimal mechanical capabilities, easily implementable by existing
technology.
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1.1  Our Approach

We study a minimal programmable matter system consisting of n cycle-shaped modules, with
each module (or node) occupying at any given time a cell of the 2-dimensional (abbreviated
“2D” throughout) grid (no two nodes can occupy the same cell at the same time). Therefore,
the composition of the programmable matter systems under consideration is discrete. Our
main question throughout is whether an initial arrangement of the material can transform
(either in principle, e.g., by an external authority, or by itself) to some other target arrange-
ment. In more technical terms, we are provided with an initial shape A and a target shape B
and we are asked whether A can be transformed to B via a sequence of valid transformation
steps. Usually, a step consists either of a valid movement of a single node (in the sequential
case) or of more than one nodes at the same time (in the parallel case). We consider two
quite primitive types of movement. The first one, called rotation, allows a node to rotate
90° around one of its neighbors either clockwise or counterclockwise and the second one,
called sliding, allows a node to slide by one position “over” two neighboring nodes. Both
movements succeed only if the whole direction of movement is free of obstacles (i.e., other
nodes blocking the way). More formal definitions are provided in Section 2. One part of the
paper focuses on the case in which only rotation is available to the nodes and the other part
studies the case in which both rotation and sliding are available. The latter case has been
studied to some extent in the past in the, so called, metamorphic systems [17, 18, 16], which
makes those studies the closest to our approach.

For rotation only, we introduce the notion of color-consistency and prove that if two
shapes are not color-consistent then they cannot be transformed to each other. On the other
hand, color-consistency does not guarantee transformability, as there is an infinite set of
pairs (4, B) such that A and B are color consistent but still they cannot be transformed
to each other. At this point, observe that if A can be transformed to B then the inverse
is also true, as all movements considered in this paper are reversible. We distinguish
two main types of transformations: those that are allowed to break the connectivity of
the shape during the transformation and those that are not; we call the corresponding
problems ROT-TRANSFORMABILITY and ROTC-TRANSFORMABILITY, respectively. Our main
result regarding ROT-TRANSFORMABILITY is that ROT-TRANSFORMABILITY € P. To prove
polynomial-time decidability, we prove that two connected shapes A and B of the same order
(i.e., having the same number of nodes) are transformable to each other iff both have at least
one movement available. Therefore, transformability reduces to checking the availability of a
movement in the initial and target shapes.

We next study ROTC-TRANSFORMABILITY, in which again the only available movement
is rotation, but now connectivity of the material has to be preserved throughout the transfor-
mation. The property of preserving the connectivity is expected to be a crucial property for
programmable matter systems, as it allows the material to maintain coherence and strength,
to eliminate the need for wireless communication, and, finally, enables the development
of more effective power supply schemes, in which the modules can share resources or in
which the modules have no batteries but are instead constantly supplied with energy by
a centralized source (or by a supernode that is part of the material itself). Such benefits
can lead to simplified designs and potentially to reduced size of individual modules. We
first prove that ROTC-TRANSFORMABILITY € PSPACE. The rest of our results here are
strongly based on the notion of a seed. This stems from the observation that a large set of
infeasible transformations become feasible by introducing to the initial shape an additional,
and usually quite small, seed; i.e., a small shape that is being attached to some point of the
initial shape. We investigate seeds that could serve as components capable of traveling the
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perimeter of an arbitrary connected shape A. Such seed-shapes are very convenient as they
are capable of “simulating” the universal transformation techniques that are possible if we
have both rotation and sliding movements available (discussed in the sequel). To this end,
we prove that all seeds of size < 4 cannot serve for this purpose, by proving that they cannot
even walk the perimeter of a simple line shape. On the other hand, we manage to show that
a 6-seed succeeds, and this provides a first indication, that there might be a large family
of shapes that can be transformed to each other with rotation only and without breaking
connectivity.

