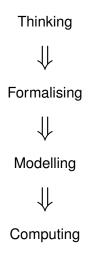


Knights, Knaves, and Logical Reasoning Mechanising the Laws of Thought


Fabio Papacchini¹

The University of Manchester

15 July 2015

¹Special thanks to Francis Southern

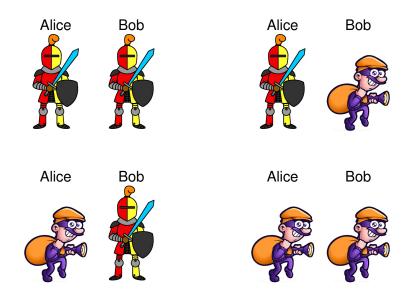
Introduction

Thinking

A Puzzle

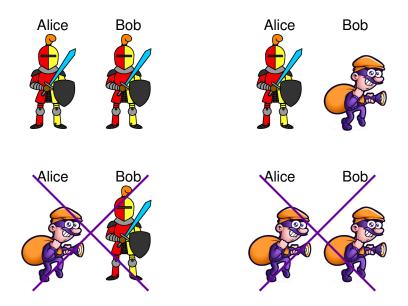
You are on a strange island where people are divided into

- Knights always saying the truth
- Knaves always saying lies

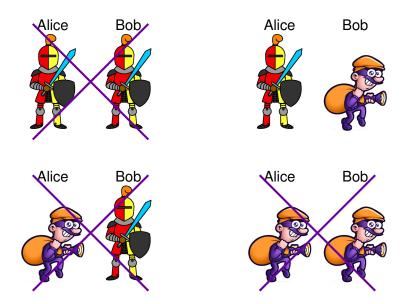

You meet two natives of the island Alice and Bob, and ask them

"Are you knights or knaves?"

Alice answers "At least one of us is a knave"


What are Alice and Bob?

Alice: "At least one of us is a knave"



Knights, Knaves, and Logical Reasoning

Alice: "At least one of us is a knave"

Alice: "At least one of us is a knave"

Formalising

Formalising Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates

C: Socrates is mortal

Formalising Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates

C: Socrates is mortal

Woody Allen - Love and Death

Aristotle

Formalising Correct Reasoning

A: Socrates is a man B: All men are mortal C: All men are Socrates Woody Allen - Love and Death Aristotle

Linguistic, philosophical, or mathematical approaches to formalisation

Today: Propositional Logic

Propositions

An expression which is either true or false.

Propositions

An expression which is either true or false.

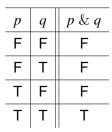
Proposition test: Is it true that...?

- 2 + 2 = 5
- Manchester
- Grass is green
- We're in Manchester
- What's your name?
- It's raining

Not \neg , And \neg &

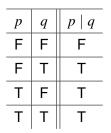
Not

It's *not* raining Grass is *not* green.


Not $-\neg$, And -&

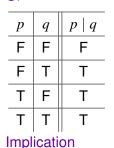
Not

It's *not* raining Grass is *not* green.

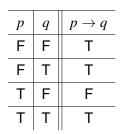

And

Grass is green and it's raining.

We're in Manchester and we're in France.


Or - |, Implication (If, then) - \rightarrow Or

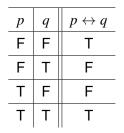
Take an aspirin or lie down.


You can have milk or sugar in your tea.

Or – |, Implication (If, then) – \rightarrow Or

Take an aspirin or lie down.

You can have milk or sugar in your tea.



If you get 90% on this assignment, *then* you'll pass the course.

If you're late, then you'll give me a fiver.

Biimplication (If and only if) – \leftrightarrow

Biimplication

I'll buy you a new wallet *if (and only if)* you need one.

He studies if (and only if) he can.

р	q	r	(p & q)	$(p \& q) \to r$
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	Т	F		
Т	Т	Т		

р	q	r	(p & q)	$(p \& q) \to r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F		
Т	Т	Т		

р	q	r	(p & q)	$(p \& q) \to r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F	Т	
Т	Т	Т	Т	

р	q	r	(p & q)	$(p \& q) \to r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	
Т	Т	Т	Т	

p	q	r	(p & q)	$(p \& q) \to r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	F
Т	Т	Т	Т	

q	r	(p & q)	$(p \& q) \to r$		
F	F	F	Т		
F	Т	F	Т		
Т	F	F	Т		
Т	Т	F	Т		
F	F	F	Т		
F	Т	F	Т		
Т	F	Т	F		
Т	Т	Т	Т		
	F F T F F F T	F F F T T F T T F F F T T F F T F F T F	F F F F T F T F F T T F T T F F F F F F F F F F F F F F T F T F T		

