
Terminating Population Protocols via some Minimal Global Knowledge
AssumptionsI,II

Othon Michaila,∗, Paul G. Spirakisa,b

aComputer Technology Institute & Press “Diophantus” (CTI), Patras, Greece
bDepartment of Computer Science, University of Liverpool, UK

Abstract

We extend the population protocol model with a cover-time service that informs a walking state every time
it covers the whole network. This represents a known upper bound on the cover time of a random walk. The
cover-time service allows us to introduce termination into population protocols, a capability that is crucial
for any distributed system. By reduction to an oracle-model we arrive at a very satisfactory lower bound on
the computational power of the model: we prove that it is at least as strong as a Turing Machine of space
log n with input commutativity, where n is the number of nodes in the network. We also give a log n-space,
but nondeterministic this time, upper bound. Finally, we prove interesting similarities of this model to linear
bounded automata.

Keywords:
population protocol, cover-time service, rendezvous-based communication, interaction, counter machine,
absence detector, linear-bounded automaton

1. Introduction

Networks of tiny artifacts will play a fundamental role in the computational environments and applications
of tomorrow. As a result, over the last decade, there has been a strong focus on theoretical models of
pervasive systems, consisting of great numbers of computationally restricted, communicating entities. One
such model, called the Population Protocol (PP) model, has been recently introduced by Angluin et al.
[AAD+06]. Their aim was to model sensor networks consisting of tiny computational devices (called agents
or nodes) with sensing capabilities that follow some unpredictable and uncontrollable mobility pattern. Due
to the minimalistic nature of their model, the class of computable predicates was proven [AAER07] to
be fairly small: it is the class of semilinear predicates [GS66], which does not support e.g. multiplications,
exponentiations, and many other important operations on input variables. Additionally, population protocols
do not halt. The agents cannot know whether the computation is completed. Instead, they forever interact
in pairs while their outputs (but not necessarily their states) stabilize to a certain value.

An interesting question that quickly emerged was whether complex computations could be performed
by using simple protocols and combining their functionality. Given the protocols stabilizing behavior, their
sequential composition turned out to be a highly non-trivial task. To circumvent this problem, Angluin et al.
introduced the stabilizing inputs PPs [AAC+05] and they showed that multiple protocols can run in parallel

ISupported in part by the project “Foundations of Dynamic Distributed Computing Systems” (FOCUS) which is implemented
under the “ARISTEIA” Action of the Operational Programme “Education and Lifelong Learning” and is co-funded by the
European Union (European Social Fund) and Greek National Resources.

IIA preliminary version of the results in this paper has appeared in [MCS12].
∗Corresponding author (Telephone number: +30 2610 960200, Fax number: +30 2610 960490, Postal Address: Computer

Technology Institute & Press “Diophantus” (CTI), N. Kazantzaki Str., Patras University Campus, Rio, P.O. Box 1382, 26504,
Greece).

Email addresses: michailo@cti.gr (Othon Michail), P.Spirakis@liverpool.ac.uk (Paul G. Spirakis)

Preprint submitted to JPDC January 13, 2015

and once one stabilized the others could run correctly (by taking appropriate actions to restore correct
execution) using the stabilized output of the former as their input. This approach is, however, fairly slow
in terms of the number of interactions (provided some probabilistic assumption on the interaction pattern)
since it requires to implement phase clocks based on epidemic protocols (see [AAE08]).

In this work, we follow an alternative approach. We augment the original model of computation with a
cover-time service (we abbreviate the new model as CTS) that informs a walking state every time it covers
the whole network. This is simply a known upper bound on the cover time of a random walk. This allows us
to introduce termination into population protocols, a capability that is crucial for any distributed system.
Then we reduce this model to population protocols augmented with an absence detector. An absence detector
is an oracle that gives hints about which states are not present in the population. Each process can interact
with this special agent (the absence detector) that monitors other agents in the system, and maintains flags
for each state of the protocol. The rest of the model is the same as the PP model. All agents, apart from
the absence detector, are modeled as finite-state machines that run the same protocol. Agents interact in
pairs according to some interaction graph which specifies the permissible interacting pairs, and during an
interaction they update their states according to the common program. No agent can predict or control its
interactions. Within this framework, we explore the computational capabilities of this new extension, that
we call Population Protocols with Absence Detector (AD), and study its properties on a purely theoretical
ground. As we shall see, the AD model is computationally stronger than PPs but this is not what sets it
apart. A major new feature of this model is its capability to perform halting computations, which allows
sequential execution of protocols (i.e. sequential composition). Note that although we are currently unaware
of how to construct such detectors, in the future, our detector may be implemented via a Bulletin Board
regarding the existing states (e.g. each device marks its current state in the board, and all devices can read
this board). Such Boards can be implemented easily and have been used in the past [Edi86].

2. Other Previous Work

In the population protocol model [AAD+06], n computational agents are passively mobile, interact in
ordered pairs, and the temporal connectivity assumption is a strong global fairness condition according to
which all configurations that may always occur, occur infinitely often. These assumptions give rise to some
sort of structureless interacting automata model. The usually assumed anonymity and uniformity (i.e. n
is not known) of protocols only allow for commutative computations that eventually stabilize to a desired
configuration. Most computability issues in this area have now been established. Constant-state nodes
on a complete interaction network (and several variations) compute the semilinear predicates [AAER07].
Semilinearity persists up to o(log log n) local space but not more than this [CMN+11]. If constant-state nodes
can additionally leave and update fixed-length pairwise marks then the computational power dramatically
increases to the commutative subclass of NSPACE(n2) [MCS11a]. If nodes are equipped with unique ids
and are also allowed to store a fixed number of other nodes’ ids then again an extremely powerful model
is obtained being equivalent to the commutative subclass of NSPACE(n log n) [GR09]. For a very recent
introductory text see [MCS11b]. Finally, our CTS model is different from the cover times considered in
[BBCK10] in that we allow protocols to know the cover times and in that the cover times in [BBCK10] refer
to the time for an agent to meet all other agents in the network.

3. Our Results - Roadmap

In Sections 4 and 5, the newly proposed models are formally defined. Subsection 5.1 in particular, defines
halting and output stabilizing computations, as well as the classes of predicates that the AD model can
compute in both cases. In Section 6, we illustrate the new model with a simple leader election protocol and
give some properties of the AD concerning halting computations. Section 7 first establishes the computational
equivalence of the CTS and AD models and then deals with the computational power of the latter. In
particular, Section 7.1 shows that all semilinear predicates (whose class is denoted by SEM) are stably
computable by halting ADs. In Section 7.2, several improved computational lower bounds and an upper

2

bound are presented. In particular, it is first shown that the class HAD, of all predicates computable by some
AD with a unique leader, includes all multiplication predicates of the form (bNd1

1 Nd2
2 · · ·N

dk

k < c), where
b, c, di, k are constants, b, c ∈ Z and di, k ∈ Z+. We do so by constructing an AD (Protocol 2) that performs
iterative computation. Then in Subsection 7.2.1 it is shown that halting ADs can compute any predicate
whose support (corresponding language on the input alphabet) is decidable by a Turing Machine (TM) of
O(log n) space. This is shown by simulating a One Way k-Counter Machine (k-CM) [FMR68, Min61] with
halting ADs. Moreover, it is shown that all predicates in HAD are stably computable by a TM of O(log2 n)
space. Finally, some similarities of the AD model with Multilset Linear Bounded Automata with Detection
(MLBADs) are pointed out and it is established that ADs can simulate such automata. In Section 9, we
conclude and present potential future research directions.

