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Abstract In this work, we study protocols so that

populations of distributed processes can construct net-

works. In order to highlight the basic principles of dis-

tributed network construction, we keep the model mini-

mal in all respects. In particular, we assume finite-state

processes that all begin from the same initial state and

all execute the same protocol. Moreover, we assume

pairwise interactions between the processes that are

scheduled by a fair adversary. In order to allow pro-

cesses to construct networks, we let them activate and

deactivate their pairwise connections. When two pro-

cesses interact, the protocol takes as input the states of

the processes and the state of their connection and up-

dates all of them. Initially all connections are inactive

and the goal is for the processes, after interacting and

activating/deactivating connections for a while, to end
up with a desired stable network. We give protocols (op-

timal in some cases) and lower bounds for several basic

network construction problems such as spanning line,
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spanning ring, spanning star, and regular network. The

expected time to convergence of our protocols is ana-

lyzed under a uniform random scheduler. Finally, we

prove several universality results by presenting generic

protocols that are capable of simulating a Turing Ma-

chine (TM) and exploiting it in order to construct a

large class of networks. We additionally show how to

partition the population into k supernodes, each being

a line of log k nodes, for the largest such k. This amount

of local memory is sufficient for the supernodes to ob-

tain unique names and exploit their names and their

memory to realize nontrivial constructions.

Keywords distributed network construction · sta-

bilization · homogeneous population · distributed

protocol · interacting automata · fairness · random

schedule · structure formation · self-organization

1 Introduction

1.1 Motivation

Suppose a set of tiny computational devices (possibly

at the nanoscale) are injected into a human circulatory

system for the purpose of monitoring or even treating

a disease. The devices are incapable of controlling their

mobility. The mobility of the devices, and consequently

the interactions between them, stems solely from the

dynamicity of the environment, the blood flow inside

the circulatory system in this case. Additionally, each

device alone is incapable of performing any useful com-

putation, as the small scale of the device highly con-

strains its computational capabilities. The goal is for

the devices to accomplish their task via cooperation. To

this end, the devices are equipped with a mechanism

that allows them to create bonds with other devices



2 Othon Michail, Paul G. Spirakis

(mimicking nature’s ability to do so). So, whenever two

devices come sufficiently close to each other and inter-

act, apart from updating their local states, they may

also become connected by establishing a physical con-

nection between them. Moreover, two connected devices

may at some point choose to drop their connection. In

this manner, the devices can organize themselves into

a desired global structure. This network-constructing

self-assembly capability allows the artificial population

of devices to evolve greater complexity, better storage

capacity, and to adapt and optimize its performance to

the needs of the specific task to be accomplished.

1.2 Our Approach

In this work, we study the fundamental problem of net-

work construction by a distributed computing system.

The system consists of a set of processes that are ca-

pable of performing local computation (via pairwise in-

teractions) and of forming and deleting connections be-

tween them. Connections between processes can be ei-

ther physical or virtual depending on the application.

In the most general case, a connection between two pro-

cesses can be in one of a finite number of possible states.

For example, state 0 could mean that the connection

does not exist while state i ∈ {1, 2, . . . , k}, for some fi-

nite k, that the connection exists and has strength i.

We consider here the simplest case, which we call the

on/off case, in which, at any time, a connection can ei-

ther exist or not exist; that is, there are just two states

for the connections, 1 and 0, respectively. If a connec-

tion exists we also say that it is active and if it does not

exist we say that it is inactive. Initially all connections

are inactive and the goal is for the processes, after in-

teracting and activating/deactivating connections for a

while, to end up with a desired stable network. In the

simplest case, the output-network is the one induced by

the active connections and it is stable when no connec-

tion changes state any more.

Our aim in this work is to initiate this study by

proposing and studying a very simple, yet sufficiently

generic, model for distributed network construction. To

this end, we assume the computationally weakest type

of processes. In particular, the processes are finite au-

tomata that all begin from the same initial state and all

execute the same finite program which is stored in their

memory (i.e., the system is homogeneous). The commu-

nication model that we consider is also very minimal. In

particular, we consider processes that are inhabitants of

an adversarial environment that has total control over

the inter-process interactions. We model such an en-

vironment by an adversary scheduler that operates in

discrete steps, selecting in every step a pair of processes

which then interact according to the common program.

This represents very well systems of (not necessarily

computational) entities that interact in pairs whenever

two of them come sufficiently close to each other. When

two processes interact, the program takes as input the

states of the interacting processes and the state of their

connection and outputs a new state for each process

and a new state for the connection. The only restric-

tion that we impose on the scheduler, in order to study

the constructive power of the model, is that it is fair,

by which we mean the weak requirement that, at every

step, it assigns to every reachable configuration of the

system a non-zero probability to occur. In other words,

a fair scheduler cannot forever conceal an always reach-

able configuration of the system. Note that under such

a generic scheduler, we cannot bound the running time

of our constructors. Thus, to estimate the efficiency of

our solutions we assume a uniform random scheduler,

one of the simplest fair probabilistic schedulers. The

uniform random scheduler selects in every step inde-

pendently and uniformly at random a pair of processes

to interact from all such pairs. What renders this model

interesting is its ability to achieve complex global be-

havior via a set of notably simple, uniform (i.e., with

codes that are independent of the size of the system),

homogeneous, and cooperative entities.

We now give a simple illustration of the above. As-

sume a set of n very weak processes that can only be

in one of two states, “black” or “red”. Initially, all pro-

cesses are black. We can think of the processes as small

particles that move randomly in a fair solution. The

particles are capable of forming and deleting physical

connections between them, by which we mean that,

whenever two particles interact, they can read and write

the state of their connection. Moreover, for simplicity

of the model, we assume that fairness of the solution is

independent of the states of the connections. This is in

contrast to schedulers that would take into account the

geometry of the active connections and would, for ex-

ample, forbid two non-neighboring particles of the same

component to interact with each other. 1 In particular,

we assume that throughout the execution every pair of

processes may be selected for interaction.

Consider now the following simple problem. We

want to identically program the initially disorganized

particles so that they become self-organized into a span-

ning star. In particular, we want to end up with a

unique black particle connected (via active connections)

to n−1 red particles and all other connections (between

red particles) being inactive. Conversely, given a (possi-

1 Such a geometrically restricted variant has been studied
in [Mic15].
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bly physical) system that tends to form a spanning star

we would like to unveil the code behind this behavior.

Consider the following program. When two black

particles that are not connected interact, they become

connected and one of them becomes red. When two con-

nected red particles interact they become disconnected

(i.e., reds repel). Finally, when a black and a red that

are not connected interact they become connected (i.e.,

blacks and reds attract).

The protocol forms a spanning star as follows. As

whenever two blacks interact only one survives and the

other becomes red, eventually a unique black will re-

main and all other particles will be red (we say “even-

tually”, meaning “in finite time”, because we do not

know how much time it will take for all blacks to meet

each other but from fairness we know that this has to

occur in a finite number of steps). As blacks and reds

attract while reds repel, it is clear that eventually the

unique black will be connected to all reds while every

pair of reds will be disconnected. Moreover, no rule of

the program can modify such a configuration, so the

constructed spanning star is stable (see Figure 1). It is

worth noting that this very simple protocol is optimal

both with respect to (abbreviated “w.r.t.” throughout)

the number of states that it uses and w.r.t. the time

it takes to construct a stable spanning star under the

uniform random scheduler.

Our model for network construction is strongly in-

spired by the Population Protocol model [AAD+06] and

the Mediated Population Protocol model [MCS11a]. In

the former, connections do not have states. States on

the connections were first introduced in the latter. The

main difference to our model is that in those mod-
els the focus was on the computation of functions of

some input values and not on network construction. An-

other important difference is that we allow the edges to

choose between only two possible states which was not

the case in [MCS11a]. Interestingly, when operating un-

der a uniform random scheduler, population protocols

are formally equivalent to chemical reaction networks

(CRNs) which model chemistry in a well-mixed solu-

tion [Dot14]. “CRNs are widely used to describe infor-

mation processing occurring in natural cellular regu-

latory networks, and with upcoming advances in syn-

thetic biology, CRNs are a promising programming lan-

guage for the design of artificial molecular control cir-

cuitry” [Dot14]. However, CRNs and population proto-

cols can only capture the dynamics of molecular counts

and not of structure formation. Our model then may

be also viewed as an extension of population protocols

and CRNs aiming to capture the stable structures that

may occur in a well-mixed solution. From this perspec-

tive, our goal is to determine what stable structures can

(a)

(b)

(c)

Fig. 1 (a) Initially all particles are black and no active con-
nections exist. (b) After a while, only 3 black particles have
survived each having a set of red neighbors (red particles ap-
pear as gray here). Note that some red particles are also con-
nected to red particles. The tendency is for the red particles
to repel red particles and attract black particles. (c) A unique
black has survived, it has attracted all red particles, and all
connections between red particles have been deactivated. The
construction is a stable spanning star.

result in such systems (natural or artificial), how fast,

and under what conditions (e.g., by what underlying

codes/reaction-rules).

Most computability issues in the area of population

protocols have now been resolved. Finite-state processes

on a complete interaction network, i.e., one in which

every pair of processes may interact, (and several vari-

ations) compute the semilinear predicates [AAER07].

Semilinearity persists up to o(log log n) local space but

not more than this [CMN+11]. If, additionally, the con-

nections between processes can hold a state from a finite
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domain (note that this is a stronger requirement than

the on/off that the present work assumes) then the com-

putational power dramatically increases to the commu-

tative subclass of NSPACE(n2) [MCS11a]. Other im-

portant works include [GR09] which equipped the nodes

of population protocols with unique ids and [BBCK10]

which introduced a (weak) notion of speed of the nodes

that allowed the design of fast converging protocols

with only weak requirements. For introductory texts

see [AR09,MCS11b].

The paper essentially consists of two parts. In the

first part, we give simple (i.e., small) and efficient (i.e.,

polynomial-time) protocols for the construction of sev-

eral fundamental networks. In particular, we give pro-

tocols for spanning lines, spanning rings, cycle-covers,

partitioning into cliques, and regular networks and we

also provide a protocol that replicates a given input net-

work (formal definitions of all problems considered can

be found in Section 3.2). We remark that the spanning

line problem is of outstanding importance because it

constitutes a basic ingredient of universal constructors.

We give two different protocols for this problem, the

second improving on the running time of the first but

using more states to this end. Additionally, we establish

an Ω(n log n) generic lower bound on the expected run-

ning time of all constructors that construct a spanning

network and an Ω(n2) lower bound for the spanning

line, where n throughout this work denotes the number

of processes. Our fastest protocol for the problem runs

in O(n3) expected time and uses 9 states while our sim-

plest uses only 5 states but pays in an expected time

which is between Ω(n4) and O(n5).

In the second part, we investigate the more generic

question of what is in principle constructible by our

model. We arrive there at several satisfactory charac-

terizations establishing some sort of universality of the

model. The main idea is as follows. To construct a

decidable graph-language L we (i) construct on k of

the processes (called the waste) a network G1 capa-

ble of simulating a Turing Machine (abbreviated “TM”

throughout the paper) and of constructing a random

network on the remaining n − k processes (called the

useful space), (ii) use G1 to construct a random net-

work G2 ∈ Gn−k,1/2 on the remaining n− k processes,
2 (iii) execute on G1 the TM that decides L, with G2

as input. If the TM accepts, then we output G2 (note

that this is not a terminating step - the reason why will

become clear in Section 6; the protocol just freezes and

its output forever remains G2), otherwise we go back

2 The Gn,p random graph model consists of all graphs with
node set V = {1, 2, . . . , n} in which the edges are chosen
independently and with probability p (for more details, cf.
[Bol01] pages 34-35).

to (ii) and repeat. Using this core idea we prove sev-

eral universality results for our model. Additionally, we

show how to organize the population into a distributed

system with names and logarithmic local memories.

In Section 2, we discuss further related literature.

Section 3 brings together all definitions and basic facts

that are used throughout the paper. In particular, in

Section 3.1 we formally define the model of network

constructors, Section 3.2 formally defines all network

construction problems that are considered in this work,

and in Section 3.3 we identify and analyze a set of basic

probabilistic processes that are recurrent in the analysis

of the running times of network constructors. In Section

4, we study the spanning line problem. In Section 5,

we provide direct constructors for all the other basic

network construction problems. Section 6 presents our

universality results. Finally, in Section 7 we conclude

and give further research directions that are opened by

our work.

2 Further Related Work

Algorithmic Self-Assembly. There are already sev-

eral models that try to capture the self-assembly ca-

pability of natural processes with the purpose of en-

gineering systems and developing algorithms inspired

by such processes. For example, [Dot12] proposes to

learn how to program molecules to manipulate them-

selves, grow into machines and at the same time con-

trol their own growth. The research area of “algorithmic

self-assembly” belongs to the field of “molecular com-

puting”. The latter was initiated by Adleman [Adl94],

who designed interacting DNA molecules to solve an

instance of the Hamiltonian path problem. The model

guiding the study in algorithmic self-assembly is the

Abstract Tile Assembly Model (aTAM) [Win98,RW00]

and variations (e.g., see [WCG+13] for a very recent in-

teresting variation allowing DNA tiles to actively con-

trol their mobility and to self-replicate).

In contrast to most of the work in algorithmic self-

assembly, that tries to incorporate the exact molecular

mechanisms (like temperature, energy, and bounded

degree), we propose a very abstract combinatorial

rule-based model, free of specific application-driven

assumptions, with the aim of revealing the fundamental

laws governing the distributed (algorithmic) genera-

tion of networks. Our model may serve as a common

substructure to more applied models (like assembly

models or models with geometry restrictions) that may

be obtained from our model by imposing restrictions

on the scheduler, the degree, and the number of local

states (see Section 7 for several interesting variations
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of our model).

Distributed Network Construction. To the best

of our knowledge, classical distributed computing has

not considered the problem of constructing an actual

communication network from scratch. From the semi-

nal work of Angluin [Ang80] that initiated the theoret-

ical study of distributed computing systems up to now,

the focus has been more on assuming a given commu-

nication topology and constructing a virtual network

over it, e.g., a spanning tree for the purpose of fast

dissemination of information. Moreover, these models

usually assume unique identities, unbounded memories,

and message-passing communication. Additionally, a

process always communicates with its neighboring pro-

cesses (see [Lyn96] for all the details).

An exception is the area of geometric pattern for-

mation by mobile robots (cf. [SY99,DFSY15] and refer-

ences therein). A great difference, though, to our model

is that in mobile robotics the computational entities

have complete control over their mobility and thus over

their future interactions. That is, the goal of a proto-

col is to result in a desired interaction pattern while

in our model the goal of a protocol is to construct a

network while operating under a totally unpredictable

interaction pattern.

Very recently, a model inspired by the behavior

of ameba that allows algorithmic research on self-

organizing particle systems was proposed [DGRS13,

DDG+14]. The goal is for the particles to self-organize

in order to adapt to a desired shape without any

central control, which is quite similar to our objective,

but the two models seem to have little in common.

The authors also observe that, in contrast to the

considerable work that has been performed w.r.t.

systems, like in self-reconfigurable robotic systems
3, only very little theoretical work has been done in

this area. This further supports the importance of

introducing a simple yet sufficiently generic model for

distributed network construction, as we do in this work.

Cellular Automata. A cellular automaton (cf., e.g.,

[Sch11]) consists of a grid of cells each cell being a fi-

nite automaton. A cell updates its own state by read-

ing the states of its neighboring cells (e.g., 2 in the 1-

dimensional case and 4 in the 2-dimensional case). All

cells may perform the updates in discrete synchronous

steps or updates may occur asynchronously. Cellular

automata have been used as models for self-replication,

for modeling several physical systems (e.g., neural ac-

3 See [RCN14] for a very recently reported system that
demonstrates programmable self-assembly of complex two-
dimensional shapes with a thousand-robot swarm.

tivity, bacterial growth, pattern formation in nature),

and for understanding emergence, complexity, and self-

organization issues.

Though there are some similarities there are also

significant differences between our model and cellular

automata. One is that in our model the interaction

pattern is nondeterministic as it depends on the sched-

uler and a process may interact with any other process

of the system and not just with some predefined neigh-

bors. Moreover, our model has a direct capability of

forming networks whereas cellular automata can form

networks only indirectly (an edge between two cells u

and v has to be represented as a line of cells beginning

at u, ending at v and all cells on the line being in a

special edge-state). In fact, cellular automata are more

suitable for studying the formation of patterns on e.g.,

a discrete surface of static cells while our model is

more suitable for studying how a totally dynamic (e.g.,

mobile) and initially disordered collection of entities

can self-organize into a network.

