
1

Dichotomies in Ontology-Mediated Querying with the
Guarded Fragment

ANDRÉ HERNICH, University of Liverpool, UK

CARSTEN LUTZ, University of Bremen, Germany

FABIO PAPACCHINI, University of Liverpool, UK

FRANK WOLTER, University of Liverpool, UK

We study the complexity of ontology-mediated querying when ontologies are formulated in the
guarded fragment of first-order logic (GF). Our general aim is to classify the data complexity on
the level of ontologies where query evaluation w.r.t. an ontology O is considered to be in PTime
if all (unions of conjunctive) queries can be evaluated in PTime w.r.t. O, and coNP-hard if at
least one query is coNP-hard w.r.t. O. We identify several large fragments of GF that enjoy a
dichotomy between Datalog rewritability of query evaluation (which is therefore in PTime) and
coNP-completeness, some of them additionally admitting a form of counting. The relevance of our
fragments is underlined by the observation that almost all ontologies in the BioPortal repository fall
into them or can easily be rewritten to do so. We further establish a variation of Ladner’s theorem
on the existence of NP-intermediate problems and use this result to show that for other fragments,
there is provably no dichotomy between PTime and coNP. Again for other fragments such as the
two-variable fragment of GF, we establish a dichotomy between PTime and coNP by linking them
to constraint satisfaction problems (CSPs) and making use of the recently established dichotomy
between PTime and NP for CSPs. We also study the decidability of whether a given ontology
enjoys PTime query evaluation, presenting both positive and negative results.

Additional Key Words and Phrases: Ontology-Based Data Access; Query Evaluation; Dichotomies

ACM Reference Format:
André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter. 2018. Dichotomies in Ontology-
Mediated Querying with the Guarded Fragment. J. ACM 1, 1, Article 1 (May 2018), 71 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Ontology-Mediated Querying is a paradigm of data access in which incomplete data is
enriched with an ontology to provide domain knowledge and to enable more complete
answers to queries, see [14, 53, 74] for some recent surveys. Ontologies are very often
formulated in a decidable fragment of first-order logic such as a description logic (DL) [6, 7]
or a decidable class of tuple-generating dependencies (TGDs), also known as Datalog± and
as existential rules [20, 71]. In many of these ontology languages, querying is coNP-complete

An extended abstract of this paper was published in the Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2017 [47].
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/5-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

in data complexity or even harder [17, 19, 21, 56, 78]. This situation has spawned a lot of
research on the complexity of ontology-mediated querying [21, 72] and, closely related, on the
rewritability of ontology-mediated queries into more conventional database query languages
since these have lower data complexity and often enable efficient query execution in practice
[23, 41–43, 50]. A particular emphasis has been put on the design of ontology languages that
enjoy PTime complexity and admit the rewriting of ontology-mediated queries into Datalog,
and on delineating these from the coNP-hard cases. Consequently, there are now many
DLs [4, 58] and existential rule formalisms [20, 71] that trade expressive power for tractable
querying, and that are fragments of first-order Horn logic. An overarching framework for
many ontology languages, tractable or not, is provided by the guarded fragment (GF) of
first-order logic and extensions thereof, which is thus particularly suitable for general studies
of the complexity and rewritability of ontology-mediated queries [8, 9].

In practical applications, ontology engineers often need to use language features that are
only available in computationally expensive ontology languages, but they typically do so in
a way such that one may hope for hardness to be avoided by the concrete ontologies that
are being designed. For example, ontologies are an important tool in the medical domain
and an ontology engineer might include the following statements in the ontology:

∀x (Hand(x)→ ∃=5y hasFinger(x, y)) (1)

∀x (Hand(x)→ ∃y (hasFinger(x, y) ∧ Thumb(y))) (2)

The language features used here can in principle express coNP-hard properties. But are
the concrete statements (1) and (2) computationally costly? Initiated in [65, 67], questions
like this one have led to studies of complexity and rewritability that are more fine-grained
than on the level of ontology languages with the aim now being to classify the complexity
of individual ontologies. The approach taken in [67] universally quantifies over the actual
query: query evaluation w.r.t. an ontology O is in PTime if every query can be evaluated in
PTime w.r.t. O and it is coNP-hard if there is at least one query that is coNP-hard to
evaluate w.r.t. O. In this way, one can identify tractable ontologies within ontology languages
that are, in general, computationally hard. An even more fine-grained approach is taken in
[15], where quantification over the query is avoided and one aims to classify the complexity
of each ontology-mediated query (O, q) which consists of an ontology O and a concrete
query q. Both approaches are reasonable, the first one being preferable when the queries to
be answered are not fixed at the design time of the ontology; this is actually often the case
because ontologies are typically viewed as general purpose artifacts to be used in more than
a single application. In this paper, we follow this approach.