4. A Cover-time Service

We equip pairwise-interacting agents with the following natural capability: swapping states can know
when they have covered the whole population. Note that we refer to states and not to nodes. A node may
possibly not be ever able to interact with all other nodes, however if nodes constantly swap their states then
the resulting random walk must be capable of covering the whole population (e.g. in a complete graph the
cover time of a random walk is n log n).

We assume a unique leader in the population which jumps from node to node. What we require is that
the leader state knows when it has passed from all nodes and we require this to hold iteratively, that is after
it knows that it has covered the whole population it can know the same for the next walk, and so on. So we
just assume a cover-time service which is a black-box for the protocol. We call this extension of PPs with
leader and a cover-time service the Cover-Time Service (CTS) model.

Formally, we are given a population V of n agents s.t. initially a node u is in state (l,D, 0) while all
other nodes are in state ⊥. What we require is that D ∈ N satisfies the following. If in every interaction
(v, w), s.t. the state of v is (l,D, i) and the state of w is ⊥, v updates to ⊥ and w to (l,D, i+ 1) (swapping
their states and increasing i by one) if D > i + 1 and to (l,D, 0) otherwise, then in every D consecutive
steps s1, . . . , sD (where we can w.l.o.g. assume that a single interaction occurs in each step) it holds that
{z ∈ V : z has obtained l at least once in the interval [s1, sD]} = V . That is D is an upper bound on
the time needed for a swapping state (here l) to visit all nodes (called the cover-time). The leader state,
no matter which node it lies on, can detect the coverage of V when the step/interaction counter i becomes
equal to D. We assume that both D and i are only used for coverage detection and not as additional storage
for internal computation (nodes keep operating as finite-state machines). Another way to appreciate this is
by imagining that all nodes have access to a global clock that ticks every D rounds. Finally, observe that
D is always an upper bound on n − 1, because at least n − 1 interactions are needed for a state to cover
V . Of course, in some cases it might be possible for nodes to have more drastic knowledge, like for example
knowledge of n. Then the mechanism of detecting coverage is similar but more intuitive. All nodes have a
status component which takes values from {bottom, top}. All are bottom apart from the initial leader which
is top and has the counter token i = 1. When the leader meets a bottom, it switches it to top, the leader
swaps from one node to the other, and i is increased by one. When i = n (n is known in advance in this
scenario), n distinct bottoms (the initial leader inclusive) have been converted to top so a covering has been
completed. The next covering is performed by setting i = 1 and converting tops to bottoms this time, and
so on. Again, we assume that n and the local counter i of size n are only used for covering detection and
not for any other sort of internal computation (as stated above, the cover-time service is a black-box that a
protocol may use only for covering detection).

We explore the computability of the CTS model. In particular, we arrive at an exact characterization
of its computational power. We do so by reducing the CTS model to an artificial but convenient variant
of population protocols that is equipped with a powerful oracle-node capable of detecting the presence or
absence of any state from the population. At a first glance our model may seem to be of pure theoretical
interest. However, we expect that even “more applied” variations of population protocols equipped with
some similar capability of detecting termination (even via more local mechanisms) may one way or another
reduce to our model.

3

5. Absence Detectors

A Population Protocol with Absence Detector (AD) is a 7-tuple (X,Y,Q, I, ω, δ, γ) where X,Y and Q
are finite sets and X is the input alphabet, Y is the output alphabet, Q is a set of states, I : X → Q is the
input function, ω : Q → Y is the output function, δ is the transition function δ : Q × Q → Q × Q and γ
is the detection transition function γ : Q × {0, 1}|Q| → Q. If δ(a, b) = (c, d), where a, b, c, d ∈ Q, we call
(a, b)→ (c, d) a transition and we define δ1(a, b) = c and δ2(a, b) = d. We also call transition any (q, a)→ c,
where q, c ∈ Q, a ∈ {0, 1}|Q| so that γ(q, a) = c.

An AD runs on the nodes of an interaction graph G = (V,E) where G is a directed graph without
self-loops and multiple edges, V is a population of n agents plus a single absence detector (n+ 1 entities in
total), and E is the set of permissible, ordered interactions between two agents or an agent and the absence
detector. An absence detector is a special node whose state is a vector a ∈ {0, 1}|Q|, called absence vector,
always representing the absence or not of each state from the population; that is, q ∈ Q is absent from the
population in the current configuration iff a[q] = 1. From now on we will denote the absence detector by
a unless stated otherwise. Throughout this work we consider only complete interaction graphs, that is all
agents may interact with each other and with the absence detector.

Initially, each agent except the absence detector senses its environment (as a response to a global start
signal) and receives an input symbol from X. We call an input assignment to the population, any string
x = σ1σ2 . . . σn ∈ X∗, where by n we denote the population size. Then all agents that received an input
symbol apply the input function on their symbols and obtain their initial states. Given an input assignment
x the absence detector is initialized by setting a[q] = 0 for all q ∈ Q so that ∃σk ∈ x : I(σk) = q and a[q] = 1
for all other q ∈ Q.

A population configuration, or more briefly a configuration is a mapping C : V → Q∪{0, 1}|Q| specifying
a state q ∈ Q for each agent of the population and a vector a ∈ {0, 1}|Q| for the absence detector. We call an
initial configuration, a configuration that specifies the initial state of each agent of the population and the
initial absence vector of the absence detector w.r.t. a given input assignment x (as previously described). Let
C, C ′ be two configurations and u ∈ V −{a}, a ∈ {0, 1}|Q| be an agent and the absence vector of the detector,
respectively. We denote by C(u) the state of agent u ∈ V under configuration C. We say that C yields C ′

via encounter (u, a) ∈ E and denote by C
(u,a)−→ C ′, if C ′(u) = γ(C(u), a), C ′(w) = C(w), ∀w ∈ (V − {u, a})

and C ′(a) = a′ so that a′[q] = 0, ∀q ∈ Q where ∃w ∈ V : C ′(w) = q and a′[q] = 1 otherwise. The previous
transition can be similarly defined for the reverse interaction (a, u). In addition, given two distinct agents

u, υ ∈ V , where u, υ 6= a, we say that C yields C ′ via encounter e = (u, υ) ∈ E and denoted by C
e−→ C ′, if

C ′(u) = δ1(C(u), C(υ)), C ′(υ) = δ2(C(u), C(υ)), C ′(w) = C(w), for all w ∈ (V − {u, υ, a}) and C ′(a) = a′

updated as previously. We say that C can go to C ′ in one step, denoted C → C ′, if C
t→ C ′ for some t ∈ E.

