
October 27, 2021 16:6 main

Parallel Processing Letters
© World Scientific Publishing Company

Beyond Rings: Gathering in 1-Interval Connected Graphs ∗

Othon Michail

Department of Computer Science, University of Liverpool, UK

Paul G. Spirakis

Department of Computer Science, University of Liverpool, UK
Computer Engineering and Informatics Department, University of Patras, Greece

Michail Theofilatos

Department of Computer Science, University of Liverpool, UK

ABSTRACT

We examine the problem of gathering k ≥ 2 agents (or multi-agent rendezvous) in

dynamic graphs which may change in every round. We consider a variant of the 1-
interval connectivity model [Kuhn et al, STOC 2010] in which all instances (snapshots)

are always connected spanning subgraphs of an underlying graph, not necessarily a clique.

The agents are identical and not equipped with explicit communication capabilities, and
are initially arbitrarily positioned on the graph. The problem is for the agents to gather at

the same node, not fixed in advance. We first show that the problem becomes impossible

to solve if the underlying graph has a cycle. In light of this, we study a relaxed version of
this problem, called weak gathering, where the agents are allowed to gather either at the

same node, or at two adjacent nodes. Our goal is to characterize the class of 1-interval

connected graphs and initial configurations in which the problem is solvable, both with
and without homebases. On the negative side we show that when the underlying graph

contains a spanning bicyclic subgraph and satisfies an additional connectivity property,
weak gathering is unsolvable, thus we concentrate mainly on unicyclic graphs. As we

show, in most instances of initial agent configurations, the agents must meet on the

cycle. This adds an additional difficulty to the problem, as they need to explore the
graph and recognize the nodes that form the cycle. We provide a deterministic algorithm
for the solvable cases of this problem that runs in O(n2 + nk) number of rounds.

Keywords: gathering; weak gathering; dynamic graphs; unicyclic graphs; mobile agents.

1. Introduction

∗All authors were supported by the EEE/CS initiative NeST. The last author was also supported
by the Leverhulme Research Centre for Functional Materials Design. This work was partially

supported by the EPSRC Grant EP/P02002X/1 on Algorithmic Aspects of Temporal Graphs.

1

October 27, 2021 16:6 main

2 O. Michail & P. G. Spirakis & M. Theofilatos

1.1. Previous Work

The problem of gathering on graphs requires a set of k identical mobile agents that

operate in Look-Compute-Move cycles, to end up in the same node. In each cycle,

an agent takes a snapshot of its immediate neighborhood (Look), performs some

computations in order to decide whether to move to one of its adjacent nodes, or

remain idle (Compute), and in the former case makes an instantaneous move to

that neighbor (Move).

The feasibility of gathering has been extensively studied in the static setting,

and under various assumptions. A very common assumption that makes the prob-

lem solvable in ring graphs is for the agents to have distinct identities [1, 2, 3].

Alternatively, another assumption which pertains to the communication capabili-

ties of the agents, is either to supply each node with a whiteboard where the agents

can leave notes as they travel [4], mark the nodes that the agents are initially placed,

or provide the agents with a constant number of movable tokens that can be placed

on nodes, picked up, and carried while moving [5]. Under the first communication

assumption the problem becomes solvable even in the presence of some faults [6, 7].

In [8], the authors study the feasibility of gathering a set of identical and without

explicit communication capabilities agents in dynamic rings (1-interval connectivity,

[9]). As strict gathering becomes infeasible in this setting, they focus on a variation

of gathering, called weak gathering, where the agents are allowed to gather either at

the same node, or at two adjacent nodes. They investigate the impact that chirality

(i.e., common sense of orientation on the cycle) and cross detection (i.e., the ability

to detect whether some other agent is traversing the same edge in the same round)

have on the solvability of the problem. In order to drop the latter assumption,

they later construct a mechanism which avoids agents crossing each other (i.e.,

no agents traverse the same edge at the same round and in opposite directions),

called Logic Ring. To enable feasibility of weak gathering, they empower the agents

with some minimal form of implicit communication, called homebases (the nodes

that the agents are initially placed are identified by an identical mark, visible to

any agent passing by it). They provide a complete characterization of the classes

of initial configurations from which weak gathering is solvable in the presence or

absence of cross detection and chirality, by providing polynomial time distributed

algorithms. They prove that without chirality, knowledge of the ring size is strictly

more powerful than knowledge of the number of agents. Finally, with chirality, they

show that knowledge of the ring size can be substituted by knowledge of the number

of agents, yielding the same classes of feasible initial configurations.

In [10] the authors investigate the feasibility of the decentralized (or live) explo-

ration problem in 1-interval connected rings by a set of mobile agents. They consider

both the fully synchronous and semi-synchronous cases and study the impact that

anonymity and knowledge of the ring size has on the solvability of the problem.

Other recent work [11] has considered the broadcasting problem in dynamic, con-

stantly connected, networks, where the agents can communicate when they meet at

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 3

a node, and they have global visibility allowing them to see the location of other

agents in the graph. Finally, exploration by O(n) agents of dynamic tori graphs has

been investigated in [12], and, in a very recent work, exploration in time-varying

graphs (including 1-interval connectivity) of arbitrary topology in [13].

1.2. Contribution

The existing literature on the gathering and rendezvous problems is extensive and

has been examined under various assumptions for both the environment that the

agents navigate and the capabilities of the agents (for surveys see [14, 15]). Despite

their differences, they investigate these problems in the case where the topological

structure does not change over time (i.e., they only consider static graphs). Recently,

there has been a growing interest in studying these problems in dynamic settings,

with [8] being the first work that examines the problem of weak gathering in 1-

interval connected ring graphs. Embarking from this work, we investigate if and

under what assumptions we can go beyond rings and how far, in the presence or

absence of homebases. Our main result is a distributed algorithm that solves weak

gathering in unicyclic graphs. A unicyclic graph is a connected graph containing

exactly one cycle. Observe that ring graphs are special cases of unicyclic graphs.

We use a traditional model in the literature of autonomous mobile agents on

graphs (see, e.g., [16]), and we consider it in a dynamic synchronous setting. In

particular, in this model the edges are locally labeled in each node, and at any

round some edges can be missing (i.e., being disabled), provided that the resulting

graph is connected. This means that the snapshots of the dynamic graph are always

spanning and connected subgraphs of some given underlying graph. This notion

of dynamicity includes the classic 1-interval connectivity as a sub-case when the

underlying graph is a clique.

We start a characterization of the class of solvable graphs in the aforementioned

generalized 1-interval connectivity setting, and we study the effect that port labels

have on the solvability of weak gathering. We show that weak gathering is unsolvable

when the underlying graph contains a spanning bicyclic subgraph and satisfies an

additional connectivity property, regardless of any other additional assumptions

(i.e., communication or knowledge of graph properties). In light of this, we then

focus on unicyclic graphs, and we study the classes of initial configurations on which

weak gathering is feasible in the presence or absence of homebases. In particular,

we characterize the classes of unicyclic graphs in which certain symmetries occur

and would render impossible the problem of symmetry breaking. We show that if

neither the size of the graph nor the number of agents is known, then the agents

are not able to distinguish between symmetric and asymmetric configurations. The

additional difficulty in unicyclic graphs comes from the fact that in most instances

of initial agent configurations, the agents must necessarily gather on the unique

cycle. This requires them to perform some sort of exploration in order to reach the

cycle, while the scheduler can choose some agent, or agents, and delay them.

October 27, 2021 16:6 main

4 O. Michail & P. G. Spirakis & M. Theofilatos

Graph class Assumptions Feasibility of weak gathering

Graphs in F
Definition 3.1

Any
Infeasible

Proposition 3.2

Symmetric unicyclic

graphs in Ss ∩ Sa
Any

Infeasible

Lemma 3.2

Unicyclic graphs
No knowledge of n

and k

Infeasible

Proposition 3.3

Unicyclic graphs not

in Sa

Homebases, knowledge

of n and k

Feasible

Theorem 4.1

Unicyclic graphs not

in Ss
Knowledge of n and k

Feasible

Theorem 4.1

Table 1: Summary of our results for the weak gathering problem. Assumptions in-

clude the existence of homebases, knowledge of the graph size n, and knowledge of

the number of agents k

In [8] the authors utilized homebases in order to break the symmetry on the ring,

however, in our setting we can exploit the topological assymetries of the graph and

the port labeling to solve the problem. We then show that homebases can be used

in order to expand the class of feasible configurations, that is, the initial placement

of the agents might create some additional topological assymetries. We also assume

that the agents have cross-detection, and in Section 5 we discuss about how the

mechanism of Di Luna et al. [8], that avoids agents crossing each other, could be

used in order to drop this assumption, and we leave it as an open problem.

We then provide a deterministic algorithm that solves weak gathering in all

asymmetric unicyclic graphs, and runs in a polynomial number of synchronous

rounds. For the cases of symmetric unicyclic graphs with symmetric initial agent

placement, we show that the problem becomes impossible to solve, and we leave

as an open problem the case of symmetric unicyclic graphs and asymmetric initial

agent placement. We carefully design a non-trivial mechanism that utilizes the graph

topology and after O(n2 +nk) rounds all agents reach and forever stay on the cycle.

Given this, the second part of the algorithm guarantees that the agents (weakly)

gather on the cycle, in O(n) rounds.