Next, we consider the case in which both rotation and sliding are available and insist
on connectivity preservation. We first provide a proof that this combination of simple
movements is universal w.r.t. transformations, as any pair of connected shapes A and B
of the same order can be transformed to each other without ever breaking the connectivity
throughout the transformation (a first proof of this fact had already appeared in [16]).
This generic transformation requires ©(n?) sequential movements in the worst case. By a
potential-function argument we show that no transformation can improve on this worst-
case complexity for some specific pairs of shapes and this lower bound is independent of
connectivity preservation; it only depends on the inherent transformation-distance between
the shapes. To improve on this, either some sort of parallelism must be employed or more
powerful movement mechanisms, e.g., movements of whole sub-shapes in one step. We
investigate the former approach, and prove that there is a pipelining general transformation
strategy that improves the time to O(n) (parallel time). We also give a matching Q(n) lower
bound. On the way, we also show that this parallel complexity is feasible even if the nodes are
labeled, meaning that individual nodes must end up in specific positions of the target-shape.

Finally, we assume that the nodes are distributed processes able to perform communicate-
compute-move rounds (where, again, both rotation and sliding movements are available) and
provide distributed algorithms for a general type of transformation.

Section 2 brings together all definitions and basic facts that are used throughout the
paper. In Section 3, we study programmable matter systems equipped only with rotation
movement. In Section 4, we insist on rotation only, but additionally require that the material
maintains connectivity throughout the transformation. In Section 5, we investigate the
combined effect of rotation and sliding movements. Finally, in Section 6 we conclude and
give further research directions that are opened by our work.

2 Preliminaries

The programmable matter systems considered in this paper operate on a 2D square grid,
with each position (or cell) being uniquely referred to by its y > 0 and > 0 coordinates.
Such a system consists of a set V' of n modules, called nodes throughout. Each node may
be viewed as a spherical module fitting inside a cell of the grid. At any given time, each
node u € V occupies a cell o(u) = (oy(u),0.(u)) = (i,j) (where i corresponds to a row
and j to a column of the grid) and no two nodes may occupy the same cell. At any given
time ¢, the positioning of nodes on the grid defines an undirected neighboring relation
E(t) CV x V, where {u,v} € E iff o,(u) = 0,(v) and |oz(u) — 0,(v)| =1 or 05(u) = 0,(v)
and |o,(u) — oy(v)| = 1, that is, if w and v are either horizontal or vertical neighbors on the
grid, respectively. A more informative way to define the system at a given time ¢, and thus
often more convenient, is as a mapping P;: N>¢ x N>g — {0,1} where P,(i,7) = 1 iff cell
(4,4) is occupied by a node.

At any given time t, P, ' (1) defines a shape. Such a shape is called connected if E(t)
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defines a connected graph. A connected shape is called convez if for any two occupied cells,
the line that connects their centers does not pass through an empty cell. We call a shape
discrete-convez if for any two occupied cells, belonging either to the same row or the same
column, the line that connects their centers does not pass through an empty cell; i.e., in the
latter we exclude diagonal lines. We call a shape compact if it has no holes.

In general, shapes can transform to other shapes via a sequence of one or more movements
of individual nodes. Time consists of discrete steps (or rounds) and in every step, zero or
more movements may occur. In the sequential case, at most one movement may occur per
step, and in the parallel case any number of “valid” movements may occur in parallel. 1 We
consider two types of movements: (i) rotation and (ii) sliding. In both movements, a single
node moves relative to one or more neighboring nodes as we just explain.

A single rotation movement of a node u is a 90° rotation of u around one of its neighbors.

Let (i,7) be the current position of u and let its neighbor be v occupying the cell (i — 1, )
(i.e., lying below u). Then u can rotate 90° clockwise (counterclockwise) around v iff the cells
(i,741)and (i—1,5+1) ((¢,7—1) and (i —1, j—1), respectively) are both empty. By rotating

the whole system 90°, 180°, and 270°, all possible rotation movements are defined analogously.