We write C
∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ck = C ′, such that Ci → Ci+1 for

all i, 0 ≤ i < k, in which case we say that C ′ is reachable from C.
We call an execution any finite or infinite sequence of configurations C0, C1, C2, . . ., where C0 is an initial

configuration and Ci → Ci+1, for all i ≥ 0. The interacting pairs are chosen by an adversary. A strong
global fairness condition is imposed on the adversary to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C ′ such that C → C ′, if C occurs infinitely often
in the execution then so does C ′. An adversary scheduler is fair if it always leads to fair executions. A
computation is an infinite fair execution. An interaction between two agents is called effective if at least
one of the initiator’s or the responder’s states is modified (that is, if C, C ′ are the configurations before and
after the interaction, respectively, then C ′ 6= C).

Note that since X,Y, and Q are finite, the description of an AD is independent from the population
size n. Moreover, agents cannot have unique identifiers (uids) since they are unable to store them in their
memory. As a result, the AD model preserves both uniformity and anonymity properties that the basic
Population Protocols have.

4

5.1. Stable Computation

We call a predicate over X∗ any function p : X∗ → {0, 1}. p is called symmetric if for every x ∈ X∗
and any x′ which is a permutation of x’s symbols, it holds that p(x) = p(x′) (in words, permuting the input
symbols does not affect the predicate’s outcome). In this work we are interested in the computation of
symmetric predicates.

A configuration C is called output stable if for every configuration C ′ that is reachable from C it holds
that ω(C ′(u)) = ω(C(u)) for all u ∈ V , where ω(C(u)) is the output of agent u under configuration C.
In simple words, no agent changes its output in any subsequent step and no matter how the computation
proceeds. We assume that a is the only agent that does not have an output. So the output of the population
concerns only the rest of the agents.

A predicate p over X∗ is said to be stably computable by the AD model, if there exists a AD A such that
for any input assignment x ∈ X∗, any computation of A on a complete interaction graph of |x| + 1 nodes
beginning from the initial configuration corresponding to x reaches an output stable configuration in which
all agents except a output p(x).

The existence of an absence detector allows for halting computations. We say that an AD A =
(XA, YA, QA, IA, ωA, δA, γA) is halting if there are two special subsets Qh accept, Qh reject ⊆ QA s.t. every
agent eventually goes in some q ∈ Qh accept (q ∈ Qh reject resp.) and from that point on stops participating
in effective interactions (i.e. it halts), giving output 1 (0 resp.). We say that a predicate p over X∗ is
computable by a halting AD A if for any input assignment x ∈ X∗, any computation of A on a complete
interaction graph of |x| + 1 nodes beginning from the initial configuration corresponding to x reaches an
output stable configuration in which, after a finite number of interactions, all agents, except for a, are in
states of Qh accept if p(x) = 1 and of Qh reject otherwise.

Let SPACE(f(n)) (NSPACE(f(n))) be the class of languages decidable by some (non) deterministic
TM in O(f(n)) space. For any class L denote by SL its commutative subclass. In addition, we denote
by SEM, the class of the semilinear predicates, consisting of all predicates definable by first-order logical
formulas of Presburger arithmetic (see, e.g., [GS66]).

6. Examples and Properties

We begin with a leader-election AD. X = {1}, Q = {l, f, lhalt, fhalt}, I(1) = f , δ is defined as (l, f) →
(l, fhalt), and γ as (f, a) → l, if a[l] = 1 and (l, a) → lhalt, if a[f] = 1. State l is the leader state and state
f is the follower (or non-leader) state. Note that both the output alphabet and the output function are not
specified since the output is meaningless in this setting. The interactions that are not specified in δ and γ
are ineffective.

Proposition 1. The above protocol is a leader election AD, that is eventually all nodes terminate with a
single u ∈ V \{a} in state l and all other v ∈ V \{u, a} in state f .

Proof. Initially all nodes are in state f (i.e. followers). When the first (f, a) interaction occurs, state l
is absent from the population and a[l] = 1 is true, thus f becomes l which is now a unique leader in the
population. From now on, a[l] = 0 so (f, a) becomes ineffective and no more leaders can be created. The
unique leader starts setting one after the other all followers to fhalt and when eventually fs become exhausted
it will hold that a[f] = 1, consequently a single (l, a) interaction will also make the unique leader halt by
turning its state to lhalt.

The following are some interesting properties of the AD model. We say that an AD A has stabilizing states
if every execution of A reaches a state-stable configuration C, that is a configuration C such that C ′ = C
for all C ′ reachable from C. In terms of absence vectors, a ∈ {0, 1}|Q| is state-stable iff for all q1, q2 ∈ Q
(not necessarily distinct) such that a[q1] = a[q2] = 0, it holds that δ(q1, q2) = (q1, q2) and γ(q1, a) = q1.

Proposition 2. Any AD with stabilizing states has an equivalent halting AD.

5

Proof. As the AD has stabilizing states, it follows that {0, 1}|Q| can be partitioned into a state-stable subset
and a state-unstable subset. If we let all agents know in advance the above partitioning (note that this is
constant information, so storing it is feasible) then we have the required termination criterion; that is, an
agent halts iff it encounters a detector with a state-stable absence vector.

From now on, we only consider ADs that halt.
A very interesting feature of ADs is that they can be sequentially composed. This means that given two

ADs A and B we can construct a AD C which has the input of A and the output of B given A’s output as
input. First, C runs as A on its inputs and once the absence detector detects A’s halt, C starts B’s execution
on using the output of A as input. The next theorem exploits the sequential composition of ADs to show
that any AD can assume the existence of a unique leader.

Proposition 3. Any AD A has an equivalent AD B that assumes a unique leader which does not obtain
any input.

Proof. For the one direction, B may trivially simulate A by ignoring the leader. Then for all computations
of A on n agents there is an equivalent computation of B on n + 1 agents. For the other direction, A first
elects a unique leader and then simulates B by considering the input of the agent that has been elected as
a leader as a “virtual” agent. The leader creates a bit which moves between the non-leaders. Whenever the
leader encounters the bit it interacts with the virtual agent that it carries in its own state. The role of the
leader in the “virtual” interaction, that is, whether it is the initiator or the responder can be determined
by its role in the real interaction in which it encountered the bit. Note that B’s computations on n+ 1 ≥ 3
agents are simulated by A on n agents.

Based on this fact, we only consider ADs that assume the existence of such a unique leader in the initial
configuration that is responsible for all effective interactions (non-leader interactions do not cause state
modifications). Observe that ignoring the effective interactions between the non-leaders does not affect the
computational power of the model. Effective interactions (a, b) → (a′, b′) between two non-leaders can be
mediated by the leader as follows: (a, l) → (a, la), (la, b) → (la,b, b

′), (a, la,b) → (a′, l). The other direction
holds trivially, because ignoring effective interactions between non-leaders is a special case of not ignoring
them. We denote by HAD the class of all predicates computable by some AD with a unique leader.

6.1. The Power of 2 protocol

We now construct an AD that computes the non-semilinear predicate (N1 = 2d), which is true if the
number of 1s in the input is a power of 2 (Protocol 1). This protocol illustrates the ability of ADs to perform
iterative computations (which is impossible in the original PP model).