In summary, we show that in a large class of graphs F weak gathering is

unsolvable. Our paper establishes that weak gathering is solvable in unicyclic 1-

interval connected graphs in O(n2 + nk) time, and we leave a small gap for graphs

G /∈ (F ∪Unicyclic). For a summary of our results see Table 1.

1.2.1. Organization of the paper

In Section 2, we formally describe the model and we provide all necessary definitions.

In Section 3 we provide impossibility results for (strict) gathering, and we describe

the class of graphs where weak gathering is impossible to solve. In Sections 3.1 and

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 5

3.2 we provide a characterization of the feasible initial configurations in unicyclic

graphs and the basic limitations of weak gathering. Finally, in Section 4 we provide

our deterministic weak gathering algorithm and its analysis.

2. Model and Definitions

Dynamic Network Model. A network is modeled as an undirected connected

graph GU = (V,E), referred to hereafter as an underlying graph. The number of

nodes n = |V | of the graph is called its size. Every node u ∈ GU has δ(u) incident

edges, where δ(u) is its degree. For each of them, it associates a port and the ports

are arbitrarily labeled with unique labels from the set {0, . . . , δ(u) − 1}. We call

these labels the port numbers.

Given an underlying graph GU = (V,E) on n vertices, a dynamic graph on

GU is a sequence GD = {Gt = (V,Et) : t ∈ N} of graphs such that Et ⊆ E for

all t ∈ N. Every Gt is the snapshot of GD at time-step t. We assume that the

sequence GD is controlled by an adversarial scheduler, subject to the constraint

that the resulting dynamic graph should be 1-interval connected. The definition of

1-interval connectivity of [9] considers the case where the underlying graph is a

complete clique. In our work, we generalize this to any underlying graph, meaning

that G′D = (V,
⋃
tEt) ⊆ GU .

Definition 2.1 (Generalized 1-interval connectivity) A dynamic graph GD is gen-

eralized 1-interval connected if for every integer t ≥ 0, the snapshot Gt = (V,Et) is

a connected and spanning subgraph of a given underlying graph GU .

Agents. There is a set A = {α1, . . . , αk} of k anonymous computational entities

(also called agents), each provided with memory and computational capabilities,

that execute the same protocol and can move on the graph. During the execution of

the protocol, an agent learns the local port number by which it enters a node and

the degree of the node. The agents are initially arbitrarily placed on some nodes of

the graph, and they are not aware of the other agents’ positions.

More than one agent can be in the same node and may move through the same

port number (i.e., the same edge) in the same round. We say that an agent α is

blocked if the edge that α decided to cross in the current round is disabled by the

scheduler. We consider the strong multiplicity detection model, in which each agent

can count the number of agents in its current node. Based on that information, the

port labeling, and the contents of its memory, it determines whether or not to move,

and through which port number. In addition, the agents do not have any visibility

around them, meaning that we do not allow them to see agents on their adjacent

nodes.

We say that the system has cross detection when the agents have the ability to

detect whether some other agent is traversing the same edge in opposite direction

during the same round. We assume that the system has cross detection, and in

Section 5 we discuss about how this assumption could be dropped.

October 27, 2021 16:6 main

6 O. Michail & P. G. Spirakis & M. Theofilatos

We assume that the nodes of G do not have unique identifiers, and the agents

do not have explicit communication capabilities. We do this in order to capture the

limitations and the basic assumptions that make gathering in dynamic networks

feasible. Finally, we assume that the agents do not have knowledge of any graph

properties, other that its size.

Definition 2.2 (Homebases) We call homebases the nodes that the agents are ini-

tially placed. Each node u is specially marked by a bit bu, such that if bu = 0 no

agent was initially placed on u, while bu = 1 means then at least one agent was

initially placed on u (i.e., its a homebase). In addition, each agent can determine

whether its current node is a homebase or not.

Definition 2.3 (Gathering problem) The gathering problem requires a set of k

agents, initially arbitrarily placed on the graph, to gather within finite time at the

same node of the underlying graph, not known to them in advance, and terminate.

Definition 2.4 (Weak gathering problem) The relaxed version of the gathering

problem, called weak gathering, requires all agents to gather within finite time at

the same node, or on two neighboring nodes of the underlying graph, and terminate.

The above definition means that all agents must terminate in at most two nodes

of the graph that are adjacent in the underlying graph. Finally, throughout the

paper, we call unicyclic graphs the connected graphs that have exactly one cycle,

and bicyclic graphs the connected graphs that have exactly two cycles, with possibly

a single common vertex.

Definition 2.5 (Branch) Let G be a unicyclic graph. Then G consists of a unique

cycle C of nc nodes and b trees, where 0 ≤ b ≤ nc. Each tree Bwi
is rooted at a

node wi ∈ C, such that the only node of the intersection of Bwi with C is wi. We

call these trees the branches of G. See Figure 1 for an example.

...

Bw1 Bw2

Bw3

Bw4

Fig. 1: Example of a graph G with a unique cycle C. Each Bwi
is a tree (or branch)

of G rooted at wi ∈ C.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 7

3. Impossibility Results

In this section we start by showing that strict gathering is unsolvable in 1-interval

connected graphs that have at least one cycle. In the model that we consider, the

case of connected acyclic graphs is equivalent to static trees. We then focus on the

weak gathering problem, and we show that in a large class of graphs weak gathering

is unsolvable.

Proposition 3.1 For any generalized 1-interval connected graph with at least one

cycle, there exists an initial agent placement such that gathering is unsolvable, re-

gardless of any communication assumptions and knowledge of graph properties (e.g.,

its size).

Proof. Consider an underlying graph GU = (V,E), where there exists at least one

cycle of size c > 3. Let C be an arbitrary such cycle of GU . Consider an execution

such that for each cycle C ′ 6= C, the scheduler disables an arbitrary edge in C ′ that

does not belong to C. Call the resulting graph G′U . G′U can now be represented as a

unicyclic graph, where each node w ∈ C is the root of a connected tree, or branch,

Gw.

Consider an initial agent placement where there are at least two agents α and α′

that are placed on branches Gw and Gu, such that w 6= u. Then, all paths between

α and α′ contain at least one edge e ∈ C. Since our graph is 1-interval connected,

the scheduler can additionally remove an edge of the cycle C in order to block the

agents from reaching the same node, without violating the connectivity constraints.

Therefore, they cannot achieve gathering.

Definition 3.1 [Class F of graphs with blocking edges] Let G be a graph that has a

spanning bicyclic subgraph with cycles C1 and C2. For any node u that belongs to at

least one cycle, let Gu be the maximal connected subgraph, such that the intersection

of the node set of Gu with C1 and C2 contains only u. We say that G belongs to

class F if there are two edges e1 ∈ C1 and e2 ∈ C2, with endpoints u1, w1 and u2, w2

respectively, such that no node of Gu1
and Gw1

is adjacent with any node of Gu2

and Gw2
in G. Call these edges blocking.

In other words, we say that a graph G belongs to F if G has a spanning bicyclic

subgraph GB with two cycles C1 and C2, such that all paths that contain two edges

e1 ∈ C1 and e2 ∈ C2 also contain at least one more edge from each cycle. The fact

that no node of Gu1
and Gw1

is adjacent with any node of Gu2
and Gw2

in G, and

because each Gv contains all nodes of the corresponding connected component (i.e.,

it is maximal), it means that there is no path from any node of Gu1
and Gw1

to

any node of Gu2
and Gw2

that does not contain at least one more edge from each

cycle of GB . An example is shown in Figure 2.

October 27, 2021 16:6 main

8 O. Michail & P. G. Spirakis & M. Theofilatos

Gw1

Gu1 Gw2

Gu2

e1 e2

er1

el1 el2

er2

Fig. 2: Example of a graph G ∈ F . Dashed lines do not belong to the spanning

bicyclic subgraph. e1 and e2 are called blocking edges.

Proposition 3.2 For any generalized 1-interval connected graph that belongs to

F , there exists an initial agent placement such that weak gathering is unsolvable,

regardless of any communication assumptions and knowledge of graph properties.

Proof. Take any underlying graph GU ∈ F , and let α and α′ be two agents that

are initially placed on some endpoint of two blocking edges e1 ∈ C1 and e2 ∈ C2,

respectively. Let pt and p′t be the positions of these agents at round t.

Consider an execution such that the scheduler disables all edges that are not

contained in the (spanning) bicyclic subgraph, and also disables the neighboring

edges et 6= e1 and e′t 6= e2 of pt and p′t on the corresponding cycles, when pt ∈ C1 and

p′t ∈ C2, respectively. Observe that this does not violate the connectivity constraints,

as these edges belong to different cycles. Then, in each round, an agent can either

decide to wait at its current node, move on the other endpoint of e1 (and e2 for

α′), or move towards a tree rooted at pt (p′t, respectively). Observe that in the last

case, the distance in GU between the agents is increased. This is because, by the

definition of F , the nodes of the trees starting from the endpoints of e1 are not

adjacent with any node of the corresponding trees of e2 in G. Let w be a node that

α moves to. All paths between w and α′ pass through some endpoint of e1. However,

when α is on C1, the scheduler blocks it from making any progress towards α′, thus

remain in distance at least two from α′. Symmetrically, the same holds also for α′.

Therefore, the agents will never reach the same or two neighboring nodes, thus fail

to solve weak gathering.

