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Abstract

We extend here the Population Protocol (PP) model of Angluin et al. [2004,2006]
in order to model more powerful networks of resource-limited agents that are
possibly mobile. The main feature of our extended model, called the Mediated
Population Protocol (MPP) model, is to allow the edges of the interaction graph
to have states that belong to a constant-size set. We then allow the protocol
rules for pairwise interactions to modify the corresponding edge state. The
descriptions of our protocols preserve both the uniformity and anonymity prop-
erties of PPs, that is, they do not depend on the size of the population and do
not use unique identifiers. We focus on the computational power of the MPP
model on complete interaction graphs and initially identical edges. We provide
the following exact characterization of the class MPS of stably computable
predicates: A predicate is in MPS iff it is symmetric and is in NSPACE(n2).
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1. Introduction - Population Protocols

Theoretical models for Wireless Sensor Networks (WSNs) have received great
attention over the past few years, mainly because they constitute an abstract but
yet formal and precise method for understanding the limitations and capabili-
ties of this widely applicable new technology. The Population Protocol model
[AAD+04, AAD+06] was designed to represent a special category of WSNs
which is mainly identified by two distinctive characteristics: each sensor node
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is an extremely limited computational device and all nodes move according to
some mobility pattern over which they have totally no control.

One reason for studying extremely limited computational devices is that in
many real WSNs’ application scenarios having limited resources is inevitable.
For example, power supply limitations may render strong computational devices
useless due to short lifetime. In other applications, mote’s size is an important
constraint that thoroughly determines the computational limitations. The other
reason is that the population protocol model constitutes the starting point of
a brand new area of research and in order to provide a clear understanding
and foundation of the laws and the inherent properties of the studied systems
it ought to be minimalistic. In terms of computational characterization each
node is simply a finite-state machine additionaly equipped with sensing and
communication capabilities and is usually called an agent. A population is the
collection of all agents that constitute the distributed computational system.
Two outstanding properties of population protocols is that they are uniform and
anonymous. The so called uniformity property requires that the descriptions of
the protocols are independent of the population size and the anonymity property
that there is no room in the state of an agent to store a unique identifier 1.

As already mentioned, another prominent characteristic of population pro-
tocols is the total inability of the computational devices to control or predict
their underlying mobility pattern. Their movement is usually the result of some
unstable environment, like water flow or wind, or the natural mobility of their
carriers, like in the now canonical example in which each bird in a flock is
equipped with such an agent and the birds naturally move, and is known as
passive mobility. The agents interact in pairs and are absolutely incapable of
knowing the next pair in the interaction sequence. This inherent nondetermin-
ism of the interaction pattern is modeled by an adversary whose job is to select
interactions. The adversary is a black-box and the only restriction imposed is
that it has to be fair so that it does not forever partition the population into
noncommunicating clusters and guaranteeing that interactions cannot follow
some inconvenient periodicity. The above characteristics render the study of
population protocols a non-trivial task.

As expected, due to the minimalistic nature of the population protocol
model, the class of computable predicates was proven [AAD+06, AAER07] to
be fairly small: it is the class of semilinear predicates [GS66] (or, equivalently,
all predicates definable by first-order logical formulas in Presburger arithmetic
[Pre29]), which does not include multiplication of variables, exponentiations,
and many other important and natural operations on input variables. More-
over, we only know how to transform any protocol that computes a function
in the failure-free model into a protocol that can tolerate O(1) crash failures.
2 However, this requires some inevitable weakening of the problem specifica-

1Throughout the text we abbreviate the word “identifier” by “id” and we use “uid” when
we want to emphasize the fact that the identifier is “unique”.

2Although the letter ‘O’ is usually used in the Complexity Theory literature for the Big-Oh
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tion. This result is due to Delporte-Gallet et al. [DGFGR06]. Additionally,
Guerraoui and Ruppert [GR09] showed that any function computable by a pop-
ulation protocol tolerating one Byzantine agent is trivial. On the other hand,
Angluin, Aspnes, and Eisenstat [AAE08b] described a population protocol that
computes majority tolerating O(

√
n) Byzantine failures. However, that protocol

was designed for a much more restricted setting, where the scheduler chooses
the next interaction randomly and uniformly (see the probabilistic population
protocols discussion in Section 2.1).

2. Enhancing the Model

The work of Angluin et al. shed light and opened the way towards a brand
new and very promising direction. The lack of control over the interaction
pattern, as well as its inherent nondeterminism, gave rise to a variety of new
theoretical models for WSNs. Those models draw most of their beauty precisely
from their inability to organize interactions in a convenient and predetermined
way. In fact, the population protocol model was the minimalistic starting-point
of this area of research. Most efforts are now towards strengthening the model of
Angluin et al. with extra realistic and implementable assumptions, in order to
gain more computational power and/or speed-up the time to convergence and/or
improve fault-tolerance. Several promising attempts have appeared towards this
direction. In each case, the model enhancement is accompanied by a logical
question: What is exactly the class of predicates computable by the new model?

One idea is to allow some heterogeneity in the model, so that some agents
have more computational power than others. For example, a base station can
be an additional part of the network with which the agents are allowed to
communicate [BCM+07].

Another extension was the Community Protocol model of Guerraoui and
Ruppert [GR09] in which the agents are equipped with read-only uids picked
from an infinite set of ids. Moreover, each agent can store up to a constant
number of other agents’ ids. In this model, agents are only allowed to compare
ids, that is, no other operation on ids is permitted. The community protocol
model was proven to be extremely strong: the corresponding class consists of
all symmetric predicates in NSPACE(n log n), where n is the community size.
The proof was based on a simulation of a modified version of Schönhage’s (Non-
deterministic) Storage Modification Machine. It was additionally shown that if
faults cannot alter the uids and if some necessary preconditions are satisfied,
then community protocols can tolerate O(1) Byzantine agents.

The Passively mobile Machines (PM ) model [CMN+10c, CMN+10d] made
the assumption that each agent instead of being an automaton is a Turing Ma-

notation, we have chosen here to use its calligraphic version ‘O’ in order to avoid confusion
with the output function of protocols.

3



chine 3 with unbounded memory. Then the authors studied computations upper-
bounded by plausible space limitations. They focused on complete interaction
graphs and defined the complexity classes PMSPACE(f(n)) parametrically,
consisting of all predicates that are stably computable by some PM protocol
that uses O(f(n)) memory on each agent. That work arrived at an exact char-
acterization of the classes PMSPACE(f(n)) when f(n) = Ω(log n): they are
precisely the classes of all symmetric predicates in NSPACE(nf(n)). Also
the computability of the PM model when the protocols use o(log log n) space
per machine was explored and was proved that SEM = PMSPACE(f(n))
when f(n) = o(log log n), where SEM denotes the class of the semilinear pred-
icates. In fact, it was proved that this bound acts as a threshold, so that
SEM ( PMSPACE(f(n)) when f(n) = O(log log n).

This work proposes another extension of the population protocol model
which seems to be of its own theoretical interest. The main additional fea-
ture of the new model is that the communication links are capable of storing
limited information. We are mainly interested in the model’s computational
capabilities and study it on a purely theoretical ground. We call our model the
Mediated Population Protocol (MPP) model.

2.1. Other Previous Work
Much work concerning the population protocol model has been devoted to

establishing that the class of computable predicates is precisely the class of
semilinear predicates [AAD+04, AAD+06, AAE06, AAER07]. Moreover, in
[AAD+04, AAD+06], the probabilistic population protocol model was proposed,
in which the scheduler selects randomly and uniformly the next interaction pair.
Some work has concentrated on performance, supported by this random schedul-
ing assumption (see e.g. [AAE08a]). [CDF+09] proposed a generic definition
of probabilistic schedulers and a collection of new fair schedulers, and revealed
the need for the protocols to adapt when natural modifications of the mobil-
ity pattern occur. [BCK+09, CS08] considered a huge population hypothesis
(population going to infinity), and studied the dynamics, stability and com-
putational power of probabilistic population protocols by exploiting the tools
of continuous nonlinear dynamics. Moreover, several extensions of the basic
model have been proposed in order to more accurately reflect the requirements
of practical systems. In [AAC+05], Angluin et al. studied what properties of
restricted interaction graphs are stably computable by the population protocol
model, gave protocols for some of them, and proposed an extension of the model
with stabilizing inputs in order to resolve the resistance of population protocols
to composability. Some other works incorporated agent failures [DGFGR06].
Recently, Bournez et al. [BCCK08] investigated the possibility of studying pop-
ulation protocols via game-theoretic approaches. For some introductory texts to
the subject of population protocols see [AR07, Spi10, MCS10] and for a survey

3As common in the CS literature, we abbreviate a Turing Machine by TM and by NTM
when we want to emphasize that the TM is Nondeterministic.
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mostly based on preliminary results of this work see [CMS09b]. Finally, the
Static Synchronous Sensor Field (SSSF) [ADGS09, ASS10] is a very promising
recently proposed model that addresses networks of tiny heterogeneous compu-
tational devices and additionally allows processing over constant flows (streams)
of data originating from the environment. The latter feature is totally absent
from the models discussed so far and is required by various sensing problems.
See [ACD+11] for a joint survey on population-protocol-like models and static
synchronous sensor fields.