The protocol essentially implements a classical TM deciding the language consisting of all strings of 1s
whose length is a power of 2 (see e.g. page 145 of [Sip06]). The TM in each iteration cuts the number of
1s in half. If during an iteration it finds an odd number of 1s it rejects and if it ever finds two 1s it accepts
(we have here disregarded the trivial case of a single 1 that is of course a power of 2). In our case, the input
is distributed and stored in the second component of the non-leaders’ state, where the first component of a
non-leader is f and the first component of a leader is l. The second component of a leader simulates the state
of the TM. The protocol exploits the fact that even without an ordering on the input symbols (which is the
case for a TM tape but not for a passively interacting system) it is still possible to cut half of them and to
determine their parity. The leader does this by marking the 1s alternately as 1̄ and 1′. Marking guarantees
that the same input symbol will not be counted twice. In particular, the 1̄s form the eliminated half while
each 1′ will be restored to 1 in the end of the iteration to form the set of 1s that will be halved in the next
iteration. All operations discussed so far can also be implemented in the original population protocol model.
The only distinguishing operation is the ability to detect termination of an iteration. This is achieved via
the absence detector. In particular, when the leader learns from the absence detector that there are no more
1s in the population (which occurs when all 1s are marked) while there are still even 1′s (the latter encoded
by leader’s state q2), the next iteration begins. In case the 1′s are odd (encoded by leader’s state q3) the
leader rejects. Acceptance occurs if at some iteration both the 1s and the 1′s have been exhausted and the

6

Protocol 1 Power of 2

1: X = {1}, Q = ({l} × {q0, q1, q2, q3, q4}) ∪ ({f} × {1, 1̄, 1′}) ∪ {qaccept, qreject},
2: I(1) = (f, 1) only for the non-leaders,
3: the leader is initialized to (l, q0),
4: δ:

(l, q0), (f, 1)→ (l, q1), (f, 1̄)

(l, q1), (f, 1)→ (l, q2), (f, 1̄)

(l, q2), (f, 1)→ (l, q3), (f, 1′)

(l, q3), (f, 1)→ (l, q2), (f, 1̄)

(l, q4), (f, 1′)→ (l, q4), (f, 1)

5: γ:

(l, q2), a→ qaccept, if a[f, 1] = a[f, 1′] = 1

→ (l, q4), if a[f, 1] = 1 and a[f, 1′] = 0

(l, q3), a→ qreject, if a[f, 1] = 1 and a[f, 1′] = 0

(l, q4), a→ (l, q1), if a[f, 1′] = 1

leader is in state q2, which corresponds to having found precisely two 1s (in fact a single one erased in this
iteration as the other was erased from the very beginning and is always assumed to exist throughout the
execution).

7. Computational Power

We now explore the computational power of the CTS model via the AD model. In particular, we provide
several lower bounds and an upper bound for the class HAD. By Theorem 1 (presented below) these results
carry over to the class of languages computable by CTS protocols.

Theorem 1. The CTS model is computationally equivalent to the leader-AD model.

Proof. To simulate absence detectors by the CTS model we have the unique leader l to play both the role of
the absence detector and the role of the leader of the computation. Whenever the leader wants to talk to the
absence detector it begins the process to form the absence vector. To do this it starts walking throughout
the graph keeping track of the existence or not of all possible states; that is if it encounters some state q
then it simply remembers the existence of this state. When l is informed by the service that its walk has
been completed (that is it has covered all nodes) it knows that it has obtained the correct absence vector
(being true for those states that were not found in the population).

For the other direction, we show how the absence detection model can know when a walk has covered
the whole population: as the leader state walks over the graph it leaves marks on the nodes it crosses. Any
time that a mark is left, the walking state waits to talk to the absence detector and asks it whether there is
some node without a mark. When the absence detector says that all nodes have been marked the walking
state knows that it has covered the whole population.

7.1. PPs vs ADs

In [AAER07], they defined the k-truncate of a configuration c ∈ NQ as τk(c)[q] := min(k, c[q]) for all
q ∈ Q.

7

Lemma 1. For all finite k and any initial configuration c ∈ NQ, there is an AD that aggregates in one agent
τk(c).

Proof. The unique leader is aware of the finite bound k and initiates a |Q|-vector full of zeros except for
a 1 in the position of its own state (note that since the leader election protocol is halting we are allowed
to first elect a leader and then execute a second procedure based on the assumption of a leader). When a
leader interacts with a non-leader, then the non-leader halts and if the leader’s counter corresponding to the
non-leader’s state was less than k, then the leader increments it by one. The leader halts when the absence
detector informs it that non-leaders are absent.

Theorem 2. SEM ⊆ HAD.

Proof. It was proved in [AAER07] that, for any PP with stabilizing outputs, there exists a finite k such that
a configuration is output stable iff its k-truncate is output stable (and the output values are preserved). We
let the AD know the k corresponding to the simulated PP. The AD-leader performs a constant number of
simulation steps, e.g. k, and then does the following. It marks all non-leaders one after the other, while
gathering the k-truncate of their current configuration c. When the detector informs the leader that no
unmarked non-leaders have remained, the leader checks whether τk(c) is output-stable (since k is finite and
independent of the population size, we may as in Proposition 2 assume that the leader knows in advance
the subset of output stable k-truncates). If it is, then c must also be output stable and the protocol halts.
If not, then neither is c and the leader drops this truncate, restores one after the other all non-leaders and
when no marked non-leader has remained it continues the PP’s simulation for another constant number of
steps, and so on.

Taking into account Theorem 2 and the non-semilinear power of 2 predicate (Protocol 1) we have that
SEM (HAD.

7.2. Better Lower Bounds and an Upper Bound

We construct now an AD that computes the predicate (bNd1
1 Nd2

2 · · · N
dk

k < c), where b and c are integer
constants and di and k are nonnegative constants. We again make w.l.o.g. the assumption of a unique
leader, and for further simplification we forget about the leader’s input.

To simplify the description we first present an AD that computes (bNd
1 < c) for integers b, c and nonneg-

ative d, where in general Ni is used to denote the number of agents with input i. The idea is to have the
leader maintain a counter of the sum computed so far, initially equal to −c. Let for example both b and c be
positive. So, initially the leader begins with a negative sum and then it tries to exploit the nodes with input 1
in order to add b to its sum Nd

1 times and check whether the sum remains < 0 or not. Of course, it cannot add
the whole sum to its memory because its state-pace is finite and independent of n. Instead, if at some point
the sum becomes ≥ 0, the leader can terminate and output 0 (i.e. that the predicate is not true) because in
the sequel the sum cannot change sign again (it can only increase by adding more bs to it). So, the interesting
part of the protocol, which we now explain, is to count (potentially) up to Nd

1 . The idea is for the protocol
to construct one after the other all possible d-tuples of the form (m1,m2, . . . ,md), where 1 ≤ mi ≤ N1.
Observe that there are Nd

1 such distinct tuples. To do this, the protocol initializes every agent with input 1
with a d-tuple of bits, initially all equal to 0. The protocol sets a value to each mi by setting the number
of agents whose component i is 1. Initially, for all 1 ≤ i ≤ d− 1 it sets an i component to 1. In this way it
constructs the first (d− 1)-tuple, (1, 1, . . . , 1). Then it starts converting one after the dth component of each
agent to 1, thus creating one after the other the d-tuples (1, 1, . . . , 1, 1), (1, 1, . . . , 1, 2), . . . , (1, 1, . . . , 1, N1),
every time also adding b to the leader’s sum. That all possible d-tuples corresponding to the (d − 1)-tuple
(1, 1, . . . , 1), can be detected by the absence of a 0 from the dth component of the agents, i.e. when all of
them are 1 and md = N1 holds. Then the leader restores all d-th components to 0, converts another d − 1
component to 1 in order to create the next (d − 1)-tuple, (1, 1, . . . , 2), and repeats the previous process to
construct again all d-tuples corresponding to it. By recursive application of this idea to all the components
of the d-tuple it is not hard to see that all possible combinations can be constructed.