As an example, consider that graph of Figure 2 which belongs to F , and two

agents α and α′ that are initially placed on u1 and u2, respectively. When α is on

u1, rr1 is disabled and when it is on w1, el1 is disabled. Similarly for α′. Observe that

in any of these cases, the connectivity of the graph is maintained, while α is always

blocked on some node of Gu1
or Gw1

and α′ on some node of Gu2
or Gw2

.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 9

3.1. Symmetric Initial Configurations in Unicyclic Graphs

The main difficulty in solving gathering is symmetry which occurs in several ways,

such as the topology of the graph, the port labeling, and the initial positions of

the agents. Given that the agents are identical and there is no means of explicit

communication, in case that the configuration is highly symmetric, the problem is

clearly impossible to solve by deterministic means. The problem of deterministically

breaking the symmetry is translated into the problem of distinguishing a node, or

an edge for the weak gathering problem, where the agents should meet.

In light of the above impossibilities, we hereafter consider unicyclic graphs and

we describe the class of symmetric initial configurations in such graphs, with and

without homebases. We show that weak gathering is unsolvable in symmetric uni-

cyclic graphs. Note that in this section we do not consider any graph dynamics, as

we are only interested in identifying the graph classes that even in a static setting,

the problem of symmetry breaking is impossible.

An initial configuration is defined by the graph, the port labeling, and the (ini-

tial) positions of the agents.

3.1.1. Branch classes

Call C the nodes of the unique cycle and Bi the branch rooted on ui ∈ C, ∀ui ∈ C,

possibly consisting only of the root node ui. We define a class I of indistinguishable

branches, the class where all of the following hold:

1) Any two branches B and B′ in I, rooted at u and u′, respectively, are iso-

morphic.

2) For each pair of branches B and B′ in I, the branches are label-preserving,

meaning that vertices with equivalent port labels (i.e., the same) are mapped onto

the vertices with equivalent port labels and vice versa. This means that for each

pair of connected nodes (u,w) ∈ B which is mapped onto the (connected) pair of

nodes (u′, w′) ∈ B′ in that order, the port label of u leading to w is the same as the

port label of u′ leading to w′ and vice versa.

3) For any two branches B and B′ in I with root nodes u and u′, respectively,

the port labels of u and u′ leading to their clockwise neighbor of the ring are the

same. Similarly, the port labels of u and u′ that lead to their counter-clockwise

neighbors of the ring are the same.

3.1.2. Symmetric configurations

Let I = {I0, I1, . . . , Il} be the set of all distinct branch classes of a given unicyclic

graph G. Let ui denote the i-th node in the clockwise direction of the cycle, starting

from an arbitrary node u0 ∈ C, and si ∈ I be the class that the branch starting from

ui belongs to. We call a graph symmetric if the following holds: for each Ij ∈ I there

exists a set of periods Pj = {pj0, p
j
1, . . . , p

j
mj
}, where pjz < |C| and 0 ≤ z ≤ mj , such

that for each node ui with si = Ij , there exists pjz such that si = s(i+pjz) mod |C|,

Definition 3.2 October 27, 2021 16:6 main

10 O. Michail & P. G. Spirakis & M. Theofilatos

∀i < |C| (see examples in Fig. 3).

We call S the set of all possible configurations with k agents in a unicyclic graph

and Ss the set of all symmetric unicyclic graphs.

...

I0
I1

I2

I0

I1
I2

...

I0 I1

I2

I1

I0

I1I2

I1

I0

...

I0
I0

I0

I1

I0

I0

I0

I1

Fig. 3: Examples of symmetric configurations with periodic branches and port labels

on the cycle. In the top left figure all unique branches have the same periodic

appearance (i.e., Pi = {3}, ∀i ∈ {0, 1, 2}). In the top right and bottom figures, the

branches have different periodic appearances (i.e., in the top right figure the sets of

periods are P0 = {4}, P1 = {2}, and P2 = {4}, while in the bottom figure the sets

of periods are P0 = {2, 4} and P1 = {4}).

3.1.3. Agent position symmetries

In a similar way we define the symmetries that are induced by the initial placement

of the agents on the graph. These symmetries can only be defined in configurations

of Ss. Assume that each vertex is initially labeled with a bit b, indicating whether

an agent is initially placed on that vertex, or not; call them agent labels. Then, we

define the set Sa of such configurations as follows. For any pair of branches B and

B′ that belong to the same branch class I and have the same periodic appearance,

the branches are label-preserving, meaning that vertices with the same agent labels

are mapped onto the vertices with the same agent labels and vice versa.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 11

We say that a configuration S is symmetric if S ∈ Ss. If, additionally, the

communication model allows homebases, we call S symmetric if S ∈ (Ss ∩ Sa).

Lemma 3.1 A unique (leader) node can be elected in all non-symmetric configura-

tions. We call these configurations feasible. This holds regardless of any communi-

cation assumptions and knowledge of graph properties.

Proof. We prove this lemma by construction: we provide a deterministic algorithm

that given a configuration S (the graph topology, the port labeling, and, if available,

the homebases), such that S ∈ S\Ss or S ∈ S\(Ss ∩ Sa), elects a unique node as a

leader.

Consider a rooted tree B with port labels. Starting from the root node u, a

sequence that uniquely represents B can be constructed as follows. Consider a se-

quence TB =< T1, T2 . . . , T` >, Ti = (ti0, t
i
1, . . . , t

i
di−2), where ` = |B|, each tuple

Ti corresponds to a node of the tree, and di is its degree. Each tij is the tree size

rooted at each child node of Ti (i.e., we exclude Ti’s parent node from Ti). Then,

the size of the subtree rooted at Ti is 1 +
∑di−2
j=0 tij . Their order in Ti is defined

by selecting port labels in ascending order. If we consider the case where identical

labels exist on the initial positions of the agents (i.e., homebases), then the above

sequences can be modified by having an H symbol in the beginning of the tuple T

of each node where a homebase exists. Finally, the tuples Ti ∈ TB are ordered in a

DFS way, where we visit the children of each node by selecting the port labels in

an ascending order. Observe that there is a simple algorithmic strategy that can be

used by an agent to traverse the tree in a DFS way: when the agent arrives at node

w through a port p, it leaves w through port (p + 1) mod δ(w) in the next step.

Initially, the agent starts by leaving the port 0 of the root node u.

Given an arbitrary orientation on the cycle, same for all branches, construct a set

CB = (TB , p0, p1) for each branch of the tree B, where p0 is the port label of the root

node of B that leads to its neighboring node on the arbitrarily chosen orientation

and p1 the port label that leads to its second neighbor of the cycle. For each distinct

set CB , assign a unique label a ∈ Z; call them branch labels. Observe that this yields

an assignment of unique labels on branches that do not belong to the same branch

class. The above construction can be then used to distinguish a node on C as

follows. Let Puc and Puccl be the sequences of branch labels as constructed above by

following the clockwise and counter-clockwise directions respectively, starting from

node u ∈ C. Let δw1 and δ′w2
denote the two lexicographically minimum sequences

of Puc and Puccl of size |C|, ∀u ∈ C.

If there is a unique lexicographically minimum sequence, let that be δw, we elect

w as the leader node. In case that the lexicographically minimum sequences δw1
and

δ′w2
are identical, and w1 6= w2, it means that there is a unique axis of symmetry,

equidistant from w1 and w2 (otherwise, the configuration would be symmetric). If

that axis passes through one node w and one edge, we elect w as the leader node.

If the axis passes through two nodes u1 and u2, there exist two lexicographically

October 27, 2021 16:6 main

12 O. Michail & P. G. Spirakis & M. Theofilatos

minimum sequences of size |C|/2 starting from w1 and w2 that both contain either

u1 or u2. Then, we elect u1 or u2 as the leader node, respectively. Observe that it

is not possible that one sequence contains u1 and the other u2, as in that case the

configuration would clearly be symmetric (i.e., the configuration would have two

axes of symmetry). Similarly, if the unique axis of symmetry passes through two

edges e1 and e2, the two lexicographically minimum sequences contain both either

e1 or e2; let that edge be e1. Observe that in this case the trees starting from the

endpoints of e1 have both been assigned the same label α. This means that the

ports of e1’s endpoints are different (if they were the same, the labels would be

different). Then, we elect as leader the endpoint of e1 with the minimum label.

Lemma 3.2 If the graph and the initial agent placement are symmetric, weak gath-

ering cannot be solved. This holds regardless of homebases and knowledge of graph

properties.

Proof. Let S be a symmetric configuration with k agents, and Bu the branch

starting from a node u of the cycle (containing u). Consider an execution in which

no edge of the underlying graph ever becomes disabled.

Consider a symmetric initial agent placement. Then, call a group the agents

that are mapped onto vertices of the same branch class with the same periodic

appearance. The agents of each group will then perform exactly the same actions,

based on the same observations. This means that for each group of agents, they will

always be on branches that belong to the same branch class with the same peri-

odic appearance, and their current positions will be always mapped onto the same

vertices. If they move on the cycle, they will again perform the same actions (i.e,

they will move either clockwise, or counter-clockwise), thus, the distance between

consecutive agents of the same group will never change. Observe that this holds

regardless of the existence of homebases.