3. Our Results - Roadmap

Section 4 provides a formal definition of the MPP model. Section 5 fo-
cuses on the computational power of the model by studying what predicates
on input assignments are stably computable in the fully symmetric case, in
which the interaction graph is complete and all edges are initially in a common
state. First Section 5.1 proves that the MPP model is strictly stronger than the
population protocol model by showing that the former can stably compute a
non-semilinear predicate. Then in Section 5.2 it is shown that the MPP model
can turn itself into a deterministic TM of linear space. Section 5.3 first ex-
tends the techniques developed in Section 5.2 to show that the MPP model can
simulate a NTM of O(n2) space and then, by showing that the inverse inclu-
sion also holds, it establishes the following exact characterization of the class
of computable predicates by the MPP model: it is precisely the class of sym-
metric predicates in NSPACE(n2). Thus, unexpectedly, while preserving both
uniformity and anonymity, the MPP model turns out to be an extremely pow-
erful enhancement: it dramatically extends the class of computable predicates,
from semilinear predicates to all symmetric predicates computable by a NTM in
O(n2) space. Section 6 concludes and discusses some promising future research
directions.

4. The Mediated Population Protocols: A Formal Model

4.1. Formal Definition
Definition 1. A Mediated Population Protocol (MPP) is a 7-tuple (X,Y,Q,
S, I,O, δ), where X, Y , Q, and S are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of agent states,
4. S is the set of edge states,
5. I : X → Q is the input function,
6. O : Q → Y is the output function,
7. δ : Q × Q × S → Q × Q × S is the transition function.

If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a transition and we define
δ1(a, b, c) = a′, δ2(a, b, c) = b′ and δ3(a, b, c) = c′.
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An interaction graph is a (usually directed) graph G = (V, E), where V
specifies the set of agents (also called a population) and E the permissible in-
teractions between them; that is, (u, v) ∈ E indicates the possibility of an
interaction between agents u and v, in which u is the initiator and v the re-
sponder. Throughout this article we use the letters n and m to denote |V | and
|E|, respectively. A graph universe (or graph family) U is any set of interaction
graphs. Unless otherwise stated, we assume that the graph universes under con-
sideration consist of directed interaction graphs without self-loops and multiple
edges. We denote by Gcon the graph universe consisting of all weakly connected
interaction graphs of any finite number of nodes greater or equal to 2. Given
a fixed graph universe U , a MPP A runs on the nodes of an interaction graph
G = (V, E) ∈ U .

In the most general setting, each agent initially senses its environment, as a
response to a global start signal, and receives an input symbol from X. Then all
agents concurrently apply the input function to their input symbols and obtain
their initial state (in this way the initial configuration of the system is formed).
Each edge is initially in one state from S as specified by some edge initialization
function ι : E → S, which is not part of the protocol but generally models
some preprocessing on the network that has taken place before the protocol’s
execution.

A network configuration, or simply a configuration, is a mapping C : V ∪E →
Q∪ S specifying the state of each agent in the population and each edge in the
set of permissible interactions. Let C and C ′ be configurations, and let u, υ be
distinct agents. We say that C goes to C ′ via encounter e = (u, υ), denoted
C

e→ C ′, if

C ′(u) = δ1(C(u), C(υ), C(e))
C ′(υ) = δ2(C(u), C(υ), C(e))
C ′(e) = δ3(C(u), C(υ), C(e))
C ′(z) = C(z), for all z ∈ (V − {u, υ}) ∪ (E − {e}),

that is, C ′ is the result of the interaction of the pair (u, υ) under configuration C
and is the same as C except for the fact that the states of u, υ, and (u, υ) have
been updated according to δ1, δ2, and δ3, respectively. We say that C can go to
C ′ in one step, denoted C → C ′, if C

e→ C ′ for some encounter e ∈ E. We write
C

∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C ′, such
that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C ′ is reachable
from C.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have
both finite and infinite kinds of executions since the scheduler may stop after
a finite number of steps or continue selecting pairs forever. Moreover, note
that, according to the preceding definitions, the adversary scheduler may, for
example, partition the agents into non-communicating clusters. If that’s the
case, then it is easy to see that no meaningful computation is possible. To
avoid such unpleasant scenarios, a strong global fairness condition is imposed
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on the adversary to ensure the protocol makes progress. An infinite execution
is fair if for every pair of configurations C and C ′ such that C → C ′, if C
occurs infinitely often in the execution then so does C ′. An adversary scheduler
is fair if it always leads to fair executions. A computation is an infinite fair
execution. An interaction between two agents is called effective if at least one
of the initiator’s, the responder’s, and the edge’s states is modified (that is, if
C, C ′ are the configurations before and after the interaction, respectively, then
C ′ 6= C). Similarly, a transition (a, b, c) → (a′, b′, c′) is called effective if a′ 6= a,
or b′ 6= b, or c′ 6= c.

Note that the mediated population protocol model preserves both uniformity
and anonymity properties of population protocols. As a result, any MPP’s code
is of constant size, thus, can be stored in each agent (device) of the population
and, additionally, there is not enough room in the states of the agents and the
edges to store uids. Nevertheless, as we shall see, the MPP model can handle
far more complicated computations than the population protocol model.

4.2. Stable Computation
The input (also called an input assignment) to a MPP is any x = σ1σ2 . . .

σn ∈ X∗ such that n = |V |.4 In particular, by assuming an ordering over V , the
input to agent i is the symbol σi, for all i, 1 ≤ i ≤ n. Let p : X∗ → {0, 1} be some
predicate over X∗. p is called symmetric if for every x = σ1σ2 . . . σn ∈ X∗ and
any permutation function π : {1, 2, . . . , n} → {1, 2, . . . , n}, it holds that p(x) =
p(σπ(1)σπ(2) . . . σπ(n)) (in words, permuting the input symbols does not affect
the predicate’s outcome). Similarly, a language L ⊆ X∗ is called symmetric if
x = σ1σ2 . . . σn ∈ L implies σπ(1)σπ(2) . . . σπ(n) ∈ L for all π. Any language
L ⊆ X∗ corresponds to a unique predicate pL defined as pL(x) = 1 iff x ∈ L. It
is easy to see that L is symmetric iff pL is symmetric. Due to this bijection we
use the term symmetric predicate for both predicates and languages.

Like population protocols, MPPs do not halt. Instead a protocol is required
to stabilize, in the sense that it reaches a point after which the output of every
agent will remain unchanged. A configuration C is called output stable if for ev-
ery configuration C ′ that is reachable from C it holds that O(C ′(u)) = O(C(u))
for all u ∈ V , where O(C(u)) is the output of agent u under configuration C.
In simple words, if an output stable configuration is ever reached, no agent will
change its output in any subsequent step and no matter how the computation
proceeds thereafter.

A predicate p over X∗ is said to be stably computable by the MPP model in
a graph universe U , if there exists a MPP A such that for any input assignment
x ∈ X∗ and any G = (V, E) ∈ U s.t. |V | = |x|, any computation of A on G
beginning from the initial configuration corresponding to x eventually (i.e. in
a finite number of steps) reaches an output stable configuration in which all
agents output p(x).

4The truth is that we consider only graphs with at least 2 nodes, since smaller graphs do
not even permit a single interaction (so, only inputs in X≥2 are permitted).
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A configuration C is called state stable if for every configuration C ′ s.t.
C

∗→ C ′ it holds that C ′ = C. We say that a protocol A has stabilizing states
if every computation of A eventually reaches a state stable configuration; that
is, the states of all agents eventually stop changing. Note that any protocol
that state-stabilizes also output-stabilizes, but the inverse is not generally true
(stabilizing states is a stronger requirement).

In some cases, a protocol, instead of stably computing a predicate p, may
provide some different sort of guarantee. For example, whenever runs on some
x ∈ X∗ such that p(x) = 1, it may forever remain to configurations where at
least one agent is in state a, and whenever p(x) = 0 it may forever remain to
configurations where no agent is in state a. To formalize this, we say that a
MPP A guarantees t : Q∗ → {0, 1} w.r.t. p : X∗ → {0, 1} in a graph universe U
if, for any input assignment x ∈ X∗ and any G = (V, E) ∈ U s.t. |V | = |x|, any
computation of A on G beginning from the initial configuration corresponding
to x eventually reaches a configuration C, s.t. for all C ′, where C

∗→ C ′, it holds
that t(C ′) = t(C) = p(x).5

5. Predicates on Input Assignments

We assume here that the interaction graph is complete and that all edges
are initially in a common state s0, that is, the universe is {G | G is complete}
and ι(e) = s0 for all e ∈ E. Call this for the sake of simplicity the SMPP model
(‘S’ standing for “Symmetric”). We are interested in the computational power
of the SMPP model. In particular, we provide an exact characterization of the
predicates on input assignments that are stably computable.

