Knights, Knaves, and Logical Reasoning Mechanising the Laws of Thought

Fabio Papacchini¹

8 March 2016

¹Special thanks to Francis Southern

Introduction

Thinking

Formalising

Modelling

Computing

Thinking

A Puzzle

You are on a strange island where people are divided into

- Knights always saying the truth
- Knaves always saying lies

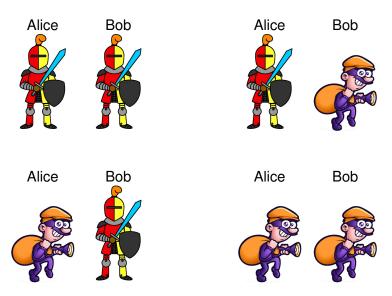
You meet two natives of the island Alice and Bob, and ask them

"Are you knights or knaves?"

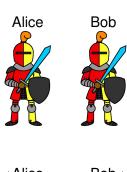
Alice answers "At least one of us is a knave"

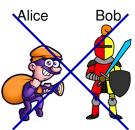
What are Alice and Bob?

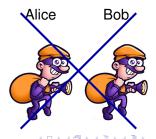
Alice: "At least one of us is a knave"



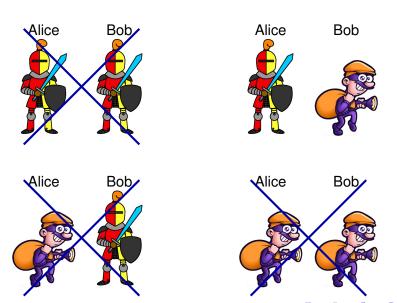
Alice: "At least one of us is a knave"







Alice: "At least one of us is a knave"



Formalising

Formalising Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates

C: Socrates is mortal

Formalising Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates C: Socrates is mortal

Woody Allen - Life and Death

Aristotle

Formalising Correct Reasoning

A: Socrates is a man

B: All men are mortal

C: All men are Socrates C: Socrates is mortal

Woody Allen - Life and Death Aristotle

Linguistic, philosophical, or mathematical approaches to formalisation

Today: Propositional Logic

Propositions

An expression which is either true or false.

Propositions

An expression which is either true or false.

Proposition test: Is it true that...?

- 2+2=5
- Manchester
- Grass is green
- We're in Manchester
- What's your name?
- It's raining

Not $-\neg$, And -&

<u>Not</u>	
р	$\neg p$
F	Т
Т	F

It's not raining

Grass is *not* green.

9/23

Not $-\neg$, And -&

$\frac{\text{Not}}{n} - r$

۲	η.
F	Т
Т	F

It's *not* raining

Grass is *not* green.

And

p	q	p & q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Grass is green and it's raining.

We're in Manchester and we're in France.

Or $- \mid$, Implication (If, then) $- \rightarrow$

(<u>Or</u>		
	p	q	$p \mid q$
	F	F	F
	F	Т	Т
	Т	F	Т
	Т	Т	Т

Take an aspirin or lie down.

You can have milk or sugar in your tea.

Or $- \mid$, Implication (If, then) $- \rightarrow$

^	٦	×
u	J	ч
-	_	÷

p	q	$p \mid q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Take an aspirin or lie down.

You can have milk or sugar in your tea.

Implication

p	q	$p \rightarrow q$
F	H	Т
F	Т	Т
Т	F	F
Т	Т	Т

If you get 90% on this assignment, then you'll pass the course.

If you're late, then you'll give me a fiver.

Biimplication (If and only if) $- \leftrightarrow$

Biimplication

р	q	$p \leftrightarrow q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

I'll buy you a new wallet if (and only if) you need one.

He studies if (and only if) he can.

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	Т	F		
Т	Т	Т		

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F		
Т	Т	Т		

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	
F	F	Т	F	
F	Т	F	F	
F	Т	Т	F	
Т	F	F	F	
Т	F	Т	F	
Т	Т	F	Т	
Т	Т	Т	Т	

р	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	
Т	Т	Т	Т	

р	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	F
Т	Т	Т	Т	

p	q	r	(p & q)	$(p \& q) \rightarrow r$
F	F	F	F	Т
F	F	Т	F	Т
F	Т	F	F	Т
F	Т	Т	F	Т
Т	F	F	F	Т
Т	F	Т	F	Т
Т	Т	F	Т	F
Т	Т	Т	Т	Т

Modelling

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

 k_A = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

$$k_A$$
 = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k_A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	4 D > 4 D > 4 E > 4 E >

$$k_A$$
 = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k_A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	
Т	F	F	Т	Т	
Т	Т	F	F	F	4 D > 4 D > 4 E > 4 E >

$$k_A$$
 = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k_A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	
Т	Т	F	F	F	4D>4@>4E>4E>

$$k_A$$
 = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k_A	k _B	$\neg k_A$	$\neg k_B$	$ \neg k_A \neg k_B k_A \leftrightarrow (\neg k_A \neg k_B)$	
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	4D>4B>4E>4E>

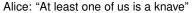
$$k_A$$
 = Alice is a knight $\neg k_A$ = Alice is a knave "Alice says X" is the same as $k_A \leftrightarrow X$.