The only case that we haven’t examined is the case without homebases, where

the graph is symmetric, and the initial agent placement is asymmetric. Consider a

symmetric ring graph, where all port labels that lead to the clockwise neighbors are

the same, and the port labels that lead to the counter-clockwise neighbors are also

the same, and no edge is ever missing. Independently of the initial agent placement,

all agents operate with the same observations in each round, therefore they all move

either clockwise, or counter-clockwise (i.e., the distance between consecutive agents

of the ring remain always the same). Therefore, a more precise characterization of

the feasible graph configurations is necessary for this case. We believe that without

a way to elect a leader, same for all agents, the problem of weak gathering becomes

impossible, and we leave this as an open problem.

3.2. Additional Limitations on the Solvability of Weak Gathering

In this section we examine the impact that some additional limitations have on the

solvability of weak gathering. First, observe that in generalized 1-interval connected

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 13

unicyclic graphs, the scheduler can completely block an agent from reaching some

part of the graph. This implies that if some other agent moves only on that part,

then these agents would never meet or end up in neighboring nodes. As we show

in the following lemma, this problem can be overcome only if all agents explore the

graph, identify the cycle, and solve the problem there.

Lemma 3.3 For any generalized 1-interval connected unicyclic graph with cycle

C of size |C| > 3, there exists an initial agent placement such that weak gather-

ing can only be achieved on the cycle. This holds regardless of any communication

assumptions and knowledge of graph properties.

Proof. We call a branch empty if it only consists of the root node. Consider any

unicyclic graph with a cycle C, |C| > 3, and at least one non-empty branch (if all

nodes have empty branches, then the lemma trivially follows). Let Bw be the branch

rooted on node w ∈ C. Let α be an agent that is initially placed on some node of

Bw\w, and an agent α′ that is initially placed on a (possibly empty) branch Bu,

such that u is in distance at least two from w. Then, consider an execution in which

the scheduler selects α′ and blocks it in distance two from Bw (i.e., whenever it is at

distance two from w, it disables the corresponding edge). Therefore, in order to solve

weak gathering, agent α must first reach the cycle. Additionally, the scheduler can

always block them from reaching the same branch, as it can keep them at distance

at least one. If some agent decides to move towards a branch, then the scheduler

can still block the other agent from reaching that branch.

The above lemma means that the agents must first explore the graph in order

to identify the nodes of the cycle C and gather on some node v ∈ C, otherwise, the

scheduler can always block some agent from reaching the rest of them.

Proposition 3.3 If neither n nor k are known, then the agents cannot distinguish

periodic from aperiodic graphs. This holds regardless of homebases.

Proof. Let G1 be the graph of Figure 4a and G2 be the graph of Figure 4b. The

numbers represent the local port labels of each node, and ai are the initial positions

of the agents.

1

1

1

1 2

3

0

0

0

0

0

0

a3

a4

0

a1

0
a2

2

3

0
1

1
0

0

1

1

0

(a) A symmetric graph

1

1

1

1 2

3

0

0

0

0

0

0

a1

a2

(b) A non symmetric graph

Fig. 4: Indistinguishable unicyclic graphs

October 27, 2021 16:6 main

14 O. Michail & P. G. Spirakis & M. Theofilatos

Consider an execution where no edge is missing at any round. If neither k nor n

are known to the agents, these two graphs are indistinguishable between each other,

even when the initial positions of the agents are identically marked (homebases). If

the agents are able to recognize infeasibility in G1 (because of being symmetric),

then this would also wrongly happen in G2. Otherwise, if the agents solved the

problem in G2 and terminated, then the agents in G1 would also terminate in two

nodes that are not neighbors.

Given any unicyclic graph Gu with k agents, we can construct periodic unicyclic

graphs that the agents cannot distinguish from Gu. Let Cu = {u1, u2, . . . , uc} be the

set of nodes of the cycle in Gu. Then, to construct a periodic graph Gp, construct

a cycle Cp = {u11, u12, . . . , u1c , u21, u22, . . . , u2c , . . . , u
p
1, u

p
2, . . . , u

p
c}, and for each i, all

nodes uji , ∀j, have the same port numbers between them, and with the corresponding

nodes of Cu. In addition, for each i, the trees starting from nodes uji ∈ Cp,∀j are

exact copies of the corresponding trees of nodes ui ∈ Cu. Finally, all agents of Gu
are also mapped onto all copies of the corresponding nodes of Gp (i.e., we have pk

agents in Gp). Then, similarly to Figure 4, the agents cannot distinguish Gu from

any Gp.

4. An Algorithm for Weak Gathering in Dynamic Unicyclic

Graphs

In light of the impossibilities of Section 3, we hereafter consider generalized 1-

interval connected unicyclic graphs, and we provide a deterministic algorithm that

solves weak gathering for all non-symmetric configurations. We assume that the

agents have knowledge of n, knowledge of the number of agents k, and the system

has cross detection. Finally, our algorithm solves weak gathering for both cases,

with and without homebases, provided that the configuration is not symmetric (as

defined in Definition 3.2). If the configuration is symmetric, then the agents agree

on unsolvability and terminate. A very significant aspect of mobile agent systems

is the memory requirements of the agents. In order to achieve symmetry breaking

by exploiting the topological asymmetries of the graph itself and the port labeling,

our algorithm constructs a map of the graph in the local memory of each agent.

Therefore, we assume that the agents have non-constant memory.

4.1. Weak Gathering Algorithm

Our deterministic algorithm is divided into two phases, and the overall idea is

the following: During the first phase all agents explore the graph using a DFS

approach, try to identify the nodes that belong to the cycle, and at the same time

independently build a map of the graph. The latter is necessary in order to break

the symmetry on the cycle and agree on a unique target node.

The problem of graph mapping becomes impossible if neither of n or k are known

and without whiteboards on the nodes [17]. Most of the algorithms rely on either

the usage of whiteboards [18, 19], or assume that the agents can observe the memory

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 15

contents of each other when they meet at the same node [20]. In the latter approach,

the agents maintain multiple hypotheses when ambiguity about the graph topology

occurs, and they resolve that ambiguity when they meet. Interestingly, in the special

case of unicyclic graphs we show that knowledge of n alone (i.e., knowledge of k

and whiteboards are not necessary) can lead to the construction of graph maps that

are consistent (i.e., the same) among all agents.

When all agents have completed the first phase, the executed process (second

phase) ensures that they will eventually gather on the cycle. Note that the agents

may move to the second phase asynchronously. In this case, gathering might be

unsuccessful; the agents recognize it and they start the second phase again. In order

to make the description of the algorithm more clear, we first introduce a number of

variables that are stored in the local memory of each agent.

• rounds: A counter that is used in order to count the number of rounds in

several cases of the second phase. It is increased by one in each round.

• inPort, outPort : Port labels that the agent enters and leaves a node, re-

spectively.

• Graph (or G): Contains lists that represent the nodes visited by an agent.

A specific node of the underlying graph might correspond to multiple nodes

in G. We refer to the Graph of an agent α as Gα.

• currendNode: A pointer to the current node in Gα.

• depth: The distance between the agent and its initial position in Gα.

• roundsBlocked : The number of consecutive rounds that the agent remains

blocked.

• numAgents: The number of agents in the current node of the agent. The

considered model allows the agents to count the number of agents in their

current node.

• numAgentsPrev : The number of agents in the node of the agent during the

previous round (at the end of each round, the value of numAgents is copied

to numAgents).

• numAgentsTemp: A temporary variable that is used to store the number of

agents in several cases of the second phase.

• orientation: This variable is used during the second phase of the algorithm

and indicates the direction in which the agent traverses the cycle (i.e.,

clockwise or counter-clockwise).

• orientationTemp: A temporary variable that is used to store the orientation.

• crossed : A bit which becomes one when the agent crosses some other(s)

agent(s). At the end of each round it is reset to zero.

Phase 1. This phase is responsible for traversing the graph (exploration) and iden-

tifying the nodes that form the cycle. We now present all procedures that take place

during this phase.

Graph exploration. Each agent α stores in its local memory (in G) a list of the

October 27, 2021 16:6 main

16 O. Michail & P. G. Spirakis & M. Theofilatos

neighbors of each vertex visited and the port numbers that led to those nodes. Let

u be the initial node of an agent α. Then, α constructs a list L(u) which represents

u. Assume that it traverses an edge through port number i and arrives at a node w

at port number j. It then constructs a new list L(w), and in L(u) it stores a tuple

which consists of the port number i and a pointer to L(w). At the same time, it

stores in L(w) a tuple with the port number j and a pointer to L(u). If α is in a

node v of G and moves through a port that is contained in a tuple of L(v), it does

not update G. Finally, for each node visited (or for each list of G), it also stores its

degree. We call these lists the Graph of α or Gα. The initial node of each agent in

Gα (i.e., the first node that was added in Gα) is marked with a special character I.

In each round, the agent α stores in currentNode a pointer to the node (or list) of

Gα that it is at. In addition, in each round it calculates the (shortest) distance in

Gα between its current node and its initial node and stores it to its depth variable.