The main aim of this paper is to identify fragments of GF (and of extensions of GF with
different forms of counting) that result in a dichotomy between PTime and coNP when used
as an ontology language and that cover as many real-world ontologies as possible, considering
conjunctive queries (CQs) and unions thereof (UCQs) as the actual query language. While
this prominently includes several well-known and widely used description logics, we aim to
push the envelope and mainly cover more expressive fragments of GF. As a concrete and
simple example for how subtle the frontier between tractability and intractability is, consider
the two ontology statements (1) and (2) above. An ontology that contains only statement (1)
enjoys PTime query evaluation and the same is true for an ontology that contains only
statement (2). However, an ontology that contains both (1) and (2) is coNP-hard. Such
subtle differences can obviously not be captured when data complexity is studied on the
level of ontology languages, at least when basic compositionality conditions are desired.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:3

No Dichotomy

CSP-Hard

Dichotomy open

CSP-Hard

Dichotomy

Strong

Dichotomy

uGF−
2 (2, f)

ALCIFℓ depth 2

ALCF depth 3 [67]

uGF2(1,=) uGF2(1, f) ALCFℓ depth 2

uGF2(2) – uGF2

ALC depth 3 [67]

uGF−(1,=) uGF(1) uGF−
2 (2)

uGC−
2 (1,=)

ALCHIQ depth 1
ALCHIF depth 2

Fig. 1. Summary of the results—Number in brackets indicates depth, f presence of partial functions, ·2
restriction to two variables, ·− restricts outermost guards to be equality, F globally function roles, Fℓ

concepts (≤ 1R).

We additionally provide insight into the following questions. Which fragments of GF (with
and without counting) do not admit a dichotomy between PTime and coNP? What is the
relation between PTime data complexity and rewritability into Datalog, with inequality in
rule bodies, in case we start from GF with equality or counting? And is it decidable whether
a given ontology enjoys PTime data complexity?
Throughout the paper, we concentrate on the fragment of GF that is invariant under

disjoint union, which we call uGF, and on fragments thereof and their extension with forms
of counting. This fragment admits a very natural syntactic characterization: a uGF ontology
is a set of sentences of the form ∀x⃗(R(x⃗)→ ϕ(x⃗)) where R(x⃗) is a guard (possibly equality)
and ϕ(x⃗) is a GF formula that does not contain sentences as subformulas and in which
equality is not used as a guard. The concentration on uGF allows us to avoid a number
of technical complications, a few of which we hint at below. The choice of this language
is justified by the fact that the vast majority of ontology languages used in practice fall
within uGF and that, from a practical perspective, the expressive power of GF that does
not fall within uGF seems to be of at most marginal importance for ontology engineering.
We also remark that the question whether ontology-mediated querying with GF ontologies
admits a dichotomy between PTime and coNP corresponds to the open question in the
area of constraint satisfaction problems (CSPs) whether the logic MMSNP2, also known as
GMSNP, has a dichotomy between PTime and coNP. This has been shown in [15] for the
setup where queries are not quantified and we conjecture that it is also true in the case of
universally quantified queries studied in this paper.

Our dichotomy results are obtained on two different routes: via direct, fully self-contained
proofs based on a carefully designed technical machinery that centers on the notions of
materializability and unraveling tolerance discussed in more detail below, and via reduction
to CSP taking advantage of their very recently established dichotomy between PTime and
coNP, formerly known as the Feder-Vardi conjecture [18, 35, 83]. Apart from admitting
much more transparent proofs and avoiding the highly intricate algebraic considerations
required to prove the dichotomy in the CSP case, the first approach also establishes stronger
guarantees. Whenever it is applicable, it additionally allows us to prove that PTime query

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:4 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

evaluation coincides with rewritability into Datalog, admitting inequality in the rule bodies
whenever we start from a fragment with equality or counting. To reflect this, we refer to
dichotomies established by the first approach as strong dichotomies. However, this approach
is not always applicable: as we also show, in several of our cases a dichotomy between PTime
and coNP implies the CSP dichotomy, and we refer to this as CSP-hardness. In the case of
CSP-hardness (and also when we establish that there is no dichotomy between PTime and
coNP), PTime query evaluation does provably not coincide with rewritability into Datalog.
Informally and from a CSP perspective, strong Dichotomy means that the studied case
of ontology-mediated querying only encompasses ‘tractability via Datalog’ while it omits
‘tractability via group theory’, see [35, 57] for more details on this distinction.

The main results established in this paper are summarized in Figure 1. We first explain
the fragments shown in the figure and then survey the obtained results. A main parameter
that we vary is the depth of uGF sentences ∀x⃗(R(x⃗) → ϕ(x⃗)), defined as the quantifier
depth of ϕ(x⃗) and thus not counting the outermost universal quantifier. In real world
ontologies, the depth is typically very small, mostly only one and very rarely three or
larger. In Figure 1, the depth is the first parameter displayed in brackets. As usual, the
subscript ·2 indicates the restriction to two variables while a superscript ·− means that
the guard R(x⃗) in the outermost universal quantifier can only be equality, = means that
equality is allowed in non-guard positions, f indicates the ability to declare binary relation
symbols to be interpreted as partial functions, and GC2 denotes the two variable guarded
fragment extended with counting quantifiers, as studied for example in [51, 75]. While
guarded fragments are displayed in black, description logics (DLs) are shown in gray and
smaller font size. We use standard DL names except that ‘F ’ denotes globally functional
roles while ‘Fℓ’ refers to counting concepts of the form (≤ 1R). We do not explain DL names
at this point and instead refer the reader to Section 2.2 and the textbook [7].