8

To present the protocol formally, define [c] := {0, 1, . . . , |c|} if c < 0 and [c] := {−c,−c + 1, . . . , 0} if
c ≥ 0. Define u−i to be the subvector of a vector u consisting of all components of u except from component
i. We write a vector u as (j, u−i) when we want to emphasize that component i of u has the value j. Given
an absence vector a, a[j, u−i] = 1 is true iff (j, u−i) is absent from the population for all u−i. The protocol,
called VarPower, is presented in Protocol 2.

Protocol 2 VarPower

1: X = {s1}, Q = ({l1, l2, . . . , ld, le1, le2, . . . , led} × [c]) ∪ {0, 1}d ∪ {qaccept, qreject},
2: I(s1) = 0d,
3: the initial state of the leader is (l1,−c),
4: δ:

(li, w), (0, u−i)→ (li+1, w), (1, u−i), if i < d

→ qaccept, if i = d and c ≥ 0, w + b ≤ −c or c < 0, w + b < 0

→ qreject, if i = d and c ≥ 0, w + b ≥ 0 or c < 0, w + b ≥ −c
→ (li, w + b), (1, u−i), if i = d and c ≥ 0,−c ≤ w + b < 0 or

c < 0, 0 ≤ w + b < |c|
(lei , w), (1, u−i)→ (lei , w), (0, u−i)

5: γ:

(li, w), a→ (lei , w), if a[0, u−i] = 1 and i > 1

→ qaccept, if a[0, u−i] = 1, i = 1 and w < 0

→ qreject, if a[0, u−i] = 1, i = 1 and w ≥ 0

(lei , w), a→ (li−1, w), if a[1, u−i] = 1

We now extend the above construction to devise an AD for the predicate (bNd1
1 Nd2

2 · · ·N
dk

k < c), where
b and c are integer constants and k is a nonnegative constant. The idea is simple. The leader now holds
a k-vector of vectors, l, where li is a di-vector of states, similar to those of Protocol 2, in order to execute
k copies of Protocol 2. The leader still holds a unique counter initialized to −c. Similarly, each agent has
k components, one for each subprotocol. The AD, in fact, produces all possible assignments of states to
lij . Initially, one step of each subprotocol is executed, then all steps of subprotocol k is executed, then k is
reinitialized, k− 1 is proceeded for one step and again all possible steps of k are executed, when all possible
combinations of k− 1 and k have been exhausted, k− 2 proceeds for one step, and all possible combinations
of k − 1 and k are reproduced, and so on. After each step, except for the first k − 1 steps, the terminating
conditions of Protocol 2 are checked and if no one is satisfied b is added to the leader’s counter.

Finally, by exploiting the above constructions we devise an AD that computes the predicate

l∑
d1,d2,...,dk=0

ad1,d2,...,dk
Nd1

1 Nd2
2 · · ·N

dk

k < c,

where ad1,d2,...,dk
and c are integer constants and l and k are nonnegative constants. Here, a difference to the

previous protocol is that we have many copies of it running in parallel, their number being equal to the number
of nonzero coefficients, and each one of them adds to the counter its own coefficient ad1,d2,...,dk

. A key dif-
ference is that the counter bounds are now set to −s, s, where s := max(maxd1,d2,...,dk=0,...,l |ad1,d2,...,dk

|, |c|),
and that when we say “in parallel” we can implement this in a round-robin fashion, and let the protocol
terminate when no subprotocol can proceed without exceeding the bounds. Then the halting decision simply
depends on whether the leader’s counter is negative or not. We conclude with the following lower bound on
HAD.

9

Theorem 3. Any predicate of the form

l∑
d1,d2,...,dk=0

ad1,d2,...,dk
Nd1

1 Nd2
2 · · ·N

dk

k < c,

where ad1,d2,...,dk
and c are integer constants and l and k are nonnegative constants, is in HAD.

7.2.1. Simulating a Counter Machine

In this Section, we prove that ADs and one-way (online) counter machines (CMs) [FMR68, Min61] can
simulate each other.

A one-way (online) k-counter machine (k-CM) [FMR68, Min61] consists of a finite control unit, k
nonnegative integer counters, and an input terminal. Formally, a k-CM is an 8-tuple (Qp, Qa,Σ,M,K,
s0, qaccept, qreject), where Qp, Qa, Σ are all finite sets and

1. Qp is the set of polling states,

2. Qa is the set of autonomous states,

3. Σ is the input alphabet,

4. M : (Qa ∪ (Qp × Σ))× {0, 1}k → Qa ∪Qp is the state transition function,

5. K : (Qa ∪ (Qp × Σ))× {0, 1}k → {−1, 0, 1}k is the counter updating function,

6. s0 ∈ Qp is the initial state,

7. qaccept ∈ Qp is the accept state, and

8. qreject ∈ Qp is the reject state.

Define sg : N → {0, 1} as sg(x) = 0 if x = 0 and sg(x) = 1 otherwise and extend sg to Nk by
sg(x1, x2, . . . , xk) = (sg(x1), sg(x2), . . . , sg(xk)). A configuration of a k-CM is a member of (Qa∪Qp)×Σ∗×
Nk. We write (q, aw, (x1, . . . , xk)) → (q′′, w, (y1, . . . , yk)) where q ∈ Qp if M(q, a, sg(x1, . . . , xk)) = q′′ and
(x1, . . . , xk) +K(q, a, sg(x1, . . . , xk)) = (y1, . . . , yk) and we write (q′, w, (x1, . . . , xk))→ (q′′′, w, (z1, . . . , zk))
where q′ ∈ Qa if M(q′, sg(x1, . . . , xk)) = q′′′ and (x1, . . . , xk) +K(q′, sg(x1, . . . , xk)) = (z1, . . . , zk).

In words, a k-CM works as follows. Whenever it is in a polling state (note that it begins from a polling
initial state) it reads and consumes the first symbol of the input, it also reads its own state and the set of
zero counters and updates its own state and independently adds -1, 0, or 1 to each one of the k counters.
On the other hand, when it is in an autonomous state it does the same except from reading and consuming
any symbol from the input. The machine halts when it enters one of the states qaccept and qreject.