Social Networks. There is a great amount of work

dealing with networks formed by a group of interact-

ing individuals. Individuals, also called players, which

may, for example, be people, animals, or companies,

depending on the application, usually have incentives

and connections between individuals indicate some so-

cial relationship, like for example friendship. The net-

work is formed by allowing the individuals to form or

delete connections, usually selfishly trying to maximize

their own utility. The usual goal there is to study how

the whole network affects the outcome of a specific in-

teraction, to predict the network that will be formed

by a set of selfish individuals, and to characterize the

quality of the network formed (e.g., its efficiency). See,

e.g., [Jac05,BEK+13]. This is a game-theoretic setting

which is very different from the setting considered here

as the latter does not include incentives and utilities.

Another important line of research considers

random social networks in which new links are

formed according to some probability distribution.

For example, in [BA99] it was shown that growth

and preferential attachment that characterize a great

majority of social networks (like, for example, the

Internet) results in scale-free properties that are not

predicted by the Erdös-Rényi random graph model

[ER59,Bol01]. Though, in principle, we allow processes

to perform a coin tossing during an interaction, our

focus is not on the formation of a random network but

on cooperative (algorithmic) construction according

to a common set of rules. In summary, our model

looks more like a standard dynamic distributed com-

puting system in which the interacting entities are
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computing processes that all execute the same program.

Network Formation in Nature. Nature has an in-

trinsic ability to form complex structures and networks

via a process known as self-assembly. By self-assembly,

small components (like molecules) automatically assem-

ble into large, and usually complex structures (like a

crystal). There is an abundance of such examples in

the physical world. Lipid molecules form a cell’s mem-

brane, ribosomal proteins and RNA coalesce into func-

tional ribosomes, and bacteriophage virus proteins self-

assemble a capsid that allows the virus to invade bac-

teria [Dot12]. “Mixtures of RNA fragments that self-

assemble into self-replicating ribozymes spontaneously

form cooperative catalytic cycles and networks”. Such

cooperative networks grow faster than selfish autocat-

alytic cycles “indicating an intrinsic ability of RNA

populations to evolve greater complexity through co-

operation” [VMC+12]. “Through billions of years of

prebiotic molecular selection and evolution, nature has

produced a basic set of molecules”. By combining these

simple elements, “natural processes are capable of fash-

ioning an enormously diverse range of fabrication units,

which can further self-organize into refined structures,

materials and molecular machines that not only have

high precision, flexibility and error-correction capacity,

but are also self-sustaining and evolving”. In fact, “na-

ture shows a strong preference for bottom-up design”

[Zha03].

Systems and solutions inspired by nature have of-

ten turned out to be extremely practical and efficient.

For example, the bottom-up approach of nature inspires

the fabrication of biomaterials by attempting to “mimic

these phenomena with the aim of creating new and

varied structures with novel utilities well beyond the

gifts of nature” [Zha03]. Moreover, there is already a

remarkable amount of work envisioning our future abil-

ity to engineer computing and robotic systems by ma-

nipulating molecules with nanoscale precision. Ambi-

tious long-term applications include molecular comput-

ers [BPS+10] and miniature (nano)robots for surgical

instrumentation, diagnosis and drug delivery in medi-

cal applications and monitoring in extreme conditions

(e.g., in toxic environments). We believe that the suc-

cess of this ambitious effort depends to some extent on

our ability to discover the laws governing the capability

of distributed systems to construct networks. The gain

of developing such a theory will be twofold: It will give

some insight to the role (and the mechanisms) of net-

work formation in the complexity of natural processes

and it will allow us to engineer artificial systems that

achieve this complexity.

3 Preliminaries

3.1 A Model of Network Constructors

Definition 1 A Network Constructor (NET) is a dis-

tributed protocol defined by a 4-tuple (Q, q0, Qout, δ),

where Q is a finite set of node-states, q0 ∈ Q is the

initial node-state, Qout ⊆ Q is the set of output node-

states, and δ : Q ×Q × {0, 1} → Q ×Q × {0, 1} is the

transition function.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′)
a transition (or rule) and we define δ1(a, b, c) = a′,
δ2(a, b, c) = b′, and δ3(a, b, c) = c′. A transition

(a, b, c) → (a′, b′, c′) is called effective if x 6= x′ for at

least one x ∈ {a, b, c} and ineffective otherwise. When

we present the transition function of a protocol we only

present the effective transitions. Additionally, we agree

that the size of a protocol is the number of its states,

i.e., |Q|.
The system consists of a population VI of n dis-

tributed processes (also called nodes when clear from

context). In the generic case, there is an underlying in-

teraction graph GI = (VI , EI) specifying the permis-

sible interactions between the nodes. Interactions in

this model are always pairwise. In this work, GI is a

complete undirected interaction graph, i.e., EI = {uv :

u, v ∈ VI and u 6= v}, where uv = {u, v}. Initially, all

nodes in VI are in the initial node-state q0.

A central assumption of the model is that edges have

binary states. An edge in state 0 is said to be inactive

while an edge in state 1 is said to be active. All edges

are initially inactive.

Execution of the protocol proceeds in discrete steps.

In every step, a pair of nodes uv from EI is selected by

an adversary scheduler and these nodes interact and up-

date their states and the state of the edge joining them

according to the transition function δ. Due to the fact

that the interactions are undirected, we restrict δ to be

a partial function which, for all edge-states c ∈ {0, 1}:
(i) is defined at (a, a, c), for all node-states a ∈ Q and

(ii) is defined at either (a, b, c) or (b, a, c), for all dis-

tinct node-states a, b ∈ Q. 4 So, if a, b, and c are the

states of nodes u, v, and edge uv, respectively, then

the unique rule corresponding to these states, let it be

(a, b, c) → (a′, b′, c′), is applied, the edge that was in

state c updates its state to c′ and if a 6= b, then u up-

dates its state to a′ and v updates its state to b′, if

a = b and a′ = b′, then both nodes update their states

4 An equivalent way is to assume that it is defined at
both (a, b, c) and (b, a, c) but require that it satisfies sym-
metry w.r.t. node-states, i.e., δ1(a, b, c) = δ2(b, a, c) and
δ2(a, b, c) = δ1(b, a, c), and equality w.r.t. edge-states, i.e.,
δ3(a, b, c) = δ3(b, a, c).
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to a′, and if a = b and a′ 6= b′, then the node that

gets a′ is drawn equiprobably from the two interacting

nodes and the other node gets b′. The latter is the only

case in which the protocol has no other means of break-

ing the symmetry apart from making a random choice,

because in this case the two interacting nodes are in

the same state, the edge between them has no direction

but the new states are not the same, so the protocol has

no means of knowing where to assign each of the new

states. In all other cases, the protocol can make the

distinction because either symmetry is broken by the

fact that the interacting nodes are in different states or

the new states are the same so there is no choice to be

made.

A configuration is a mapping C : VI ∪ EI →
Q ∪ {0, 1} specifying the state of each node and each

edge of the interaction graph. Let C and C ′ be config-

urations, and let u, υ be distinct nodes. We say that

C goes to C ′ via encounter e = uυ, denoted C
e→ C ′,

if (C ′(u), C ′(v), C ′(e)) = δ(C(u), C(v), C(e)) or

(C ′(v), C ′(u), C ′(e)) = δ(C(v), C(u), C(e)) and

C ′(z) = C(z), for all z ∈ (VI\{u, v}) ∪ (EI\{e}).
We say that C ′ is reachable in one step from C,

denoted C → C ′, if C
e→ C ′ for some encounter

e ∈ EI . We say that C ′ is reachable from C and

write C  C ′, if there is a sequence of configurations

C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all

i, 0 ≤ i < t.

An execution is a finite or infinite sequence of con-

figurations C0, C1, C2, . . ., where C0 is an initial con-

figuration and Ci → Ci+1, for all i ≥ 0. A fairness

condition is imposed on the adversary to ensure the

protocol makes progress. An infinite execution is fair

if for every pair of configurations C and C ′ such that

C → C ′, if C occurs infinitely often in the execution

then so does C ′. In what follows, every execution of a

NET will by definition considered to be fair.

We define the output of a configuration C as the

graph G(C) = (V,E) where V = {u ∈ VI : C(u) ∈
Qout} and E = {uv : u, v ∈ V, u 6= v, and C(uv) = 1}.
In words, the output-graph of a configuration consists

of those nodes that are in output states and those edges

between them that are active, i.e., the active subgraph

induced by the nodes that are in output states. The

output of an execution C0, C1, . . . is said to stabilize

(or converge) to a graph G if there exists some step

t ≥ 0 such that (abbreviated “s.t.” in several places)

G(Ci) = G for all i ≥ t, i.e., from step t and onwards

the output-graph remains unchanged. Every such con-

figuration Ci, for i ≥ t, is called output-stable. The run-

ning time (or time to convergence) of an execution is

defined as the minimum such t (or∞ if no such t exists).

Throughout the paper, whenever we study the running

time of a NET, we assume that interactions are chosen

by a uniform random scheduler which, in every step, se-

lects independently and uniformly at random one of the

|EI | = n(n − 1)/2 possible interactions. 5 In this case,

the running time becomes a random variable (abbre-

viated “r.v.” throughout) X and our goal is to obtain

bounds on the expectation E[X] of X. Note that the

uniform random scheduler is fair with probability 1.

Definition 2 We say that an execution of a NET on

n processes constructs a graph (or network) G, if its

output stabilizes to a graph isomorphic to G.

Definition 3 We say that a NET A constructs a graph

language L with useful space g(n) ≤ n, if g(n) is the

greatest function for which: (i) for all n, every execu-

tion of A on n processes constructs a G ∈ L of order

at least g(n) (provided that such a G exists) and, addi-

tionally, (ii) for all G ∈ L there is an execution of A on

n processes, for some n satisfying |V (G)| ≥ g(n), that

constructs G. Equivalently, we say that A constructs L

with waste n− g(n).

Definition 4 Define REL(g(n)) to be the class of all

graph languages that are constructible with useful space

g(n) by a NET. We call REL(·) the relation or on/off

class.

Also define PREL(g(n)) in precisely the same way

as REL(g(n)) but in the extension of the above model

in which every pair of processes is capable of tossing an

unbiased coin during an interaction between them. In

particular, in the weakest probabilistic version of the

model, we allow transitions that with probability 1/2

give one outcome and with probability 1/2 another.

Additionally, we require that all graphs have the same

probability to be constructed by the protocol.

We denote by DGS(f(l)) (for “Deterministic Graph

Space”) the class of all graph languages that are decid-

able by a TM of (binary) space f(l), where l is the

length of the adjacency matrix encoding of the input

graph.

3.2 Problem Definitions

We here provide formal definitions of all the network

construction problems that are considered in this work.

5 We should emphasize, in order to avoid confusion, that
in this work “time” is sequential, as a time-step consists of
a single interaction selected by the scheduler. Such a sequen-
tial estimate can then be easily translated to some estimate
of parallel time. For example, assuming that Θ(n) interac-
tions occur in parallel in every step, one could obtain an es-
timation of parallel time by dividing sequential time by n. In
contrast, there are some papers, like [CCDS14], that perform
their analysis directly in terms of parallel time.
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Protocols and bounds for these problems are presented

in Sections 4 and 5.

Global line. The goal is for the n distributed processes

to construct a spanning line, i.e., a connected graph

in which 2 nodes have degree 1 and n − 2 nodes have

degree 2.

Cycle cover. Every process in VI must eventually

have degree 2. The result is a collection of node-disjoint

cycles spanning VI .

Global star. The processes must construct a spanning

star, i.e., a connected graph in which 1 node, called

the center, has degree n − 1 and n − 1 nodes, called

the peripheral nodes, have degree 1.

Global ring. The processes must construct a spanning

ring, i.e., a connected graph in which every node has

degree 2.

k-regular connected. The generalization of global

ring in which every node has degree k ≥ 2 (note that k

is a constant and a protocol for the problem must run

correctly on any number n of processes).

c-cliques. The processes must partition themselves

into bn/cc cliques of order c each (again c is a constant).

Replication. The protocol is given an input graph

G1 = (V1, E1) on a subset V1 of the processes. The

input graph is provided as follows. All processes in

V1 are initially in state q0 and all other processes, in

V2 = VI\V1, are initially in state r0. Every edge of

E1 is initially active and all other edges, in EI\E1,

are initially inactive (that is, the only active edges,

initially, are the edges of E1). The goal is to create a

replica of G1 on V2, provided that |V2| ≥ |V1|. Formally,

we want, in every execution, the output induced by

the active edges between the nodes of V2 to stabilize

to a graph isomorphic to G1.

Keep in mind that the above definitions (apart from

the replication problem) assume no waste. In case of a

waste x the definitions must be updated in such a way

that the target-construction refers to the useful space.

For example, a cycle cover with waste x is a cycle cover

on at least n− x of the nodes.

3.3 Basic Probabilistic Processes

We now present a set of very fundamental probabilistic

processes that are recurrent in the analysis of the

running times of network constructors. All these

processes assume a uniform random scheduler and

are applications of the standard coupon collector

problem. In most of these processes, we ignore the

states of the edges and focus only on the dynamics

of the node-states, that is, we consider rules of the

form δ : Q×Q→ Q×Q. Throughout this section, we

call a step a success if an effective rule applies on the

interacting nodes and we denote by X the r.v. of the

running time of the processes. We should mention that

many of these processes have been used before in the

relevant literature, usually implicitly in the running-

time analysis of other more complicated protocols. We

believe that the reader and the further growth of the

subject may benefit from a clear identification and

analysis of these processes, since they are recurrent in

the analyses of protocols’ running times.

One-way epidemic. Consider the protocol in which

the only effective transition is (a, b) → (a, a). Initially,

there is a single a and n−1 bs and we want to estimate

the expected number of steps until all nodes become as.

Proposition 1 The expected time to convergence of a

one-way epidemic (under the uniform random sched-

uler) is Θ(n log n).

Proof Let the r.v. X be the number of steps until all n

nodes are in state a. Call a step a success if an effective

rule applies and a new a appears on some node. Divide

the steps of the protocol into epochs, where epoch i

begins with the step following the (i− 1)st success and

ends with the step at which the ith success occurs. Let

also the r.v. Xi, 1 ≤ i ≤ n− 1, be the number of steps

in the i-th epoch. Let pi be the probability of success at

any step during the i-th epoch. We have pi = i(n−i)
m =

2i(n−i)
n(n−1) , where m = |EI | = n(n− 1)/2 denotes the total

number of possible interactions and E[Xi] = 1/pi =
n(n−1)
2i(n−i) . By linearity of expectation we have

E[X] = E[
n−1∑
i=1

Xi] =

n−1∑
i=1

E[Xi] =

n−1∑
i=1

n(n− 1)

2i(n− i)

=
n(n− 1)

2

n−1∑
i=1

1

i(n− i)

=
n(n− 1)

2

n−1∑
i=1

1

n

(
1

i
+

1

n− i

)

=
(n− 1)

2

[
n−1∑
i=1

1

i
+

n−1∑
i=1

1

n− i

]

=
(n− 1)

2
2Hn−1 = (n− 1)[ln(n− 1) +Θ(1)]

= Θ(n log n),
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where Hn denotes the nth Harmonic number. ut

One-to-one elimination. All nodes are initially in

state a. The only effective transition of the protocol is

(a, a) → (a, b). We are now interested in the expected

time until a single a remains. We call the process one-

to-one elimination because as are only eliminated with

themselves. A straightforward application is in proto-

cols that elect a unique leader by beginning with all

nodes in the leader state and eliminating a leader when-

ever two leaders interact.

Proposition 2 The expected time to convergence of a

one-to-one elimination is Θ(n2).

Proof Epoch i begins with the step following the ith

success and ends with the step at which the (i + 1)st

success occurs. The probability of success during the

ith epoch, for 0 ≤ i ≤ n − 2, is pi = [(n − i)(n − i −
1)/2]/[n(n− 1)/2] = [(n− i)(n− i− 1)]/[n(n− 1)] and

E[X] = n(n− 1)

n−2∑
i=0

1

(n− i)(n− i− 1)

= n(n− 1)

n∑
i=2

1

i(i− 1)

< n(n− 1)

n∑
i=2

1

(i− 1)2

= n(n− 1)

n−1∑
i=1

1

i2
< 2n(n− 1) < 2n2.

The above uses the fact that
∑n−1
i=1 1/i2 is less than 2.

This holds because
∑n−1
i=1 1/i2 < 1 +

∫ n
s=1

(1/s2)ds =

1 +
[
−s−1

]n
s=1

= 2− 1/n < 2.