A single sliding movement of a node w is a one-step horizontal or vertical movement “over” a
horizontal or vertical line of (neighboring) nodes of length 2. In particular, if (i,7) is the
current position of u, then u can slide rightwards to position (é,j + 1) iff (¢,5 + 1) is not
occupied and there exist nodes at positions (i — 1, j) and (i —1,j 4 1) or at positions (i + 1, j)
and (i + 1,7 + 1), or both. Precisely the same definition holds for up, left, and down sliding

movements by rotating the whole system 90°, 180°, and 270° counterclockwise, respectively.

Let A and B be two shapes. We say that A transforms to B via a movement m (which
can be either a rotation or a sliding), denoted A ™ B, if there is a node u in A such that if
u applies m, then the shape resulting after the movement is B (possibly after rotations and
translations of the resulting shape, depending on the application). We say that A transforms
in one step to B (or that B is reachable in one step from A), denoted A — B, if A ™% B for
some movement m. We say that A transforms to B (or that B is reachable from A) and write
A ~ B, if there is a sequence of shapes A = Cy,C1,...,Cy = B, such that C; — C;41 for all
i, 0 < i < t. We should mention that we do not always allow m to be any of the two possible
movements. In particular, in Sections 3 and 4 we only allow m to be a rotation, as we there
restrict attention to systems in which only rotation is available. We shall clearly explain
what movements are permitted in each part of the paper. Observe now that both rotation
and sliding are reversible movements, a fact that we extensively use in our results. Based on
this, it can be proved that the relation ‘~~’ is a partial equivalence relation. When the only
available movement is rotation, there are shapes in which no rotation can be performed. If
we introduce a null rotation, then every shape may transform to itself by applying the null
rotation, and ‘~~’ becomes an equivalence relation.

The following are the main transformation problems that are considered in this work:
ROT-TRANSFORMABILITY. Given an initial shape A and a target shape B (usually both
connected), decide whether A can be transformed to B (usually, under translations and
rotations of the shapes) using only a sequence of rotation movements.
ROTC-TRANSFORMABILITY. Special case of ROT-TRANSFORMABILITY, where A and B are
connected shapes and connectivity must be preserved throughout the transformation.
RS-TRANSFORMABILITY. Variant of ROT-TRANSFORMABILITY in which both rotation and

! By “valid”, we mean here subject to the constraint that their whole movement paths correspond to
pairwise disjoint sub-areas of the grid.
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sliding movements are available.

Minimum-Seed-Determination. Given an initial shape A and a target shape B determine
a minimum-size seed and an initial positioning of that seed relative to A that makes the
transformation from A to B feasible.

3 Rotation

In this section, the only permitted movement is 90° rotation around a neighbor. Our main
result in this section is that ROT-TRANSFORMABILITY € P.

Consider a black and red checkered coloring of the 2D grid. Any shape S may be viewed
as a colored shape consisting of b(S) blacks and r(S) reds. Call two shapes A and B color-
consistent if b(A) = b(B) and r(A) = r(B) and call them color-inconsistent otherwise. Call a
transformation from a shape A to a shape C' color-preserving if A and C' are color consistent.

» Observation 1. The rotation movement is color-preserving. Formally, A ~~ C (restricted to
rotation only) implies that A and C are color-consistent. In particular, every node beginning
from a black (red) position of the grid, will always be on black (red, respectively) positions
throughout a transformation.

Based on this property of the rotation movement, we may call each node black or red
throughout a transformation, based only on its initial coloring. Observation 1 gives a partial
way to determine that two shapes A and B cannot be transformed to each other by rotations.

» Proposition 1. If two shapes A and B are color-inconsistent, then it is impossible to
transform one to the other by rotations only.

» Proposition 2. There is a generic connected shape, called line-with-leaves, that has a
color-consistent version for any connected shape A.