Definition 2. Let MPS (standing for “Mediated Predicates in the fully Sym-
metric case” 6) be the class of all stably computable predicates by the SMPP
model.

Lemma 1. All predicates in MPS are symmetric.

Proof. Take any p ∈ MPS and let A be the SMPP that stably computes it.
Take also any input assignment x = σ1σ2 . . . σn and let π : V → V be any
permutation of V = {1, 2, . . . , n}. Now consider the input assignment x′ =
σπ(1)σπ(2) . . . σπ(n), which is a permutation of x. Take any fair, w.r.t. A, infinite
interaction sequence 7 e1, e2, . . ., where ei ∈ E, and replace each ei = (j, k) with
(π(j), π(k)) to obtain a new infinite interaction sequence, which is well defined
due to the fact that the interaction graph is complete. Now consider the two
infinite executions of A that correspond to the two interaction sequences on
inputs x and x′, respectively. Obviously, x′

w = xπ(w), so that for the initial
configurations C ′

0 and C0 we have that C ′
0(w) = C0(π(w)) for all agents w ∈ V .

5Note that by assuming an ordering on V we can define configurations as strings from Q∗,
as we did for the input assignments at the beginning of this subsection.

6See the beginning of the Roadmap in Section 3 to have a brief intuition of this notion.
7By a fair interaction sequence we mean one that leads to a computation of A.
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Moreover, we have initially that C ′
0(j, k) = C0(π(j), π(k)) for all (j, k) ∈ E,

which holds trivially since all edges are initially in s0. Assume that the above
holds for some interaction step i, that is, C ′

i(w) = Ci(π(w)) for all w ∈ V and
C ′

i(j, k) = Ci(π(j), π(k)) for all (j, k) ∈ E. It is not hard to see that the same
must hold for step i + 1, consequently both infinite executions pass in each
step through the same multiset of states. This together with the fact that one
execution is fair implies that the other must also be fair. So, we have obtained
two computations of A on inputs x and x′, respectively, that forever provide the
same multisets of output symbols. Now, the fact that p is stably computable
implies that p(x) = p(x′), which in turn implies that p has to be symmetric.

Throughout the text, we use SSPACE(f(n)) and SNSPACE(f(n)) to de-
note SPACE(f(n))’s and NSPACE(f(n))’s restrictions to symmetric predi-
cates, respectively and SEM to denote the class of semilinear predicates.

In the rest of this article, we build the machinery required to arrive at the
exact characterization of MPS that is captured by Theorem 1.

Theorem 1. MPS = SNSPACE(n2).

Proof. One direction follows from Theorem 10 and the inverse direction from
Corollary 2.

We begin by providing an abstract proof idea of the above Theorem that
briefly discusses most techniques that we develop throughout the rest of the
article. This is done for the sake of clarity and readability of the results that
follow.

Proof Idea. The “only if” part is easy. Any predicate in MPS is obviously
symmetric and additionally we can perform in O(n2) space a nondeterministic
search on the transition graph of the SMPP that stably computes the predicate.

The sufficiency of the conditions is somewhat more complicated. We have
to show that for all symmetric languages L ∈ NSPACE(n2) there exists a
SMPP that stably computes pL, defined as pL(x) = 1 iff x ∈ L. The idea is
to organize the agents into a spanning pseudo-path subgraph of the interac-
tion graph (pseudo-path graphs are defined in the beginning Section 5.2). To
do that, the agents begin to form small pseudo-path graphs that in the sequel
are merged together and are expanded to isolated nodes. When this process
ends, the edges of the spanning pseudo-path graph will be active and all other
O(n2) edges will be inactive. Now the network can operate as a Turing ma-
chine of O(n2) space by using the agents as the control units and the inactive
edges as the cells. Whenever the inactive edges of some agent are exhausted it
passes control (via some active edge) to its neighbor on the spanning pseudo-
path graph. By also exploiting the nondeterminism inherent in the interaction
pattern the agents can simulate the nondeterministic TM that decides L. Note
that, since the agents cannot detect termination of the spanning pseudo-path
graph construction process, any time that the structure changes they reinitialize
their computation in a systematic manner, so that reinitialized agents do not
communicate with non-reinitialized ones, and by exploiting a backup of their
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input that is maintained throughout the computation. The final reinitialization
happens when the spanning pseudo-path graph is formed an then the simulation
is executed correctly.

5.1. MPS is a Proper Superset of SEM

In this section, we provide a first inclusion (in fact, a lower bound) for MPS.
By combining Theorems 2 and 3, we get in Corollary 1 that the non-semilinear
predicate (Nc = Na · Nb) belongs to MPS, where Nσ denotes the number
of agents that initially obtain the input symbol σ and ‘·’ denotes standard
multiplication. This (due to the fact that population protocols cannot handle
multiplication of variables [AAE06]) establishes the following separation: MPS
is a proper superset of SEM (which is captured by Theorem 4).

Protocol 1 VarProduct

1: X = {a, b, c}
2: Y = {0, 1}
3: Q = {a, ȧ, b, c, c̄}
4: S = {0, 1}
5: I(σ) = σ, for all σ ∈ X
6: O(a) = O(b) = O(c̄) = 1 and O(c) = O(ȧ) = 0
7: δ: (a, b, 0) → (ȧ, b, 1), (c, ȧ, 0) → (c̄, a, 0), (ȧ, c, 0) → (a, c̄, 0)
8: // All transitions that do not appear have no effect, e.g. δ(a, b, 1) = (a, b, 1)

Theorem 2. Protocol VarProduct (see Protocol 1) provides w.r.t. predicate
(Nc = Na · Nb) the following semilinear guarantee:

• If Nc 6= Na ·Nb then at least one agent remains in one of the states ȧ and
c.

• If Nc = Na · Nb then no agent remains in these states.

Proof. First of all, we notice that in a complete directed interaction graph,
Na · Nb equals to the number of links leading from agents in state a to agents
in state b. The main idea is that we should erase a number of c’s equal to the
number of a’s times the number of b’s. That is, for each a we should erase b
c’s. In the population protocol model, the impossibility for computing such a
predicate comes from the fact that there is no way for an agent being w.l.o.g. in
state a to be able to say that it has already counted a specific agent in state b.
If e.g. Na = Nb = Nc = O(n), then it is impossible in the population protocol
model for each b to be able to remember all a’s that have already counted it.

On the other hand, in the SMPP model this is resolved easily. It is easy to
see that when at least one of Na, Nb, and Nc is equal to zero, then in all such
cases, except for the case where Nc = 0, Na 6= 0 and Nb 6= 0, no computation
takes place and the protocol trivially provides the required guarantee. In the
case that we referred to explicitly, the first rule of δ is applied at least once,
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while the second and third rules cannot be applied (since Nc always remains
zero) and, thus, at least one agent goes to state ȧ without being able to leave
from it. Noticing that Na · Nb 6= 0 it is obvious that in this case a ȧ correctly
remains in V arProduct’s computation.

The interesting case is when all Na, Nb and Nc are not equal to zero (in fact
they are greater than zero since the Nq’s are always non-negative). Recall that
all edges are initially in their initial common state 0. The protocol proceeds as
follows. When an agent in state a interacts as the initiator with an agent in
state b, then the initiator goes to ȧ and the corresponding edge goes to state
1. The modification in the state of the edge defining this specific ordered pair
(a, b) is all the protocol needs to “remember” in order not to count the same
pair again. When an agent in state c interacts with an agent in state ȧ, then
c is erased by becoming c̄ and ȧ returns to its natural operation by becoming
a again. The crucial point is to notice that the protocol tries to erase Na · Nb

agents in state c. If Nc = Na · Nb, then it will eventually manage to do it and
at that point no agent will be in one of the states ȧ and c and, moreover, no
agent will be able to go again to one of these states. Thus, in this case, the
protocol guarantees that eventually no agent remains in one of the states ȧ and
c. If Nc < Na · Nb then eventually at least one agent will remain to state ȧ,
while there will be no unerased agent in state c to be able to turn it again to
state a. Finally, when Nc > Na ·Nb some agents in state c will keep their state,
since there will be no unvisited (a, b) pair to erase any of those c’s. Thus, when
Nc 6= Na · Nb the protocol guarantees that at least one agent remains in one of
the states ȧ and c and this completes the proof.