The space required by a CM in processing its input is the maximum value that any of its counters
obtains in the course of the computation. A language L ⊆ Σ∗ is said to be CM-decidable in O(f(n))
space if some CM which operates in space O(f(n)) accepts any w ∈ L and rejects any w′ ∈ Σ∗\L. Let
CMSPACE(f(n)) (NCMSPACE(f(n)) for nondeterministic CMs) be the class of all languages that are
CM-decidable in O(f(n)) space. Recall that by SCMSPACE(f(n)) (SNCMSPACE(f(n))) we denote
its symmetric subclass. The following well-known theorem states that any CM of space O(f(n)) can be
simulated by a TM of space O(log f(n)) and conversely.

Theorem 4 ([FMR68]). CMSPACE(f(n)) = SPACE(log f(n)) and NCMSPACE(f(n)) = NSPACE(log f(n)).

The above result can also be found as Lemma 3, page 94, in [Iba04].

Corollary 1. SCMSPACE(f(n)) = SSPACE(log f(n)) and SNCMSPACE(f(n)) = SNSPACE(log f(n)).

We are now ready to show that ADs can simulate linear-space CMs that compute symmetric languages.
We first present a proof idea to simplify the reading of the formal proof. The CM consists of a control unit,
an input terminal, and a constant number of counters. The AD simulates the control unit by electing a
unique leader, which is responsible for carrying out the simulation. The input terminal corresponds to the
actual input slots of the agents, each agent obtaining a single input symbol from the input alphabet Σ of the
CM. The k counters are stored by creating a k-vector of bits in the memory of each agent. In this manner,

10

each counter is distributed across the agents. The value of the ith counter at any time is determined by the
number of 1s appearing in the ith components of the agents. Since the number of agents is equal to the
number of input symbols the space of each counter is linear to the input size (in fact, we can easily make
this O(n) by allowing c bits in each component instead of just one). To take a step, the CM reads or not
the next symbol from the input and the sign (0 or positive) of each tape and then, if it read the input,
moves to the next input symbol and updates the contents of the counters. The leader of the AD waits or
not to encounter an agent whose input is not erased (unread), in the former case erases that input symbol,
and waits to encounter the absence detector to learn the set of zero counters. When the latter happens,
the leader obtains a vector of -1s, 0, and 1, representing the value to be added to each counter. From that
point on, the leader adds these values wherever possible until all of them have been added. Then the leader
continues the simulation as above.

Theorem 5. SCMSPACE(n) ⊆ HAD.

Proof. Take any L ∈ SCMSPACE(n). Let S = (Qp, Qa,Σ,M,K, s0, qaccept, qreject) be a k-CM that decides
L in space O(n). We construct an AD A = (X,Q, I, δ, γ) that computes L by simulating S (it is easy to see
that there is no need for specifying an output alphabet and an output function). By Proposition 3, A may
assume the existence of a unique leader that does not obtain any input.

Let ε denote the empty string. Define X̄ := {σ̄ | σ ∈ X} for any set X. Define also b = (b1, b2, . . . , bk) ∈
{0, 1}k by bi := 1, for all 1 ≤ i ≤ k, iff there exists an agent with non-null ui, that is, in terms of the absence
vector a, iff there exists a σ ∈ X ∪ X̄ and a u = (1, u−i) ∈ {0, 1}k such that a[σ, (1, u−i)] = 0. Finally, given
any v ∈ {−1, 0, 1}k and u ∈ {0, 1}k, define t1(v, u) ∈ {−1, 0, 1}k and t2(v, u) ∈ {0, 1}k as follows (t1,i(v, u),
t2,i(v, u) denote the ith components of t1(v, u) and t2(v, u), respectively): t1,i(v, u) := 0 if vi + ui ∈ {0, 1}
and t1,i(v, u) := vi otherwise, and t2,i(v, u) := vi + ui if vi + ui ∈ {0, 1} and t2,i(v, u) := ui otherwise. Let
us make these a more intuitive. First, v is used in the protocol to denote the k-vector of the leader from
{−1, 0, 1}k. The value of each component i corresponds to the value that must be added to the counter
encoded in the i-th components of the agents. When the leader, while still having non-null v, encounters
another agent with vector u ∈ {0, 1}k, it tries to add to u as much as it can from v. In particular, if vi +ui is
in {0, 1}, then the sum can be stored in ui without violating the capacity of the counter. If this is the case,
then vi becomes 0 (so that it is not added a second time to some other agent) and ui is updated to the sum.
On the other hand, if vi +ui /∈ {0, 1} (which is for example the case if the leader is trying to subtract 1 from
a 0 or to add 1 to a 1) then addition cannot be performed. In this case, both vi and ui maintain their values
and the leader will try in future interactions to find some other agent whose ith component value will permit
addition. It is not hard to verify that these operations are correctly implemented if the leader updates v to
t1(v, u) and the other agent updates u to t2(v, u). The formal construction is presented in Protocol 3.

Note that in contrast to S, A reads its input in an arbitrary order, that is, given input x, A reads a
permutation x′ of x. L being commutative guarantees that this does not affect the output of S.

Finally, by combining Corollary 1 and Theorem 5 we obtain the following TM equivalent characterization
of the lower bound of Theorem 5.

Corollary 2. SSPACE(log n) ⊆ HAD.

Proof. SSPACE(log n) = SCMSPACE(n) ⊆ HAD.

We next show that any predicate in HAD is decidable by a NTM of logarithmic space.

Theorem 6. HAD ⊆ SNSPACE(log n).

Proof. The proof is similar to the one of Theorem 15 in [AAD+06]. Given an AD A = (X,Y,Q, I, ω, δ, γ)
that stably computes a predicate p in the family of complete interaction graphs, let Lp be the support of
p on X∗, that is, the set of strings x ∈ X∗ such that p(x) = 1. We present a NTM that decides Lp in
O(log n) space. To accept the input assignment x ∈ Lp, the TM must verify two conditions: that there is a
configuration C reachable from the initial configuration corresponding to x in which all agents have output
1, and that there is no configuration C ′ reachable from C in which some agent has output 0.

11

Protocol 3 AD A simulating CM S

1: X = Σ, Q = [{l} × (Qp ∪Qa)× (X ∪ {−1, 0, 1}k ∪ {ε})] ∪ [(X ∪ X̄)× {0, 1}k] ∪ {qaccept, qreject},
2: I(σ) = (σ, 0k) for all σ ∈ X
3: the initial state of the leader is (l, s0),
4: δ:

(l, q), (σ, u)→ (l, q, σ), (σ̄, u), if q ∈ Qp and σ ∈ X
(l′, q, v), (σ, u)→ (l′, q, t1(v, u)), (σ, t2(v, u)), if t1(v, u) 6= 0k

→ (l, q), (σ, t2(v, u)), otherwise

5: γ:

(l, q, σ), a→ (l′,M(q, σ, b),K(q, σ, b)) if M(q, σ, b) /∈ {qaccept, qreject}
→ (qaccept, ·) if M(q, σ, b) = qaccept

→ (qreject, ·) if M(q, σ, b) = qreject

(l, q), a→ (l′,M(q, b),K(q, b)) if q ∈ Qa and M(q, b) /∈ {qaccept, qreject}
→ (qaccept, ·) if q ∈ Qa and M(q, b) = qaccept

→ (qreject, ·) if q ∈ Qa and M(q, b) = qreject

The first condition is verified by guessing and checking a sequence of multiset representations of config-
urations reaching such a C. Note that due to the symmetry stemming from the interaction graph and from
the constant description of the protocols, these representations are polynomial in size (for each state we keep
a counter whose value is the number of agents in this state in the current configuration). In addition, the
information stored in the absence detector is also of constant size (a bit for each state of the AD). Thus
the previous representation requires O(log n) space (where n = |x|) for a single configuration to be stored.
The second condition is the complement of a similar reachability condition. This is also in NSPACE(log n)
because this class is closed under complement for all space functions ≥ log n (see [Imm88]).