Proof. Let red be the majority color of A and k be the number of black nodes of A. Consider
a bi-color line starting with a black node and ending to a black node, such that all k£ blacks
are exhausted. To do this, £ — 1 reds are needed in order to alternate blacks and reds on the
line. Since A is connected, it can have at most 3k + 1 reds. By adding red leaf-nodes around
the blacks of the line, we can achieve the whole range of possible number of reds, from & to
3k + 1. |

Based on this, we now show that the inverse of Proposition 1 is not true, that is, it does
not hold that any two color-consistent shapes can be transformed to each other by rotations.

» Proposition 3. There is an infinite set of pairs (A, B) of connected shapes, such that A
and B are color-consistent but cannot be transformed to each other by rotations only.

Proof. For shape A, take a rhombus in which no node is able to rotate. By Proposition 2,
any such A has a color-consistent shape B from the family of line-with-leaves shapes, such
that B # A. We conclude that A and B are distinct color-consistent shapes which cannot be
transformed to each other, and there is an infinite number of such pairs, as the number of
black nodes of A can be made arbitrarily large. <

Propositions 1 and 3 give a partial characterization of pairs of shapes that cannot be
transformed to each other. Observe that the impossibilities proved so far, hold for all possible
transformations based on rotation only, including those that are allowed to break connectivity.

The next theorem states that the inclusion between ROTC-TRANSFORMABILITY and
ROT-TRANSFORMABILITY is strict, that is, there are strictly more feasible transforma-
tions if we allow connectivity to break. We prove this by showing that there is a feasible
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transformation, namely folding a spanning line in half, in ROT-TRANSFORMABILITY\ROTC-
TRANSFORMABILITY.

» Theorem 1. ROTC-TRANSFORMABILITY C ROT-TRANSFORMABILITY.

Aiming at a general transformation, we ask whether there is some minimal addition to a
shape that would allow it to transform. The solution turns out to be as small as a 2-line seed
(a bi-color pair, usually referred to as “2-line” or “2-seed”) lying initially somewhere “outside”
the boundaries of the shape. Based on the above assumptions, we prove that any pair of
color-consistent connected shapes A and B can be transformed to each other. The idea is
to exploit the fact that the 2-line can move freely in any direction and to use it in order to
extract from A another 2-line. In this way, a 4-line seed is formed, which can also move freely
in all directions. Then we use the 4-line as a transportation medium for carrying the nodes
of A, one at a time. We exploit these mobility mechanisms to transform A into a uniquely
defined shape from the line-with-leaves family of Proposition 2. But if any connected shape
A with an extra 2-line can be transformed to its color-consistent line-with-leaves version
with an extra 2-line, then this also holds inversely due to reversibility, and it follows that
any A can be transformed to any B by transforming A to its line-with-leaves version L4 and
then inverting the transformation from B to Lp = Ly.

» Theorem 2. If connectivity can break and there is a 2-line seed provided “outside” the
initial shape, then any pair of color-consistent connected shapes A and B can be transformed
to each other by rotations only.

Proof. Without loss of generality (due to symmetry and the 2-line’s unrestricted mobility),
it suffices to assume that the seed is provided somewhere below the lowest row [ occupied
by the shape A. We show how A can be transformed to L4 with the help of the seed. We
define L4 as follows: Let k be the cardinality of the minority color, let it be the black color.
As there are at least k reds, we can create a horizontal line of length 2k, i.e., ui, ug, ..., usg,
starting with a black (i.e., u; is black), and alternating blacks and reds. In this way, the
blacks are exhausted. The remaining < (3k+ 1) — k = 2k + 1 reds are then added as leaves of
the black nodes, starting from the position to the left of u; and continuing counterclockwise,
i.e., below ui, below ug, ..., below usi_1, above usr_1, above ugr_3, and so on. This gives
the same shape from the line-with-leaves family, for all color-consistent shapes (observe that
the leaf to the right of the line is always placed). L4 shall be constructed on rows [ — 5 to
[ — 3 (not necessarily inclusive), with u; on row I — 4 and a column j preferably between
those that contain A.