Remark 1. It is easy to see that Protocol VarProduct has stabilizing states.

Note that Theorem 2 alone does not complete the separation of SEM and
MPS. The reason is that it does not show that the SMPP model stably com-
putes (Nc = Na ·Nb); what it truly shows is that whenever the predicate is true
a state stable configuration is reached for which another predicate t on config-
urations becomes true, and whenever it is false a state stable configuration is
reached for which t is also false. In fact, there is a way to exploit the guarantee
and the stabilizing states in order to achieve the separation. This is captured
by the following general composition theorem holding also for non-complete
interaction graphs.

Theorem 3. Let G be some family of directed and connected interaction graphs.
If there exists a MPP A with stabilizing states that, in G, guarantees w.r.t. a
predicate p a semilinear predicate t, then p is stably computable by the MPP
model in G.

Proof. We show that A can be composed with a provably existing protocol B
that stably computes t to give a new MPP C satisfying the following properties:

• C is formed by the composition of A and B,

• its input is A’s input,

11



• its output is B’s output, and

• C stably computes p (i.e. all agents agree on the correct output) in G.

Protocol A has stabilizing states and provides a guarantee t which is a semi-
linear predicate on A’s configurations. Let XA = X be the input alphabet of A,
QA the set of A’s states, δA the transition function of A, and similarly for any
other component of A. We will use the indexes B and C, for the corresponding
components of the other two protocols.

Since predicate t is semilinear, according to a result in [AAC+05], there is a
population protocol B′ that stably computes t with stabilizing inputs in Gcon.
Note that G ⊆ Gcon, so any predicate stably computable (both with or without
stabilizing inputs) in Gcon is also stably computable in G. In fact, the same
protocol B′ stably computes t with stabilizing inputs in G. Moreover, there
also exists a mediated population protocol B (the one that is the same as B′

but simply ignores the additional components of the new model) that stably
computes t with stabilizing inputs in G. Note that the input alphabet of B is
XB = QA, and its transition function is of the form δB : (QA × QB) × (QA ×
QB) → QB × QB, since there is no need to specify edge states (formally we
should, but the protocol ignores them). In fact, QA also plays the role of B’s
inputs that eventually stabilize.

We define a mediated population protocol C as follows: XC = XA, YC =
YB = {0, 1}, QC = QA × QB, IC : XA → QC defined as IC(x) = (IA(x), iB)
for all x ∈ QC , where iB ∈ QB is the initial state of protocol B, SC = SA,
OC(a, b) = OB(b), for all q = (a, b) ∈ QC , and finally its transition function
δC : QC × QC × SC → QC × QC × SC is defined as

δC((a, b), (a′, b′), s) = ((δA1(a, a′, s), δB1((a, b), (a′, b′))),
(δA2(a, a′, s), δB2((a, b), (a′, b′))),
δA3(a, a′, s)),

where for δA(x, y, z) = (x′, y′, z′) (in A’s transition function), we have that
δA1(x, y, z) = x′, δA2(x, y, z) = y′, δA3(x, y, z) = z′, and similarly for δB.

Intuitively, C consists of A and B running in parallel. The state of each agent
is a pair c = (a, b), where a ∈ QA, b ∈ QB, and the state of each edge is a member
of SA. Initially each agent senses an input x from XA and this is transformed
according to IC to such a pair, where a = IA(x) and b is always a special B’s
initial state iB ∈ QB. When two agents in states (a, b) and (a′, b′) interact
through an edge in state s, then protocol A updates the first components of the
agent states, i.e. a and a′, and the edge state s, as if B didn’t exist. On the other
hand, protocol B updates the second components by taking into account the first
components that represent its separate input ports at which the current input
symbol of each agent is available at every interaction (B takes A’s states for
agent input symbols that may change arbitrarily between any two computation
steps, but the truth is that they change due to A’s computation). Since the first
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components of C’s agent states eventually stabilize as a result of the fact that
A has stabilizing states, protocol B will eventually obtain stabilizing inputs,
consequently will operate correctly, and will stably compute t as if it had began
computing on A’s state stable configuration. But, since t provides the correct
answer for p if applied on A’s state stable configuration, it is obvious that C
must stably compute p in G, and the theorem follows.

Corollary 1. The non-semilinear predicate (Nc = Na · Nb) belongs to MPS.

Proof. The SMPP VarProduct has stabilizing states (Remark 1) and in the
family of all complete directed interaction graphs guarantees w.r.t. (Nc = Na ·
Nb) a semilinear predicate (Theorem 2). Consequently, the requirements of
Theorem 3 are satisfied and (Nc = Na ·Nb) is stably computable by the SMPP
model in the family of all complete directed interaction graphs.

Theorem 4. SEM ( MPS.

Proof. Clearly, the population protocol model is a special case of the mediated
population protocol model, therefore SEM ⊆ MPS and, by Corollary 1 to-
gether with the fact that (Nc = Na · Nb) is non-semilinear, (Nc = Na · Nb) ∈
MPS − SEM.

5.2. A Better Inclusion: SSPACE(n) ⊆ MPS

We are now going to establish a much better inclusion. In particular, we will
show that any predicate in SSPACE(n) is also in MPS. In other words, the
SMPP model is at least as strong as a linear space TM that computes symmetric
predicates. We begin with some necessary definitions.

Let G = (V,E) be an interaction graph and let dG(u) ≡ |{w ∈ V | (u,w) ∈ E
or (w, u) ∈ E}| denote the degree of u w.r.t. G. A pseudo-path graph L = (K, A)
is a directed graph either satisfying |K| = 1 and A = ∅ or |K| > 1, dL(u) =
dL(v) = 1 for some u, v ∈ K, and dL(w) = 2 for all w ∈ K − {u, v}. In words,
it is either an isolated node, which we call the trivial pseudo-path graph, or a
directed graph that becomes a path graph when the directions of the links are
ignored. A pseudo-path subgraph of G is a pseudo-path graph L ⊆ G and is
called spanning if K = V . Let Cl(t) denote the label component of the state of
t ∈ V ∪ E under configuration C.

We say that a pseudo-path subgraph of G is correctly labeled under config-
uration C, if it is trivial and its label is l with no active edges incident to it or
if it is non-trivial and all the following conditions are satisfied:

1. Assume that u, υ ∈ K and dL(u) = dL(υ) = 1. These are the only nodes
in K with degree 1. Then one of u and υ has label kt (non-leader endpoint)
and the other has either lt or lh (leader endpoint). The unique eu ∈ A
incident to u, where u has w.l.o.g. label kt, is an outgoing edge and the
unique eυ ∈ A incident to υ is outgoing if Cl(υ) = lt and incoming if
Cl(υ) = lh.

2. For all w ∈ K − {u, υ} (internal nodes) it holds that Cl(w) = k.
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3. For all a ∈ A it holds that Cl(a) ∈ {p, i} (active edges) and for all e ∈ E−A
such that e is incident to a node in K it holds that Cl(e) = 0 (inactive
edges).

4. Let υ = u1, u2, . . . , ur = u be the path from the leader to the non-leader
endpoint (resulting by ignoring the directions of the arcs in A). Let PL =
{(ui, ui+1) | 1 ≤ i < r} be the corresponding directed path from υ to u.
Then for all a ∈ A ∩ PL it holds that Cl(a) = p (proper edges) and for all
a′ ∈ A − PL that Cl(a′) = i (inverse edges).

See Figure 1 for some examples of correctly labeled pseudo-path subgraphs. The
meaning and service of each label will become clear in the following discussion.

Figure 1: We assume that the above depicted graph, call it G, is complete. We have chosen
not to draw the inactive edges for the sake of visibility. Therefore, all edges not appearing
have label 0, that is, they are inactive. The top six nodes form a correctly labeled pseudo-
path subgraph of G. The reason is that the left endpoint has label lh, that is, it is a head
leader, the right endpoint has label kt, that is, it is a tail non-leader (condition 1 satisfied),
all intermediate nodes are (simple) non-leaders (condition 2 satisfied), the edges that follow
the direction from left to right have label p, that is, they are proper, those that follow the
direction from right to left have label i, that is, they are inverse, and all other edges incident
to these nodes (those that do not appear) are inactive (conditions 3 and 4 satisfied). Similarly,
all other appearing graphs are pseudo-path subgraphs of the complete graph G. Note that the
left node at the bottom that seems to be isolated, is in fact a node of G whose incident edges
are all inactive. Moreover, it has label l, consequently it constitutes a trivial pseudo-path
subgraph of G.

