Knights, Knaves, and Logical Reasoning

Fabio Papacchini*

1 Puzzles

In these exercises, you have met two natives (called, imaginatively, A and B) and you wish to establish as much information as you can about their status as knights or knaves. Remember, everything a knight says is true and everything a knave says is false.

- 1. A says "We are both knaves".
 - A is a \Box Knight \Box Knave
 - B is a \Box Knight \Box Knave
- 2. A says "If I am a knight, then so is B".
 - A is a \Box Knight \Box Knave
 - B is a \Box Knight \Box Knave

2 Use the Trick!

Fill the truth table and solve the puzzles!

1. A says "We are both knaves"

Using the trick it becomes $k_A \leftrightarrow$

k_A	k_B	 	 $k_A \leftrightarrow$
F	F		
F	Т		
Т	F		
Т	Т		

*Special thanks to Francis Southern, who contributed significantly to this material!

- Using the trick it becomes $k_A \leftrightarrow$
 $\overline{k_A}$ k_B
 \overline{F} \overline{F}
 \overline{F} \overline{F}
 \overline{F} \overline{F}
 \overline{T} \overline{F}
 \overline{T} \overline{F}
 \overline{T} \overline{T}
- 2. A says "If I am a knight, then so is B"

3 Sudoku

			7			4	1	
		3		2				6
1		7	4			5	2	3
4		1	6				8	
	2	9		7		6	3	
	7				4	2		1
7	5	2			6	3		9
3				4		1		
	1	4			3			

Fabio's time: 6:54 Computer time: 0.006998 seconds

Your time: _____

4 References

- I recommend heavily everything by Raymond Smullyan. In preparing this lesson we referred to his puzzle books *What Is the Name of This Book? The Riddle of Dracula and Other Logical Puzzles, Forever Undecided* and *The Lady or the Tiger?*.
- www.cut-the-knot.org and www.khanacademy.org/ have sections on knight and knave puzzles, as well as a huge number of other mathematical topics.
- Or you can simply look up *propositional logic* on Google or Wikipedia.
- For more advanced reading, Smullyan has a more academic book called *First-order Logic*, which is quite a step up in difficulty from what we've done today, but excellent nevertheless. A slightly more gentle, but still very rigorous book, is *A Mathematical Introduction to Logic* by Herbert Enderton. Of course, there are many other possibilities out there.

- Another more advanced source is the Stanford Encyclopaedia of Philosophy (not just of interest to philosophers!). An interesting starting place might be http://plato.stanford.edu/entries/reasoning-automated/.
- A classic informal introduction to formal systems *Gödel, Escher, Bach: An Eternal Golden Braid* by Douglas Hofstadter.
- Competitions

CASC http://www.cs.miami.edu/~tptp/CASC/ ORE (this year web-page) http://www.w3.org/community/owled/ore-2015-workshop/competition/ SAT-race http://www.satcompetition.org/

- MiniSat http://minisat.se/MiniSat.html
- Truth Table Generator

http://programming.dojo.net.nz/study/truth-table-generator/index

• Well-known software bugs that could have been avoided using automated reasoning techniques http://en.wikipedia.org/wiki/List_of_software_bugs.

```
(Ariane 5 http://en.wikipedia.org/wiki/Cluster_(spacecraft))
```

• Proving that Androids, Javas and Pythons sorting algorithm is broken (and showing how to fix it)

http://envisage-project.eu/proving-android-java-and-python-sortingalgorithm-is-broken-and-how-to-fix-it/

- Amazon uses formal methods! http://research.microsoft.com/en-us/um/people/ lamport/tla/formal-methods-amazon.pdf
- Facebook uses formal methods! https://research.facebook.com/publications/ 422671501231772/moving-fast-with-software-verification/