The bottommost row of Figure 1 displays fragments for which there is a strong dichotomy
between PTime and coNP, the second row shows cases that admit a mutual reduction
with the CSP dichotomy, the third row has fragments that are CSP-hard, but for which a
dichotomy (or even a reduction to CSP) remains open, and the topmost part is for fragments
that provably have no dichotomy (unless PTime = NP). Informally, the bottommost row
thus states upper bounds while the topmost two rows state lower bounds; the second row
from the bottom states both upper and lower bounds and this is why we use a range of logics
there. The vertical lines indicate that the linked results are closely related, often indicating a
fundamental difficulty in further generalizing an upper bound. For example, uGF(1) enjoys
strong dichotomy while uGF2(2) and uGF2(1,=) are CSP-hard and thus the former result
is optimal in the sense that it can neither be generalized to depth two nor to the case where
equality is not restricted to guards. All displayed results hold both when CQs and when
UCQs are used as the actual query; this is one aspect in which the use of uGF rather than
GF as an ontology language pays off as there are GF ontologies for which CQ evaluation is
in PTime while UCQ-evaluation is coNP-hard.

We also prove a number of results that are not reflected in Figure 1. In particular we show
that for ALCHIQ ontologies of depth 1, it is decidable and ExpTime-complete whether
a given ontology O admits PTime query evaluation, which is equivalent to rewritability
into Datalog̸=, and whether query evaluation w.r.t. O is coNP-hard. For uGC−

2 (1,=), we
show a NExpTime upper bound. Moreover, for ontologies formulated in uGF−

2 (2, f) and in
ALCIFℓ of depth 2, we prove these problems to be undecidable.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:5

We briefly highlight some of the techniques used to establish our results, in particular for
proving strong dichotomy. An important role is played by the notions of materializability
and unraveling tolerance of an ontology O. Materializability means that for every instance D,
there is a universal model A of D and O in the sense that A gives exactly the same answers
to all queries that are also given by D and O (under the certain answer semantics commonly
adopted for ontology-mediated querying). While universal models are often defined via
homomorphisms and this then turns out to be equivalent to the stated property, we observe
that this is not the case here. Unraveling tolerance of an ontology O means that when O
is combined with a query that is tree-like in a certain sense, then the resulting ontology-
mediated query cannot distinguish between an instance and its unraveling into a structure of
bounded treewidth. While non-materializability of O implies that query evaluation w.r.t. O
is coNP-hard, unraveling tolerance of O implies that query evaluation w.r.t. O is rewritable
into Datalog and thus in PTime. We observe that preservation of an ontology O under direct
products implies unraveling tolerance. As mentioned, most ontology languages that admit
PTime query evaluation fall within first-order Horn logic which is preserved under direct
products [27], and thus unraveling tolerance provides a uniform explanation of the good
computational behavior of these languages. To establish strong dichotomy of a fragment, we
prove that for the ontologies formulated in it, materializability implies unraveling tolerance;
depending on the fragment, these proofs can be technically rather subtle.
To establish CSP-hardness and non-dichotomy, very informally speaking we need the

ontology to express properties that are ‘hidden from the query’. Note that our query languages
are purely positive and existential, and therefore such hidden properties typically involve
universal quantification or negation. To achieve hiding is often subtle and can sometimes
be achieved only partially, that is, the expressed property can partly be expressed purely
positively and existentially, but not in its entirety. When this is the case, it is in particular
possible to ‘preassign’ some hidden information in the database instance, which is also
purely positive and existential. For proofs of CSP-hardness, this is not problematic because
it corresponds to the variation of CSPs that ‘admit precoloring’, that is, where some targets
of the homomorphism into the CSP template can be preassigned; it is well-known that such
CSPs behave in essentially the same way as standard CSPs. For proving non-dichotomy, in
contrast, partial hiding poses serious challenges. To tackle them, we establish a variation of
Ladner’s theorem, which establishes the existence of NP-intermediate problems. Instead
of speaking about the word problem for NP Turing machines, our variation shows that
there is an NP-intermediate run fitting problem, which is to decide whether a given partially
described run of a Turing machine (that informally corresponds to a precoloring in the CSP
case) can be extended to a full run which is accepting. We then prove the non-dichotomy
results by first constructing an ontology which checks whether a database instance has the
shape of a grid and then adding an ontology which checks whether the partial run encoded
by the database instance can be extended to an accepting run. The first ontology is also
used to prove that materializability, rewritability into Datalog ̸=, PTime query evaluation,
and coNP query evaluation are undecidable (unless PTime = NP), by a reduction of the
finite rectangle tiling problem.
Our proofs of decidability of whether an ontology admits PTime query evaluation first

establish that it suffices to decide materializability for database instances which have the
shape of a tree of depth one and are of polynomial size in the size of the ontology. They then
show how partial materializations can be composed to full materializations using ‘mosaic
techniques’ from modal logic.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:6 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