First, extract a 2-line from A, from row [, so that the 2-line seed becomes a 4-line seed.
To see that this is possible for every shape A of order at least 2, distinguish the following
two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can leave the shape
without any help and approach the 2-seed. (ii) If not, then take any node u of row I. As
A is connected and has at least two nodes, u must have a neighbor v above it. The only
possibility that the 2-line u,v is not free to leave A is when v has both a left and a right
neighbor, but this can be resolved with the help of the 2-line.

To transform A to L4, given the 4-line seed, do the following:

While blacks is still present in A:

If on the current lowest row occupied by A, there is a 2-line that can be extracted
alone and moved towards L 4, then perform the shortest such movement that attaches
the 2-line to the right endpoint of L 4’s line uy, us, .. ..

If not, then do the following. Maintain a repository of nodes at the empty space below
row | — 7, initially empty. If, either in the lowest row of A or in the repository, there
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is a node of opposite color than the current color of the right endpoint of L4’s line,

use the 4-line to transfer such a node and make it the new right endpoint of L 4’s line.

Otherwise, use the 4-line to transfer a node of the lowest row of A to the repository.
Once black has been exhausted from A and the repository (i.e., when wusi_3 has been
placed; ugr—1 and wugg will only be placed in the end as they are part of the 4-line),
transfer a red to position usi_o. If there are no more nodes left, run the termination
phase, otherwise transfer the remaining nodes (all red) with the 4-line, one after the other,
and attach them as leaves around the blacks of L 4’s line, beginning from the position to
the left of u; counterclockwise, as described above (skipping position uay).
Termination phase: the line-with-leaves is ready, apart from positions usi_1, uog which
require a 2-line from the 4-line. If the position above usg_1 is empty, then extract a
2-line from the 4-line and transfer it to the positions wuop_1, ugg. This completes the
transformation. If the position above ug,_1 is occupied by a node ugg41, then place the
whole 4-line vertically with its lowest endpoint on usg. Then rotate the top endpoint
counterclockwise, to move above wugg41, then rotate ugiy1 clockwise around it to move to
its left, then rotate the node above usp counterclockwise to move to usx_1, and finally
restore ugk41 to its original position. This completes the construction (the 2-line that
always remains can be transferred in the end to a predefined position).

<

The natural next question is to what extent the 2-line seed assumption can be dropped.
Clearly, by Proposition 3, this cannot be always possible. The following lemma gives a
sufficient and necessary condition for dropping the 2-line seed assumption.

» Lemma 3. A 2-seed can be extracted from a shape iff a single rotation mowve is available
on the shape.

» Theorem 4. ROT-TRANSFORMABILITY € P.

Proof. If the two connected input shapes of the same order are not already equal, then, by
Lemma 3 and Theorem 2, it suffices to check if both shapes have an available movement. If
yes, accept, otherwise, reject. These checks can be easily performed in polynomial time. <

4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected shape
A to one of its color-consistent connected shapes B, without ever breaking the connectivity of
the shape on the way. As already mentioned in the introduction, connectivity preservation is
a very desirable property for programmable matter, as, among other positive implications, it
guarantees that communication between all nodes is maintained, it minimizes transformation
failures, requires less sophisticated actuation mechanisms, and increases the external forces
required to break the system apart.

We begin by proving that ROTC-TRANSFORMABILITY can be decided in deterministic
polynomial space.

» Theorem 5. ROTC-TRANSFORMABILITY € PSPACE.