We use a traditional technique which makes each agent traverse a tree in a DFS

way. In a round, when the agent arrives at node u through a port i, it leaves u

through port (i+ 1) mod δ(u) in the next round (if the edge is available). Initially,

each agent starts by leaving the port 0, and when depth = n, the agent moves

through the port that it arrived from. The exploration ends when the agent has

explored all paths of length n from its initial position. This can be achieved by

checking if there is a node in Gα in distance less than n that have at least one

unexplored neighbor. In particular, if the number of tuples stored in a node list is

less than its degree, then the exploration is not complete. At any point, if the edge

that an agent tries to traverse is missing, it waits until it becomes enabled. As we

show later, all agents either make progress towards the exploration of the graph and

eventually complete the first phase of the algorithm, or if the scheduler blocks an

agent indefinitely, our algorithm guarantees that the rest of the agents will reach

some endpoint of the missing edge, and terminate. This means that if some agent(s)

fail to explore the graph, all agents will still solve weak gathering.

Cycle detection. During this step, the agents check a number of predicates that help

them to detect the nodes that belong to the cycle. In particular, whenever an agent

α reaches a node u with degree δ(u) = 1, it marks the corresponding node in Gα
with a special character�C, indicating that it does not belong to the cycle, and never

moves to that node (of Gα) again. In addition, if a node u ∈ Gα with degree δ(u)

has δ(u)− 1 marked neighbors in Gα, the agent also marks u.

In addition, each agent marks in Gα its initial node with a different special

character T . Let u be the T -marked node in Gα. If at any point the agent α marks

u in Gα with�C, it moves the T mark to the unique neighbor of u that is not marked

with �C in Gα.

As we show in Lemma 4.1, this procedure guarantees that by the end of the

graph exploration step, the T marks of all agents will correspond to nodes of the

cycle. Each agent moves on that node by following the shortest path of G, and

performs the following computations.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 17

Let u0 be a node that an agent α is located after the end of the graph exploration

procedure. Let Bu0 be the branch that starts from node u0. The agent α needs to

resolve the ambiguity that occurs in Gα in order to identify the nodes that belong

to the cycle. At this point, α arbitrarily chooses one of the two directions of the

cycle (e.g., the one with the lowest port number pu0
), and deletes all nodes of Gα on

the opposite direction. To distinguish Bu0
from the nodes of the cycle, observe that

at that point all nodes of Bu0 are �C-marked in G, while the neighbors of u on the

cycle are not marked in G. This holds even if the initial position of an agent α is on

the cycle. Then, because of the fact that the agent explored all paths up to distance

n from its initial node, it means that it has traversed at least once the whole cycle.

In addition, as we show in Lemma 4.2, during the first cycle traversal, all branches

have been explored and marked with �C. Then, observe that G is a tree that has a

line path L = (u0, u1, u2, . . . , uc, u0, u1, u2 . . .) that all nodes are unmarked. Then,

starting from the first node of L, it counts and keeps all nodes of the corresponding

branches, until the total number of nodes becomes n. It removes the rest of the

nodes, and constructs the cycle by setting the corresponding port of the last node

of L that it kept to lead to the first node of L (i.e., u0), and vice versa.

Gα is now a correct map of the graph that can be used to break the sym-

metry on the cycle. Note that α can now traverse the cycle both clockwise and

counter-clockwise, though, the orientation between two agents might be different.

In particular, each agent has a private orientation oi, 0 ≤ i ≤ k, where clockwise is

initially the orientation defined by traversing the nodes in the order u0, u1, . . . , uc of

L. We say that there is chirality if there are no agents αi and αj such that oi 6= oj ,

i 6= j. We later explain how to obtain chirality in our model.

An overview of the steps of the first phase of the algorithm is the following.

(1) Initialization of variables.

(2) Add the initial node in the local graph map G, and mark it with T .

(3) Explore the graph up to distance n, and construct the map of the graph. Ini-

tially, leave through port 0.

(4) Mark all nodes with �C in G that have exactly one unmarked neighbor (i.e.,

initially the leaves). When you mark the node where the T mark is, move T on

the unique unmarked neighbor.

(5) Upon exploring all paths of length n from the initial position, move on the node

which is marked with T , and construct the cycle C.

(6) If the map G is symmetric, terminate. Otherwise, elect a leader and move to

the Second phase.

Finally, the pseudocode of the first phase can be found in Algorithm 1.

Phase 2. When an agent α enters this phase, it means that is has constructed

a correct map Gα of the graph in its local memory. Then, a unique node can be

elected as a leader, as described in Lemma 3.1. If the configuration is symmetric,

then the agents recognize it and terminate. In any other case a unique node will

be elected and will be the same for all agents. Let that leader be a node `. At this

October 27, 2021 16:6 main

18 O. Michail & P. G. Spirakis & M. Theofilatos

Algorithm 1 First phase of weak gathering algorithm

Result: Identifies the nodes that form the cycle.

state ← Phase 1, statePrev ← ∅
rounds, depth, roundsBlocked, outPort ← 0

G ← ∅ # create a new empty list

procedure FirstPhase

L← ∅
mark(L, T)

mark(L, I)

append(G, (L, degree)) # add L in G.

currentNode ← G(L) # the current node is a pointer to the L list of G
while ∃u ∈ G: distance(u, I) < n and |L(u)| < degree(u) AND state 6=

terminate do

if state = terminating then

TerminationCondition() # See Algorithm 2

Continue to next iteration of the loop (next round).

if degree = 1 OR markedNeighbors(G, currentNode, �C) = degree - 1 then

mark(currentNode, �C)

if currentNode is marked with T then

unmark(currentNode, T)

neighbor ← unmarkedNeighbor(currentNode, �C)

mark(neighbor, T)

nextNode ← getNode(currentNode, outPort)

if nextNode = ∅ then depth← depth + 1

if depth = n+ 1 then

inPort ← outPort

else

Move(outPort) # See Algorithm 3

L← [(inPort, pointer(currentNode))]

append(currentNode, (outPort, L))

append(G, (L, degree))

currentNode ← G(L)

else

depth← distance(G, currentNode)

if nextNode is marked with �C OR depth = n+ 1 then

inPort ← outPort

else

Move(outPort)

currentNode ← nextNode

if numAgents = k then

state = terminate

outPort ← (inPort + 1) mod degree

if state 6= terminate then

state ← Phase 2

cycle ← detectCycle(G) # As described in Phase 1 of Section 4.1

leader ← electLeader(G, cycle) # Algorithm of Lemma 3.1

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 19

Algorithm 2 Termination condition of weak gathering algorithm

Result: Achieves weak gathering in case that the agent is blocked long enough

for the rest of the agents to reach some endpoint of the missing edge.

procedure TerminationCondition

if state 6= terminating AND roundsBlocked ≥ 4n+ k then

statePrev ← state

state ← terminating

else if state = terminating AND numAgents 6= numAgentsPrev then

state ← statePrev

roundsBlocked ← 0

else if roundsBlocked ≥ 8n+ 2k then

state ← terminate

Algorithm 3 Move step of an agent

procedure Move(outPort)

while edge through port outPort is disabled do

roundsBlocked ← roundsBlocked +1

TerminationCondition() # See Algorithm 2

roundsBlocked ← 0

Move through port outPort

point, they can also obtain chirality by utilizing the port numbers of `. Let p1 and

p2 be the ports that lead to its neighboring nodes in the cycle. Assume, without loss

of generality, that p1 < p2. Then, α sets as clockwise the orientation that is defined

by traversing p1 and counter-clockwise the one defined by traversing p2.

In this phase, an agent can either be in state walking or gathering, and initially it

is in state gathering. Each agent α in this phase assumes that all agents have entered

the second phase, and it performs some actions that would solve weak gathering

in case that this assumption is true. Otherwise (i.e., there exists some other agent

that has not entered the second phase), weak gathering will (temporarily) fail, and

updates its state to walking. In grouping we explain how the agents form groups

when certain predicates are satisfied. We call a set of agents a group if they are on

the same node and move in the same direction.

Walking state. An agent in this state traverses the cycle counter-clockwise, and after

|C| rounds, where C is the cycle, it changes its state to gathering. To achieve this,

when it enters to this state, it resets the value of its rounds variable to zero and in

each round it increases its value by one.

Gathering state. The agents in this state perform the following actions, and if they

fail to solve weak gathering they change their state to walking. We divide this process

October 27, 2021 16:6 main

20 O. Michail & P. G. Spirakis & M. Theofilatos

into two steps. During the first step, each agent initially resets its rounds variable

to zero, and moves for 2|C| rounds towards the elected node `, by following the

shortest path. The orientation that is followed is stored in both orientation and

orientationTemp variables. After 2|C| rounds, the agents enter the second step. We

distinguish the following cases for an agent α, depending on whether α reached `,

or not, by the end of the first step. If α arrived at node `, it checks whether all

agents are there (i.e., numAgents = k). If yes, it terminates. Otherwise, it resets

rounds to zero, sets orientation and orientationTemp to clockwise, and starts moving

clockwise on the cycle for |C| rounds. The agents that due to missing edges did not

reach the elected node `, reset rounds to zero, set orientation and orientationTemp

to counter-clockwise and start moving counter-clockwise for |C| rounds. As we show

in Lemma 4.5, by the end of round 2|C| all agents that entered state gathering

during a time window of length |C| are divided into at most two groups.

After the end of the first step, we want the agents of each group to start the

second step at the same time (the two different groups may start at different rounds).

However, observe that the agents might not enter into state gathering at the same

time, thus start the second step asynchronously. In grouping, we explain how the

agents start walking on the cycle as groups during the second step. At this point,

there are two groups of agents moving towards each other. In any case, the two

groups of agents will either end up on the same node, or they will cross each other,

or they will become blocked on the endpoints of the same edge. In grouping, we

explain how these groups of agents merge after at most |C| rounds, or terminate

in neighboring nodes. In the first two cases, if there exists some agent that has not

entered the second phase, weak gathering will temporarily fail and they all update

their states to walking. In the later case, we show that all agents will be gathered

at the endpoints of the same edge.