To understand the practical relevance of our results, we have analyzed 411 ontologies
from the BioPortal repository [82]. After removing all constructors that do not fall within
ALCHIF , a remarkable 405 ontologies turned out to have depth 2 and thus belong to
a fragment with dichotomy (sometimes modulo a straightforward complexity-preserving
rewriting). For ALCHIQ, still 385 ontologies had depth 1 and so belonged to a fragment with
dichotomy. As our initial examples (1) and (2) illustrate, ontology languages with counting
induce particular subtleties regarding PTime query evaluation. To better understand the
situation regarding counting statements in practical ontologies, we have analyzed each single
axiom of depth 1 that uses counting in the BioPortal ontology. We found 5081 such axioms.
For the vast majority of these (4975) we established that query evaluation is in PTime, but
only 2911 are preserved under products and equivalent to first-order sentences in languages
designed for tractable query evaluation. While the restriction to single axioms is unrealistic
in practice and should be extended to whole ontologies, this nevertheless indicates that it
can pay of to analyze the complexity on the level of ontologies rather than on the level of
ontology languages.
This paper is organized as follows. In Section 2, we introduce fundamental notation and

the relevant ontology languages including fragments of GF and uGF as well as several
description logics. We also introduce guarded bisimulations and guarded tree decompositions
as essential technical tools used throughout the paper; as many of our technical notions,
they come in a non-counting version and in a counting version. Section 3 introduces and
studies materializability. We show that materializability does not depend on whether we use
CQs, UCQs, or rAQs as actual queries where rAQs (for rooted acyclic queries) are a class
of tree-like CQs. In contrast, whether a concrete model of the instance and ontology is a
materialization or not does depend on the query language. We also analyze the relationship
between universal models defined in terms of query answers and universal models defined in
terms of homomorphisms, as well as the relationship of these notions to a certain disjunction
property. Finally, we show that tractability of query evaluation does not depend on the
query language used. Section 4 is concerned with unraveling tolerance, our main result
being that unraveling tolerance implies rewritability into Datalog (with inequalities, when
appropriate). In addition, we show that preservation under direct products implies unraveling
tolerance. Section 5 brings together materializability and unraveling tolerance to establish
strong dichotomy results. In Section 6, we establish connections to CSP, proving both lower
bounds (that is, CSP-hardness) and upper bounds (that is, dichotomy results by reduction
to CSP). For the latter, we in fact make a detour via the logical generalization MMSNP of
CSP introduced by Feder and Vardi [35]. In Section 7, we establish undecidability results
regarding PTime and coNP query evaluation, Datalog rewritability, and materializability.
The techniques developed here are the basis for the non-dichotomy results proved in Section 8
where we also show non-dichotomy for the run-fitting problem. Section 9 is the final technical
section, concerned with fragments for which PTime query evaluation is decidable.

Related Work. Ontology-mediated querying has first been considered in [22, 63]; other
important references include [8, 15, 19, 23]. It is a form of querying under (open world)
constraints, a traditional topic in database theory, see e.g. [11, 12] and references therein,
and it is also related to deductive databases, see e.g. the monograph [70]. Ontology-mediated
querying has further drawn inspiration from query answering under views [24, 25]. In recent
years, there has been significant interest in the database theory community to completely
classify the complexity of hard querying problems. In the context of ontology-mediated
querying, relevant references include [15, 64, 67]. In [67], the notions of unraveling tolerance

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:7

and materializability were introduced for the description logic ALCIF and used to establish
strong dichotomy for ALCIF ontologies of depth 1, CSP-hardness and dichotomy via
CSP for ALCI, and non-dichotomy for ALCF ontologies of depth 3. This paper closes a
number of open problems from [67] such as that ALCI ontologies of depth 2 enjoy a strong
dichotomy and that materializability (and thus PTime complexity and Datalog rewritability)
is decidable in several relevant cases. Other areas of database theory where complete
complexity classifications are sought include consistent query answering [33, 38, 54, 55],
probabilistic databases [80], and deletion propagation [39, 52].

The guarded fragment of first-order logic was introduced in [2] where also basic technical
tools for investigating the guarded fragment such as guarded bisimulations were established.
The guarded fragment and extensions, obtained for example by adding fixpoint operators
or relaxing the conditions on guards, have been investigated extensively in the literature,
see [9, 13, 44, 45, 73] and references therein. The extension of the two variable guarded
fragment with counting has been investigated in [51, 75]. Query evaluation mediated by
ontologies in the guarded fragment and in the two variable guarded fragment with counting
has been investigated in [8, 76].

The Feder-Vardi conjecture, originating from [35], postulated a dichotomy between PTime
and NP for all CSPs with a finite template. The conjecture has been confirmed in 2017
independently in [18] and [83] using algebraic methods. An overview of the state of the
field just before the proof of the conjecture is provided in [57]. Early work on PTime/NP-
dichotomies for CSPs include Schaefer’s dichotomy theorem for CSPs defined by two element
templates [77] and a dichotomy theorem for CSPs with (undirected) graph templates [46].
The algebraic approach to CSPs was initiated in [49].