Now, for the lower bound, observe that the last two

as need on average n(n−1)/2 steps to meet each other.

As n(n − 1)/2 ≤ E[X] < n2, we conclude that E[X] =

Θ(n2). ut

Maximum matching. A slight variation of the one-to-

one elimination protocol constructs a maximum match-

ing, i.e., a matching of cardinality bn/2c (which is a

perfect matching in case n is even). The variation is

(a, a, 0)→ (b, b, 1) and its running time is again Θ(n2),

which we now prove.

Proposition 3 The expected time to convergence of a

maximum matching is Θ(n2).

Proof For the upper bound, we shall prove that the run-

ning time of a one-to-one elimination, i.e., Θ(n2), is an

upper bound on the maximum matching variation. Note

first that this cannot be proved by executing the two

processes side-by-side on the same schedule, because

there are rare schedules for which one-to-one elimina-

tion stabilizes much faster than maximum matching.

An extreme such example is the schedule of length n−1

in which a particular a eliminates one after the other

all other as (here, we have also included in the sched-

ule the random choice of the winner of an elimination).

At the end of this schedule, one-to-one elimination has

stabilized, having eliminated n− 1 as, while maximum

matching has only managed to eliminate 2 as.

A way to establish the upper bounding relation is

the following. Both protocols begin from n as and they

stabilize when at least n − 1 as have been eliminated.

Both eliminate as by an (a, a) interaction: maximum

matching eliminates both as while one-to-one elimina-

tion eliminates only one of them. Take now the se-

quence Cn−2i, for 0 ≤ i ≤ bn/2c, of distinct node-

configurations from which maximum matching passes

(here, the index of configuration C represents the num-

ber of as in C) and observe that one-to-one elimination

cannot skip any of these configurations. Finally, observe

that for any Cj in the sequence, both protocols have the

same probability of making progress under Cj . When

maximum matching makes progress it moves to Cj−2.

On the other hand, when one-to-one elimination makes

progress it moves to a Cj−1 not in the sequence and

needs one or more additional steps to reach Cj−2 and

catch up the other process.

For the lower bound, notice that when only two (or

three) as remain the expected number of steps for a

success is n(n − 1)/2 (n(n − 1)/6, respectively), that

is, the running time is also Ω(n2). We conclude that

the protocol constructs a maximum matching in an ex-

pected number of Θ(n2) steps. ut

One-to-all elimination. All nodes are initially in

state a. The effective rules of the protocol are (a, a)→
(b, a) and (a, b) → (b, b). We are now interested in

the expected time until no a remains. The process is

called one-to-all elimination because as are eliminated

not only when they interact with as but also when they

interact with bs. At a first sight, it seems to run faster

than a one-way epidemic as bs still propagate towards

as as in a one-way epidemic but now bs are also created

when two as interact. We show that this is not the case.

Proposition 4 The expected time to convergence of a

one-to-all elimination is Θ(n log n).

Proof The probability of success during the ith epoch,

for 0 ≤ i ≤ n− 1, is pi = 1− [i(i− 1)/2]/[n(n− 1)/2] =

[n(n− 1)− i(i− 1)]/[n(n− 1)] and

E[X] = n(n− 1)

n−1∑
i=0

1

n(n− 1)− i(i− 1)
.
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For the upper bound, we have

E[X] = n(n− 1)

n−1∑
i=0

1

n(n− 1)− i(i− 1)

< n(n− 1)

[
n−2∑
i=0

1

(n− 1)2 − i2

]
+
n

2

=
n

2

(
n−2∑
i=0

1

n− i− 1
+

n−2∑
i=0

1

n+ i− 1
+ 1

)

=
n

2

(
n−1∑
i=1

1

i
+

2n−3∑
i=1

1

i
−
n−2∑
i=1

1

i
+ 1

)

=
n

2

(
1

n− 1
+

2n−3∑
i=1

1

i
+ 1

)
=
n

2
H2n−3 +

n

2
+

n

2(n− 1)

< n(H2n + 1) = n[ln 2n+Θ(1)].

For the lower bound, we have

E[X] = n(n− 1)

n−1∑
i=0

1

n(n− 1)− i(i− 1)

> n(n− 1)

n−1∑
i=0

1

n2 − (i− 1)2

=
n− 1

2

(
n−1∑
i=0

1

n− i+ 1
+

n−1∑
i=0

1

n+ i− 1

)

=
n− 1

2

(
n+1∑
i=1

1

i
+

2n−2∑
i=1

1

i
−
n−2∑
i=1

1

i
− 1

)

=
n− 1

2

(
2n−2∑
i=1

1

i
+

1

n− 1
+

1

n
+

1

n+ 1
− 1

)

>
n− 1

2
(H2n−2 − 1)

=
n− 1

2
[ln(2n− 2) +Θ(1)].

We conclude that E[X] = Θ(n log n). ut

Meet everybody. A single node u is initially in state

a and all other nodes are in state b. The only effective

transition is (a, b)→ (a, c). We study the time until all

bs become cs which is equal to the time needed for u to

interact with every other node.

Proposition 5 The expected time to convergence of a

meet everybody is Θ(n2 log n).

Proof Assume that in every step u participates in an in-

teraction. Then u must collect the n−1 coupons which

are n − 1 different nodes that it must interact with.

Clearly, in every step, every node has the same prob-

ability to interact with u, i.e., 1/(n − 1), and this is

the classical coupon collector problem that takes aver-

age time Θ(n log n). But on average u needs Θ(n) steps

to participate in an interaction, thus the total time is

Θ(n2 log n). ut

Node cover. All nodes are initially in state a. The

only effective transitions are (a, a) → (b, b), (a, b) →
(b, b). We are interested in the number of steps until all

nodes become bs, i.e., the time needed for every node

to interact at least once.

Proposition 6 The expected time to convergence of a

node cover is Θ(n log n).

Proof For the upper bound, simply observe that the

running time of a one-to-all elimination, i.e., Θ(n log n),

is an upper bound on the running time of a node cover.

The reason is that a node cover is a one-to-all elimina-

tion in which in some cases we may get two new bs by

one effective transition (namely (a, a)→ (b, b)) while in

one-to-all elimination all effective transitions result in

at most one new b.

For the lower bound, if i is the number of bs then the

probability of success is pi = 1−[i(i−1)]/[n(n−1)]. Ob-

serve now that a node cover process is slower than the

artificial variation in which whenever rule (a, b)→ (b, b)

applies we pick another a and make it a b. This is be-

cause, given i bs, this artificial process has the same

probability of success as a node cover but additionally

in every success the artificial process is guaranteed to

produce two new bs while a node cover may in some

cases produce only one new b. Define k = dn/2e + 1.

Then, taking into account what we already proved in

the lower bound of one-to-all elimination (see Proposi-

tion 4), we have

E[X] ≥ n(n− 1)

dn/2e∑
i=0

1

n(n− 1)− 2i(2i− 1)

=
n(n− 1)

4

k−1∑
i=0

1
n(n−1)

4 − 2i(2i−1)
4

=
n(n− 1)

4

k−1∑
i=0

1
n
2 (n2 − 1

2 )− i(i− 1
2 )

>
n(n− 1)

4

k−1∑
i=0

1

k(k − 1)− i(i− 1)

>
n(n− 1)

8k
(H2k−2 − 1) >

n− 1

8
(Hn − 1)

=
n− 1

8
[lnn+Θ(1)].

We conclude that E[X] = Θ(n log n). ut

Edge cover. All nodes are in state a throughout the

execution of the protocol. The only effective transition
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is (a, a, 0) → (a, a, 1) (we now focus on edge-state up-

dates), i.e., whenever an edge is found inactive it is

activated (recall that initially all edges are inactive).

We study the number of steps until all edges in EI be-

come activated, which is equal to the time needed for

all possible interactions to occur.

Proposition 7 The expected time to convergence of an

edge cover is Θ(n2 log n).

Proof Given that m = n(n−1)/2 and given that j suc-

cesses (i.e., j distinct interactions) have occurred the

corresponding probability for the coupon collector ar-

gument is pj = (m− j)/m and the expected number of

steps is E[X] =
∑m−1
i=0 m/(m − i) = m

∑m−1
i=0 1/(m −

i) = m
∑m
i=1 1/i = m(lnm + Θ(1)) = Θ(n2 log n). An-

other way to see this is to observe that it is a classi-

cal coupon collector problem with m coupons each se-

lected in every step with probability 1/m, thus E[X] =

m lnm+O(m) = Θ(n2 log n). ut

Table 1 summarizes the expected time to conver-

gence of each of the above fundamental probabilistic

processes.

Protocol Expected Time

One-way epidemic Θ(n log n)

One-to-one elimination Θ(n2)

Maximum matching Θ(n2)

One-to-all elimination Θ(n log n)

Meet everybody Θ(n2 log n)

Node Cover Θ(n log n)

Edge cover Θ(n2 log n)

Table 1 Our results for the expected time to convergence of
several fundamental probabilistic processes.

4 Constructing a Global Line

In this section, we study probably the most fundamen-

tal network-construction problem, which is the problem

of constructing a spanning line. Its importance lies in

the fact that a spanning line provides an ordering on

the processes which can then be exploited (as shown

in Section 6) to simulate a TM and thus to establish

universality of our model. We give two different proto-

cols for the spanning line problem, a simple (w.r.t. the

number of states) and a fast one.

We begin with a generic lower bound holding for all

protocols that construct a spanning network.

Theorem 1 (Generic Lower Bound) The expected

time to convergence of any protocol that constructs a

spanning network, i.e., one in which every node has at

least one active edge incident to it, is Ω(n log n). More-

over, this is the best lower bound for general spanning

networks that we can hope for, as there is a protocol

that constructs a spanning network in Θ(n log n) ex-

pected time.

Proof Consider the time at which the last edge is acti-

vated. Clearly, by that time, all nodes must have some

active edge incident to them which implies that every

node must have interacted at least once. Thus the run-

ning time is lower bounded by a node cover, which by

Proposition 6 takes an expected number of Θ(n log n)

steps.

Now consider the variation of node cover which in

every transition that is effective w.r.t. node-states addi-

tionally activates the corresponding edge. In particular,

the protocol consists of the rules (a, a, 0)→ (b, b, 1) and

(a, b, 0)→ (b, b, 1). Clearly, when every node has inter-

acted at least once, or equivalently when all as have

become bs, every node has an active edge incident to it,

and thus the resulting stable network is spanning. The

reason is that all nodes are as in the beginning, every

node at some point is converted to b, and every such

conversion results in an activation of the corresponding

edge. As a node-cover completes in Θ(n log n) steps,

the above protocol takes Θ(n log n) steps to construct

a spanning network. ut

We now give an improved lower bound for the par-

ticular case of constructing a spanning line.

Theorem 2 (Line Lower Bound) The expected time

to convergence of any protocol that constructs a span-

ning line is Ω(n2).

Proof Take any protocol A that constructs a spanning

line and any execution of A on n nodes. It suffices to

show that any execution necessarily passes through a

“bottleneck” transition 6, by which we mean a transi-

tion that requires Ω(n2) expected number of steps to

occur. The idea is that in any execution the set of active

edges eventually stabilizes (in this case, to a spanning

line), which implies that there is always a last activa-

tion/deactivation of an edge. We shall show that either

this last operation is a bottleneck transition or an im-

mediately previous operation is a bottleneck transition.

In both cases, any execution passes through a bottle-

neck transition, thus paying at that point an Ω(n2)

expected number of steps.

6 To the best of our knowledge, the term “bottleneck” to
characterize such types of slow transitions in the context of
population protocols, was first used in [CCDS14].
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Consider the step t at which A performed the last

modification of an edge. Observe that the construction

after step t must be a spanning line. We distinguish two

cases.

(i) The last modification was an activation. In this

case, the construction just before step t was either a

line on n−1 nodes and an isolated node or two disjoint

lines spanning all nodes. To see this, observe that these

are the only constructions that can be turned into a

line by a single additional activation. In the first case,

the probability of obtaining an interaction between the

isolated node and one of the endpoints of the line is

4/[n(n − 1)] and in the second the probability of ob-

taining an interaction between an endpoint of one line

and an endpoint of the other line is 8/[n(n−1)]. In both

cases, the expected number of steps until the last edge

becomes activated is Ω(n2).

(ii) The last modification was a deactivation. This

implies that the construction just before step t was a

spanning line with an additional active edge between

two nodes, u and v, that are not neighbors on the line.

If one of these nodes, say u, is an internal node, then u

has degree 3 and we can only obtain a line by deactivat-

ing one of the edges incident to u. Clearly, the probabil-

ity of getting one of these edges is 6/[n(n−1)] and it is

even smaller if both nodes are internal. Thus, if at least

one of u and v is internal, the expected number of steps

is Ω(n2). It remains to consider the case in which the

construction just before step t was a spanning ring, i.e.,

the case in which u and v are the endpoints of the span-

ning line. In this case, consider the step t′ < t of the

last modification of an edge that resulted in the ring.

To this end notice that all nodes of a ring have degree

2. If t′ was an activation then exactly two nodes had

degree 1 and if t′ was a deactivation then two nodes

had degree 3. In both cases, there is a single interac-

tion that results in a ring, the probability of success is

2/[n(n− 1)] and the expectation is again Ω(n2). ut

We proceed by presenting protocols for the spanning

line problem.

4.1 1st Protocol

We present now our simplest protocol (Protocol 1) for

the spanning line problem.

Theorem 3 Protocol Simple-Global-Line constructs a

spanning line. It uses 5 states and its expected running

time is Ω(n4) and O(n5).

Proof We begin by proving that, for any number of pro-

cesses n ≥ 2, the protocol correctly constructs a span-

ning line under any fair scheduler. Then we study the

Protocol 1 Simple-Global-Line

Q = {q0, q1, q2, l, w}
δ:

(q0, q0, 0)→ (q1, l, 1)

(l, q0, 0)→ (q2, l, 1)

(l, l, 0)→ (q2, w, 1)

(w, q2, 1)→ (q2, w, 1)

(w, q1, 1)→ (q2, l, 1)

// All transitions that do not appear have no effect

running time of the protocol under the uniform random

scheduler.

Correctness. In the initial configuration C0, all

nodes are in state q0 and all edges are inactive, i.e in

state 0. Every configuration C that is reachable from

C0 consists of a collection of lines and isolated nodes.

Additionally, every line has a unique leader which ei-

ther occupies an endpoint and is in state l or occupies

an internal node, is in state w, and moves along the

line. Whenever the leader lies on an endpoint of its

line, its state is l and whenever it lies on an internal

node, its state is w. Lines can expand towards isolated

nodes and two lines can connect their endpoints to get

merged into a single line (with total length equal to

the sum of the lengths of the merged lines plus one).

Both of these operations only take place when the cor-

responding endpoint of every line that takes part in the

operation is in state l. Figure 2 gives an illustration of

a typical configuration of the protocol.

We have to prove two things: (i) there is a set S of

output-stable configurations whose active network is a

spanning line, (ii) for every reachable configuration C

(i.e., C0  C) it holds that C  Cs for some Cs ∈ S.

For (i), consider a spanning line, in which the non-leader

endpoints are in state q1, the non-leader internal nodes

in q2, and there is a unique leader either in state l if

it occupies an endpoint or in state w if it occupies an

internal node. For (ii), note that any reachable config-

uration C is a collection of lines with unique leaders

and isolated nodes in state q0. We present a (finite) se-

quence of transitions that converts C to a Cs ∈ S. If

there are isolated nodes, take any line and if its leader is

internal make it reach one of the endpoints by selecting

the appropriate interactions. Then successively apply

the rule (l, q0, 0)→ (q2, l, 1) to expand the line towards

all isolated nodes. Thus we may now without loss of

generality (abbreviated “w.l.o.g.” throughout) consider

a collection of lines without isolated nodes. By succes-

sively applying the rule (l, l, 0) → (q2, w, 1) to pairs of

lines while always moving the internal leaders that ap-

pear towards an endpoint it is not hard to see that the
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q1
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q1
l

l q1
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q1

w q1
q1

q0 q0 q0

q0

q0

q0

q0

q0

q0

Fig. 2 This is a typical configuration of Protocol Simple-
Global-Line (after some time has passed). Lines with a w
internal-leader only wait until the random walk of w reaches
one endpoint and becomes an l leader. Lines with an l leader
can expand towards isolated nodes in state q0 or merge to
other such lines. An example of the latter is the interaction
over the dotted edge. The result will be the activation of
the edge (merging the two lines into a longer one) and the
replacement of the l leaders by a q2 and a w internal-leader
that will perform a random walk until it reaches one of the
two endpoints of the new line.

process results in an output-stable configuration from

S, i.e., one whose active network is a spanning line.