Grouping. This subroutine of the algorithm forms groups of agents in the following

cases.

(1) First predicate. During the first step of state gathering, the agents reset their

rounds variable to zero and move towards the elected node for 2|C| rounds. However,

not all agents start this step at the same time. The first predicate of grouping is

responsible to synchronize the agents so as to begin the second step at the same

time, and then continue moving as groups. In particular, when an agent α enters the

second step, it resets rounds to zero and starts moving either clockwise or counter-

clockwise depending on whether it reached the elected node or not. Let u be the

node where α was at the end of the first step. Then, for the next |C| rounds it tries

to move to the neighboring node (and wait there). The rest of the agents in u detect

that the number of agents in their current node was decreased; this is achieved by

calculating the difference between numAgents and numAgentsPrev in each round.

They enter into the second step and they try to move towards α. If they successfully

reach α, they continue moving as a group until rounds = n. Otherwise, the second

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 21

step is completed (after |C| rounds), therefore they enter into state walking.

(2) Second predicate. If an agent in state walking visits the elected node ` and there

are some other agents there, it assumes that they are in state gathering. In this

case, it enters into state gathering, resets rounds to zero, and waits there at most

2|C| rounds, or until the first predicate of grouping is satisfied. In other words, the

elected node absorbs the agents passing by it.

(3) Third predicate. When two agents or groups of agents cross each other or visit

the same node, they merge into a single group. To achieve this, when they cross each

other, the agents of the group which is closer to the elected node ` by following the

clockwise path (say G1), reverse direction and update the value of their orientation

variable. The agents of the other group G2 wait until G1 catches them. The distance

to ` can be easily calculated using the graph map which is stored in the local

memory of each agent. Therefore, each agent knows the distance to ` from the

nodes of both G1 and G2. If the edge between the two groups is missing, they

wait until it becomes available again, or until the termination condition is satisfied.

After a successful merging, the agents that are in state gathering continue walking

the cycle in their initial direction defined by orientationTemp, while the agents

in state walking reverse their initial direction (i.e., they change the value of their

orientationTemp variable and set orientation = orientationTemp). Similarly, if the

groups of agents visit the same node (i.e., they do not cross each other), the agents

in state walking reverse direction, while the group of agents in state gathering does

not do anything (i.e., they continue walking in their initial direction). Finally, after a

successful edge traversal of G1, if G2 is missing, it reverses direction again, otherwise

the agents in state walking enter into the second step of gathering.

Termination condition. The overall idea is that if an agent is blocked long enough

for the rest of the agents to reach some endpoint of the missing edge, then weak

gathering is achieved and the agents terminate. To achieve this, in each round, if

an agent α is blocked at a node u, it increases roundsBlocked by one and waits

there until either the edge becomes available again (in which case it resets rounds-

Blocked to zero), or until the termination condition is satisfied. In particular, if

roundsBlockedα ≥ 4n + k, it enters into state terminating. In this state, if during

the next 4n+ k rounds the number of agents remains the same on u, it terminates.

Otherwise it moves back to its previous state and resets roundsBlocked to zero. Fi-

nally, at any time during the execution of the algorithm, if the number of agents on

a node is k, they all terminate.

An overview of the steps of the second phase of the algorithm can be found in

Algorithm 5.

4.2. Analysis

We first show that after the end of the first phase of the algorithm, all agents

correctly identify the nodes that form the cycle C, and then they only move on

October 27, 2021 16:6 main

22 O. Michail & P. G. Spirakis & M. Theofilatos

Algorithm 4 Grouping subroutine of weak gathering algorithm

Result: Group formation of agents.

Each agent α performs the following during the second phase of the algorithm.

(1) First predicate:

(a) At the end of the first step of state gathering, store to numAgentsTemp

the value of numAgents. After the first edge traversal during the second

step of state gathering, wait until numAgents = numAgentsTemp.

(b) If α is in the first step of gathering and has either reached the elected

node, or it is blocked, if numAgents < numAgentsPrev, enter into the

second step of gathering.

(2) Second predicate:

If α is in state walking, its current node is the elected node `, and the number

of agents on ` are more than one, enter into state gathering.

(3) Third predicate:

During the walking state and during the second step of gathering, in each

round that this predicate is not satisfied, store to numAgentsTemp the value

of numAgents. If α crossed some agent(s), go to (3a). If numAgents > nu-

mAgentsPrev, go to (3b):

(a) Calculate the distance between the current node and the elected node `

in the clockwise path of the cycle. If α is closer to ` than the agents that

were crossed, reverse direction (i.e., change the value of orientation),

and after a successful edge traversal (merging) go to (3b). Otherwise

wait until the number of agents in the current node is increased (i.e.,

numAgents > numAgentsPrev) and then go to (3b).

(b) If α is in state waking, reverse the initial direction (i.e., the direction

before the crossing/merging which is stored in orientationTemp), enter

into the second step of gathering, and go to (3c). If α is in state gathering,

move towards the initial direction as defined in orientationTemp.

(c) After a successful edge traversal, if the number of agents remains

the same as before the crossing/merging (i.e., numAgents = numA-

gentsTemp), go back to the previous state.

C. In addition, because of the fact that an agent can be blocked on a node of C

indefinitely, we show that during the first phase all agents reach some endpoint of

the missing edge after at most 2n rounds. We then continue and show that in the

second phase of the algorithm all agents eventually enter into state gathering and

they correctly solve weak gathering.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 23

Algorithm 5 Second phase of weak gathering algorithm

Result: Solves weak gathering on some node of the cycle.

(1) State walking:

(a) Reset rounds to zero and move counter-clockwise.

(b) When rounds = |C|, change to state gathering.

(2) State gathering:

(a) First step. Reset rounds to zero and follow the shortest path towards the

elected node ` until rounds = 2|C|.
(b) Second step. If reached `, reset rounds to zero and move clockwise for |C|

rounds. Otherwise, move counter-clockwise for |C| rounds.

(3) Grouping and termination:

(a) In each round, depending on the state and step of the agent, check the

appropriate predicates of grouping and perform the corresponding ac-

tions.

(b) If at any time numAgents = k, terminate.

(c) If roundsBlocked = 4n+ k, change to state terminating.

(d) If during the next 4n+k rounds the number of agents in the current node

remains the same (i.e., numAgents = numAgentsPrev in each round),

terminate. Otherwise, move back to the previous state.

4.2.1. First phase of the algorithm

Lemma 4.1 Let dt(Tα, C) denote the (shortest) distance between the T mark of an

agent α and the closest node u of the cycle C at round t. Then, {dt(Tα, C)}, t ≥ 0 is

a decreasing sequence (i.e., dt ≥ dt+1), and the T mark will eventually correspond

to u.

Proof. Initially, the agents are arbitrarily placed on some nodes of the graph.

During the first phase, each agent α constructs in its local memory the graph Gα,

and marks with T its initial node (in Gα). We refer to the T mark of an agent α as

Tα. Then, it starts the exploration of the graph in a DFS way, and up to a maximum

depth which depends on the size of the graph (depth = n). Call C the unique cycle

and Bu the branch rooted on u ∈ C where an agent α is initially placed. In order to

mark a node w ∈ Gα with �C, all its neighbors except one must already be marked

in Gα. This can only happen initially on the leaf nodes, then their neighbors, and so

on. Now observe that all nodes of the cycle (including u) have two neighbors that

belong to the cycle C, thus, α cannot mark any of them. This means that all nodes

in the shortest path between the current position of the Tα mark and u are not

marked in Gα, while the rest of the nodes v ∈ Bu will eventually be marked with�C.

When α marks with �C the node that its Tα mark is, it removes it, and marks the

unique neighbor that is not marked with �C. Similarly, the above argument will be

October 27, 2021 16:6 main

24 O. Michail & P. G. Spirakis & M. Theofilatos

satisfied for the new position of Tα. Because of this, Tα can only move closer to the

cycle every time the corresponding agent moves it. The exploration of all paths of

length n from its initial position guarantees that α will visit all nodes of the branch

Bu, thus, mark with �C all of its nodes, except u. Consequently, the T mark will

correspond u.

In contrast to the literature on exploration of graphs and graph map construc-

tion, in our model the agents cannot assign distinct labels on the nodes, thus rec-

ognize them when encountered again (cf., e.g., [21]). For this reason, when an agent

enters the cycle and completes a tour, the whole graph is again considered as un-

explored. However, in the special case of unicyclic graphs, the problem of map

construction becomes solvable and our algorithm guarantees that after O(n2 + nk)

rounds all agents construct a correct map of the graph.

Lemma 4.2 (Cycle detection) Cycle detection correctly identifies the nodes that

form the cycle, and Gα of each agent α is a correct map of the graph.

Proof. By Lemma 4.1 the T marks of all agents will eventually correspond to

nodes of the cycle. Let α be an agent that after the exploration process is on a node

u1 ∈ C.

u1

u2

uc

u1

u2

. .
.

..
.

u3

. .
.