2 PRELIMINARIES

We start with introducing the basics of ontology-mediated querying, then define the ontology
languages relevant to this paper and afterwards introduce several elementary technical
notions including guarded bisimulations and guarded tree decomposition. We also establish
some fundamental lemmas regarding the latter.

2.1 Basics of Ontology-Mediated Querying

We assume an infinite set ∆ of constants and a set Σ of relation symbols that contains
infinitely many relation symbols of any arity ≥ 1. A (database) instance D is a non-empty
set of facts R(a1, . . . , ak), where R ∈ Σ, k is the arity of R, and a1, . . . , ak ∈ ∆. We generally
assume that instances are finite, unless otherwise specified. An interpretation A is a non-
empty (and potentially infinite) set of facts. We use sig(A) and dom(A) to denote the set of
relation symbols and constants used in A, respectively. We generally assume that sig(A) is
finite while dom(A) can be infinite. Whenever convenient, interpretations A are presented
in the form (A, (RA)R∈sig(A)) where A = dom(A) and RA is a k-ary relation on A for each
R ∈ sig(A) of arity k. While instances are syntactic objects used to represent a database,
interpretations are semantic objects. Formally, an interpretation A is a model of an instance
D, written A |= D, if D ⊆ A. By adopting this notion of being a model, we make a strong
open world assumption since interpretations can make true additional facts and contain
additional constants; moreover, we assume standard names, that is, every constant in D is
interpreted as itself in A. Note that, from a formal perspective, every instance is also an
interpretation.

Assume that A and B are interpretations. A homomorphism h from A to B is a mapping
from dom(A) to dom(B) such that R(a1, . . . , ak) ∈ A implies R(h(a1), . . . , h(ak)) ∈ B

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:8 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

for all a1, . . . , ak ∈ dom(A) and R ∈ Σ of arity k. We say that h preserves a set D
of constants if h(a) = a for all a ∈ D and that h is an isomorphic embedding if it is
injective and R(h(a1), . . . , h(ak)) ∈ B implies R(a1, . . . , ak) ∈ A. An interpretation A ⊆
B is a subinterpretation of B if R(a1, . . . , ak) ∈ B and a1, . . . , ak ∈ dom(A) implies
R(a1, . . . , ak) ∈ A; if dom(A) = A, we denote A by B|A and call it the subinterpretation of
B induced by A.

Conjunctive queries (CQs) q of arity k take the form q(x⃗)← φ, where x⃗ = (x1, . . . , xk) is
the tuple of answer variables of q, and φ is a conjunction of atomic formulas R(y1, . . . , yn)
with R ∈ Σ of arity n and y1, . . . , yn variables. As usual, all variables in x⃗ must occur in
some atomic formula of φ. Any CQ q(x⃗)← φ can be regarded as an instance Dq, often called
the canonical database of q, whose facts are exactly the atomic formulas of q with variables
viewed as constants. A tuple a⃗ = (a1, . . . , ak) of constants is an answer to q(x1, . . . , xk) in A,
in symbols A |= q(⃗a), if there is a homomorphism h from Dq to A such that h(xi) = ai for
1 ≤ i ≤ k. A union of conjunctive queries (UCQ) q takes the form q1(x⃗), . . . , qn(x⃗), where
each qi(x⃗) is a CQ. The qi are called disjuncts of q. A tuple a⃗ of constants is an answer to q
in A, denoted by A |= q(⃗a), if a⃗ is an answer to some disjunct of q in A.

We now introduce the fundamentals of ontology-mediated querying. Let FO(=) denote the
set of all first-order sentences over (the purely relational) signature Σ, admitting equality but
neither constants nor function symbols. An ontology language L is a set of FO(=) sentences
and an L-ontology O is a finite set of sentences from L. We introduce various concrete
ontology languages throughout the paper, including fragments of the guarded fragment
as well as several description logics. An interpretation A is a model of an ontology O, in
symbols A |= O, if it satisfies all its sentences. An instance D is consistent w.r.t. O if there
is a model of D and O. We use sig(O) to denote the set of relation symbols used in O.

An ontology-mediated query (OMQ) is a pair (O, q), where O is an ontology and q a UCQ.
The semantics of an ontology-mediated query is given in terms of certain answers, defined
next. Assume that q has arity k and D is an instance. Then a tuple a⃗ of length k in dom(D)
is a certain answer to q on D given O, in symbols O,D |= q(⃗a), if A |= q(⃗a) for all models
A of D and O. The query evaluation problem for an OMQ (O, q(x⃗)) is to decide, given an
instance D and a tuple a⃗ in D, whether O,D |= q(⃗a).