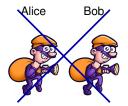
- "at least one of us is a knave"
- "I'm a knave or Bob is a knave"
- $\bullet \neg k_A \mid \neg k_B$

$$\Rightarrow k_A \leftrightarrow (\neg k_A \mid \neg k_B)$$

k_A	k _B	$\neg k_A$	$\neg k_B$	$\neg k_A \mid \neg k_B$	$k_A \leftrightarrow (\neg k_A \mid \neg k_B)$
F	F	Т	Т	Т	F
F	Т	Т	F	Т	F
Т	F	F	Т	Т	Т
Т	Т	F	F	F	F

From Solving to Modelling





From Solving to Modelling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

From Solving to Modelling

Alice: "At least one of us is a knave"

 k_A = Alice is a knight

The trick: "Alice says X" is the same as $k_A \leftrightarrow X$

"At least one of us is a knave" = $\neg k_A \mid \neg k_B$

Alice says "At least one of us is a knave" = $k_A \leftrightarrow (\neg k_A \mid \neg k_B)$

Can be (really) hard, but you only have to do it once!

Modelling a Sudoku

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need? Number *n* is in row *i* and column *j*

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number n is in row i and column j

number 7 is in row 1 and column 4

$$p_{(1,1,1)}, p_{(1,1,2)}, \dots, p_{(9,9,9)}$$

- ~10²¹⁹ rows in a truth table
 ~10⁸¹ atoms in the visible universe

		3		2				6			
1		7	4			5	2	3			
4		1	6				8				
	2	9		7		6	3				
	7				4	2		1			
7	5	2			6	3		9			
3				4		1					
	1	4			3						
	NATI - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -										

What propositions do we need?

Number *n* is in row *i* and column *j*

number 7 is in row 1 and column 4

$$p_{(1,1,1)}, p_{(1,1,2)}, \ldots, p_{(9,9,9)}$$

- $\bullet \sim 10^{219}$ rows in a truth table
- $\bullet~\sim 10^{81}$ atoms in the visible universe

- at least one number per cell $(p_{(1,1,1)} | p_{(2,1,1)} | \dots | p_{(9,1,1)})$
- at most one number per cell $(p_{(1,1,1)} \rightarrow \neg p_{(2,1,1)}, \dots)$

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number *n* is in row *i* and column *j*

number 7 is in row 1 and column 4

$$p_{(1,1,1)}, p_{(1,1,2)}, \ldots, p_{(9,9,9)}$$

- $\bullet \sim 10^{219}$ rows in a truth table
- $\bullet~\sim 10^{81}$ atoms in the visible universe

- at least one number per cell $(p_{(1,1,1)} | p_{(2,1,1)} | \dots | p_{(9,1,1)})$
- at most one number per cell $(p_{(1,1,1)} \rightarrow \neg p_{(2,1,1)}, \dots)$
- no number can be repeated in a row

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number *n* is in row *i* and column *j*

number 7 is in row 1 and column 4

729 propositions!

$$p_{(1,1,1)}, p_{(1,1,2)}, \ldots, p_{(9,9,9)}$$

- $\bullet \sim 10^{219}$ rows in a truth table
- $\bullet~\sim 10^{81}$ atoms in the visible universe

- at least one number per cell $(p_{(1,1,1)} | p_{(2,1,1)} | \dots | p_{(9,1,1)})$
- at most one number per cell $(p_{(1,1,1)} \rightarrow \neg p_{(2,1,1)}, \dots)$
- no number can be repeated in a row/column

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

What propositions do we need?

Number *n* is in row *i* and column *j*

number 7 is in row 1 and column 4

729 propositions!

$$p_{(1,1,1)}, p_{(1,1,2)}, \ldots, p_{(9,9,9)}$$

- $\bullet \sim 10^{219}$ rows in a truth table
- $\bullet~\sim 10^{81}$ atoms in the visible universe

- at least one number per cell $(p_{(1,1,1)} | p_{(2,1,1)} | \dots | p_{(9,1,1)})$
- at most one number per cell $(p_{(1,1,1)} \rightarrow \neg p_{(2,1,1)}, \dots)$
- no number can be repeated in a row/column/region

Computing

Automating the Process

Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Automating the Process

Truth table

- mechanical
- time consuming (2ⁿ rows!)
- tedious

Let a computer do it for you!

- ideal for mechanical tasks
- only needs an input formula
- much faster than us
- the output is easily customisable

Automated Reasoning

Much more than solving puzzles!

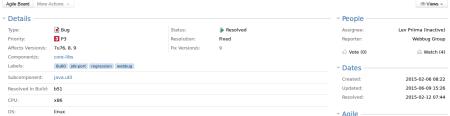
- software and hardware verification Intel and Microsoft
- information management biomedical ontologies, Semantic Web, databases
- combinatorial reasoning constraint satisfaction, planning, scheduling
- Internet security
- theorem proving in mathematics

Where Could Have Been Used

Ariane 5 rocket failure due to a software bug, cost \$370 million.

Where Has Been Used

To find and fix a bug in a widely used sorting algorithm!



Where Has Been Used

To find and fix a bug in a widely used sorting algorithm!

Even Amazon and Facebook use automated reasoning techniques!

IDK / IDK-8072909

Automated Reasoning Competitions

- The CADE ATP System Competition (CASC)
- OWL Reasoning Competition (ORE)
- SAT-Race

Do You Want to Know More?

Feel free to ask questions or look at the references on the handout!