..
.

uc

u3

u2

u1

uc

Fig. 5: Locally constructed graph G by the end of the exploration process

Observe that Gα is a tree (rooted at u1), which has two line paths that the nodes

are not marked with �C, that correspond to the clockwise and counter-clockwise

directions of the cycle. Figure 5 represents the locally constructed graph Gα. Then,

α deletes one of the two paths and their corresponding branches (e.g, the one with

the lowest port number of u1). Observe that the distance between u1 and all nodes

of the branches until node uc, where c is the size of the cycle, is less than n. This

means that α has explored them and marked all nodes of the branches with �C.

Then, by counting the nodes of the cycle and their branches, it can construct a

correct map of the graph.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 25

Lemma 4.3 The number of rounds until all agents complete phase 1 is bounded by

O(n2 + nk).

Proof. Call C the unique cycle and Bu the branch rooted on node u ∈ C, where an

agent α is initially placed. The number of rounds until an agent explores all paths

of length n depends on the topology of the graph. In particular, when an agent

enters the cycle and completes a tour, the whole graph is again seen as unexplored,

thus, the agent continues exploring nodes that it has already visited in previous

rounds. The number of complete tours of the cycle that can occur are n/|C|, and

n− |C| nodes are visited during each tour, provided that the depth that the agent

has reached is less than n. The number of rounds R needed for the DFS exploration

is then:

R = 4

n/|C|∑
i=0

(n− i|C|) =
4n(n+ |C|)

2|C|
= O(n2) (1)

The worst case is when the cycle has size 3, while the best case is when the cycle

has size n. Due to the 1-interval connectivity, the scheduler can block α when it

wants to traverse an edge of the cycle. During the DFS exploration, the number of

edge traversals on the cycle is 2|C| for every complete tour of it. Now observe that

if α is blocked for more than 6n + 2k rounds, it terminates, and as we show later,

weak gathering is achieved. This means, that the worst case which does not lead

to gathering, the scheduler blocks the agents for 8n + 2k − 1 rounds for each edge

traversal in C. In addition, for each cycle tour, n−|C| nodes (in the worst case) can

be explored without being blocked by the scheduler. Therefore, the total number

of rounds that an agent can remain blocked during the first phase, considering the

worst case choices of the scheduler, can be bounded by:

S = 2|C| n
|C|

(8n+ 2k − 1) = O(n2 + nk) (2)

The total number of rounds until all agents complete the first phase of the

algorithm is then O(n2 + nk).

Observation 4.1 Each agent in the first phase of the algorithm visits all nodes of

the cycle every O(n) rounds (at most 2n rounds), if not blocked by the scheduler.

The above observation holds because the number of nodes that are explored

during each cycle tour is n − |C| nodes on the branches and |C| nodes on the

cycle. The DFS exploration then guarantees that the number of rounds needed are

2(n− |C|+ |C|) = 2n.

4.2.2. Second phase of the algorithm

We now show that phase 2 of the algorithm successfully gathers all agents either at

the same node, or at the endpoints of the same edge.

October 27, 2021 16:6 main

26 O. Michail & P. G. Spirakis & M. Theofilatos

Lemma 4.4 Let the variable roundsBlockedα of an agent α be 4n + k. Then, all

agents are gathered on the endpoints of the missing edge and terminate.

Proof. Let α be an agent that is blocked on some node u of the cycle. By Obser-

vation 4.1 and because of the fact that the scheduler can only remove at most one

edge in each round, the rest of the agents in phase 1 perform a block-free execution,

thus, after at most 2n rounds, they traverse the cycle and they reach u. An agent

in phase 2 of the algorithm can either be in state walking or gathering. In the first

case, after at most 4|C| rounds, it reaches u. This is because it either reaches u after

at most |C| rounds, or it enters into state gathering after at most |C| rounds (sec-

ond predicate of grouping) and remains at the elected node for 2|C| rounds. Then,

after |C| more rounds it reaches u. In the second case, an agent needs 2|C| rounds

to move towards the elected node and then it walks the cycle (either clockwise or

counter-clockwise) for |C| more rounds. In all these cases observe that grouping

can only delay the agents from reaching some endpoint of the missing edge for at

most k − 2 rounds. This holds because they perform a block-free execution of the

algorithm, and each merging of agent groups takes in the worst case one additional

round. Therefore, after at most 4|C|+ k− 2 ≤ 4n+ k rounds, all agents reach some

endpoint of the missing edge.

After 4n + k rounds α enters into state terminating. In this state, it remains

idle and observes the number of agents on its node. In case that the number of

agents changes, as a result of the missing edge being enabled again, it moves back

to its previous state and continues the execution of the algorithm. If after 4n + k

more rounds the number remains the same, it terminates. Observe that when it

terminates, it is guaranteed that all agents will be in state terminating and (weakly)

gathered on the endpoints of the missing edge. This means that independently of

the choices of the scheduler, after that round all agents will remain idle and will

eventually terminate.

Lemma 4.5 Consider a set of agents S moving towards a node u in cycle C,

following the shortest path. After |C| rounds the agents of S are in at most two

nodes of C, and one of them is in u.

Proof. Consider a set of agents S1 ∈ S moving clockwise and a set of agents S2 ∈ S
moving counter-clockwise. Consider two agents α1, α2 ∈ S1 moving towards u.

Assume that in the shortest path to u, the distance between α1 and u is d1 and the

distance between α2 and u is d2.

The number of successful edge traversals until they reach u is at most |C|/2.

Assume that α1 didn’t reach u after |C| rounds. This means that it was blocked for

at least |C|/2+1 rounds. Since 1-interval connectivity in this setting allows only one

edge to be missing in each round, α2 can be blocked for at most |C|/2 − 1 rounds

(when not in the same node with α1). Thus, if d1 < d2, α2 reaches α1 by round |C|,
and if d1 > d2, it reaches u by round |C|. Now consider an agent α3 ∈ S2 moving

towards u (different orientation from α1 and α2). Since α1 was blocked for at least

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 27

|C|/2 + 1 rounds and the agents follow the shortest path to u (they cannot be

blocked on the endpoints of the same edge), α3 can be blocked for at most |C|/2−1

rounds. Thus it reaches u by round |C|.
Overall, if an agent α is blocked for more than |C|/2 + 1 rounds, then all agents

that move in the same orientation towards α reach α by round |C|, while the rest

of the agents reach u. Otherwise, all agents reach u by round |C|.

Theorem 4.1 Our algorithm solves weak gathering in unicyclic graphs in O(n2 +

nk) rounds.

Proof. By Lemma 4.3, in O(n2 + nk) rounds all agents complete the first phase

of the algorithm and by Lemma 4.2 they construct a correct map of the graph. By

Lemma 3.1, if the configuration is not symmetric, the agents elect a unique node

on the cycle as a leader. If the configuration is symmetric, it means that there are

several candidate leaders, thus, by Lemma 3.2, there are agent configurations where

weak gathering is unsolvable and the agents terminate. Let r′ be the round that the

last agent enters into the second phase of the algorithm. Let also R = {r1, r2, . . . , rk}
be the rounds that the k agents enter into state gathering for the first time after r′

(i.e., ri ≥ r′, 1 ≤ i ≤ k).

In the second phase of the algorithm the agents can either be in state walking

or gathering. Consider a set of agents S1 that are in state gathering and |ri − rj | <
|C|, ∀i, j ∈ S1, and a second set of agents S2 contains the rest of them. At this

point, by Lemma 4.5 all agents that enter phase 2 at the same time, after at most

|C| rounds are divided into at most two groups G1 and G2, and one of them (say

G1) is on the elected node u. After |C| rounds all agents in S1 are in state gathering,

thus, after 2|C| rounds all agents of S1 are divided into two groups. In addition, the

first predicate of grouping subroutine guarantees that the agents of G1 and G2 will

continue moving as groups during the second step of phase 2. We now consider two

cases.

(1) All agents of S1 reached u. The agents of S2 are in state walking, and because

of the second predicate of grouping some of them reach u and enter into state

gathering, while the rest of them, again by Lemma 4.5, become a group that did

not reach u due to missing edges. Observe that this group walks the cycle counter-

clockwise, while the agents of S1 walk the cycle clockwise. At this point there are

two groups of agents moving towards each other. Therefore, the third predicate of

grouping guarantees that after at most |C| rounds the two groups will either merge

(in this case they terminate), or they will become blocked on the endpoints of the

same edge until the termination condition will be satisfied.

(2) In this case, the agents of S1 are divided into two groups at round r1 + 2|C|.
During the first 2|C| rounds, some of the agents of S2 may reach u, thus enter into

state gathering and continue moving as a group with G1.

(a) If the agents of G2 move clockwise towards u, then the rest of the agents of

S2 may cross the agents of G2 or arrive on the same node. In both cases they will

October 27, 2021 16:6 main

28 O. Michail & P. G. Spirakis & M. Theofilatos

merge into a single group (third predicate of grouping).

(b) If the agents of G2 move counter-clockwise towards u, then the rest of the

agents of S2 end up on the same node with the agents of G2. This is because the

agents of G2 remain blocked long enough that at round r1 +2|C| they did not reach

u. Then, all of the agents in the clockwise path from G2 to u, after 2|C| rounds

reach G2 (by Lemma 4.5). In this case, the agents of S2 reverse direction to clockwise

(due to the third predicate of grouping), however G2 will continue moving counter-

clockwise. Then, they reverse to their initial direction (counter-clockwise), and in

the next round, if the edge is not missing, they again reach G2. This procedure

continues until some agent in G2 enters into the second step of phase 2. Then, they

will cross each other and grouping guarantees that they will merge into a single

group.