We describe now a SMPP, called Spanning Process, that constructs a cor-
rectly labeled spanning pseudo-path subgraph of any complete interaction graph
G. The correctness of the protocol is captured by Theorem 5. We provide a
high level description of the protocol in order to avoid its many low-level details.
All agents have initially label l, thought of as being simple leaders. All edges
have label 0 and we think of them as being inactive, that is, not part of the
pseudo-path subgraph to be constructed. An edge having label p is interpreted
as proper while an edge having label i is interpreted as inverse and both are
additionally interpreted as active, that is, part of the pseudo-path subgraph to
be constructed. An agent with label k is a (simple) non-leader, an agent with kt

is a non-leader that is additionally the tail of some pseudo-path subgraph (tail
non-leader), an agent having label lt is a leader and a tail of some pseudo-path
subgraph (tail leader), and an agent having lh is a leader and a head of some
pseudo-path subgraph (head leader). A leader is a simple, tail, or head leader.
All these will be further clarified in the sequel.

14



When two simple leaders interact through an inactive edge, the initiator
becomes a tail non-leader, the responder becomes a head leader, and the edge
becomes inverse. When a head leader interacts as the initiator with a simple
leader via some inactive edge the initiator becomes a non-leader, the responder
becomes a head leader, and the edge becomes inverse. When the simple leader
is the initiator, the head leader is the responder, and the edge is again inactive,
the initiator becomes a tail leader, the responder becomes a non-leader, and the
edge becomes proper. When a tail leader interacts as the initiator with a simple
leader via an inactive edge, the initiator becomes a non-leader, the responder
becomes a head leader, and the edge becomes inverse. When the simple leader
is the initiator, the tail leader is the responder, and the edge is again inactive,
the initiator becomes a tail leader, the responder becomes a non-leader, and
the edge becomes proper. These transitions can be formally summarized as
follows: (l, l, 0) → (kt, lh, i), (lh, l, 0) → (k, lh, i), (l, lh, 0) → (lt, k, p), (lt, l, 0) →
(k, lh, i), and (l, lt, 0) → (lt, k, p). In this manner, the agents become organized
in correctly labeled pseudo-path subgraphs (see again their definition and Figure
1).

We now describe how two such pseudo-path graphs L1 and L2 are pieced
together. Denote by l(L) ∈ V and by kt(L) ∈ V the leader and tail non-
leader endpoints of a correctly labeled pseudo-path graph L, respectively. When
l(L1) = u interacts as the initiator with l(L2) = υ, through an inactive edge,
υ becomes a non-leader with a special mark, e.g. k′, the edge becomes proper
with a special mark, and u becomes a leader having a special label l′ indicating
that this label will travel towards kt(L1) while making all proper edges that it
meets inverse and all inverse edges proper. In order to know its direction, it
marks each edge that it crosses. When it, finally, arrives at the endpoint, it
takes to another special label and walks the same path in the inverse direction
until it meets υ again. This walk can be performed easily, without using the
marks, because now all edges have correct labels. To diverge from L1’s endpoint
it simply follows the proper links as the initiator (moving from their tail to their
head) and the inverse links as the responder (moving from their head to their
tail) while erasing all marks left from its previous walk. When it reaches υ it
erases its mark, making its label k, and obtains another special label indicating
that it again must walk towards kt(L1) for the last time, performing no other
operation this time. To do that, it follows the proper links as the responder
(from their head to their tail) and the inverse links as the initiator (from their
tail to their head). When it, finally, arrives at kt(L1) it becomes a normal tail
leader and now it is easy to see that L1 and L2 have been correctly merged into a
common correctly labeled pseudo-path graph. See Figure 2 for a graphical step
by step example. The correctness of this process, called the merging process, is
captured by Lemma 2.

Lemma 2. When the leader endpoints of two distinct correctly labeled pseudo-
path subgraphs of G, L1 = (K1, A1) and L2 = (K2, A2), interact via e ∈ E,
then, in a finite number of steps, L1 and L2 are merged into a new correctly
labeled pseudo-path graph L3 = (K1 ∪ K2, A1 ∪ A2 ∪ {e}).
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(a) Before merging. (b) l′ moves towards kt and inverts the labels.

(c) l′′ moves towards k′ and removes the
marks.

(d) l′′′ moves towards kt and at arrival be-
comes lt.

(e) After merging.

Figure 2: Two pseudo-path subgraphs are merged together.

Proof. We study all possible cases:
L1 and L2 are both trivial (they are isolated simple leaders, where “isolated”

means that all the edges incident to them are inactive): Then the initiator
becomes a tail non-leader, the responder becomes a head leader, and the edge
becomes inverse.

L1 is non-trivial and L2 is trivial : First assume that the leader of L1 is a
tail leader. If the tail leader is the initiator, then it becomes a non-leader, the
responder becomes a head leader (the leader end-point of the new pseudo-path
graph L3), and the edge becomes inverse. Clearly, the added edge points towards
the new leader of the path and is correctly inverse, all other edges correctly retain
their direction labels, the old leader becomes internal, thus, correctly becomes a
non-leader, and the other endpoint remains unaffected, thus, correctly remains
a tail non-leader. The cases in which the leader of L1 is a head leader and those
where L1’s leader is the responder are handled similarly.

L2 is non-trivial and L1 is trivial : This case is symmetric to the previous
one.

L1 and L2 are both non-trivial : Assume w.l.o.g. that L1’s leader is the
initiator. Then L2’s leader will become a non-leader, which is correct since it will
constitute an internal node of the new pseudo-path graph L3 which will be the
result of the merging process. But first it becomes a marked non-leader in order
to inform L1’s leader where to stop its movement. L1’s leader goes to a special
state that only has effective interactions through active edges. This ensures
that it only has effective interactions with its neighbors in the new pseudo-path
graph L3. Additionally, the edge via which the pseudo-path graphs L1 and L2

where merged goes to a marked proper state. The goal of the merging process
is to change all direction labels of L1, that is, make the proper inverse and
the inverse proper. The reason is that L1’s tail non-leader endpoint will now
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become L3’s leader endpoint and, if remain unchanged, L1’s direction labels
will be totally wrong for the new pseudo-path graph. L2’s direction labels must
remain unchanged since their new leader will be in the same side as before, thus,
they will still be correct w.r.t. the direction of the path from L3’s new leader
endpoint and its non-leader endpoint. When L1’s leader interacts via a non-
marked edge it knows that it interacts with a neighbor that it has not visited
yet and which lies on the direction towards L1’s tail non-leader endpoint. Thus,
it changes the edge’s label, if it is proper it makes it inverse and contrariwise,
marks it in order to know its direction towards that endpoint, and jumps to
its neighboring node, that is, the neighbor becomes the special leader and the
node itself becomes a non-leader. In this manner, the leader keeps moving step
by step towards L1’s non-leader endpoint while at the same time fixing the
direction labels. Eventually, due to fairness, it will reach the endpoint. At this
point it goes to another special leader state whose purpose is to walk the same
path in the inverse direction until it meets again the old leader of L2 which is
marked, and, thus, can be identified. It simply follows the marked links while
erasing the marks of the links that it crosses. When it finally meets the unique
marked agent of L3 it unmarks it, thus, makes it a normal non-leader, unmarks
the only edge that still remains marked, which is the edge that joined L1 and
L2 and goes to another special leader state whose purpose is to walk again back
to L1’s endpoint and then become a normal tail leader, that is, L3’s tail leader.
This can be done easily, because now all links have correct direction labels. In
fact, it knows that if it interacts as the responder via a proper link or as the
initiator via an inverse link, then it must cross that link, because in both cases
it will move on step closer to L1’s endpoint. All other interactions are ignored
by this special leader. It is easy to see that due to fairness and due to the fact
that it can only move towards L1’s endpoint it will eventually reach it. When
this happens it becomes a normal tail leader. It must be clear that all internal
nodes of L3 are non-leaders, one endpoint has remained a tail non-leader while
the other has become a tail leader, all direction labels are correct, and all other
edges that are not part of L3 but are incident to it have remained inactive.
Thus, L3 is correctly labeled.

Theorem 5. The SMPP Spanning Process constructs a correctly labeled span-
ning pseudo-path subgraph of any complete interaction graph G.

Proof. By definition, we consider isolated simple leaders as trivial pseudo-path
graphs. Thus, initially, G is partitioned into n correctly labeled trivial pseudo-
path graphs. It is easy to see that correctly labeled pseudo-path graphs never
become smaller and, according to Lemma 2, when their leaders interact they
are merged into a new pseudo-path graph containing all nodes of the interacting
pseudo-path graphs plus an additional edge joining them. Moreover, given that
there are two correctly labeled pseudo-path subgraphs in the current configu-
ration there is always the possibility (due to fairness) that these pseudo-path
graphs may get merged, because they are correctly labeled which implies that
there are always inactive edges joining their leader endpoints, and there is no
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other possible effective interaction between two pseudo-path graphs. In simple
words, two pseudo-path graphs can only get merged and there is always the
possibility that merging actually takes place. It is easy to see that this process
has to end, due to fairness, in a finite number of steps having constructed a
correctly labeled spanning pseudo-path subgraph of G.