By Savitch’s theorem [Sav70] we have the following corollary:

Corollary 3. HAD ⊆ SSPACE(log2 n).

In summary, we have obtained the following bounds on HAD (from Corollaries 2 and 3).

Corollary 4. SSPACE(log n) ⊆ HAD ⊆ SSPACE(log2 n).

8. Similarities to Linear Bounded Automata

In this section, we examine the computational power of the AD model in comparison to the power
of Multiset Linear Bounded Automata with Detection (MLBAD) [CVMVM01, Vas08]. To do this, we
focus on a more general version of ADs that halt only in the accept case (recognizers). We first prove
that nondeterministic ADs of this sort are computationally equivalent to the deterministic ones. Then by
exploiting this we will show that recognizing ADs can simulate MLBADs which with the help of one result
from the literature will give us that recognizing ADs can compute any language produced by random context
grammars.

A multiset linear bounded automaton with detection (MLBAD) (see, e.g., [CVMVM01, Vas08]) has a
bag able to store a finite multiset and a read-write head which can pick up (read and remove) a symbol
from the bag and add at most one symbol to the contents of the bag. Adding a symbol is meant as
increasing the number of copies of that symbol by 1. Being in a state, the multiset linear bounded automaton

12

either reads a symbol which occurs in the bag, changes its state (nondeterministically) and adds or not a
symbol to the bag contents or reads the absence of a symbol (detection) from the bag and updates its state
(nondeterministically). When the machine stops (no move is possible anymore) in a final state with an
empty bag, we say that the input multiset is accepted, otherwise it is rejected. Formally, a multiset linear
bounded automaton (shortly, MLBA) is a construct

M = (Q,Σ, B, f, q0, F),

where Q and F are the finite sets of states and final states, respectively, Σ and B are the input and the
bag alphabets, respectively, Σ ⊆ B, q0 is the initial state, and f is the transition mapping from Q×B into
the set of all subsets of Q× (B ∪ {ε}), where ε denotes the empty string. As in the case of Multiset Finite
Automata (MFAs), a configuration is a pair (q, b), where q is the current state and b ∈ NB is the content of
the bag (a vector of nonnegative integers indexed by B). We write

(q, b)→ (q′, b′)

if and only if there exists σ ∈ B such that

• (q′, g) ∈ f(q, σ), g 6= ε, b[σ] ≥ 1, b′[σ] = b[σ]−1, b′[g] = b[g]+1, and b′[c] = b[c] for all c ∈ B, c /∈ {σ, g},
or

• (q′, ε) ∈ f(q, σ), t[σ] ≥ 1, b′[σ] = b[σ]− 1, and b′[c] = b[c] for all c ∈ B, c 6= σ.

The reflexive and transitive closure of this operation is denoted by
∗→. The macroset accepted by A is defined

by
Rec(M) = {b | (q0, b)

∗→ (qf , ε) for some qf ∈ F}.

Note that a MLBAD is by definition nondeterministic. Denote by LMLBAD the class of languages
accepted by MLBADs. Also denote by mRC the class of languages produced by multiset random context
grammars. A random context grammar is a semi-conditional grammar where the permitting and forbidden
contexts of all productions are subsets of the set of nonterminals [Das04, RS97]. The definition of a multiset
random context grammar is a direct extension of the definition of a string random context grammar. Mul-
tiset random context grammars contain only non-erasing context-free rules. The following theorem is from
[CVMVM01].

Theorem 7 ([CVMVM01]). mRC ⊆ LMLBAD.

We will show now that any MLBAD can be simulated by a recognizing AD. We call an AD A recognizing
AD if it only halts in the accept case, that is, given input assignment x it halts if p(x) = 1 and just stabilizes
otherwise. Let RAD denote the class of all predicates computable by some recognizing AD. In this notation,
we will show that LMLBAD ⊆ RAD. To simplify the discussion we must first define the nondeterministic
version of ADs. A nondeterministic AD (NAD) is an AD with the transition functions extended as follows:

• δ : Q×Q→ 2Q×Q

• γ : Q× {0, 1}Q → 2Q

A NAD stably accepts its input if some branch of its computation output stabilizes to the value 1, and
accepts it if some branch of its computation halts in an accepting state. Denote by RNAD the class of
predicates computable by some recognizing NAD. The following lemma establishes that nondeterminism
does not add computational power to ADs.

Lemma 2. For any accepting NAD there exists an accepting AD that simulates it (RNAD ⊆ RAD).

13

Proof. Take such an NAD A. We construct an AD B that simulates A. Define s as the maximum number
of nondeterministic transitions over both δ and γ. B first elects a leader. Then the leader assigns to
the agents the numbers 1, 2, . . . , s in a modular fashion (when s is reached, it continues from 1). Denote
by val(u) the value assigned to an agent u. In the sequel of the execution the leader plays the role of
the coordinator of interactions between the non-leaders. When the leader interacts with some agent u,
it collects u’s state and marks it. Then it waits for an interaction with some other agent v. Now that
the leader knows the pair (C(u), C(v)) of the interacting agents’ states it must make a nondeterministic
choice between those in δ(C(u), C(v)). To do that, it waits for another interaction with some agent w and
the nondeterministic choice to be made is val(w) modulo |δ(C(u), C(v))| if we assume an ordering on the
nondeterministic transitions. The nondeterminism of the choice made this way stems from the interaction
pattern imposed by the adversary. In this manner, B performs a search on A’s nondeterministic tree. Similar
things happen when the leader interacts with an absence detector. In this way, a branch of A’s tree is followed
in a nondeterministic manner. We must also guarantee that all possible paths will eventually be followed.
Before taking any step, B nondeterministically reinitializes the simulation (that is, goes back to the root of
the tree). This can be achieved by exploiting the values modulo 2, where 0 results reinitialization and 1
continuation. It is not hard to see by invoking fairness that eventually all paths will be followed, however
one can make the simulation more practical if the reinitialization occurs after nd steps, where d is a large
integer constant (this can be achieved by having a protocol similar to Protocol 2 running in parallel and
proceeding one step whenever the simulation takes one step. When this protocol halts, the simulation must
be reinitialized). Finally, we let B always output 0 unless an accepting halting state is reached (in which all
agents have halted and accepted). It is clear that if A has an accepting branch, then eventually B will follow
it, it will detect A’s halting and it will also accept and halt. If A has no accepting branch then B forever
outputs 0.