Running Time Upper Bound. For the running time

upper bound, we have an expected number of O(n2)

steps until progress is made (i.e., for another merging to

occur given that at least two l-leaders exist) and O(n4)

steps for the resulting random walk (walk of state w

until it reaches one endpoint of the line) to finish and

to have the system again ready for progress. The O(n4)

bound holds because we have a random walk on a line

with two absorbing barriers (see, e.g., [Fel68] pages 348-

349) delayed on average by a factor of O(n2). The delay

is O(n2) because there is a unique walking state on

one of the n nodes, so it is selected on average every n

steps. But, additionally, the state actually walks only if

it interacts with one of its (at most) two neighbors on

the line. As only 2 interactions over the Θ(n2) possible

interactions allow the state to walk, the walk is delayed

by a factor of O(n2). As progress must be made n − 2

times, we conclude that the expected running time of

the protocol is bounded from above by (n− 2)[O(n2) +

O(n4)] = O(n5).

We next prove that we cannot hope to improve the

upper bound on the expected running time by a better

analysis by more than a factor of n. For this, we first

prove that the protocol with high probability (abbre-

viated “w.h.p.” throughout) constructs Θ(n) disjoint

lines of length 1 during its course. A set of k disjoint

lines implies that k− 1 distinct merging processes have

to be executed in order to merge them all into a com-

mon line and each single merging results in the execu-

tion of another random walk. Based on these, we prove

the desired Ω(n4) lower bound.

Recall that initially all nodes are in q0. Every inter-

action between two q0-nodes constructs another line of

length 1. Call the random interaction of step i a suc-

cess if both participants are in q0. Let the r.v. R be

the number of nodes in state q0; i.e., initially R = n.

Note that, at every step, R decreases by at most 2,

which happens only in a success (it may also remain

unchanged, or decrease by 1 if a leader expands to-

wards a q0). Let the r.v. Xi be the number of successes

up to step i and X be the total number of successes

throughout the course of the protocol, that is, until at

least n − 1 q0s have been converted to something else.

Our goal is to calculate the expectation of X as this is

equal to the number of distinct lines of length 1 that the

protocol is expected to form throughout its execution

(note that these lines do not necessarily have to coex-

ist). Given R, the probability of success at the current

step is pR = [R(R−1)]/[n(n−1)] ≥ (R−1)2/n2. As long

as R ≥ (n/2) + 1 = z it holds that pR ≥ (n2/4)/n2 =

1/4. Moreover, as R decreases by at most 2 in every

step, there are at least (n − z)/2 = [(n/2) − 1]/2 =

(n/4) − 1/2 steps until R becomes less than or equal

to z. Thus, our process dominates a Bernoulli pro-

cess Y with (n/4) − 1/2 trials and probability of suc-

cess p′ = 1/4 in each trial. For this process we have

E[Y ] = [(n/4)− 1/2](1/4) = (n/16)− 1/8 = Θ(n).

We now exploit the following Chernoff bound (cf.

[MR95], page 70) establishing that w.h.p. Y does not

deviate much below its mean µ = E[Y ]:

Chernoff Bound. Let Y1, Y2, . . . , Yt be independent Pois-

son trials such that, for 1 ≤ i ≤ t, P[Yi = 1] = pi,

where 0 < pi < 1. Then, for Y =
∑t
i=1 Yi, µ = E[Y ] =∑t

i=1 pi, and 0 < δ < 1,

P[Y < (1− δ)µ] < exp(−µδ2/2).

Additionally, it holds that exp(−µδ2/2) = ε ⇔
δ =

√
2 ln 1/ε
µ . Thus exp(−µδ2/2) = n−c implies δ2 =

2c lnn
µ = 2c lnn

(1/8)(n/2−1) = 16c lnn
n/2−1 ⇒ δ =

√
16c lnn
n/2−1 ⇒

(1− δ)µ =
1

8

(
1−

√
16c lnn

n/2− 1

)(n
2
− 1
)

>
1

16

(
n− 2

√
cn lnn− 2

)
= Θ(n).

So, for all c = O(1),

P[Y <
1

16

(
n− 2

√
cn lnn− 2

)
] < n−c ⇒

P[Y ≥ 1

16

(
n− 2

√
cn lnn− 2

)
] > 1− n−c
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and as X dominates Y , we have P[X ≥ (1/16)(n −
2
√
cn lnn − 2)] > 1 − n−c. In words, w.h.p. we expect

at least k = (1/16)(n− 2
√
cn lnn− 2) = Θ(n) disjoint

lines of length 1 to be constructed by the protocol.

Now, let us focus on those executions, on a pop-

ulation of size n, that satisfy X ≥ k. Given such an

execution, consider the first time tmin at which (after a

merging or an expansion) there is a line L of length at

least k/4. If we denote by h the length of L at tmin, it

must also hold that h ≤ k/2−1, because the maximum

growth before time tmin is via a merging of two lines

both of length k/4 − 1, which (by also taking into ac-

count the new edge between them) gives length k/2−1.

Thus, we have k/4 ≤ h ≤ k/2− 1.

The total length due to lines of length 1 (ever to

appear) is at least k and, at tmin, L can have already

obtained at most h of this length. Therefore, at tmin
there is still a remaining length of at least k − h ≥
k − (k/2 − 1) = k/2 + 1 to get merged to L via j ≥ 1

distinct mergings. These mergings, and thus also the

resulting random walks, cannot occur in parallel as all

of them share L as a common participant (and a line can

only participate in one merging at a time). Let di denote

the length of the i-th line merged to L, for 1 ≤ i ≤ j.

If L has length d(L) just before the i-th merging, then

the expected duration of the resulting random walk is

n2 · d(L) · di and the new L resulting from merging will

have length d(L) + di. Let Y denote the duration of all

random walks, and Yi, 1 ≤ i ≤ j, the duration of the

i-th random walk. In total, the expected duration of all

random walks resulting from the j mergings of L is

E[Y ] = E[

j∑
i=1

Yi] =

j∑
i=1

E[Yi]

=

j∑
i=1

n2(h+ d1 + . . .+ di−1)di

≥ n2
j∑
i=1

hdi = n2h

j∑
i=1

di

≥ n2 · k
4
· (k

2
+ 1)

= n2 ·Θ(n) ·Θ(n)

= Θ(n4).

The second inequality follows from the fact that∑j
i=1 di = k − h ≥ k

2 + 1. We conclude that, in case

X ≥ k, the expected running time of the protocol is

Ω(n4).

Finally, for calculating the total expected running

time of the protocol, we take into account all possible

executions and not only those that satisfy X ≥ k. If

we define the r.v. W to be the total running time of

the protocol (until convergence), by the law of total

probability and for every constant c ≥ 1, we have that:

E[W ] = E[W | X ≥ k] · P[X ≥ k]+

E[W | X < k] · P[X < k]

≥ E[W | X ≥ k] · P[X ≥ k]

>

(
n2 · k

4
· (k

2
+ 1)

)
(1− n−c)

= n2 ·Θ(n) ·Θ(n) · (1− n−c)
= Θ(n4).

Thus, the expected running time of the protocol is

Ω(n4). ut

4.2 2nd Protocol

We now give our fastest protocol (Protocol 2) for the

global line construction. The main difference between

this and the previous protocol is that we now totally

avoid mergings as they seem to consume much time.

In fact, merging two lines of total length Θ(n) requires

Θ(n3) time as every step takes an average of Θ(n2)

time and if, for example, Θ(n) such mergings have to

be performed to obtain a spanning line, then the time-

complexity becomes Ω(n4), which is quite big.

We first give the intuition behind Protocol 2. As in

Protocol 1, when the leaders of two lines interact, one of

them becomes eliminated and the edge is activated. But

in contrast in Protocol 1, the leader that has survived

does not initiate a merging process. Instead, it steals a

node from the eliminated leader’s line and disconnects

the two new lines: its own line, which has increased

by one and is called awake, and the eliminated leader’s

line, which has decreased by one and is called sleeping.

In more detail, when two lines L1 and L2 interact via

their l-leader endpoints, one of the leaders, say w.l.o.g.

that of L2, becomes l′ and the other becomes q′2. We

can interpret this operation as expanding L1 on the

endpoint of L2 and obtaining two new lines (still at-

tached to each other): L′1 which is awake and L′2 which

is sleeping. Now, the l′-leader of L′1 waits to interact

with its neighbor from L′2 (which is either a q2 or a q1)

to deactivate the edge between them and disconnect L′1
from L′2. This operation leaves L′1 with an l′′-leader and

L′2 with a sleeping leader f1 (it can also be the case that

L′2 is just a single isolated f0, in case L2 consisted only

of 2 nodes). Then l′′ waits to meet its q′2 neighbor to

convert it to q2 and update itself to l. This completes

the operation of a line growing one step towards an-

other line and making the other line sleep. A sleeping

line cannot increase any more and only loses nodes to

lines that are still awake by a similar operation as the
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one just described. A single leader is guaranteed to al-

ways win and this occurs quite fast. Then the unique

leader does not need much time to collect all nodes

from the sleeping lines to its own line and make the

latter spanning.

Protocol 2 Fast-Global-Line

Q = {q0, q1, q2, q′2, l, l′, l′′, f0, f1}
δ:

(q0, q0, 0)→ (q1, l, 1)

(l, q0, 0)→ (q2, l, 1)

(l, l, 0)→ (q′2, l
′, 1)

(l′, q2, 1)→ (l′′, f1, 0)

(l′, q1, 1)→ (l′′, f0, 0)

(l′′, q′2, 1)→ (l, q2, 1)

(l, f0, 0)→ (q2, l, 1)

(l, f1, 0)→ (q′2, l
′, 1)

Theorem 4 Protocol Fast-Global-Line constructs a

spanning line. It uses 9 states and its expected running

time under the uniform random scheduler is O(n3).

Proof Correctness is straightforward. The configuration

is always a collection of awake (with a unique l, l′, or

l′′ leader) and sleeping (with a unique f1 leader) lines

and isolated nodes (either awake in q0 or sleeping in

f0). As long as there are at least two awake lines, even-

tually another line becomes sleeping, so eventually a

single awake line will remain with all other nodes being

sleeping (either part of a sleeping line or isolated). The

protocol ensures that an awake line can always grow

towards sleeping nodes (either by stealing them from

sleeping lines or by expanding towards isolated nodes),

so eventually the unique awake line will become span-

ning.

For the time analysis, observe first that in O(n2)

steps all q0s become something else. To see this let the

r.v. X be the total number of steps until all q0s disap-

pear and let the r.v. Xi be the number of steps between

the ith and the (i+ 1)st interaction between two nodes

in state q0 (assume no other interactions can change the

state of a q0). Let pi = [(n− 2i)(n− 2i− 1)]/[n(n− 1)]

be the probability that such an interaction occurs.

Then E[Xi] = 1/pi = Θ(n2/(n − i)2) and E[X] '
n2
∑n/2
i=1 1/(n − i)2 = Θ(n2). The last equation fol-

lows from the fact that
∑n/2
i=1 1/(n − i)2 ≤ ∑n2

i=1 1/i −∑(n/2)2

i=1 1/i ' 2 lnn+Θ(1)−2 lnn+2 ln 2−Θ(1) = O(1),

i.e., it is bounded. Finally, observe that q0s that become

leaders can also turn other q0s to something else thus

the actual expectation is in fact O(n2) (i.e., what we

have ignored can only help the process end faster).

Now notice that after this O(n2) time we have a set

of at most O(n) leaders and no new leader can ever ap-

pear. Moreover, in every interaction between two lead-

ers only one survives and the other becomes a follower.

Clearly, a single leader must win all the pairwise games

in which it will participate. Consider that leader and

observe that it takes it an average of n2 steps to par-

ticipate to another game in the worst case and another

n2 steps to win it. As it may have to eliminate up to

O(n) other leaders, in O(n3) steps on average there is a

unique leader and every other node is either isolated in

state f0 or part of a line that has a unique follower f1.

Every interaction of a leader with a follower increases

the length of the leader’s line by 1 in O(n2) steps. Thus

an increment occurs every O(n2) steps as the leader

needs O(n2) steps to meet a follower and then O(n2)

steps to increase by 1 towards that follower. As the

leader needs to make at most O(n) increments to make

its own line global, we conclude that the expected time

for this to occur is O(n) ·O(n2) = O(n3). ut

5 Other Basic Constructors

In this section, we present direct constructors and

some lower bounds for several other basic network con-

struction problems (defined in Section 3.2). We have

analyzed the running times of most of our protocols.

Those missing are left as open problems.

Cycle Cover

Protocol 3 Cycle-Cover

Q = {q0, q1, q2}
δ:

(q0, q0, 0)→ (q1, q1, 1)

(q1, q0, 0)→ (q2, q1, 1)

(q1, q1, 0)→ (q2, q2, 1)

Theorem 5 Protocol Cycle-Cover constructs a cycle

cover with waste 2 (i.e., a cycle cover on a subset of VI
of n − 2 nodes). It uses 3 states, its expected running

time under the uniform random scheduler is Θ(n2), and

it is optimal w.r.t. time.

Proof The protocol preserves the following invariant:

the degree of a node in state qi, 0 ≤ i ≤ 2, is i. More-

over, all interactions (qi, qj , 0) with i, j ∈ {0, 1} result

in (qi+1, qj+1, 1), that is, in an activation and a corre-

sponding increase in the recorded degrees. As a result,

as long as there are at least two disconnected nodes
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with degrees smaller than two, these two nodes can be-

come connected. It follows that any component with at

least three nodes eventually becomes a cycle and in the

final stable configuration there can be at most one com-

ponent that is not a cycle: either an isolated node, or

two nodes connected by an active edge. So, the waste

is indeed 2.

Note that the protocol stabilizes when at least n−2

nodes have become q2 (the rest is the waste which con-

sists of at most 2 nodes). In O(n2) time (by dominating

a maximum matching) all q0s have become q1 and in

another O(n2) steps all q1s have become q2s. We now

give a lower bound that holds for any protocol that con-

structs a cycle cover, so we have to also take into ac-

count the possibility that the protocol deactivates some

edges (even though our protocol never does this). To

this end, consider the last edge modification that ever

occurs. Due to the symmetry of cycle cover, both if it

was an activation or a deactivation only a single edge

satisfies the fact that after its activation or deactivation

we get a cycle cover, which requires Θ(n2) rounds. ut

Global Star

Theorem 6 (Star Lower Bound) Any protocol that

constructs a spanning star has at least 2 states and its

expected time to convergence is Ω(n2 log n).

Proof Clearly, with a single state we cannot make the

necessary distinction of a center and a peripheral node.

More formally, if there is a single state q0 then (q0, q0, 0)

must necessarily activate the edge (otherwise no edges

will be ever activated) which implies that eventually all

edges will become activated, i.e., instead of a star we

will end up with a global clique. So every protocol that

constructs a global star must have at least 2 states.

For the lower bound on the expected running time

we argue as follows. Take any execution of a protocol

that constructs a global star. Consider the node u that

will become the center in that execution. When the ex-

ecution stabilizes, u must be connected to every other

node by an active edge. This implies that u must have

interacted with every other node. Clearly, the time it

takes for the eventually unique center, u in this case,

to meet every other node is a lower bound on the total

running time. This is a meet everybody that, as proved

in Proposition 5, takes Θ(n2 log n) time. ut

Protocol 4 Global-Star

Q = {c, p}, q0 = c
δ:

(c, c, 0)→ (c, p, 1)

(p, p, 1)→ (p, p, 0)

(c, p, 0)→ (c, p, 1)

Theorem 7 Protocol Global-Star constructs a span-

ning star. It uses 2 states and its expected running time

under the uniform random scheduler is O(n2 log n),

which is optimal both w.r.t. size and time.

Proof Correctness. At any given time during the execu-

tion of the protocol, a node may be playing one of the

following two roles: a center (state c) or a peripheral

(state p). The unique output-stable configuration Cf
whose active network is a spanning star, has one cen-

ter and n− 1 peripheral nodes, and a uv edge is active

iff one of u, v is the center. Initially all nodes are cen-

ters. When two centers interact one of them remains a

center and the other becomes a peripheral. No other in-

teractions eliminate a center, which implies that not all

centers can be eliminated, and once a center becomes a

peripheral it can never become a center again. Due to

fairness, eventually all pairs of centers will interact and,

as no new centers appear, eventually a single center will

remain. Thus from some point on there is a single cen-

ter and n − 1 peripheral nodes. The idea from now on

is that c-p attract while p-p repel. In particular, rule

(c, p, 0) → (c, p, 1) guarantees that any inactive edges

joining the center to the peripherals will become acti-

vated and rule (p, p, 1) → (p, p, 0) guarantees that any

active edges joining two peripherals will become deacti-

vated. At the same time active edges between the center

and the peripherals remain active and inactive edges

between two peripherals remain inactive. This clearly

leads to the construction of a spanning star.