Theorem 6. Assume that the interaction graph G = (V,E) is a correctly labeled
pseudo-path graph of n agents, where each agent takes its input symbol in a
second state component 8. Then there is a MPP A that when running on such
a graph simulates a deterministic TM M of O(n) (linear) space that computes
symmetric predicates.

Proof. It is already known from [AAD+06, AR07] that the theorem holds for
population protocols with no inverse edges. It is easy to see that the correct p
and i labels can be exploited by the simulation in order to identify the correct
directions. To make this a little more clear, assume that an agent u has M’s
head over the last symbol of its state component (each agent can use up to
a constant number of such symbols due to the uniformity property). Now,
assume that M moves its head to the right. Then u must pass control to its
right neighbor. To do so, it simply follows a proper edge as the initiator of
an interaction or an inverse edge as the responder of an interaction. Similarly,
when control must be passed to the left neighbor, the agent follows an inverse
edge as the initiator of an interaction or a proper edge as the responder of an
interaction.

It must be clear now, that if the agents could detect termination of the
spanning process then they would be able to simulate a deterministic TM of
O(n) (linear) space that computes symmetric predicates. But, unfortunately,
they are unable to detect termination, because if they could, then termination
could also be detected in any non-spanning pseudo-path subgraph constructed in
some intermediate step (it can be proven by symmetry arguments together with
the fact that the agents cannot count up to the population size). Fortunately,
we can overcome the impossibility of detecting termination by applying the
reinitialization technique of [GR09, CMN+10c].

Let us first outline the approach that will be followed in Theorem 7. When-
ever two correctly labeled pseudo-path subgraphs get merged, we know that a
new correctly labeled pseudo-path graph will be constructed in a finite number
of steps. Moreover, termination of the merging process can be detected. When
the merging process comes to an end, the unique leader of the new pseudo-path
graph does the following. It makes the assumption that the spanning process
has come to an end (an assumption that is possibly wrong since the pseudo-path
subgraph may not be spanning yet), restores its state component to its input
symbol (thus, restarting the TM simulation) and informs its right neighbor to

8The first component is used for the labels of the spanning process and, as already men-
tioned, is called label component.
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do the same. Restoring the input symbol can be trivially achieved, because the
agents can forever keep their input symbols in a read-only input backup compo-
nent. The correctness of this idea is based on the fact that the reinitialization
process also takes place when the last two pseudo-path subgraphs get merged
into the final spanning pseudo-path subgraph. What happens then is that the
TM simulation starts again from the beginning like it had never been executed
during the spanning process and Theorem 6 guarantees that the simulation will
run correctly if not restarted in future steps. Clearly, it will never be restarted
again, because no other merging process will ever take place (a unique spanning
pseudo-path subgraph is active and all other edges are inactive).

Theorem 7. SSPACE(n) ⊆ MPS.

Proof. Take any p ∈ SSPACE(n). By Theorem 6 we know that there is a MPP
A that stably computes p on a pseudo-path graph of n nodes. We have to show
that there exists a SMPP B that stably computes p. We construct B to be the
composition of A and another protocol I that is responsible for executing the
spanning and reinitialization processes.

Each agent’s state consists of three components: a read-only input backup,
one used by I, and one used by A. Thus, A and I are, in some sense, executed
in parallel in different components.

Protocol I does the following. It always executes the spanning process and
when two pseudo-path graphs get merged and the merging process comes to
an end it executes the following reinitialization process. The new leader u that
resulted from merging becomes marked, e.g. l∗t . Recall that the new pseudo-
path graph has also correct labels. When u meets its right neighbor, u sets its
A component to its input symbol (by copying it from the input backup), be-
comes unmarked, and passes the mark to its right neighbor (correct edge labels
guarantee that each agent distinguishes its right and left neighbors). When the
newly marked agent interacts with its own right neighbor, it does the same,
and so on, until the two rightmost agents interact, in which case they are both
reinitialized at the same time and the special mark is lost. It is easy to see
that this process guarantees that all agents in the pseudo-path graph become
reinitialized and before completion non-reinitialized agents do not have effective
interactions with reinitialized ones (the special marked agent acts always as the
separator between reinitialized and non-reinitialized agents). Note that if other
reinitialization processes are pending from previous reinitialization steps, then
the new one erases them. This can be done easily because the new reinitial-
ization signal will always be traveling from left to right and all old signals will
be found to its right; in this manner we know which of them has to be erased.
Another possible approach is to block the leader from participating in another
merging process before completion of the current pending reinitialization pro-
cess. This approach is also correct: fairness guarantees that the reinitialization
process will terminate in a finite number of steps, thus, the merging process will
not be blocked forever.

From Theorem 5 we know that the spanning process executed by I results in
a correctly labeled spanning pseudo-path subgraph of G. The spanning process,
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as already mentioned, terminates when the merging of the last two pseudo-path
subgraphs takes place and merging also correctly terminates in a finite number
of steps (Lemma 2). Moreover, from the above discussion we know that, when
this happens, the reinitialization process will correctly reinitialize all agents of
the spanning pseudo-path subgraph, thus, all agents in the population. But
then, independently of its computation so far (in its own component), A will
run from the beginning on a correctly labeled pseudo-path graph of n nodes
(this pseudo-path graph will not be modified again in the future), thus, it will
stably compute p. Finally, if we assume that B’s output is A’s output then we
conclude that the SMPP B also stably computes p, thus, p ∈ MPS. See Figure
3 for a graphical step by step example.

5.3. An Exact Characterization: MPS = SNSPACE(n2)
We now extend the ideas used in Section 5.2 in order to establish that

SSPACE(n2) is a subset of MPS showing that MPS is a surprisingly wide
class. Finally, we improve to SNSPACE(n2) and show that the latter inclu-
sion holds with equality, thus, arriving at the following exact characterization
of MPS: A predicate is in MPS iff it is symmetric and is in NSPACE(n2).

Theorem 8. Assume that the complete interaction graph G = (V, E) contains
a correctly labeled spanning pseudo-path subgraph, where each agent takes its
input symbol in a second state component. Then there is a MPP A that when
running on such a graph simulates a deterministic TM M of O(n2) space that
computes symmetric predicates.

Proof. For simplicity and w.l.o.g. we assume that A begins its execution from
the leader endpoint and that initially the simulation moves all n input symbols
to the leftmost outgoing inactive edges (n − 2 leaving from the leader and two
more leaving from the second agent of the pseudo-path graph). Consider w.l.o.g.
that the left endpoint is a tail leader and the right one the tail non-leader. Each
agent can distinguish its neighbors in the pseudo-path graph (in particular, it
knows which is the left and which is the right one) from its remaining neighbors,
since the latter are via inactive edges. Moreover, the endpoints of the pseudo-
path graph can be identified because the pseudo-path graph is correctly labeled
(one endpoint is a leader, the other is a tail non-leader, and all intermediate
agents are non-leaders). Finally, we assume that the edge states now consist
of two components, one used to identify them as active/inactive and the other
used by the simulation.

In contrast to Theorem 6 the simulation also makes use of the inactive edges.
The agent in control of the simulation is in a special state denoted with a star
‘∗’. Since the simulation starts from the left endpoint (tail leader), its state will
be l∗t . When the star-marked leader interacts with its unique right neighbor on
the pseudo-path graph, the neighbor’s state is updated to a r-marked state (i.e.
kr). The kr agent then interacts with its own right neighbor which is unmarked
and the neighbor updates its state to a special dot state (i.e. k̇) whereas the
other agent (in state kr) is updated to k. Then the only effective interaction
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(a) Just after merging. The leader endpoint
has the special star mark. The reinitialization
process begins.

(b) u1 becomes reinitialized and u2 obtains
the star mark. Note that u1’s first component
obtains a bar mark to block u1 from partici-
pating in another merging process.

(c) Nothing happens, since only u1 has been
reinitialized (u2 still has the star mark).

(d) u2 becomes reinitialized and passes the
mark to u3.

(e) Both u4 and u5 have not been reinitialized
yet. A simulation step is executed but this
is unimportant since both u4 and u5 will be
reinitialized in future steps and cannot com-
municate with reinitialized agents (the star
mark acts as a separator).

(f) u3 becomes reinitialized and passes the
mark to u4.

(g) A simulation step is executed normally be-
cause both have been reinitialized.

(h) Both become reinitialized and u4 goes to
kl. The “left” mark will travel to u1 to remove
its mark and indicate the end of the reinitial-
ization process.