Modelling

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave

"Alice says X" is the same as $k_A \leftrightarrow X$

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\neg k_A \mid \neg k_B$

 $\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k _A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k _A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k _A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$

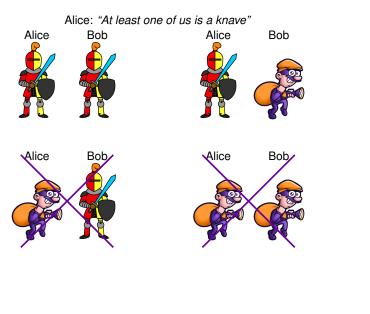
Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k _A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$


Alice says

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k _A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	F

From Solving to Modelling

From Solving to Modelling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

From Solving to Modelling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

It can be (really) hard, but you only have to do it once!

Modelling a Sudoku

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

 $p_{1,1,1}, p_{1,1,2}, \ldots, p_{9,9,8}, p_{9,9,9}$

729 propositions!

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

 $p_{1,1,1}, p_{1,1,2}, \ldots, p_{9,9,8}, p_{9,9,9}$

729 propositions!

- at least one number per cell $(p_{1,1,4} \mid \ldots \mid p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

 $p_{1,1,1}, p_{1,1,2}, \ldots, p_{9,9,8}, p_{9,9,9}$

729 propositions!

- at least one number per cell $(p_{1,1,4} \mid \ldots \mid p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

 $p_{1,1,1}, p_{1,1,2}, \ldots, p_{9,9,8}, p_{9,9,9}$

729 propositions!

- at least one number per cell $(p_{1,1,4} \mid \ldots \mid p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row/column

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

- number 7 is in row 1 and column 4
- number 2 is in row 6 and column 7

 $p_{1,1,1}, p_{1,1,2}, \ldots, p_{9,9,8}, p_{9,9,9}$

729 propositions!

- at least one number per cell $(p_{1,1,4} \mid \ldots \mid p_{9,1,4})$
- at most one number per cell $(p_{7,1,4} \rightarrow \neg p_{1,1,4}, p_{7,1,4} \rightarrow \neg p_{2,1,4})$
- no number can be repeated in a row/column/region

Computing

Automating the Process

Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Automating the Process

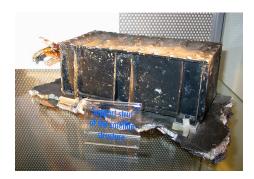
Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Let a computer do it for you!

- ideal for mechanical tasks
- only needs an input formula
- more reliable than us
- much faster than us
- the output is easily customisable

Automated Reasoning

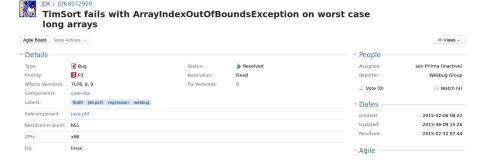

Much more than solving puzzles!

- software and hardware verification Intel and Microsoft
- information management
 - biomedical ontologies, Semantic Web, databases
- combinatorial reasoning
 constraint satisfaction, planning, scheduling
- Internet security
- theorem proving in mathematics

Where Could Have Been Used

Ariane 5 rocket failure due to a software bug, cost \$370 million.

Where Has Been Used


To find and fix a bug in a widely used sorting algorithm!

Agile Board More A	Actions 👻				⑦ Views +
• Details ——				- People	
Туре:	🖻 Bug	Status:	🖗 Resolved	Assignee:	Lev Priima (Inactive)
Priority:	3 P3	Resolution:	Fixed	Reporter:	Webbug Group
Affects Version/s:	7u76, 8, 9	Fix Version/s:	9	i Vote (0)	Watch (4)
Component/s:	core-libs			10 Vote (0)	E Watch (4)
Labels:	8u60 jdk-port regression webbug			- Dates	
Subcomponent:	java.util			Created:	2015-02-06 08:22
Resolved In Build:	b51			Updated:	2015-06-09 15:26
CPU:	x86			Resolved:	2015-02-12 07:44
OS:	linux			- Agile	

Where Has Been Used

To find and fix a bug in a widely used sorting algorithm!

Even Amazon and Facebook use automated reasoning techniques!

Automated Reasoning Competitions

- The CADE ATP System Competition (CASC)
- OWL Reasoning Competition (ORE)
- SAT-Race

Automated Reasoning Competitions

- The CADE ATP System Competition (CASC)
- OWL Reasoning Competition (ORE)
- SAT-Race

You can bet on the winner!

F. Papacchini

Knights, Knaves, and Logical Reasoning

Do You Want to Know More?

Look at the references on the handout!