As already shown in Theorem 1, the connectivity-preservation constraint increases the class
of infeasible transformations. A convenient turnaround in such cases, is to introduce a suitable
seed that can assist the transformation. For example, we can circumvent the impossibility
of folding a line uq,us, ..., u, in half, by adding a 3-line seed v1, v, v3, horizontally aligned
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over nodes u3, uq, us of the line. Interestingly, adding the seed over nodes uq4, us, ug does not
work. Therefore, the problem that we face in such cases, is to find a minimum seed (could
be any connected small shape, not necessarily a line) and a placement of that seed, that
enables the otherwise infeasible transformation (Minimum-Seed-Determination problem). In
the rest of this section, we try to identify a minimum seed that can walk the perimeter of
any shape, hoping that it will be able to move nodes gradually to a predetermined position,
in order to transform the initial shape into a line-with-leaves (as in Theorem 2, but without

ever breaking connectivity this time). 2

» Theorem 6. If connectivity must be preserved: (i) Any (< 4)-seed cannot traverse the
perimeter of a line, (i) A 6-seed can traverse the perimeter of any discrete-convex shape.

5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements. We begin by
proving that rotation and sliding together are transformation-universal, meaning that they
can transform any given shape to any other shape of the same size without ever breaking the
connectivity during the transformation.

» Theorem 7. Let A and B be any connected shapes, such that |A| = |B| =n. Then A and
B can be transformed to each other by rotations and slidings, without breaking the connectivity
during the transformation.

Proof. It suffices to show that any connected shape A can be transformed to a spanning line L

using only rotations and slidings and without breaking connectivity during the transformation.

If we show this, then A can be transformed to L and B can be transformed to L (as A
and B have the same order, therefore corresponding to the same spanning line L), and by
reversibility of these movements, A and B can be transformed to each other via L.

Pick the rightmost column of the grid containing at least one node of A, and consider
the lowest node of A in that column. Call that node u. Observe that all cells to the right of
u are empty. Let the cell of u be (7, 7). The final constructed line will start at (i, 7) and end
at (4,7 +n—1).

The transformation is partitioned into n — 1 phases. In each phase k, we pick a node from
the original shape and move it to position (¢, + k), that is, to the right of the right endpoint
of the line formed so far. In phase 1, position (4,7 + 1) is a cell of the perimeter of A. So,
even if it happens that u is a node of degree 1, it can be proved that there must be another
such node v € A that can walk the whole perimeter of A’ = A — {v}. Asu#wv, (,7+1)is

also part of the perimeter of A’, therefore, v can move to (i,j + 1) by rotations and slidings.

But A’ is connected, A’ U{(¢,j + 1)} is also connected, and also all intermediate shapes were
connected, because v moved on the perimeter and, therefore, it never disconnected from the
rest of the shape during its movement.

In general, the transformation preserves the following invariant. At the beginning of phase
k, 1 <k <n—1, there is a connected shape S(k) (where S(1) = A) to the left of of column
j (j inclusive) and a line of length k — 1 starting from position (i, j + 1) and growing to the
right. Restricting attention to S(k), there is always a v # u that could (hypothetically) move
to position (4, j + 1) if it were not occupied. This implies that before the final movement that

2 Another way to view this, is as an attempt to simulate the universal transformations based on combined
rotation and sliding (presented in Section 5), in which single nodes are able to walk the perimeter of
the shape.
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would place v on (i, + 1), v must have been in (i +1,7) or (i + 1,5 + 1), if we assume that
v always walks in the clockwise direction. Observe now that from each of these positions v
can perform zero or more right slidings above the line in order to reach the position above
the right endpoint (i, + k — 1) of the line. When this occurs, a final clockwise rotation
makes v the new right endpoint of the line. The only exception is when v is on (i + 1,5 + 1)
and there is no line to the right of (¢,) (this implies the existence of a node on (i + 1,7),
otherwise connectivity of S(k) would have been violated). In this case, v just performs a
single downward sliding to become the right endpoint of the line. <

» Theorem 8. The transformation of Theorem 7 requires ©(n?) movements in the worst
case.

Theorem 8 shows that the above generic strategy is slow in some cases, as is the case of
transforming a staircase shape into a spanning line. A staircase is defined as a shape of the
form (i,7), (i —1,7),(i—1,7+1),(i —2,5+1),(: —2,7+2),(i — 3,5 +2),.... We shall now
show that there are pairs of shapes for which any strategy and not only this particular one,
may require a quadratic number of steps to transform one shape to the other.