(i) After the completion of the reinitialization
process. The leader is again ready for merg-
ing.

Figure 3: An example of the reinitialization process just after two pseudo-path graphs have
been merged together. The agents are named (u1, u2, . . . , u5). Each agent’s state is a 3-
vector (c1, c2, c3) where component c1 contains the label of the agent, c2 the state of the TM
simulation, and c3 the input backup. The bold edge indicates the pair that has just interacted.
The black agent is the initiator and the grey the responder. The states of the corresponding
agents are updated in each figure according to their previous states and the state of the edge
joining them.
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is between the star-marked leader (l∗t ) and the dot non-leader (k̇) which can
only happen via the inactive edge joining them. In this way, the inactive edge’s
state component used for the simulation becomes a part of the TM’s tape. In
fact M’s tape consists only of the inactive edges and is accessed in a systematic
fashion which is described below.

If the simulation has to continue to the right, the interaction (l∗t , k̇) sends
the dot agent to state kr. If it has to proceed left, the dot agent goes to state
kl. An agent in state kr interacts with its right neighbor sending it to dot state
whereas a kl agent does the same for its left neighbor. In this way, the dot mark
is moving left and right between the agents by following the active edges in the
appropriate interaction role (initiator or responder) as described in Theorem 5
for the special states traversing through the pseudo-path graph. The dot mark’s
(state’s) position in the pseudo-path graph determines which outgoing inactive
edge of l∗t will be used. The sequence in which the dot mark is traversing the
graph is the sequence in which l∗t visits its outgoing inactive edges. Therefore
if it has to visit the next inactive edge it moves the dot mark to the right (via
a kr state) or to the left (via a kl state) if it has to visit the previous one. It
should be noted that the dot marked agent plays the role of the TM’s head
since it points the edge (which would correspond to a tape’s cell in M) that is
visited. As stated above only the inactive edges hold the contents of the TM’s
tape. The active ones are used for allowing the special states (symbols) traverse
the pseudo-path graph.

Consider the case where the dot mark reaches the right non-leader endpoint
(kt) and the simulation after the interaction (l∗t , k̇t) demands to proceed right.
Since l∗t ’s outgoing edges have all been visited by the simulation, the execution
must continue on the next agent (right neighbor of leader endpoint lt) in the
pseudo-path graph. This is achieved by having another special state traversing
from right to left (since we are in the right non-leader endpoint) until it finds l∗t .
Then it removes its star mark (state) and assigns it to its right neighbor which
now takes control of the simulation visiting its own inactive edges. A similar
process takes place when the simulation, controlled by any non-leader agent,
reaches the left leader endpoint and needs to proceed to the left cell.

When the control of the simulation reaches a non-leader agent (e.g. from
the left leader endpoint side) in order to visit its first edge it places the dot
mark to the left leader endpoint and then to the next (on the right) non-leader
and so forth. If the dot mark reaches the star-marked agent (in the previous
example from the left endpoint side) then it moves the dot to the closer (in
the pseudo-path graph) agent that can “see” via an inactive edge towards the
right non-leader endpoint. In this way, each agent visits its outgoing edges in
a specific sequence (from leader to non-leader when the simulation moves right
and the reverse when it moves left) providing the O(n2) space needed for the
simulation. See Figure 4 for a graphical example.

Note that the assumption that only inactive edges are used by the simulation
to hold M’s tape is not restrictive. The previously described mechanism can be
extended (using a few more special states and little more complicated interaction
sequences) to also use the active edges, as well as the agents, for the simulation.
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However the inactive edges of each agent towards the rest of the population are
asymptotically sufficient for the simulation discussed so far.

(a) The agent in k∗ controls now the simula-
tion.

(b) A step of the simulation is executed on
the inactive edge. The TM says “right” so
k∗ must next run the simulation on the first
inactive edge to the right.

(c) Mark r travels to the right until it meets
the first agent that has an incoming inactive
edge from k∗.

(d) The mark still travels.

(e) The correct agent was found. The special
dot mark will make the simulation run on the
next inactive edge.

(f) A step of the simulation is executed. The
TM says now “left” so the simulation must
next use again the previous inactive edge.

(g) The dot mark is placed on the wrong agent
(because we only use for the simulation the
inactive outgoing edges of k∗).

(h) The error is detected because the interac-
tion happened through an active edge. The l
mark continues its travel to the left.

Figure 4: An example of simulating a O(n2)-space deterministic TM. The simulation is per-
formed on the second (state) component of the inactive edges (those whose first component is
0). The bold edge indicates the pair that has just interacted. The black agent is the initiator
and the grey the responder. The states of the corresponding agents are updated in each figure
according to their previous states and the state of the edge joining them. We only present
the effective interactions that take place; it is possible that between two subsequent figures a
finite number of ineffective interactions have taken place. Fairness guarantees that an effective
interaction that is always possible to occur will eventually occur (continued...).

We present now an SMPP that simulates a deterministic TM by using
asymptotically all its distributed memory as its tape cells. The correctness of the
simulation is proved in Theorem 9 which concludes that SSPACE(n2) ⊆ MPS.
The main idea is similar to that in the proof of Theorem 7 (based again on the
reinitialization technique). We assume that the edge states now consist of two
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(i) The dot mark is placed at the leader end-
point.

(j) A step of the simulation is executed. The
TM says again “left” but it is already at the
leftmost agent. A special R mark is created
to change the agent that has control of the
simulation.

(k) The agent that has control was detected.
The L mark will pass control to the left neigh-
bor.

(l) The star mark was passed to the left. The
left endpoint has now control of the simulation
and will use its own inactive outgoing edges.
The ‘kt’ mark indicates that it must continue
from its last outgoing edge (acts like an arti-
ficial dot mark over the non-leader endpoint.

(m) A step of the simulation is executed. The
TM says again “left”.

(n) The dot mark was passed to the left.

(o) A step of the simulation is executed. The
TM accepts and an accepting component is
created in both agents.

(p) The accepting component is in a finite
number of steps (due to fairness) propagated
to all agents and the population also accepts.

Figure 4: An example of simulating a O(n2)-space deterministic TM.
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components, one used to identify them as active/inactive and the other used by
the simulation (protocol A from Theorem 8).

This time, the reinitialization process attempts to reinitialize not only all
agents of a pseudo-path graph but also all of their outgoing edges. We begin by
describing the reinitialization process in detail. Whenever the merging process of
two pseudo-path graphs comes to an end, resulting in a new pseudo-path graph
L, the leader endpoint of L goes to a special blocked state, let it be lb, blocking L
from getting merged with another pseudo-path graph while the reinitialization
process is being executed. Keep in mind that L will only get ready for merging
just after the completion of the reinitialization process. By interacting with its
unique right neighbor in state k via an active edge it propagates the blocked state
towards that neighbor updating its state to kb and reinitializing the agent. The
block state propagates in the same way towards the tail non-leader reinitializing
and updating all intermediate non-leaders to kb from left to right. Once it
reaches this endpoint, a new special state k0 is generated which traverses L in
the inverse direction. Once k0 reaches the leader endpoint, it disappears and
the leader updates its state to l∗.

Now reinitialization of the inactive edges begins. When the leader in l∗

interacts with its unique right neighbor (via the active edge joining them) it
updates its neighbor’s state to a special bar state (e.g. k̄). When the agent
with the bar state interacts with its own right neighbor, which is unmarked, the
neighbor updates its state to a special dot state (e.g. k̇). Now the bars cannot
propagate and the only effective interaction is between the star leader and the
dot non-leader. This interaction reinitializes the state component of the edge
used for the simulation and makes the responder non-leader a bar non-leader.
Then the new bar non-leader turns its own right neighbor to a dot non-leader,
the second outgoing edge of the leader is reinitialized in this manner, and so
on, until the edge joining the star leader (left endpoint) with the dot tail non-
leader (right endpoint) is reinitialized. What happens then is that the bars are
erased one after the other from right to left and finally the star moves one step
to the right. So the first non-leader has now the star and it reinitializes its
own inactive outgoing edges from left to right in a similar manner. The process
repeats the same steps over and over, until the right endpoint of L reinitializes
all of its outgoing edges. When this happens, A will execute its simulation on
the correct reinitialized states. The above process is clearly executed correctly
when L is spanning (because all outgoing edges have their heads on the pseudo-
path graph). When it isn’t, the correctness of the process is captured by the
following lemma.

Lemma 3. Let L and L′ be two distinct pseudo-path subgraphs of G. If L runs
a reinitialization process then it always terminates in a finite number of steps.

Proof. If L′ is not running a reinitialization process then there can be no conflict
between L and L′. The reason is that the reinitialization process has some
effective interaction via an inactive edge only when the edge’s tail is in a star
state and its head is in a dot state. But these states can only appear in a
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pseudo-path graph while it is executing a reinitialization process. Thus, if this
is the case, L’s reinitialization process will get executed as if L′ didn’t exist.