We use standard notation for Datalog programs [1, 26]. A Datalog̸= rule ρ takes the form

S(x⃗)← R1(x⃗1) ∧ · · · ∧Rm(x⃗m)

where S is a relation symbol from Σ, m ≥ 1, and R1, . . . , Rm are either relation symbols
from Σ or the symbol ̸= for inequality. We call S(x⃗) the head of ρ and R1(x⃗1)∧· · ·∧Rm(x⃗m)
its body. Every variable in the head of ρ is required to occur in its body. A Datalog rule
is a Datalog̸= rule that does not use inequality. A Datalog̸= program is a finite set Π of
Datalog̸= rules with a selected relation symbol goal that does not occur in rule bodies in Π.
The arity of Π is the arity of its goal relation symbol; we say that Π is Boolean if it has
arity zero. Relation symbols that occur in the head of at least one rule of Π are intensional
and all remaining relation symbols in Π are extensional. Note that, by definition, goal is an
intensional relation symbol. A Datalog program is a Datalog̸= program that does not use
inequality.
For every instance D and Datalog̸= program Π, we call a model A of D a model of

Π if A is a model of all FO sentences ∀x⃗1 · · · ∀x⃗m(R1(x⃗1) ∧ · · · ∧ Rm(x⃗m) → S(x⃗)) with
S(x⃗)← R1(x⃗1) ∧ · · · ∧Rm(x⃗m) ∈ Π. We set D |= Π(⃗a) if goal(⃗a) ∈ A for all models A of D
and Π.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:9

An OMQ (O, q(x⃗)) is called Datalog-rewritable if there is a Datalog program Π such that
for all instances D and a⃗ ∈ dom(D), O,D |= q(⃗a) iff D |= Π(⃗a). Datalog̸=-rewritability is
defined accordingly. We are mainly interested in the following properties of ontologies.

Definition 2.1. Let O be an ontology and Q a class of queries. Then

• Q-evaluation w.r.t. O is in PTime if for every q ∈ Q, the query evaluation problem
for (O, q) is in PTime.
• Q-evaluation w.r.t. O is Datalog-rewritable (resp. Datalog̸=-rewritable) if for every
q ∈ Q, the OMQ (O, q) is Datalog-rewritable (resp. Datalog ̸=-rewritable).
• Q-evaluation w.r.t. O is coNP-hard if there is a q ∈ Q such that the query evaluation
problem for (O, q) is coNP-hard.

2.2 Ontology Languages

As ontology languages, we consider fragments of the guarded fragment of FO, the two-variable
guarded fragment of FO with counting, and several description logics. Recall that guarded
formulas [2] are obtained by starting from atomic formulas R(x⃗) over Σ and equalities x = y
and then using the Boolean connectives and guarded quantifiers of the form

∀y⃗(α(x⃗, y⃗)→ ϕ(x⃗, y⃗)), ∃y⃗(α(x⃗, y⃗) ∧ ϕ(x⃗, y⃗))

where ϕ(x⃗, y⃗) is a guarded formula with free variables among x⃗, y⃗ and α(x⃗, y⃗) is an atomic
formula or an equality x = y that contains all variables in x⃗, y⃗. The formula α is called
the guard of the quantifier. To emphasize that we admit equality in non-guard positions
we denote the set of all guarded formulas by GF(=). The fragment in which no equality is
admitted in non-guard positions is denoted GF. Thus, ∀x(x = x→ ∃y, z(R(x, y, z)∧ x = y))
is in GF(=) and not in GF, but ∀x(x = x→ ∃y, z(R(x, y, z) ∧ S(x, y))) is in GF.

In ontologies, we only allow GF(=) sentences ϕ that are invariant under disjoint unions,
that is, for all families Bi, i ∈ I, of interpretations with mutually disjoint domains, the
following holds: Bi |= ϕ for all i ∈ I if, and only if,

⋃
i∈I Bi |= ϕ. We next give a syntactic

characterization of this class of sentences. Denote by openGF the fragment of GF(=) that
consists of all open formulas whose subformulas are all open and in which equality is not used
as a guard. The fragment uGF(=) of GF(=) is the set of sentences obtained from openGF
by a single guarded universal quantifier : if ϕ(y⃗) is in openGF, then ∀y⃗(α(y⃗)→ ϕ(y⃗)) is in
uGF(=), where α(y⃗) is an atomic formula or an equality y = y that contains all variables
in y⃗. We often omit equality guards in uGF(=) sentences of the form ∀y(y = y → ϕ(y)) and
simply write ∀yϕ.

Theorem 2.2. A sentence in GF(=) (resp. GF) is invariant under disjoint unions iff it
is equivalent to a sentence in uGF(=) (resp. uGF).

Proof. The direction from right to left is straightforward. We prove the converse direction
for GF(=); the proof for GF is similar and omitted.
We first prove that every sentence in GF(=) is equivalent to a Boolean combination of

sentences in uGF(=). Assume a sentence ϕ in GF(=) is given. First replace any subformula
of ϕ of the form ∃x, y(x = y ∧ψ(x, y)) or ∀x, y(x = y → ψ(x, y)) by ¬∀x(x = x→ ¬ψ(x, x))
and ∀x(x = x → ψ(x, x)), respectively. In the resulting sentence, replace any formula of
the form ∀y(x = y → ψ(x, y)) or ∃y(x = y ∧ ψ(x, y)) and with x ̸= y by ψ(x, x). Denote
the resulting GF(=) sentence by ϕ′. Call a sentence ψ simple if it contains no subsentence
within the scope of a guarded quantifier. Observe that any simple subsentence of ϕ′ is
a Boolean combination of sentences in uGF(=). Now we apply the following equivalent

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:10 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

rewriting exhaustively to χ := ϕ′: if ψ is a simple subsentence of χ within the scope of a
guarded quantifier, then rewrite χ into (χ[ψ/true] ∧ ψ) ∨ (χ[ψ/false] ∧ ¬ψ), where true and
false are the standard propositional constants (which can be eliminated in the well-known
way). It is straightforward to show that the resulting sentence is a Boolean combination of
sentences in uGF(=).