» Definition 9. Define the potential of a shape A as its minimum “distance” from the line L,
where |A| = |L|. The distance is defined as follows: Consider any placement of L relative to
A and any pairing of the nodes of A to the nodes of the line. Then sum up the Manhattan
distances 2 between the nodes of each pair. The minimum sum between all possible relative
placements and all possible pairings is the distance between A and L and also A’s potential.

Observe that the potential of the line is 0 as it can be totally aligned on itself and the
sum of the distances is 0.

» Lemma 10. The potential of a staircase is ©(n?).

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric.
Any such placement leaves either above or below it at least half of the nodes of the staircase
(maybe minus 1). W.lo.g. let it be above it. Every two nodes, the height increases by 1,
therefore there are 2 nodes at distance 1, 2 at distance 2,.. ., 2 at distance n/4. Any matching
between these nodes and the nodes of the line gives for every pair a distance at least as large
as the vertical distance between the staircase’s node and the line, thus, the total distance is
atleast 2-1+2-2+...+2-(n/4)=2-(1+2+ ...+ n/4) = (n/4) - (n/4+ 1) = O(n?). We
conclude that the potential of the staircase is ©(n?). <

» Theorem 11. Any transformation strategy based on rotations and slidings which performs
a single movement per step requires ©(n?) steps to transform a staircase into a line.

Proof. To show that Q(n?) movements are needed to transform the staircase into a line, it
suffices to observe that the difference in their potentials is that much and that one rotation
or one sliding can decrease the potential by at most 1. |

» Remark. The above lower bound is independent of connectivity preservation. It is just a
matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in polynomial
time, because there is a polynomial-time algorithm for computing the distance between two
shapes.

3 The Manhattan distance between two points (i,5) and (i, 5') is given by |i — | + |j — j/|.
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» Proposition 4. Let A and B be connected shapes. Then their distance d(A, B) can be
computed in polynomial time.

To give a faster transformation either pipelining must be used (allowing for more than one
movement in parallel) or more complex mechanisms that move sub-shapes consisting of many
nodes, in a single step. We follow the former approach, by allowing an unbounded number
of rotation and/or sliding movements to occur simultaneously in a single step (though, in
pairwise disjoint areas).

» Proposition 5. There is a pipelining strategy that transforms a staircase into a line in O(n)
parallel time.

Proof. Number the nodes of the staircase 1 through n starting from the top and following the
staircase’s connectivity until the bottom-right node is reached. These gives an odd-numbered
upper diagonal and an even-numbered lower diagonal. Node 1 moves as in Theorem 7. Any
even node w starts moving as long as its upper odd neighbor has reached the same level as
w (e.g., node 2 first moves after node 1 has arrived to the right of node 3). Any odd node
z > 1 starts moving as long as its even left neighbor has moved one level down (e.g., node 3
first moves after node 2 has arrived to the right of 5). After a node starts moving, it moves
in every step as in Theorem 7 (but now many nodes can move in parallel, implementing a
pipelining strategy). It can be immediately observed that any node i starts after at most 3
movements of node ¢ — 1 (actually, only 2 movements for even 4), so after, roughly, at most
3n steps, node n — 2 starts. Moreover, a node that starts, arrives at the right endpoint of
the line after at most n steps, which means that after at most 4n = O(n) steps, all nodes
have taken their final position in the line. <

Proposition 5 gives a hint that pipelining could be a general strategy to speed-up
transformations. We next show how to generalize this technique to any possible pair of
shapes.

» Theorem 12. Let A and B be any connected shapes, such that |A| = |B| = n. Then there
is a pipelining strategy that can transform A to B (and inversely) by rotations and slidings,
without breaking the connectivity during the transformation, in O(n) parallel time.