If L′ is also running its own reinitialization process, then there are two
possible conflicts:

1. A star agent of L interacts with a dot agent of L′: In this case, the dot
agent of L′ simply becomes a bar non-leader, and the star agent of L
maintains its state. Thus, L’s reinitialization process is not affected.

2. A star agent of L′ interacts with a dot agent of L: Now the opposite
happens and L’s reinitialization process is clearly affected. But what really
happens is that the dot agent of L becomes a bar non-leader via a wrong
interaction. But this does not delay the progress of the reinitialization
process; it only makes it take one step forward without reinitializing the
correct edge.

In the first case the process is not affected at all and in the second the process
cannot be delayed (it simply takes some steps without reinitializing the corre-
sponding edges), thus, it always terminates in a finite number of steps (due to
fairness and by taking into account the discussion preceding this lemma) and L
will be in finite time ready to participate in another merging process.

Theorem 9. SSPACE(n2) ⊆ MPS.

Proof. Lemma 3 guarantees that the spanning process terminates with a span-
ning pseudo-path subgraph with active edges, while all remaining edges in G
are inactive. In this case, since a unique pseudo-path subgraph exists (the span-
ning one), there can be no conflict and it must be clear that all agents and all
edges will get correctly reinitialized. When the last reinitialization process ends,
protocol A starts its last execution, this time on the correct reinitialized sys-
tem. We finally ensure that the simulation does not ever alter the agent labels
used by the spanning and reinitialization processes. These labels are read-only
from the viewpoint of A. In the proof of Theorem 8 we made A put marks on
the labels in order to execute correctly. Now we simply think of these marks
as being placed in a separate subcomponent of A that is ignored by the other
processes. The theorem follows by taking into account Theorem 8 stating that
this construction is all that A needs to get executed correctly.

We kept the above discussion and proofs somewhat descriptive in order to
avoid their many low-level details. A formal constructive proof can be found in
the corresponding Technical Report [CMN+10b].

We next show how one can add some nondeterminism to the above simulation
and, as a consequence, further improve the inclusion of Theorem 9.

Theorem 10. SNSPACE(n2) ⊆ MPS.

Proof. We modify the deterministic TM of Theorem 9 by adding another com-
ponent in each agent’s state which stores a non-negative integer of value at most
equal to the greatest number of non-deterministic choices that the new NTM N
can face at any time. Note that this number is independent of the population
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size. In every reinitialization each agent obtains this value from its neighbors
according to its position (which depends on the distance from the leader end-
point) in the pseudo-path graph. Nondeterministic choices are mapped to these
values and whenever such a choice has to be made, the agent in control of the
simulation uses the value of the agent with whom it has the next arbitrary
interaction. The inherent nondeterminism of the interaction pattern ensures
that choices are made nondeterministically. If the accept state is reached all
agents accept, whereas if the reject state is reached the TM’s computation is
reinitialized. Fairness guarantees that all paths in the tree representing N ’s non-
deterministic computation will eventually (although maybe after a long time)
be followed.

We now deal with the inverse direction of Theorem 1. That is, we are going
to show that MPS ⊆ SNSPACE(n2). This, as alluded to in the proof idea of
Theorem 1, is a not so difficult task. First recall that m denotes the number of
edges of the interaction graph.

Definition 3. Let DMP (UMP) be the class of predicates stably computable
by the MPP model in any family G of directed (undirected) and connected inter-
action graphs.

Theorem 11. All predicates that belong to the classes DMP and UMP are
also in NSPACE(m).

Proof. Let A be a mediated protocol that stably computes such a predicate p
in a family of graphs G, and let G ∈ G be any graph of this family. Since G
is always connected, we have that m ≥ n − 1. A network configuration can be
represented explicitly, by storing a state per node and a state per edge of G.
This takes O(m) space (in fact it is m+n, but since m ≥ n−1, m dominates n).
The language corresponding to p is defined as L = {x | x ∈ X∗ and p(x) = 1}.

We present a nondeterministic Turing machine MA that decides L in space
O(m). MA works as follows: To accept input x, MA must verify two conditions:
(i) that there exists a configuration C reachable from I(x) (the initial configu-
ration corresponding to x), in which all agents output 1, and (ii) that there is
no configuration C ′ reachable from C, in which at least one agent outputs 0.
The first condition is verified by guessing and checking a sequence of network
configurations, starting from I(x) and reaching such a C. MA guesses a Ci+1

each time, verifies that Ci → Ci+1 (begins from C0 = I(x), i.e. i = 0) and,
if so, replaces Ci by Ci+1, otherwise drops this Ci+1. The second condition
is the complement of a similar reachability problem. But NSPACE is closed
under complement for all space functions ≥ log n (see Immerman-Szelepcsényi
theorem [Imm88, Sze87] or [Pap94] pages 151 − 153). Thus, MA decides L in
O(m) space.

Theorem 11 has the following immediate consequence.

Corollary 2. MPS ⊆ SNSPACE(n2).
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Proof. Any p ∈ MPS is symmetric (see Lemma 1) and according to Theorem
11 belongs to NSPACE(m). Finally, notice that MPS deals with complete
interaction graphs, in which m = O(n2).

We have now arrived at the exact characterization of MPS stated in Theo-
rem 1, that is, MPS = SNSPACE(n2). One direction follows from Theorem
10 and the inverse direction from Corollary 2.

6. Conclusions - Future Research Directions

We have proposed the mediated population protocol model, an enhancement
of the population protocol model in which also the edges of the interaction graph
are capable of storing fixed-size information. Our model not only preserves
the most significant properties of population protocols, namely, uniformity and
anonymity, but also dramatically extends the class of computable predicates,
from semilinear to all symmetric predicates in NSPACE(n2). In other words,
we have been able to show that the MPP model in the fully symmetric case is
equivalent to a NTM of O(n2) space that computes symmetric predicates. To
show this, we first demonstrated how the MPP model can organize the agents
into a spanning pseudo-path subgraph. We then showed that, by reinitializing
computation, the agents are able to simulate a NTM on the edges that are not
part of the pseudo-path graph. Each agent can order its outgoing edges by
exploiting the fact that their heads are agents of the pseudo-path graph, who,
in turn, are ordred according to their distance from the “left” endpoint of the
pseudo-path graph.

Many interesting problems remain open in the rapidly growing body of the
population protocols literature. First of all, there is an interesting open ques-
tion left open by this article. Can the exact characterization for the complete
case be generalized to connected interaction graphs? In particular, is it pos-
sible to show that the corresponding class of computable predicates is equal
to SNSPACE(n + m) (recall that m denotes the number of edges)? Note
that in this case the pseudo-path construction cannot be applied, since the in-
teraction graph may contain any tree structure. Possibly the solution lies in
the construction of some sort of spanning tree, but again one has to be very
careful, because node degrees that depend on the population size may prevent
the protocol from keeping an ordering on its incident edges. Moreover, are the
MPP and PM models fault-tolerant? What preconditions are needed in order to
achieve satisfactory fault-tolerance? Additionally, as pointed out by [AAC+05]
and [CMS10b], population-protocol-like models have the ability to stably decide
properties of the interaction graph, which is of outstanding importance for al-
most any distributed system. What are the exact characterizations of the classes
of stably decidable graph languages by the MPP and PM models? What are the
most appropriate real-life scenarios for applying the MPP model? What is the
computational power of the PM model for space bounds f(n) between log log n
and log n? As alluded to in Section 2, the only things that we do know about this
particular space bound is that above log log n and below log n the semilinear and
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the nf(n) behaviors, respectively, of the model cease. [CDF+09] revealed the
need for population protocols to have adaptation capabilities in order to keep
working correctly and/or fast when natural modifications of the mobility pattern
occur. However, we do not know yet how to achieve adaptivity. Moreover, the
time complexity of protocols based on some probabilistic operational assumption
concerning the scheduler has not been studied yet for none of the MPP, PM, and
Community Protocol models. On the other hand, some works have performed
such a study for population protocols [AAD+04, AAD+06, AAE08a, AAE08b]
and it is expected that some of the existing methods may also be applicable to
these models. Are there more efficient, possibly logic-based, verification solu-
tions for population protocols than those presented in [CMS10a]? Verification
methods for MPPs, Community Protocols, and PM protocols are still totally
unknown, although some of the ideas of [CMS10a] may also be applicable to
these models. Finally, one can study a variant of the classical model in which
the agents interact in groups of k > 2 agents and not in pairs (like a broadcast
medium). Of course, assuming a constant state space, the computational power
of the model is semilinear (see, e.g., Theorem 9, [AAER07]). However, the time
efficiency of this variant is open.
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