Running Time. Forget for a while the edge updates

and consider the rule (c, c) → (c, p), which is the only

effective interaction of the protocol w.r.t. the states of

the nodes. We are interested in the time needed for a

single c to remain. This is clearly an original application

of one-to-one elimination and as proved in Proposition

2 it takes Θ(n2) time.

Notice now that once the states of the nodes have

stabilized, the constructed network will for sure stabi-

lize to a global star after all p-nodes have interacted

with each other in order to deactivate any active edges

between them and after the c has interacted with all

ps in order to activate any inactive edges, i.e., after

all pairs of interactions have occurred. This is an edge

cover that, as proved in Proposition 7, takes Θ(n2 log n)
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time. Thus the total expected running time is at most

Θ(n2) +Θ(n2 log n) = Θ(n2 log n). ut

Global Ring

Theorem 8 (Ring Lower Bound) The expected

time to convergence of any protocol that constructs a

spanning ring is Ω(n2).

Proof Take any protocol A that constructs a spanning

ring and any execution of A on n nodes. Consider the

step t at which A performed the last modification of an

edge. Observe that the construction after step t must

be a spanning ring. We distinguish two cases.

(i) The last modification was an activation. It fol-

lows that the previous active network should be a span-

ning line u1, u2, . . . , un. But the only activation that can

convert this spanning line into a spanning ring is u1un
which occurs with probability 2/[n(n − 1)], i.e., in an

expected number of Θ(n2) steps.

(ii) The last modification was a deactivation. It fol-

lows that the previous active network should be a span-

ning ring u1, u2, . . . , un, u1 with an additional active

edge uiuj for 1 ≤ i < j ≤ n and j 6= i+1 (i.e., a chord).

Clearly, the only interaction that can convert such an

active network into a spanning ring is uiuj which takes

an expected number of Θ(n2) steps to occur. ut

Protocol 5 Global-Ring

Q = {q0, q1, q2, l, w, l′, l′′, q′2, q′′2 , l̄}
δ:

// normal behavior begins only after a line has length

// 2 (edges)

(q0, q0, 0)→ (q1, l̄, 1)

(x, q0, 0)→ (q2, l, 1), for x ∈ {l, l̄}
// merging: random walk of a w-leader begins

(x, y, 0)→ (q2, w, 1), for x, y ∈ {l, l̄}
(w, q2, 1)→ (q2, w, 1)

(w, q1, 1)→ (q2, l, 1)

// l connecting to a q1 endpoint, possibly turning its

// own line to a cycle

(l, q1, 0)→ (l′, q′2, 1)

// another component detected: a closed cycle must open

(x′, y, 0)→ (x′′, y, 0), for x ∈ {l, q2}, y ∈ {l, l̄, w, q1, q0}
(x′, y′, 0)→ (x′′, y′′, 0), for x ∈ {l, q2}, y ∈ {l, q2}
// opening closed cycles

(l′′, q′2, 1)→ (l, q1, 0)

(l′, q′′2 , 1)→ (l, q1, 0)

(l′′, q′′2 , 1)→ (l, q1, 0)

Theorem 9 Protocol Global-Ring (see Protocol 5)

constructs a spanning ring. 7

Proof The protocol is essentially the same as the

Simple-Global-Line protocol (Protocol 1) but addition-

ally we allow the endpoints of a line to become con-

nected. This occurs whenever one endpoint is in state l

and the other is in state q1 and the two endpoints inter-

act. In this case, rule (l, q1, 0) → (l′, q′2, 1) applies and

the two endpoints become blocked. If any of the two

endpoints detects the existence of another component,

then, in the next interaction between them, the two

endpoints backtrack, by which we mean that they deac-

tivate the connection between them and both become

unblocked again by returning to their original states.

The existence of another component can be eventually

detected due to the fact that every component is either

an isolated node in state q0 or has at least one leader.

Now take an arbitrary reachable configuration C

with at least 2 components. We may w.l.o.g. assume

that C has no blocked nodes, as if it has there is a se-

quence of interactions that unblocks them all. Thus, as

in the Simple-Global-Line protocol we have a collection

of lines and isolated nodes. This may very well lead to

the formation of a spanning line with a single leader.

It is now clear that at some point the leader will oc-

cupy one endpoint of the line, will interact with the

other endpoint, the spanning line will close to form a

spanning ring and the previous endpoints will become

blocked. As there is a single component in the network,

these two nodes will remain blocked forever and there-

fore the constructed ring is stable.

Finally, observe that we have not allowed a line to

participate to the normal operation of the protocol until

its length becomes 2 (edges). In particular, we have

not allowed the existence of lines consisting of a single

edge with endpoints q1 and l. The reason is that such

lines could connect to each other, forming chains of the

form q′2, l
′, q′2, l

′, q′2, l
′, . . .. In such a chain, all q′2s will

eventually become q′′2 and all l′s will become l′′. So,

it is possible for an l′′ to disconnect from the q′′2 of its

original line (as it cannot distinguish between its two q′′2
neighbors) and this may result in isolated l-leaders and

blocked lines consisting of a single edge with endpoints

l′′ and q1. In such a case, the protocol would not manage

to form a spanning ring. Actually, this was the bug of

[MS14] that has now been fixed. ut

Global Ring: A Generic Approach

7 We should remark that the corresponding protocol in
[MS14] contained a small error (making it fail to construct
a ring in a small fraction of its executions) that was detected
via experimentation and fixed in this journal version.
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We now follow an alternative approach (Protocol 6)

for the global ring problem, mainly because it can be

generalized to a protocol for the k-regular connected

problem. We present the generalization for the latter

problem in the sequel (Protocol 7).

Protocol 6 2RC

Q = {q0, q1, q2, l1, l2, l3}
δ:

(q0, q0, 0)→ (q1, l1, 1)

(q1, q0, 0)→ (q2, q1, 1)

(q1, q1, 0)→ (q2, q2, 1)

(l1, l1, 0)→ (l2, q2, 1)

(l1, qi, 0)→ (q2, li+1, 1), for i ∈ {0, 1}
// swapping: leaders keep moving inside components

(li, qj , 1)→ (qi, lj , 1), for i, j ∈ {1, 2}
// leader elimination: eventually a single leader will

// remain in every component

(li, lj , 1)→ (qi, lj , 1), for i, j ∈ {1, 2}
// opening cycles in the presence of other components

(l2, q0, 0)→ (l3, q1, 1)

(l2, l1, 0)→ (l3, q2, 1)

(l2, l2, 0)→ (l3, l3, 1)

(l3, q1, 1)→ (l2, q0, 0)

(l3, q2, 1)→ (l2, l1, 0)

(l3, l1, 1)→ (l2, q0, 0)

(l3, l2, 1)→ (l2, l1, 0)

(l3, l3, 1)→ (l2, l2, 0)

Theorem 10 Protocol 2RC (see Protocol 6) constructs

a connected spanning 2-regular network (i.e., a span-

ning ring).

Proof Sketch The set S of output-stable configurations

whose active network is a spanning ring consists of those

configurations that have one node in state l2 and all

other nodes in state q2. The index of a state indicates

the number of active neighbors of a node. A first goal

is for all nodes to have degree 2 which implies a cycle

cover, i.e., a partitioning of the nodes into disjoint cy-

cles. The protocol achieves this by allowing every node

with degree smaller than 2 to increase its degree. The

final goal is to end up with a unique spanning ring. To

achieve this, the protocol allows nodes with degree 2 to

drop an existing neighbor and pick a new one provided

that there are at least 2 components in the network.

Clearly, this implies that any closed cycle coexisting

with other components, which are cycles, lines, or iso-

lated nodes, may open to form a line. As any collection

of lines and isolated nodes can always be merged to a

global line and any global line can close to form a global

ring, the theorem follows. ut

Generalizing to k-Regular Connected

Protocol 7 kRC

Q = {q0, q1, . . . , qk, l1, l2, . . . , lk+1}, i.e., |Q| =
2(k + 1)
δ:

(q0, q0, 0)→ (q1, l1, 1)

(qi, qj , 0)→ (qi+1, qj+1, 1), for 1 ≤ i < k and j < k

(li, lj , 0)→ (li+1, qj+1, 1), for 1 ≤ i, j < k

(li, qj , 0)→ (qi+1, lj+1, 1), for 1 ≤ i < k and j < k

// swapping: leaders keep moving inside components

(li, qj , 1)→ (qi, lj , 1), for 1 ≤ i, j ≤ k
// leader elimination: eventually a single leader will

// remain in every component

(li, lj , 1)→ (qi, lj , 1), for 1 ≤ i, j ≤ k
// opening k-regular components in the presence of

// other components

(lk, q0, 0)→ (lk+1, q1, 1)

(lk, li, 0)→ (lk+1, qi+1, 1), for 1 ≤ i < k

(lk, lk, 0)→ (lk+1, lk+1, 1)

(lk+1, q1, 1)→ (lk, q0, 0)

(lk+1, qi, 1)→ (lk, li−1, 0), for 2 ≤ i ≤ k
(lk+1, li, 1)→ (lk, li−1, 0), for 1 ≤ i ≤ k

(lk+1, lk+1, 1)→ (lk, lk, 0)

Using almost the same ideas as in the proof of The-

orem 10, one can prove the following.

Theorem 11 For every fixed integer k ≥ 2 and pop-

ulation of size n ≥ k + 1, Protocol kRC (see Protocol

7) constructs a connected spanning network in which at

least n− k + 1 nodes have degree k and each of the re-

maining l ≤ k− 1 nodes has degree at least l− 1 and at

most k − 1.

It is interesting to point out that the number of

states can be substantially reduced in some cases by

relying on the computability of the target-degree k.

For an example, we show that we can make a node

u obtain 2d neighbors by using only 2(d + 2) states,

for all fixed integers d. Node u is initially in state

q0 and all other nodes are in state a0. The protocol

is (q0, a0, 0) → (q′0, a1, 1), (q′0, a0, 0) → (q, a1, 1),

(q, ai, 1) → (qi+1, ai+1, 1), (qj , a0, 0) → (q, aj , 1) for all

1 ≤ i ≤ d − 1, 2 ≤ j ≤ d. Note that u initially collects

2 neighbors (by activating edges) which go to state a1.

Then for every a1 neighbor that it encounters it makes

it an a2 and collects another neighbor which goes to

state a2. Eventually both a1 neighbors will become a2
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and there will be another 2 neighbors in state a2, so in

total 4 a2 neighbors. This process is repeated d times

(the 4 a2s will become 8 a3s, and so on), each time

doubling the number of neighbors, thus eventually u

will have obtained 2d neighbors. The protocol uses

only 2(d + 1) states for the indices of the qis and the

ais and another 2 states, namely q and q′0. Clearly, it

follows that the target-degree of the nodes is not a

lower bound on the size of the protocol.

Many Small Components

We show here how to partition the population into

small cliques. This construction is of special value as

such a partitioning may serve as a means of maintain-

ing non-interfering clusters. In particular, given such a

partitioning, we can easily have a node u perform effec-

tive interactions only with nodes belonging to the same

component as u. This can be easily determined by the

state of the connection between the interacting nodes.

Theorem 12 For every fixed positive integer c, Proto-

col c-Cliques constructs bn/cc cliques of order c each.

Proof Sketch The protocol tries to construct bn/cc
components of order c, each having a unique leader

(states li, for i ≥ 1, l̄j , l, and l′j) directly connected

to c − 1 followers (states f , i ∈ {1, 2, . . . , c − 1}, and

fj). This is done via c − 2 successive applications of

rule (li, l0, 0) → (li+1, f, 1) and then a single applica-

tion of rule (lc−2, l0, 0) → (l̄1, 1, 1). The role of state

l̄i is to convert its c − 2 remaining state-f followers

to state-1 followers, via c − 3 successive applications

of rule (l̄i, f, 1) → (l̄i+1, 1, 1) and then a single appli-

cation of rule (l̄c−2, f, 1) → (l, 1, 1). Then each state-i

follower, for 1 ≤ i < c − 1, tries to become connected

to the other c − 1 followers of the component via rule

(i, j, 0) → (i + 1, j + 1, 1). As it cannot distinguish the

followers of its component from the followers of other

components, several of these connections may be wrong.

It suffices to prove that the protocol recognizes

wrong connections and deactivates them. Then, as fol-

lowers always try to make their degree c − 1 when it

is still less than c − 1 and as wrong connections be-

tween different components are always corrected, it fol-

lows (by fairness) that eventually each component will

become a clique (having only correct connections). At

that time, no new connections may be created and no

existing connection can be deactivated (as they are all

correct), and the correctness of the protocol follows.

To recognize erroneous connections, the leader of a

component constantly visits the followers of its compo-

nent, via rule (l, i, 1)→ (r, l′i, 1), and checks any active

connections that it may encounter during its stay. The

Protocol 8 c-Cliques

Q = {l0, l1, . . . , lc−2, f1, . . . , fc−2, f, l̄0, . . . , l̄c−2, l,
1, 2, . . . , c− 1, l′1, . . . , l

′
c−1, r}, q0 = l0

δ:

// for i = 0, a new component initiated; for i ≥ 1, a

// leader tries to increase the size of its component to

// c by attracting isolated nodes to its neighborhood

(li, l0, 0)→ (li+1, f, 1), if 0 ≤ i < c− 2

→ (l̄1, 1, 1), if i = c− 2

// nondeterministic elimination of incomplete components

// to avoid deadlock of all components having size < c

(li, lj , 0)→ (li+1, fj , 1), if j ≤ i < c− 2

→ (l̄0, fj , 1), if i = c− 2

(fi, f, 1)→ (fi−1, l0, 0), if i > 1

→ (f, l0, 0), if i = 1

// the leader of a component with c nodes begins to

// inform its followers to connect to other followers

(l̄i, f, 1)→ (l̄i+1, 1, 1), if i < c− 2

→ (l, 1, 1), if i = c− 2

// followers keep track of their number of connections

(i, j, 0)→ (i+ 1, j + 1, 1), if i < c− 1 and j < c− 1

// a leader temporarily takes the place of a follower

// in order to check for wrong connections

(l, i, 1)→ (r, l′i, 1)

// two leaders deactivating a wrong connection joining

// distinct components

(l′i, l
′
j , 1)→ (l′i−1, l

′
j−1, 0)

// the leader returns to its original position nonde-

// terministically, after performing 0 or more checks

(l′i, r, 1)→ (i, l, 1)

duration of its stay is nondeterministic, as it depends

on the chosen interactions. In particular, the leader re-

turns to its original position nondeterministically via

rule (l′i, r, 1) → (i, l, 1), in order to avoid waiting for-

ever in case there are no connections to be fixed. If,

instead, during its stay it encounters another leader

over an active connection, then this is clearly a con-

nection between different components and the leaders

deactivate that connection and decrease the counters

of the corresponding followers. This is done via rule

(l′i, l
′
j , 1) → (l′i−1, l

′
j−1, 0). Clearly, by fairness, every

wrong connection will eventually be selected for inter-

action while having a leader in each of its endpoints.

Finally, note that correct connections (between nodes

of the same component) are never deactivated as at any

time at most one of their endpoints may be occupied

by a leader. ut
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Replication

We now study the related problem of replicating

a given input graph G1 = (V1, E1). Let V2 = VI\V1
be the set of the remaining nodes. A protocol must

construct on V2 a replica G2 of G1, thus it must hold

that |V2| ≥ |V1|. In what follows, we assume that nodes

in V1 are in different initial states than nodes in V2. In

particular, we use q0 and r0 as the initial states of nodes

in V1 and V2, respectively. Additionally, E1 is defined

by the active edges between nodes in V1. We assume

that G1 is connected.

We present a very simple protocol (Protocol 9)

which, by exploiting the election of a unique leader,

successfully copies G1 on any V2 satisfying |V2| ≥ |V1|.
The protocol never introduces waste in V2. Actually, it

always modifies the state of precisely |V1| nodes from V2
always leaving the remaining |V2| − |V1| nodes of V2 to

their initial states. Note that, unlike all other protocols

in this section, this one is a randomized protocol.