Proof. The transformation is a pipelined version of the sequential transformation of Theorem
7. Now, instead of picking an arbitrary next candidate node of S(k) to walk the perimeter of
S(k) clockwise, we always pick the rightmost clockwise node vy, € S(k), that is, the node that
has to walk the shortest clockwise distance to arrive at the line being formed. This implies
that the subsequent candidate node vi4; to walk is always “behind” vy in the clockwise
direction and is either already free to move or is enabled after v;’s departure. Observe that
after at most 3 clockwise movements, v can no longer be blocking vy; on the (possibly
updated) perimeter. Moreover, the clockwise move of v;11 only introduces a gap in its
original position, therefore it only affects the structure of the perimeter “behind” it. The
strategy is to start the walk of node v1 as soon as vy is no longer blocking its way. As in
Proposition 5, once a node starts, it moves in every step, and again any node arrives at the
end of the forming line after at most n movements. It follows that if the pipelined movement
of nodes cannot be blocked in any way, after 4n = O(n) steps all nodes must have arrived at
their final positions. Observe now that the only case in which pipelining could be blocked
is when a node is sliding through a (necessarily dead-end) “tunnel” of height 1. To avoid
this, the nodes shortcut the tunnel, by visiting only its first position (4,5) and then simply
skipping the whole walk inside it (that walk would just return them to position (7, j) after a
number of steps). <
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We next show that even if A and B are labeled shapes, that is, their nodes are assigned
the indices 1,...,n (uniquely, i.e., without repetitions), we can still transform the labeled A
to the labeled B with only a linear increase in parallel time. We only consider transformations
in which the nodes never change indices in any way (e.g., cannot transfer them, or swap
them), so that each particular node of A must eventually occupy (physically) a particular
position of B (the one corresponding to its index).

» Corollary 13. The labeled version of the transformation of Theorem 12 can be performed
in O(n) parallel time.

An immediate observation is that a linear-time transformation does not seem satisfactory
for all pairs of shapes. To this end, take a square S and rotate its top-left corner u, one
position clockwise, to obtain an almost-square S’. Even though, a single counter-clockwise
rotation of u suffices to transform S’ to S, the transformation of Theorem 12 may go all the
way around and first transform S’ to a line and then transform the line to S. In this particular
example, the distance between S and S’, according to Definition 9, is 2, while the generic
transformation requires ©(n) parallel time. So, it is plausible to ask if any transformation
between two shapes A and B can be performed in time that grows as a function of their
distance d(A, B). We show that this cannot always be the case, by presenting two shapes A
and B with d(A, B) = 2, such that A and B require Q(n) parallel time to be transformed to
each other.

» Proposition 6. There are two shapes A and B with d(A, B) = 2, such that A and B require
Q(n) parallel time to be transformed to each other.

In the full version, we also study the RS-TRANSFORMABILITY problem in distributed
systems and give an algorithm that transforms a large family of shapes into a spanning line:

» Theorem 14. We provide an algorithm, called Compact Line, that can transform any
compact shape into a spanning line.

6 Conclusions and Further Research

There are many open problems related to the findings of the present work. First, a compromise
could be to allow some restricted degree of connectivity breaking. There are other meaningful
“good” properties that we would like to maintain throughout a transformation, like the
strength of the shape.

Transformation seems in general harder if we restrict the maximum area or dimensions
during its course. Also, restricting the boundaries gives models equivalent to several interesting
puzzles, like the famous 15-puzzle. Techniques developed in the context of puzzles could
prove valuable for analyzing and characterizing discrete programmable matter systems.

We intentionally restricted attention to very minimal actuation mechanisms. More
sophisticated mechanical operations would enable a larger set of transformations and possibly
also reduce the time complexity. Such an example is the ability of a node to become inserted
between two neighboring nodes.

There are also some promising specific technical questions: What is the exact complex-
ity of ROTC-TRANSFORMABILITY? What is the complexity of computing the optimum
transformation? Can it be satisfactorily approximated? Finally, regarding the distributed
transformations, there are various interesting variations of the model considered here, that
would make sense. One of them is to assume nodes that are oblivious w.r.t. their orientation.
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