Consider now a Boolean combination ϕ of uGF(=) sentences and assume that ϕ is invariant
under disjoint unions. Let cons(ϕ) be the set of all sentences χ in uGF(=) with ϕ |= χ. By
compactness of FO it suffices to show that cons(ϕ) |= ϕ. If this is not the case, take a model
A0 of cons(ϕ) refuting ϕ and take for any sentence ψ in uGF(=) that is not in cons(ϕ) an
interpretation A¬ψ satisfying ϕ and refuting ψ. Let A1 be the disjoint union of all A¬ψ.
By preservation of ϕ under disjoint unions, A1 satisfies ϕ. By reflection of ϕ for disjoint
unions, the disjoint union A of A0 and A1 does not satisfy ϕ. Thus A1 satisfies ϕ and A
does not satisfy ϕ but by construction A and A1 satisfy the same sentences in uGF(=). This
is impossible since ϕ is a Boolean combination of uGF(=) sentences. �

The following example gives ontologies that take the form of Boolean combinations of
uGF sentences and that are not invariant under disjoint unions. We shall come back to these
ontologies later on to explain why it is convenient to restrict this study to fragments of
uGF(=) rather than considering fragments of GF(=). Recall from the introduction that,
from a practical perspective, assuming invariance under disjoint unions is only a minor
restriction.

Example 2.3. Let

OUCQ/CQ = {(∀x(A(x) ∨B(x)) ∨ ∃xE(x)}
OMat/PTime = {∀xA(x) ∨ ∀xB(x)}

Then OMat/PTime is not preserved under disjoint unions since D1 = {A(a)} and D2 = {B(b)}
are models of OMat/PTime but D1∪D2 refutes OMat/PTime; OUCQ/CQ does not reflect disjoint
unions since the disjoint union of D′

1 = {E(a)} and D′
2 = {F (b)} is a model of OUCQ/CQ

but D′
2 refutes OUCQ/CQ.

When studying uGF(=) and uGF ontologies, we are going to vary several parameters.
The depth of a formula ϕ in openGF is the nesting depth of guarded quantifiers in ϕ. Thus,
an openGF formula has depth 1 if no guarded quantifier occurs within the scope of another
guarded quantifier. The depth of a sentence ∀y⃗(α(y⃗) → ϕ(y⃗)) in uGF(=) is the depth of
ϕ(y⃗), thus the outermost guarded quantifier is not counted. The depth of a uGF(=) ontology
is the maximum depth of its sentences. We indicate restricted depth in brackets, writing e.g.
uGF(1) to denote the set of uGF sentences of depth at most 1 and uGF(2,=) to denote the
set of all uGF(=) sentences of depth at most 2.

Example 2.4. The sentence

∀x, y(R(x, y)→ (A(x) ∨ ∃zS(y, z)))

is in uGF(1) since the openGF formula A(x) ∨ ∃zS(y, z) has depth 1.

Observe that, modulo normalization, uGF(1) has the same expressive power as GF: for
every GF sentence ϕ, one can construct in polynomial time a conservative extension ϕ′ in
uGF(1) by converting into Scott normal form [44]. Thus, the satisfiability and CQ-evaluation
problems for full GF can be reduced in polynomial time to the corresponding problem for
uGF(1). We show in this paper that for dichotomies the situation is different: while in GF

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:11

there is no dichotomy between Datalog-rewritability and coNP-hardness of query evaluation,
we establish such a dichotomy for uGF(1).

We use uGF−(=) to denote the fragment of uGF(=) where only equality guards are
admitted in the outermost universal quantifier applied to an openGF formula, and uGF−

denotes the corresponding fragment of uGF. Thus, the sentence in Example 2.4 is a uGF
sentence of depth 1, but not a uGF− sentence of depth 1. It is, however, equivalent to the
following uGF− sentence of depth 1:

∀x(∃y((R(y, x) ∧ ¬A(y))→ ∃zS(x, z)))
An example of a uGF sentence of depth 1 that is not equivalent to a uGF− sentence of
depth 1 is given in Example 2.5 below. Informally, uGF sentences of depth 1 can be thought
of as uGF− sentences of ‘depth 1.5’ because giving up ·− allows an additional level of ‘real’
quantification over guards that are not forced to be equality.