Lemma 3. LMLBAD ⊆ RNAD.

Proof. Take any MLBAD M = (QM,Σ, B, f, q0, F). We construct an NAD A = (X,Y,QA, I, O, δ, γ) that
simulates M. From Proposition 1 we assume the existence of a unique leader in the initial configuration of
A. Moreover, we can assume w.l.o.g. that the leader has no input, since if not it could transfer its input
to some non-leader and simulate the existence of some additional agent (treat this agent as two distinct
agents). Partition QA to two sets Ql and Qn containing the leader and non-leader states, respectively. We
set Ql = Q ∪ {qaccept}, X = Σ, Y = {0, 1}, Qn = B ∪ B̄ ∪ {h}, where B̄ := {b̄ | b ∈ B} and h is the halting
state, l := q0 (the initial state of the leader), ω(qaccept) = 1 and ω(q) = 0 for all q ∈ QA\{qaccept}. Now it is
trivial to construct the transition function δ and the detection transition function γ. The state of the leader
is the state of the automaton M and the states of the non-leaders play the role of the symbols in the bag.
δ has effective interactions of the form Ql × Qn → Ql × Qn and works as the transition mapping f of M.
Whenever a symbol (state in B ⊆ Qn) is erased by f , δ maps it to its corresponding state in B̄. γ maps the
leader to the qaccept halting state whenever states from B are absent and the leader is in a state in F ⊆ Ql.
Once the qaccept state is no longer absent (that is, the leader and thus M has accepted the input) γ maps
all states from B̄ (that is, the non-leaders) to the halting state h.

Thus, from Theorem 7 and Lemmas 2 and 3, we have that

Theorem 8. mRC ⊆ RAD.

In words, this says that recognizing ADs can compute any language produced by multiset random context
grammars.

9. Conclusions

In this work we proposed the CTS model, a new extension of the PP model of Angluin et al. that
additionally assumes the existence of a cover-time service. By reduction to the absence detector oracle
model we were able to investigate and almost completely characterize the computational power of the new

14

model. The introduced global knowledge enables CTSs to perform halting computations, a feature that is
missing from the original PP model. We explored the properties and the computability of the new model
and focused more on halting computations. We showed that all predicates in SSPACE(log n) are also in
HAD and that the latter is a subset of SSPACE(log2 n). Finally, the comparison of the computability
of our model to that of MLBADs lead us to the result that recognizing ADs can compute any language
produced by random context grammars.

Many interesting questions remain open. The bounds given in this work for halting ADs are not tight.
An exact characterization of HAD is still elusive. In addition, what happens in the case where the detector
does not always correctly detect or in the case where it does not have full knowledge (e.g. may predict a
fraction of the absent nodes)? Do the protocols presented here work correctly in the case of a weak, a faulty,
or even an adversarial detector? Moreover, how is the computability of graph properties of the interaction
graph affected by the absence detector’s presence? Finally, can one simplify the proof of the upper bound
of PPs [AAER07] by simulating them by a one-way 1-CM or by a nondeterministic pushdown automaton?

Acknowledgements. We would like to particularly thank James Aspnes for bringing to our attention
the similarity of our model to the eventual leader detector Ω of [FJ06]. We would also like to thank some
anonymous reviewers for their useful comments that have helped us improve our work.

References

[AAC+05] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Stably computable
properties of network graphs. In Distributed Computing in Sensor Systems: First IEEE In-
ternational Conference DCOSS, volume 3560 of LNCS, pages 63–74. Springer-Verlag, June
2005.

[AAD+06] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, pages 235–253, March 2006.

[AAE08] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a
leader. Distributed Computing, 21[3]:183–199, 2008.

[AAER07] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population
protocols. Distributed Computing, 20[4]:279–304, November 2007.

[BBCK10] J. Beauquier, J. Burman, J. Clement, and S. Kutten. On utilizing speed in networks of
mobile agents. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, PODC ’10, pages 305–314, New York, NY, USA, 2010. ACM.

[CMN+11] I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G. Spirakis. Passively
mobile communicating machines that use restricted space. Theor. Comput. Sci., 412[46]:6469–
6483, 2011.

[CVMVM01] E. Csuhaj-Varjú, C. Martin-Vide, and V. Mitrana. Multiset automata. In Proceedings of the
Workshop on Multiset Processing: Multiset Processing, Mathematical, Computer Science, and
Molecular Computing Points of View, WMP ’00, pages 69–84, London, UK, 2001. Springer-
Verlag.

[Das04] J. Dassow. Grammars with regulated rewriting. In Formal Languages and Applications, pages
249–273. Springer, 2004.

[Edi86] J. L. Edighoffer. Distributed, replicated computer bulletin board service. PhD thesis, Stanford,
CA, USA, 1986. UMI order no. GAX86-19742.

15

[FJ06] M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state anony-
mous agents. In Proceedings of the 10th international conference on Principles of Distributed
Systems, OPODIS’06, pages 395–409, Berlin, Heidelberg, 2006. Springer-Verlag.

[FMR68] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter languages.
Mathematical Systems Theory, 2[3]:265–283, 1968.

[GR09] R. Guerraoui and E. Ruppert. Names trump malice: Tiny mobile agents can tolerate byzan-
tine failures. In 36th International Colloquium on Automata, Languages and Programming
(ICALP), volume 5556 of Lecture Notes in Computer Science, pages 484–495. Springer-Verlag,
2009.

[GS66] S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and languages. Pacific
Journal of Mathematics, 16:285–296, 1966.

[Iba04] O. H. Ibarra. On the computational complexity of membrane systems. Theor. Comput. Sci.,
320:89–109, June 2004.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17[5]:935–938, 1988.

[MCS11a] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Mediated population protocols. Theor.
Comput. Sci., 412:2434–2450, May 2011.

[MCS11b] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. New Models for Population Protocols. N.
A. Lynch (Ed), Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool,
2011.

[MCS12] O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Terminating population protocols via some
minimal global knowledge assumptions. In A. Richa and C. Scheideler, editors, Stabilization,
Safety, and Security of Distributed Systems, volume 7596 of Lecture Notes in Computer Science,
pages 77–89. Springer Berlin Heidelberg, 2012.

[Min61] M. L. Minsky. Recursive unsolvability of post’s problem of “tag” and other topics in theory of
turing machines. The Annals of Mathematics, 74[3]:437–455, Nov. 1961.

[RS97] G. Rozenberg and A. Salomaa, editors. Handbook of formal languages, vol. 1: word, language,
grammar. Springer-Verlag New York, Inc., 1997.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. System Sci., 4[2]:177–192, 1970.

[Sip06] M. Sipser. Introduction to the Theory of Computation, Second Edition, International Edition.
Thomson Course Technology, 2006.

[Vas08] G. Vaszil. Multiset grammars, multiset automata, and membrane systems. In Colloquium on
the Occasion of the 50th Birthday of Victor Mitrana, pages 1–10. Springer-Verlag, 2008.

16