Initially, all nodes of V1 are in q0 and all nodes of

V2 are in r0. The protocol matches every node of V1
to a distinct node of V2 (that is, creates a maximum

matching between the two sets) and in parallel it starts

pairwise eliminations between leaders, that is, when

two leaders (nodes in state l) interact one of them sur-

vives (i.e., remains l) and the other becomes a follower

(state f). Eventually the protocol ends up with a unique

leader and |V1| − 1 followers. Moreover, when a leader

and a follower meet they swap their states with prob-

ability 1/2. With the remaining 1/2 probability they

become either la, fa or ld, fd depending on whether the

edge joining them was active or inactive, respectively.

In both cases they mark their matched nodes from V2
to either activate or deactivate the edge between them

in V2 accordingly. Once there is a unique leader, the

leader moves nondeterministically over the nodes of V1
and again nondeterministically applies this copying pro-

cess on the edges of E1. Thus it will eventually apply

this copying process to all edges of E1 and as there are

no conflicts with other activations/deactivations (as no

other leaders exist) G2 eventually becomes isomorphic

to G1. Finally, note that the active edges of the match-

ing between V1 and V2 are never deactivated but this is

not a problem, provided that Qout = {r, ra, rd}, as ev-

ery such edge uv has an endpoint u ∈ V1 in a state from

Q\Qout and is not considered as part of the output.

Theorem 13 Protocol Graph-Replication constructs

a copy of any connected input graph G1 = (V1, E1) with

no waste. It uses 12 states and its expected running time

under the uniform random scheduler is Θ(n4 log n).

Protocol 9 Graph-Replication

Q = {q0, r0, l, la, ld, f, fa, fd, r, ra, rd, r′}
δ:

// matching every u ∈ V1 to a distinct v ∈ V2

(q0, r0, 0)→ (l, r, 1)

// leader election in V1

(l, l, x)→ (l, f, x)

// a non-edge (inactive) of G1 detected: with prob.

// 1/2 copying to G2 initiated and with prob. 1/2

// the leader l continues its random walk in V1

(l, f, 0)
1/2→ (ld, fd, 0)

1/2→ (f, l, 0)

// an edge (active) of G1 detected: with prob. 1/2

// copying to G2 initiated and with prob. 1/2 the

// leader l continues its random walk in V1

(l, f, 1)
1/2→ (la, fa, 1)

1/2→ (f, l, 1)

// informing the matched nodes from V2 to apply copying

(xi, r, 1)→ (xi, ri, 1), for x ∈ {l, f} and i ∈ {a, d}
// an activation copying applied in G2

(ra, ra, ·)→ (r′, r′, 1)

// a deactivation copying applied in G2

(rd, rd, ·)→ (r′, r′, 0)

// informing the matched nodes from V1 that the

// requested copying has been performed; as long as

// there are more than one leaders, copying may have

// been performed on a wrong pair of nodes of V2

(r′, xi, 1)→ (r, x, 1), for x ∈ {l, f} and i ∈ {a, d}
// leader election applies also to las and lds in

// order to prevent blocking

(li, l, x)→ (li, f, x), for i ∈ {a, d}
(li, lj , x)→ (li, fj , x), for i, j ∈ {a, d}

Proof First observe that the maximum matching be-

tween V1 and V2 is eventually constructed. The reason

is that any node can only be matched once, because

when a q0 is matched to an r0 both change states to

l and r, respectively (so they cannot be matched any

more). Moreover, as long as a q0 or an r0 has not been

matched, it does not change state so it remains forever

a candidate for matching. Then |V2| ≥ |V1| and fairness

imply that eventually the matching becomes maximum,

i.e., each u ∈ V1 is matched to a distinct v ∈ V2. Note

also that there are always |V2| − |V1| ≥ 0 nodes of V2
that will never participate in the protocol, because all

v ∈ V2 are initially in r0, an r0 can only participate if it

encounters a q0, but any such encounter decreases the

number of q0s by one (and no new q0s are never cre-

ated). Clearly, after the first |V1| such encounters there
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are no q0s left, therefore |V2| − |V1| nodes of V2 cannot

participate in the protocol any more. So, we can w.l.o.g.

restrict our analysis to the special case of populations

in which |V1| = |V2|. For this protocol, correct copying

for |V2| = |V1| implies correct copying for all |V2| ≥ |V1|
and also implies that the waste (from V2) is indeed zero,

as every graph can be copied in the absence of auxiliary

nodes. In what follows, we assume that |V1| = |V2|. Note

that, in this case, the constructed matching between V1
and V2 is actually a perfect matching.

Assume now that there is a unique leader in V1 in

state l, all other nodes in V1 are in state f , all nodes

in V2 are in state r, and there is an arbitrary active

graph on V2. We prove that the graph of V2 eventually

becomes isomorphic to G1. Take any edge u′v′, where

u′, v′ ∈ V2 and let u, v be their corresponding matched

nodes from V1. The unique leader l performs a random

walk on the nodes of V1 and fairness guarantees that the

following must eventually occur: l reaches one of u, v,

say u, its next interaction is with v (which is in state f),

and it is a non-swapping interaction. The result of the

interaction is then that u goes to li and v to fi where

i ∈ {a, d} represents the state of uv. From that point on

the following “deterministic” operations occur: u′ and

v′ will eventually interact with their matched nodes and

will both go to state ri, and then they will eventually

interact with each other and will activate or deactivate

u′v′ depending on i. In both cases, u′v′ copies the state

of uv. This proves that any u′v′ will eventually copy the

value of its corresponding edge uv. The claim follows by

observing that, given that V1 has a unique leader, once

a u′v′ has the same state as uv it cannot change state

any more.

Next observe that indeed eventually a unique leader

leader remains in V1. After it has been matched (which

eventually occurs), a node of V1 can only be in one of

the states l, li, f, fi. As long as there are at least two

leaders, there is always an interaction that eliminates

one of them. So, it remains to show that the system will

eventually reach a configuration, as described above, in

which all other nodes in V1 are in state f and all nodes

in V2 are in state r. Clearly, any remaining fi has a

corresponding ri (if, instead, it has an r′ then there is

an eventual interaction between them that will convert

them to f and r, respectively, so we need not consider

this case). If the fi, ri pairs are even, then each ri will

eventually meet another ri, which will make them both

r′, and their corresponding fis will become converted

to fs (this holds regardless of the additional ris intro-

duced by the unique leader, since they always come in

pairs). So, the only case remaining to consider is the

one in which there is an odd number of ris. In this

case, however, there must also be an odd number of fis

that have not yet informed their matched nodes, due

to the following invariant: the number of ris plus the

number of rs with an xi matched node is always even.

So, again, eventually every ri will have another ri to

interact with.

Now, for the running time we consider three phases:

the matching formation, the leader election, and the

unique-leader replication.

The matching formation phase begins from step 1

and ends when the last q0 becomes l, i.e., when all nodes

in V1 have been matched to the nodes of V2. It is not

hard to see that the probability of the ith edge of the

matching to be established (given (i − 1) established

matches) is pi = [2(n/2− i)2]/[n(n− 1)] and the corre-

sponding expectation is E[Xi] = 1/pi = Θ(n2/(n−i)2).

Then similarly to the coupon collector’s application in

the running time of Protocol Fast-Global-Line in The-

orem 4 we have that the expected running time of this

phase is E[X] = Θ(n2).

An almost identical analysis yields that the ex-

pected running time of the leader election phase is also

Θ(n2).

Thus, it remains to estimate the time it takes for

the unique leader to copy every edge of E1. Given

that the leader has marked the endpoints of a partic-

ular edge of E1 then copying and restoring the state

of the leader takes on average Θ(n2) time (as a con-

stant number of particular interactions must occur and

each one occurs with probability 1/n2). Now we con-

sider the time for copying as constant and try to esti-

mate the time it takes for the leader to “collect” (i.e.,

visit and mark) all edges of E1. Assume also that the

leader is selected in every step to interact with one

of its neighbors (the truth is that it is selected every

Θ(n) steps on average). If pe is the probability that

a specific edge e is selected after two subsequent in-

teractions then pe ' (1/n)(1/2)(1/n)(1/2) = Θ(1/n2),

where (1/n)(1/2) is the probability that the leader in-

teracts with and decides to move on one endpoint of

e and (1/n)(1/2) the probability that it then inter-

acts with and decides to mark the other endpoint of

e. Let the r.v. Yi be the number of steps between the

(i−1)th and ith edge collected and pi be the probability

of a success in two consecutive steps of the ith epoch.

Clearly, pi ' (n2 − i)/n2, E[Yi] = 1/pi = n2/(n2 − i),
and E[Y ] = E[

∑n2−1
i=0 Yi] = n2

∑n2−1
i=0 1/(n2 − i) =

n2
∑n2

i=1 1/i = Θ(n2 log n). Thus, provided that the

leader always interacts and that every copying that it

performs takes constant time, the expected time until

the unique-leader replication phase ends is Θ(n2 log n).

Now, notice that on average it takes Θ(n) steps for the

leader to interact and that in half of its interactions

the leader performs a copying that takes Θ(n2) steps to
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complete. That is, each of the above Θ(n2 log n) steps

is charged on average by n and half of them are charged

by n2, i.e., half of the steps are charged by Θ(n) and

the other half are charged by n2 + n = Θ(n2). We con-

clude that the expected running time of the unique-

leader replication phase is Θ(n3 log n) + Θ(n4 log n) =

Θ(n4 log n). This is clearly the dominating factor of the

total running time of the protocol. ut
Table 2 summarizes all upper and lower bounds that

we established in Sections 4 and 5.

6 Generic Constructors

In this section, we ask whether there is a generic con-

structor capable of constructing a large class of net-

works. We answer this in the affirmative by presenting

(i) constructors that simulate a Turing Machine (TM)

and (ii) a constructor that simulates a distributed sys-

tem with names and logarithmic local memories. Let

us denote by l the binary length of the input of a TM

and by n the size of a population. All of our protocols

construct a random graph G on Θ(n) nodes and use

the remaining nodes (and in one case also the edges be-

tween them) to simulate a TM on input G. Thus, due

to the fact that G is provided to the TM in adjacency

matrix encoding, in what follows it always holds that

the input of the TM has size Θ(n2), i.e., it happens that

l = Θ(n2). This allows us to use in all of our theorems

Θ(n2) in place of l and avoid any confusion that could

result by presenting them in terms of two parameters, l

and n. Moreover, it is also useful to keep in mind that

the TM can use space at most O(n2), as this is the to-

tal distributed memory available (including nodes and

edges).

We now briefly describe the main idea behind all of

our generic constructors that simulate a TM (see also

Figure 3). Assume that we are given a decidable graph-

language L and we are asked to provide a NET that

constructs L. The NET that we give works as follows:

1. It constructs on k of the nodes a network G1 capable

of simulating a TM and of constructing a random

network on the remaining n − k nodes. Let V1 ⊆
V be the set of the k nodes and V2 = V \V2 the

set of the remaining n − k nodes. G1 is usually a

sufficiently long line or a bounded degree network

as these networks can be operated as TMs. A line

also serves as a measure of order as we can match a

line of length k with k other nodes and by exploiting

the ordering of the line we may achieve an ordering

of the other nodes.

2. The NET exploits G1 to construct a random net-

work on V2. The idea is to exploit the structure of

G1 so that it can perform a random coin tossing on

each edge between nodes of V2 exactly once. In this

manner, it constructs a random network G2 from

Gn−k,1/2 on the nodes of V2 (if required, recall the

definition of the Gn,p random graph model from a

footnote of Section 1). It is worth noting that all

networks of Gn−k,1/2 have an equal probability to

occur and this results in an equiprobable construc-

tor (the only exception to this is the constructor

of Theorem 17, which doesn’t produce all networks

with the same probability).

3. The NET simulates on G1 the TM that decides L

with G2 as its input. The only constraint is that the

space used by the TM should be at most the space

that the constructor can allocate in G1. If the TM

rejects, then the protocol goes back to 2, that is,

it draws another random network and starts a new

simulation. Otherwise, its output stabilizes to G2.

To construct a decidable graph-language L.

The TM ACCEPTS

The TM
REJECTS

Output G2

Construct on k of the nodes a net-
work G1 capable of simulating a TM
and of constructing a random net-
work on the remaining n− k nodes.

Use G1 to construct a random net-
work G2 ∈ Gn−k,1/2 on the remain-
ing n− k nodes.

Execute on G1 the TM that decides
L with G2 as input.

Fig. 3 The main mechanism used by all generic construc-
tors in this section. The loop repeats until the TM accepts
for the first time. When this occurs, the random graph G2

constructed belongs to L and thus the protocol may output
G2. Note that this is not a terminating step. The protocol just
does not repeat the loop and thus its output forever remains
G2.

6.1 Linear Waste

Theorem 14 (Linear Waste-Half) DGS(O(n)) ⊆
PREL(bn/2c). In words, for every graph language L
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Protocol # states Expected Time Lower Bound

Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)

Fast-Global-Line 9 O(n3) Ω(n2)

Cycle-Cover 3 Θ(n2) (optimal) Ω(n2)

Global-Star 2 (optimal) Θ(n2 log n) (optimal) Ω(n2 log n)

Global-Ring 9 Ω(n2)

2RC 6 Ω(n log n)

kRC 2(k + 1) Ω(n log n)

c-Cliques 5c− 3 Ω(n log n)

Graph-Replication 12 Θ(n4 log n)

Table 2 All upper and lower bounds established in Sections 4 and 5. Graph-Replication is a randomized protocol thus it
concerns class PREL, while all other protocols do not rely on randomization thus they concern REL.

that is decidable by an O(n)-space TM, there is a pro-

tocol that constructs L equiprobably with useful space

bn/2c.

Proof We give a high-level description of the protocol,

call it A. Let us begin by briefly presenting the main

idea. Given a population of size n, A partitions the

population (apart from one node when n is odd) into

two equal sets U and D such that all nodes in U are in

state qu, all nodes in D are in state qd and each u ∈ U
is matched via an active edge to a v ∈ D, i.e., there is a

perfect matching between U and D (see Figure 4). By

using the Simple-Global-Line protocol (see Protocol 1

in Section 4.1) on the nodes of set U , A constructs a

spanning line in U which has the endpoints in state q1,

the internal nodes in state q2, and has additionally a

unique leader on some node. We should mention that,

though we use protocol Simple-Global-Line here as our

reference, any protocol that constructs a spanning line

would work. Given such a construction, A organizes the

line into a TM. The goal is for the TM to compute a

graph from L and construct it on the nodes of set D.

To achieve this, the TM implements a binary counter

(log n bits long) in its memory and uses it in order to

uniquely identify the nodes of set D according to their

distance from one endpoint, say the left one. When-

ever it wants to modify the state of edge (i, j) of the

network to be constructed, it marks by a special acti-

vating or deactivating state the D-nodes at distances i

and j from the left endpoint, respectively. Then an in-

teraction between two such marked D-nodes activates

or deactivates, respectively, the edge between them. To

compute a graph from L equiprobably, the TM per-

forms the following random experiment. It activates or

deactivates each edge of D equiprobably (i.e., each edge

becomes active/inactive with probability 1/2) and in-

dependently of the other edges. In this manner, it con-

structs a random graph G in D and all possible graphs

have the same probability to occur. Then it simulates

on input G the TM that decides L in Θ(n) space to

determine whether G ∈ L. Notice that the n/2 space of

the simulator is sufficient to decide on an input graph

encoded by an adjacency matrix of (n/2)2 binary cells

(which are the edges of U). If the TM rejects, then

G /∈ L and the protocol repeats the random experiment

to produce a new random graph G′ and starts another

simulation on input G′ this time. When the TM accepts

for the first time, the constructed random network be-

longs to L and the protocol releases the constructed

network by deactivating one after the other the active

(qu, qd) edges and at the same time updates the state of

each D-node to a special qout state. Finally, we should

point out that, whenever the global line protocol makes

progress, all edges in D are deactivated and the TM-

configuration is reinitialized to ensure that, when the

final progress is made (resulting in the final line span-

ning U) the TM will be executed from the beginning on

a correct configuration (free of residues from previous

partial simulations).

qu qu qu qu qu

qd qd qd qd qd

U

D

Fig. 4 The population partitioned into sets U and D. The
vertical active edges (solid) match the nodes of the two sets.
The horizontal active edges between nodes in U form a span-
ning line that is used to simulate a TM. The TM will con-
struct the desired network on the nodes of set D by activating
the appropriate edges between them (dashed edges that are
initially inactive).