Finally, in both cases (a) and (b), all agents in state walking (S2) are absorbed by

the agents in state gathering (S1). Then, the two groups of agents move towards each

other and grouping guarantees that after |C| rounds they achieve weak gathering.

In all these cases, all agents reach either the same node and the termination

condition is satisfied, or they become blocked at the endpoints of the same missing

edge where, by Lemma 4.4, they solve weak gathering.

5. Open Problems

In [8] the authors provide a mechanism which avoids agent crossing on the ring.

In particular, each agent constructs an edge labeled bidirectional ring, such that

the intersection of the labels assigned in the edges of the clockwise direction with

the ones of the counter-clockwise direction is empty. Then, the agents move on the

actual ring subject to the constraint that at round r they can traverse an edge only

if the set of labels of that edge contains r. This guarantees that two agents moving

in opposite directions will never cross each other on an edge of the actual ring.

An immediate open problem is to examine whether that, or a similar, mechanism

could be adapted and used in our algorithm. In our algorithm, cross detection is

only required during the second phase. All agents after O(n2 + nk) rounds enter

into that phase and elect the same node ` as leader, thus, obtain the same sense

of orientation. By implementing a counter for the rounds, we could then allow the

agents to move clockwise on the cycle only at odd rounds, and counter-clockwise

only at even rounds. This guarantees that no two agents could traverse the same

edge in opposite directions during the same round. Then, by slightly modifying

the second phase of our algorithm (e.g., allow 4|C| rounds during the first step in

state gathering, and 2|C| during the second step) the agents would again solve weak

gathering, though a formal proof is left as an open problem.

Even though we almost completely characterized the class of 1-interval connected

graphs in which gathering can be solved, there is a number of interesting directions

emanating from our existing knowledge on the problem. An immediate open problem

is whether we can achieve the same results if the class of dynamics is the T -interval

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 29

connectivity, for T > 1. Other dynamic models that can be considered are periodic,

that is, each edge is periodically enabled/disabled, recurrent [22], meaning that an

edge cannot remain disabled indefinitely, and other worst-case dynamic networks

in which the topology may change arbitrarily from round to round subject to some

constraints (cf., e.g., [23]). The problem of strict gathering becomes feasible in these

cases, and the goal is to find efficient algorithms for the problem. For example,

consider a ring graph and two groups of agents blocked on the endpoints of a missing

edge. Then, our algorithm could eventually achieve strict gathering by just waiting

for the disabled edge to become enabled, rather than terminate after O(n) rounds.

However, a more efficient algorithm could decide to change the orientation of the

agents and meet on some other node of the cycle. This might be the case for many

strict gathering algorithms for static graphs. By simulating any such algorithm,

while the agents just wait for the missing edges to become enabled, it might be

possible to solve strict gathering in all the solvable cases of static graphs. However,

this technique may not be applied to algorithms that are based on synchronization

of agents.

Other interesting related problems for the generalized 1-interval connectivity

model are partial gathering, and gathering with waste. The partial gathering problem

requires, for a given positive integer g, that each agent should move to a node

and terminate so that at least g agents should meet at each of the nodes they

terminate at. This is a generalization of the strict gathering problem, and for values

of g ≤ k/2 it enables feasibility in a larger class of graphs. It is not clear whether this

requirement is weaker of stronger than that of weak gathering. For example, in ring

graphs with k agents and g = k/2, the agents can terminate in any two nodes of the

graph, provided that the number of agents in both nodes are k/2. However, observe

that this problem enables feasibility in a larger class of graphs. Consider two cycles

that are connected with a line. Weak gathering is unsolvable in this setting, while

partial gathering might be possible. Consider the case that k/2 + a, a < k/2 agents

are on a cycle C1 and the rest of them are on the cycle C2. Then, a agents from

C1 is possible to escape from the cycle and reach C2, thus achieve partial gathering.

Partial gathering with waste g is the problem of gathering at least g agents on

some node (the rest of them being the waste). Similarly to partial gathering, at

most one agent might remain trapped on a cycle in this dynamic model. Finally,

a generalization of weak gathering, where the agents are allowed to gather in at

most g nodes (grouping), might also enable feasibility in a larger class of (dynamic)

graphs.

References

[1] J. Czyzowicz, A. Pelc and A. Labourel, How to meet asynchronously (almost) every-
where, ACM Transactions on Algorithms (TALG) 8(4) (2012) 1–14.

[2] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc and U. Vaccaro, Asyn-
chronous deterministic rendezvous in graphs., Theor. Comput. Sci. 355(3) (2006)
315–326.

October 27, 2021 16:6 main

30 O. Michail & P. G. Spirakis & M. Theofilatos

[3] A. Dessmark, P. Fraigniaud and A. Pelc, Deterministic rendezvous in graphs, in
European Symposium on Algorithms (Springer, 2003) 184–195.

[4] M. Shibata, N. Kawata, Y. Sudo, F. Ooshita, H. Kakugawa and T. Masuzawa, Move-
optimal partial gathering of mobile agents without identifiers or global knowledge in
asynchronous unidirectional rings, Theoretical Computer Science 822 (2020) 92–109.

[5] J. Czyzowicz, S. Dobrev, E. Kranakis and D. Krizanc, The power of tokens: ren-
dezvous and symmetry detection for two mobile agents in a ring, in International
Conference on Current Trends in Theory and Practice of Computer Science (Springer,
2008) 234–246.

[6] L. Barriere, P. Flocchini, P. Fraigniaud and N. Santoro, Rendezvous and election
of mobile agents: impact of sense of direction, Theory of Computing Systems 40(2)
(2007) 143–162.

[7] J. Chalopin, S. Das and N. Santoro, Rendezvous of mobile agents in unknown graphs
with faulty links, in International Symposium on Distributed Computing (Springer,
2007) 108–122.

[8] G. A. Di Luna, P. Flocchini, L. Pagli, G. Prencipe, N. Santoro and G. Viglietta,
Gathering in dynamic rings, Theoretical Computer Science 811 (2020) 79–98.

[9] F. Kuhn, N. Lynch and R. Oshman, Distributed computation in dynamic networks,
in Proceedings of the 42nd ACM symposium on Theory of computing (STOC) (ACM,
2010) 513–522.

[10] G. A. Di Luna, S. Dobrev, P. Flocchini and N. Santoro, Live exploration of dynamic
rings, in 36th International Conference on Distributed Computing Systems (ICDCS)
(IEEE, 2016) 570–579.

[11] S. Das, N. Giachoudis, F. L. Luccio and E. Markou, Broadcasting with mobile agents
in dynamic networks, in 24th International Conference on Principles of Distributed
Systems (OPODIS 2020) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021)

[12] T. Gotoh, Y. Sudo, F. Ooshita, H. Kakugawa and T. Masuzawa, Group exploration
of dynamic tori, in 38th International Conference on Distributed Computing Systems
(ICDCS) (IEEE, 2018) 775–785.

[13] T. Gotoh, P. Flocchini, T. Masuzawa and N. Santoro, Tight bounds on distributed
exploration of temporal graphs, in 23rd International Conference on Principles of
Distributed Systems (OPODIS 2019) (Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020)

[14] E. Kranakis, D. Krizanc and E. Markou, The mobile agent rendezvous problem in
the ring, Synthesis Lectures on Distributed Computing Theory 1(1) (2010) 1–122.

[15] A. Pelc, Deterministic rendezvous in networks: A comprehensive survey, Networks
59(3) (2012) 331–347.

[16] A. Dessmark, P. Fraigniaud, D. R. Kowalski and A. Pelc, Deterministic rendezvous
in graphs, Algorithmica 46(1) (2006) 69–96.

[17] S. Das, Mobile agents in distributed computing: Network exploration, Bulletin of
EATCS 1(109) (2013).

[18] S. Das, P. Flocchini, A. Nayak and N. Santoro, Distributed exploration of an unknown
graph, in International Colloquium on Structural Information and Communication
Complexity (Springer, 2005) 99–114.

[19] S. Das, P. Flocchini, S. Kutten, A. Nayak and N. Santoro, Map construction of
unknown graphs by multiple agents, Theoretical Computer Science 385(1-3) (2007)
34–48.

[20] C. Gong, S. Tully, G. Kantor and H. Choset, Multi-agent deterministic graph map-
ping via robot rendezvous, in International Conference on Robotics and Automation
(IEEE, 2012) 1278–1283.

October 27, 2021 16:6 main

Beyond Rings: Gathering in 1-Interval Connected Graphs 31

[21] P. Panaite and A. Pelc, Exploring unknown undirected graphs, in Proceedings of the
ninth annual ACM-SIAM symposium on Discrete algorithms (Society for Industrial
and Applied Mathematics, 1998) 316–322.

[22] A. Casteigts, P. Flocchini, W. Quattrociocchi and N. Santoro, Time-varying graphs
and dynamic networks, International Journal of Parallel, Emergent and Distributed
Systems 27(5) (2012) 387–408.

[23] O. Michail, I. Chatzigiannakis and P. G. Spirakis, Causality, influence, and computa-
tion in possibly disconnected synchronous dynamic networks, Journal of Parallel and
Distributed Computing 74(1) (2014) 2016–2026.