We now proceed with a more detailed presentation

of the various subroutines of the protocol.
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Simulating the direction of the TM’s head. We begin by

assuming that the spanning line has been constructed

somehow (we defer for the end of the proof the actual

mechanism of this construction), as in Figure 4, and

that each node has three components (c1, c2, c3) in its

state. c1 is used to store the head of the TM, i.e., the ac-

tual state of the control of the TM; assume that initially

the head lies on an arbitrary node, e.g., on the second

one from the left as in Figure 4. c2 is used to store the

symbol written on each cell of the TM. c3 is l, r, t for

“left”, “right”, and “temporary” respectively, or t (for

“empty”) and we assume that initially the left endpoint

is l, the right endpoint is r, and all internal nodes are t.

As initially the head cannot have any sense of direction,

it moves towards an arbitrary neighbor, say w.l.o.g. the

right one, and leaves a t on its previous position. The

t mark gives to the head a sense of direction on the

line. Now the head can continue its progress towards

the right endpoint by just moving only towards the un-

marked neighbor (avoiding the one marked by t). Once

the head reaches the right endpoint for the first time,

it starts moving towards the left endpoint by leaving r

marks on the way. Once it reaches the left endpoint it

is ready to begin working as a TM. Now every time it

wants to move to the right it moves onto the neighbor

that is marked by r while leaving an l mark on its pre-

vious position. Similarly, to move to the left, it moves

onto the l neighbor and leaves an r mark on its previ-

ous position. In this way, no matter what the position

of the head will be, there will be always l marks to its

left and r marks to its right, as in Figure 5, and the

head can exploit them to move correctly. Additionally,

we ensure that the endpoints are in special states, e.g.,

le and re, to ensure that the head recognizes them in

order to start moving in the opposite direction.

Reading and Writing on the edges of set D. We now

present the mechanism via which the TM reads or

writes the state of an edge joining two D-nodes. The

TM uniquely identifies a D-node by its distance from

the left endpoint. To do this, it implements a binary

counter on log n cells of its memory. Whenever it wants

to read (write, resp.) the state of the edge joining the

D-nodes i and j, it sets the counter to i, places a spe-

cial mark on the left endpoint, and repeatedly moves

the mark one position to the right while decrementing

the counter by one. When the counter becomes 0, it

knows that the mark is over the i-th U -node. Now by

exploiting the corresponding active vertical edge it may

assign a special mark to the i-th D-node (Figure 6 pro-

vides an illustration). By setting the counter to j and

repeating the same process, another special mark may

be assigned to the j-th D-node. Now the TM waits for

an interaction to occur between the marked D-nodes i

t t rel

rl

t r r rel

tt

l l r rele

Fig. 5 The main idea of using l and r marks to simulate
the movement of the head of a TM. The first three snapshots
present the phase of the initialization of the marks where a
temporary t mark is used to move for the first time towards
an endpoint. In the fourth snapshot, after the head has visited
both endpoints, the t marks have been removed and all nodes
to the left of the head are marked l while all nodes to the right
are marked r. Additionally, the endpoints have special marks
to ensure that the head recognizes them.

and j. During that interaction edge (i, j) is read (writ-

ten, resp.) by the corresponding endpoints. Then, in

case of a read (and similarly for a write), the TM reads

the value of the edge that the endpoints detected, and

in both cases unmarks both endpoints resetting them

to their original states.

le re

qd qr qd
qr

qd

U

D

1
counter

Fig. 6 By exploiting the implemented binary counter, the
TM has managed to mark the desired nodes from set D, in
this case the 2nd and the 4th ones counting from left, which
are now in a special “reading” state qr. An interaction be-
tween them will read the state of the edge joining them, which
here happens to be an active one. Then the TM will read that
value from one of these two nodes, in this case from the 2nd
one. A write is implemented similarly.

Creating the input of the TM. We now describe how

the network construction works. As already stated, to

simplify the description and in order to present an

equiprobable constructor we have allowed nodes to toss

a fair coin during their interaction. In particular, we al-

low transitions that with probability 1/2 give one out-

come and with probability 1/2 another. Now before ex-

ecuting the simulation, the simulating protocol does the

following. It visits one after the other the edges of set D
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and on each one of them performs the following random

experiment: with probability 1/2 it activates the edge

and with probability 1/2 it deactivates it. The result of

this random process is an equiprobable construction of

a random graph. In particular, all possible graphs have

the same probability to occur. Note that the protocol

can detect when all random experiments have been per-

formed because it can detect the endpoints of the span-

ning line. For example, to visit all edges one after the

other we may: (i) place two marks on the left endpoint;

let i and j, 1 ≤ i < j ≤ n, denote the positions of these

marks on the line, (ii) for all 1 ≤ i ≤ n − 1, perform

random experiments on all i < j ≤ n by starting the

rightmost mark from position i+ 1 and moving it each

time one position to the right, (iii) the process stops

when i becomes n, i.e., when the leftmost mark occu-

pies the right endpoint (which can be detected). Thus

we can safely compose the process that draws the ran-

dom graph to the process that simulates the TM. Once

the random graph has been drawn, the protocol starts

the simulation of the TM. Notice that the input to the

TM is the random graph that has been drawn on the

edges of D which provide an encoding equivalent to an

adjacency matrix. There are (n/2)2 edges and the simu-

lator has available space n/2, which is sufficient for the

simulation of a Θ(n)-space TM. We now distinguish two

cases, one for each possible outcome of the simulation.

1. The TM rejects: In this case, the constructed ran-

dom graph does not belong to L. The protocol re-

peats the random experiment, i.e., draws another

random graph, and starts over the simulation on

the new input.

2. The TM accepts: The constructed graph belongs to

L and the protocol enters the Releasing phase (see

below).

Releasing. When the TM accepts for the first time, the

simulating protocol updates the head to a special final-

izing state f . Now the head moves to the left endpoint

and starts releasing one after the other the nodes of set

D by deactivating the vertical edges and updating the

states of the released D-nodes to qout. Now the network

constructed over the nodes of set D is free to move in

the “solution”.

It remains to resolve the following issue. In the

beginning, we made the assumptions that the popula-

tion has been partitioned into sets U and D and that

a spanning line in U has been constructed somehow.

Though it is clear that the rule (q0, q0, 0) → (qu, qd, 1)

can achieve the partitioning and that the Simple-

Global-Line protocol can construct a spanning line in

U , it is not yet clear whether these processes can be

safely composed to the simulating process. To get a

feeling of the subtlety, consider the following situation.

It may happen that a small subset S of the nodes has

been partitioned into sets U ′ and D′ and that U ′ has

been organized into a line spanning its nodes. If the

nodes in S do not communicate for a while to the

rest of the network, then it is possible that a graph

is constructed in D′, which on one hand belongs to

L but on the other hand its order is much smaller

than the desired n/2. To resolve this we introduce a

reinitialization phase.

Reinitialization. A reinitialization phase is executed

whenever a line on U -nodes expands (either by attract-

ing free nodes or by merging with another line). At

that point, the protocol “makes the assumption” that

no further expansions will occur, restores the compo-

nents of the simulation to their original values, ensures

that each node in the updated set U has a D-neighbor

(as it is possible that some of them have released their

neighbors), and initiates the drawing of a new random

graph on the new set D. Though the assumption of the

protocol may be wrong as long as further expansions

of the line may occur, at some point the last expan-

sion will occur and the assumption of the protocol will

be correct. From that point on, the simulation will be

reinitialized and executed for the last time on the cor-

rect sets U and D. A final point that we should make

clear is the following. During reinitialization we have

two options: (i) block the line from further expansions

until all components have been restored correctly and

then unblock it again or (ii) leave it unblocked from the

beginning. In the latter case, if another expansion oc-

curs before completion of the previous reinitialization

then another reinitialization will be triggered. However,

if the two reinitialization processes ever meet then we

can always kill one of them and restart a new single

reinitialization process. Both options are correct and

equivalent for our purposes. ut

We now show an interesting trade-off between the

space of the simulated TM and the order of the con-

structed network. In particular, we prove that if the

constructed network is required to occupy 1/3 instead

of half of the nodes, then the available space of the

TM-constructor dramatically increases to O(n2) from

O(n).

Theorem 15 (Linear Waste-Two Thirds) DGS(

O(n2) + O(n)) ⊆ PREL(bn/3c). In words, for every

graph language L that is decidable by a (O(n2)+O(n))-

space TM, there is a protocol that constructs L equiprob-

ably with useful space bn/3c.

Proof The idea is to partition the population into three

equal sets U , D, and M instead of the two sets of The-

orem 14. The purpose of sets U and D is more or less
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as in Theorem 14. The purpose of the additional set

M is to constitute a Θ(n2) memory for the TM to be

simulated. The goal is to exploit the (n/3)(n/3 − 1)/2

edges of set M as the binary cells of the simulated TM

(see Figure 7). The set U now, instead of executing the

simulation on its own nodes, uses for that purpose the

edges of set M . Reading and writing on the edges of

set M is performed in precisely the same way as read-

ing/writing the edges of set D (described in Theorem

14).

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M

Fig. 7 A partitioning into three equal sets U , D, and M .
The line of set U plays the role of an ordering that will be
exploited both by the random graph drawing process and
by the TM-simulation. The line of set U instead of using its
Θ(n) memory as the memory of the TM it now uses the Θ(n2)
memory of set M for this purpose. Set D is again the useful
space on which the output-network will be constructed. Sets
U and M constitute the waste.

As everything works in precisely the same way as

in Theorem 14, we only present the subroutine that

constructs the (U,D,M) partitioning.

Constructing the (U,D,M) partitioning. The rules that

guarantee the desired partitioning into the three sets

are:

(q0, q0, 0)→ (q′u, qd, 1)

(q′u, q0, 0)→ (qu, qm, 1)

(q′u, q
′
u, 0)→ (qu, q

′
m, 1)

(q′m, qd, 1)→ (qm, q0, 0)

The idea is to consider a U -node as unsatisfied as long

as it has not managed to obtain a qm neighbor. The

unsatisfied state of a U -node is q′u. If a q′u meets a q0
then it makes that q0 its qm neighbor and becomes sat-

isfied. Note that it is possible that at some point the

population may only consist of q′u nodes matched to

D-nodes which is not a desired outcome. For this rea-

son, we have allowed q′u nodes to be capable of making

other q′u nodes their qm neighbors. That is, when two q′u

nodes interact, one of them becomes satisfied, the other

becomes q′m, and the edge joining them becomes active.

A q′m just waits to meet its active connection to a D-

node, deactivates it, isolates the D-node by making it

q0 again, and becomes qm. For an illustration, see Fig-

ure 8. Then, for the construction of the line spanning

U , we only allow satisfied U -nodes to participate to the

construction. As a satisfied U -node never becomes un-

satisfied again, this choice is safe. ut

q′u q′u

qd qd

q′u

qd

(i)

q′u q′u

qd qd

q′u

qd

(ii)

qu q′m

qd qd

q′u

qd

(iii)

qu qm

qd q0

q′u

qd

(iv)

qu qm

qd qm

qu

qd

(v)

qu

qm

qd

(vi)

qu

qm

qd

Fig. 8 An example construction of a (U,D,M) partitioning.

6.2 Logarithmic Waste

We now relax our requirement for simulation space in

order to reduce the waste (which, in both of the previ-

ous two theorems, was of the order of n).

Theorem 16 (Logarithmic Waste) DGS(O(log n)

) ⊆ PREL(n − log n). In words, for every graph lan-

guage L that is decidable in logarithmic space, there is a

protocol that constructs L equiprobably with useful space

n− log n.

Proof Sketch The protocol first constructs a spanning

line. Let us for now assume that the spanning line has

been somehow constructed by the protocol. Then the

protocol exploits the line to count the number of nodes

in the network. We may assume that counting is per-

formed in the rightmost cells of the line. The head visits
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one after the other the nodes from left to right and for

each next move it increments the binary counter by

one. When the head reaches the right endpoint, count-

ing stops and the binary counter will have occupied

approximately log n nodes (in fact, the rightmost log n

nodes). Now the protocol releases the counter without

altering its line structure and additionally makes all re-

maining n−log n nodes isolated by resetting their states

and deactivating the edges between them.

From now on, we may assume w.l.o.g. that there is a

line of log n nodes with a unique leader and with a dis-

tributed variable containing a very good estimate of the

number of isolated nodes (for this, we just compute in

the logarithmic memory n− log n, where n was already

stored in binary and log n is the number of cells of the

memory; another way to achieve this is to stop count-

ing when the head - moving from left to right - reaches

the first, i.e., leftmost, cell occupied by the counter).

All nodes of the memory are in a special m state while

all remaining nodes are in some other state, e.g., f , so

the two sets are distinguishable.

Next the leader starts a random experiment in

order to construct a random graph on the free nodes

as follows. It picks the first free node that it sees, call

it u1, activates the edge between them and informs it

to start tossing coins on each one of the edges joining

it to other free nodes. Whenever u1 tosses a coin on a

new edge, it marks the corresponding node to avoid it

in the future and informs the leader to decrement its

(n − log n)-counter by 1. When the counter becomes

0, u1 has tossed coins on all its edges, by a similar

counting process it removes all marks from the other

free nodes, and remains marked so that the leader
avoids picking it again in the future. Then the leader

moves to some other free node u2, repeating more or

less the same process. At the same time the leader

decrements another (n− log n)-counter by one to know

when all free uis have been picked. In this manner, a

random graph is drawn equiprobably on the set of free

nodes. Next, the leader simulates a logarithmic TM in

its memory trying to decide whether the random graph

belongs to a given language L or not. If so, then we

are done. If not, then the TM just repeats the random

experiment and restarts the simulation.

Reinitialization. Clearly, the protocol cannot know

when the line that it was initially trying to construct

has become spanning. Due to this, after every expansion

of the line it assumes that the line has become span-

ning and starts counting. It is clear that every counting

process leads to the formation of a small line with a

leader (of length logarithmic in the length of the origi-

nal line) and several free nodes. The small line and its

leader are kept forever by the simulation process. This

implies that if there is more than one such line, they

will eventually interact and detect that their original

line was not spanning. At that point, the interacting

lines may merge to form a new line. It is clear that the

only stable case is the one in which the original line was

spanning and this will eventually occur. ut

6.3 No Waste

Going one step further, we prove that if we sacrifice the

requirement of constructing all graphs in the language

equiprobably, then a large class of graph-families can

be constructed with no waste.

Theorem 17 (No Waste) Let L be a graph language

such that: (i) there exists a natural number d s.t. for all

G ∈ L there is a subgraph G′ of G, of order logarithmic

in the order of G, s.t. either G′ or its complement is

connected and has degree upper bounded by d and (ii)

L ∈ DGS(O(log n)), i.e., L is decidable in logarithmic

space. Then there is a randomized protocol that con-

structs L with useful space n.

Proof Sketch As in Theorem 16, the protocol first con-

structs a spanning line used to separate a subpopulation

S of VI of size approximately log n. Before deactivating

the line of T = VI\S of length n−log n the protocol first

exploits it to construct a random graph in S of active

or inactive degree (choosing randomly between these)

upper bounded by d (note that d is finite and thus it

is known in advance by the protocol). Then the line of

T organizes the bounded-degree graph of S into a TM

M (which is feasible due to the fact that the degree

is bounded; see Theorem 7 of [AAC+05]) of logarith-

mic space with a unique leader on some node. Next M

draws (more or less as in Theorem 16) a random graph

on the edges of EI\E[S], i.e., on all edges apart from

those between the nodes of S (to prevent destroying the

structure of the TM). Note that, in order for the TM to

be able to distinguish the nodes of S, the protocol has

all these nodes in a special state that is not present in

T . Observe now that, in this manner, the protocol has

constructed on VI a random graph from those having

a connected subgraph of logarithmic order and degree

upper bounded by d. It remains to verify whether the

one constructed indeed belongs to L. To do this, M sim-

ulates the TM N that decides L in logarithmic space. If

N accepts, then we are done (given that the final reini-

tialization has occurred, as in the previous theorems). If

N rejects, then M builds another line in T that repeats

the whole process, i.e., draws a new random graph in S

and so on.
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Observe that this construction has an important dif-

ference from the previous ones. The TM does not work

on a separate part of the population, which will be then

thrown away as waste. It works on a part of the input

graph that it tries to decide. Still the graph can be

processed more or less as in Theorem 16. The only dif-

ference is that now the TM also takes into account the

edges that involve at least one node in S. This can be

easily achieved by using separate components, in the

states of the nodes of S, for the simulation and the

reading of the input (while, on the other hand, nodes

outside S need only have a reading component). ut
The above protocol constructs every G ∈ L with

non-zero probability but not all graphs in L have the

same probability to be constructed. For example, if a

graph G1 has more distinct subgraphs satisfying con-

dition (i) of the theorem than a graph G2, then the

random bounded-degree graph constructed by the pro-

tocol is more often a subgraph of G1 than it is of G2.

Therefore we cannot claim that L ∈ PREL(n) (the lat-

ter was erroneously reported in [MS14]). We leave this

as an interesting open problem.

Remark 1 If the graph-property L (in any of the above

results) happens to occur with probability at least

1/f(n), where f(n) is polynomial on n, in the Gn,1/2
random graph model, then its corresponding generic

constructor runs in polynomial expected time. Connec-

tivity is such an example as every G ∈ Gn,Θ(logn/n) is

almost surely connected and the same holds for every

G ∈ Gn,1/2 (hamiltonicity is another example).

Remark 2 All of the above generic results, but the last

one, have been proved for PREL. The reason is that

we have exploited a minimal internal randomness of

the nodes in order to be able to draw random graphs

(equiprobably). The only exception was Theorem 17,

which does not concern PREL, however, it also re-

lies on the use of internal randomness. Note that in

REL we can again construct a sufficiently long line (as

our protocols for global line are in REL, since they do

not use internal randomness) and exploit it as a space-

bounded TM of the following sort: on input g(n) (i.e.,

the size, in number of nodes, of the useful space) the

TM outputs a graph of order g(n). By exploiting such

graph-constructing TMs we can again construct a pos-

sibly large class of networks without giving to our pro-

tocols access to randomization. For example, it could be

a TM, that on every input i ∈ N constructs (determin-

istically, and without any random experiment) a ring

(or a clique or a planar graph) of size i. Alternatively,

we could simulate the internal randomness of the nodes

by marking half of the nodes as 0 and the other half

as 1. Then the current probabilistic choice of a node

would depend on whether its previous interaction was

with a node marked 0 or with a node marked 1 (this is

not 100% equiprobable but it can be made so by other

simple tricks).

6.4 Constructing and Simulating Supernodes with

Logarithmic Memories

We now show that a population consisting of n nodes

can be partitioned into k supernodes each consisting of

log k nodes, for the largest such k. The internal struc-

ture of each supernode is a line, thus it can be operated

as a TM of memory logarithmic in the total number of

supernodes. This amount of storage is sufficient for the

supernodes to obtain unique names and exploit their

names and their internal storage to realize nontrivial

constructions. We are interested in the networks that

can be constructed at the supernode abstraction layer.

The following theorem establishes that such a construc-

tion is feasible and presents a network constructor that

achieves it.

Theorem 18 (Partitioning into Supernodes) For

every network G that can be constructed by k nodes

having local memories dlog ke and unique names there

is a NET that constructs G on n = kdlog ke nodes.

Proof We present a NET A that when executed on n

nodes it is guaranteed to organize the nodes into k lines

of length dlog ke each for the maximum k for which

kdlog ke ≤ n. We assume a unique pre-elected leader in

the initial configuration of the system and we will soon

show how to drop this requirement. Assume also for

simplicity that n ≥ 8 (this is again not necessary). The

protocol operates in phases. Variable j denotes the cur-

rent phase number, r denotes the number of new lines

that should be constructed in the current phase, and a

is a line counter. We assume that the leader has some-

how already created 4 lines of length 2 each (note that

here we count the length of a line in terms of its nodes).

One of them is the leader’s line. Also the left endpoint

of the leader’s line is directly connected to the left end-

points of the other 3 lines. In fact, all these assumptions

are trivial to achieve. Initially j ← 2. All variables are

stored by the leader in the distributed memory of its

line.

– A new phase starts when the leader manages to in-

crease by one the length of its line by attaching an

isolated node its right endpoint. When this occurs,

the leader sets j ← j + 1, r ← 2j−1, and a ← 2.

A phase is divided into two subphases: the Incre-

ment existing lines subphase and the Create new

lines subphase.



Simple and Efficient Local Codes for Distributed Stable Network Construction 29

– Increment existing lines: Initially, all existing

lines, excluding the leader’s line, are marked as

unvisited. While a ≤ r the leader visits an un-

visited line and tries to increment its length by

one by attaching an isolated node to its right

endpoint. When it succeeds, it marks the line as

visited, sets a ← a + 1 and returns to its own

line. When this subphase ends all existing lines

have length j. Then the leader sets a ← 1 and

the Create new lines subphase begins.

– Create new lines: While a ≤ r the leader be-

comes connected to an isolated node, it marks

that node as the left endpoint of the new line

and then starts creating the new line node-by-

node, by attaching isolated nodes to its right. It

stops increasing the length of the new line when

it becomes equal to the length of its own line.

This can be easily implemented by a mark on

the leader’s line that moves one step to the right

every time the length of the new line increases by

one. The new line has the right length when the

mark reaches the right endpoint of the leader’s

line. When this subphase ends there is a total of

2r = 2j lines of length j each and the leader is di-

rectly connected to the left endpoint of each one

of them. Then the leader waits again to increase

its own length by one and when this occurs a

new phase begins.

Naming. We now show that it is not hard to keep

the constructed lines named (in fact there are various

strategies for achieving this). Initially, the leader has 4

lines of length 2 each and we may assume that these

are uniquely named 0, 1, 2, 3 in binary, that is, every
line has its name stored in its own memory. During a

phase, the leader keeps a variable cname storing the

current name to be assigned, initially 0. Whenever the

leader increases the length of an existing line (during

the increment subphase) or creates a new line (during

the create subphase) it assigns to it cname in binary

and sets cname ← cname + 1. Clearly, at the end of

phase j the lines are uniquely named 0, 1, . . . , 2j − 1.

Electing the Leader. We now show how to cir-

cumvent the problem of not having initially a unique

pre-elected leader. In fact, as we will soon discuss,

the solution we develop may serve as a generic tech-

nique for simulating protocols that assume a pre-elected

leader. Initially all nodes are leaders in state l0. Rule

(l0, l0, 0)→ (l, q0, 0) eliminates one of the two l0 leaders

and converts the other to l. These l leaders start exe-

cuting the above protocol by attaching q0 and l0 nodes

to their construction. Each l leader executes the pro-

tocol on its own constructed component until it meets

another l leader. When this occurs, one of the two ls

becomes w. The goal of a w leader is to revert its whole

component to a set of isolated nodes in state q0 (itself

inclusive). Note that a leader can easily revert a single

line by beginning from the right endpoint and releasing

one after the other the nodes until it reaches the left

endpoint.

The generic idea (that works for other constructions

as well) is that in order to release a node it suffices to

know its degree. Then the only possible difficulty in

our case is the fact that the left endpoint of the leader’s

line may be connected to a non-constant number of

other endpoints. To resolve this, the leader exploits the

fact that it can count in its line’s memory the number

of lines. When the reversion process begins, the leader

knows the number of lines, that is, it knows also the

degree of the left endpoint of its line. Whenever it

reverts another line it decreases the counter by one.

So, when the counter becomes equal to 1, it knows

that the only remaining line is its own line, thus it

knows that when it comes to release the last two nodes

of its own line (i.e., during the interaction between

the left endpoint and the other remaining node of

the line) it should make both q0 as there is no other

reversion to be performed. This is quite important

as it guarantees that reverting does not introduce

waste. Note that if the reversion process could not

determine its completion then every such reversion

would result in a node remaining forever in state w.

Such zombie ws cannot be exploited by other leaders

in their constructions, as allowing a leader to attach a

w would introduce conflicts between constructing and

reverting processes.

Reinitialization. Note that the simulated protocol

that constructs G assuming memories and names

must be executed from the beginning, because pro-

tocol A, that gives the organization into lines, is not

terminating, so the two protocols must be composed

in parallel. It suffices to have every line remember

the number of active edges that it has to other lines.

Then, whenever a new phase begins (implying that

what has been constructed so far by the simulated

protocol is not valid), each line deactivates one after

the other all those edges and starts the simulation over.

The only drawback is that the above protocol re-

tains forever the connections between the left endpoint

of the leader’s line and the left endpoints of the other

lines. However, if we agree that the output-network of

the protocol is the one induced by the active edges join-

ing the right endpoints of lines then this is not an issue.

Additionally, it should not be that hard to circumvent
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this subtlety by having the leader periodically release

the constructed lines and reattracting them only in case

it manages to increase the length of one of them. ut

Many network construction problems are substan-

tially simplified given the supernodes with names and

memories. For a simple example, consider the problem

of partitioning the nodes into triangles. This construc-

tion is quite hard to achieve in the original setting with-

out a leader, however, given the supernodes it becomes

trivial. Each supernode with id i checks whether its id

is a multiple of 3 and, if it is, it connects to id (i+ 2),

otherwise it connects to id (i − 1). This is a totally

parallel and thus a very efficient solution.

Finally, the above approach introduces the idea of

constructing disjoint stable structures and then looking

at those structures from a higher level and considering

them as units (supernodes). It is then challenging, in-

teresting, and valuable to understand how these units

behave, what is the dependence of their behavior to

their internal structure and configuration, what is the

outcome of an interaction between two such units, and

what are their constructive capabilities. In fact, one can

imagine a whole hierarchy of such layers where nodes

self-assemble into supernodes, supernodes self-assemble

into supersupernodes, and so on. Formalizing this hi-

erarchy is a very promising and totally open research

direction.

7 Conclusions and Further Research

There are many open problems related to the findings

of the present work. Though our universal construc-

tors show that a large class of networks is in principle

constructible, they provide neither the simplest nor the

most efficient protocol for each single network in the

class. To this end, we have provided direct constructors

for some of the most basic networks, but there are still

many other constructions to be investigated like grids

or planar graphs. Moreover, a look at Table 2 makes it

evident that there is even more work to be done towards

the probabilistic analysis of protocols and in particular

towards the establishment of tight bounds. Of special

interest is the spanning line problem as it is a key com-

ponent of universal construction. All of our attempts to

give a protocol asymptotically faster than O(n3) have

failed. Observe that with a pre-elected leader in state l

and all edges initially inactive, the straightforward pro-

tocol (l, q0, 0) → (q1, l, 1) produces a stable spanning

line in an expected number of Θ(n2 log n) steps (fol-

lows from the meet everybody fundamental process).

Moreover, by a one-to-one elimination we can elect a

unique leader in an expected number of Θ(n2) steps.

If we could safely compose these two protocols, then

we would obtain a Θ(n2 log n) constructor which is al-

most optimal as our present best lower bound for the

spanning line is Ω(n2). The problem is that the pro-

tocol cannot detect when the leader-election phase has

completed, thus it has to activate edges while still hav-

ing more than one leader but this gives an overhead

for either merging the constructed disjoint lines or de-

activating some wrong connections. A possible solution

could be to consider Monte Carlo protocols that may

err with some small probability, e.g., a protocol that

would try somehow to estimate when w.h.p. the leader-

election phase completes and only then start the line

construction phase.

We should mention that there is an improvement

(which is also supported by experimental evidence) to

the Fast-Global-Line protocol, however it is not yet

clear whether this improvement is also an asymptotic

one. The code of the improvement is given in Protocol

10.

Protocol 10 Faster-Global-Line

Q = {q0, q1, q2, q, l, f}
δ:

(q0, q0, 0)→ (q1, l, 1)

(l, q0, 0)→ (q2, l, 1)

(l, q, 0)→ (q2, l, 1)

(l, l, 0)→ (l, f, 0)

(f, q2, 1)→ (q, f, 0)

(f, q1, 1)→ (q, q, 0)

As in our previous protocols for the problem, many

lines grow in parallel. When the leaders of two lines in-

teract, one of them becomes a follower f . The follower

starts deactivating its own line, releasing its nodes,

while the l that survived does not change its behavior.

Observe the contrast to the Fast-Global-Line protocol:

in that protocol sleeping lines could only lose nodes by

interacting with awake leaders, while now sleeping lines

keep releasing their own nodes to make them available

to the awake leaders. Eventually, a single l will remain

and all other lines will have an f . It could be the case

that the parallel releasing of the nodes of the f -lines al-

lows the l leader to be able to rapidly expand towards

free nodes and it would be really valuable to have a for-

mal analysis of the running time of this variation. Also

observe that the description of this protocol is rather

simpler than the description of Fast-Global-Line.

One of the problems that we considered in this work,

was the problem of constructing any k-regular network.

Note that this is a quite different problem than the
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problem of constructing a specific k-regular network.

For example, given a population of 10 processes is there

a protocol that stabilizes to the Petersen graph? In gen-

eral, it is worth considering non-uniform protocols that

when executed on the correct number of nodes are re-

quired to construct a unique network like the cubical

graph or the Wagner graph on 8 processes.

Another very intriguing issue has to do with the size

of network constructors. In particular, we would like to

know whether there is some generic lower bound on the

size of all constructors, to give problem-specific lower

bounds, and to formalize the apparent relationship be-

tween the size and the running time of a protocol. Is

there some sort of hierarchy showing that with more

states we can produce faster protocols (until optimality

is obtained)?

To this end, observe that neither the maximum de-

gree nor the number of different degrees of the target-

network are lower bounds on the number of states re-

quired to construct the network. For the former, it is

not hard to show that Θ(x) states suffice to make a

node obtain 2x neighbors (stably). The idea is to have

a node initially obtain 2 neighbors and then repeatedly

double their number. For the latter, one can show that

Θ(x) states suffice to have 2x nodes with different de-

grees (stably) and in particular for all i ∈ {1, ..., 2x}
we obtain a node with degree i. The idea is to mark

a set of 2x nodes as before and construct a line span-

ning these nodes. Then the protocol assigns to the ith

node of the line, counting, e.g., from the left endpoint,

i neighbors. This can be done by using only a constant

number of states. The head begins from the left end-

point and moves step-by-step on the line towards u. For

every step it takes it assigns to u a new neighbor and

stops when it reaches u. In this manner, it assigns to u a

number of neighbors equal to its distance from the end-

point without having to explicitly count the distance.

Is there some other property of the target-network that

determines the number of states that have to be used?

It is also worth noting that our results on universal

construction indicate that the constructive power in-

creases as a function of the available waste. A complete

characterization of this dependence would be of special

value.

There is also a practically unlimited set of varia-

tions of the proposed model that are worth consider-

ing. We mention a few of them. As already discussed,

in this work we have considered a model of network

construction with as minimal assumptions as possible

to serve as a simple and clear starting point for more

applied models to be defined. We now introduce such a

model which seems to be of particular interest. Assume

that every node is equipped with a predefined number

of ports at specific positions of its “body”. For exam-

ple, in the 2-dimensional case these could be “North”,

“South”, “East”, “West” having the obvious angles be-

tween them. Nodes interact via their ports and they

can detect which of their ports are used in an inter-

action. Moreover, when a connection is activated, it is

always activated at a predetermined distance (i.e., all

connections have the same length d) and it is always

a straight line respecting the angles between itself and

the (potentially active) lines of the other ports of the

same node. Such a model (and possible variations of

it, depending on the assumed hardware) seems particu-

larly suitable for studying/designing very simple and lo-

cal distributed protocols that are capable of construct-

ing stable geometric objects (even in three dimensions),

like squares, cubes, or more complex polyhedra, with-

out any mobility-control mechanism (a first attempt

towards this direction is [Mic15]).

Another immediate extension of our model is to al-

low the connections to have more than just the two

states that we considered in this work. Recall also that,

whenever we had to analyze the running time of a pro-

tocol, we did it under the uniform random scheduler,

mainly because we wanted to keep this first model of

network construction as simple as possible and because

of its correspondence to a well-mixed solution. However,

there are many other natural probabilistic scheduling

models to be considered which would probably require

different algorithmic developments and techniques to

achieve efficiency. It is also natural to consider a vari-

ant in which connected nodes communicate much faster

(even in synchronous rounds) than disconnected nodes.

Moreover, it would be interesting to consider a model

of network construction in which the behavior of a

node depends on some input from the environment (this

would allow the consideration of codes that exhibit dif-

ferent behaviors in different environments). The model

in which a connected component has access to a self-

bit indicating whether a given interaction involves two

nodes of the same component or not, also seems in-

teresting and natural. It is not yet clear whether this

extra assumption increases the constructive power of

the model but it is clear that it substantially simpli-

fies the description of several protocols. It would also

be of its own value to depart from cooperative models

and consider an antagonistic scenario in which different

sets of nodes try to construct different networks (by de-

terministic codes and not game-theoretic assumptions

involving incentives). It would be interesting to discover

cases in which the antagonism leads to unexpected sta-

ble formations.

Finally, a very valuable and challenging interdisci-

plinary goal is to further investigate and formalize the
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apparent applicability of the model proposed here (and

potential variations of it) in physical and chemical

(possibly biological) processes. As already stated, we

envision that a potential usefulness of such models

is to unveil the algorithmic properties underlying the

structure/network formation capabilities of natural

processes.
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