The two-variable fragment of uGF(=) is denoted with uGF2(=). More precisely, in uGF2(=)
we admit only the two fixed variables x and y and disallow the use of relation symbols of arity
exceeding two. We also consider two extensions of uGF2(=) and uGF2 with forms of counting.
First, uGF2(f) denotes the extension of uGF2 with function symbols, that is, an uGF2(f)
ontology is a finite set of uGF2 sentences and of functionality axioms ∀x∀y1∀y2((R(x, y1) ∧
R(x, y2))→ (y1 = y2)), see also [44]. Second, we consider the extension uGC2(=) of uGF2(=)
with counting quantifiers. More precisely, the language openGC2 is defined in the same way as
the two-variable fragment of openGF, but in addition admits guarded counting quantifiers as
in [51, 75]: if n ∈ N, {z1, z2} = {x, y}, α(z1, z2) ∈ {R(z1, z2), R(z2, z1)} for some R ∈ Σ, and
ϕ(z1, z2) is in openGC2, then ∃≥nz1(α(z1, z2) ∧ ϕ(z1, z2)) is in openGC2(=). The ontology
language uGC2(=) is then defined in the same way as uGF2(=), using openGC2 instead
of openGF2. Whenever convenient we regard openGC2 and uGC2 as fragments of FO(=).
The depth of formulas in uGC2(=) is defined in the expected way, that is, guarded counting
quantifiers and guarded quantifiers both contribute to it.
The above restrictions can be freely combined and we use the obvious names to denote

such combinations. For example, uGF−
2 (1, f) denotes the two-variable fragment of uGF with

function symbols and where all sentences must have depth 1 and the guard of the outermost
quantifier must be equality.

Description logics are a popular family of ontology languages that are closely related
to the guarded fragments of FO(=) introduced above [6]. In the following, we give a
brief introduction to the syntax and semantics of several relevant DLs and establish their
relationship to these fragments. We concentrate on the DL ALC and its extensions by inverse
roles, role inclusions, qualified number restrictions, functional roles, and local functionality.
ALC-concepts are constructed according to the rule

C,D := ⊤ | ⊥ | A | C ⊓D | C ⊔D | ¬C | ∃R.C | ∀R.C
where A and R range over unary and binary relation symbols, respectively. In DL parlance,
unary relation symbols are also called concept names and binary relation symbols are also
called roles, but in this paper we shall mostly speak of relation symbols.
DLs extended by inverse roles (denoted in the name of a DL by the letter I) admit, in

addition, inverse relation symbols denoted by R−, with R a relation symbol. In ALCI, we
thus have available the additional expressions ∃R−.C and ∀R−.C for constructing concepts.
DLs extended by qualified number restrictions (denoted by Q) additionally admit concepts
of the form (≥ n R C) and (≤ n R C), where n ≥ 0 is a natural number, R a relation
symbol or an inverse relation symbol (provided that inverse relation symbols are admitted

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:12 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

in the original DL), and C is a concept. When extending a DL with local functionality
(denoted by Fℓ) one can use only number restrictions of the form (≤ 1 R ⊤). We abbreviate
the ALCIFℓ concept (≤ 1 R ⊤) by (≤ 1R), (∃R.⊤) ⊓ (≤ 1R) by (= 1R), and ¬(≤ 1R) by
(≥ 2R), respectively.

In DLs, ontologies are formalized as finite sets of concept inclusions C ⊑ D, where C,D are
concepts. We use the concept equivalence C ≡ D as an abbreviation for C ⊑ D and D ⊑ C.
In DLs extended with functionality (denoted by F) one can also use functionality assertions
func(R) in the ontology, where R is a relation symbol or an inverse relation symbol (if present
in the original DL). Such an R is interpreted as a partial function. Extending a DL with role
inclusions (denoted by H) allows one to use expressions of the form R ⊑ S in the ontology,
where R and S are relation symbols or inverse relation symbols (if present in the original
DL), and which state that R is a subset of S. Note that while inverse roles, qualified number
restrictions, and local functionality affect the concept language, functionality assertions and
role inclusions only take effect on the level of ontologies. So when we work for example with
ALCHFℓ, then the concepts are formed in ALCFℓ and, additionally, role inclusions are
admitted in the ontology.

The semantics of DLs is defined in terms of interpretations A. Given A, the interpretation
CA of a concept C, RA of a relation symbol R, and (R−)A of an inverse relation symbol
R− is defined inductively as follows:

⊤A = dom(A) ⊥A = ∅
RA = {(a, b) ∈ dom(A) | R(a, b) ∈ A} (R−)A = {(b, a) ∈ dom(A) | (a, b) ∈ RA}
AA = {a ∈ dom(A) | A(a) ∈ A} (¬C)A = dom(A) \ CA

(C ⊓D)A = CA ∩DA (C ⊔D)A = CA ∪DA

(∃R.C)A = {a ∈ dom(A) | ∃b : (a, b) ∈ RA and b ∈ CA}
(∀R.C)A = {a ∈ dom(A) | ∀b : (a, b) ∈ RA implies b ∈ AA}

(≥ n R C)A = {a ∈ dom(A) | |{b | (a, b) ∈ RA and b ∈ CA}| ≥ n}
(≤ n R C)A = {a ∈ dom(A) | |{b | (a, b) ∈ RA and b ∈ CA}| ≤ n}

A satisfies a concept inclusion C ⊑ D if CA ⊆ DA, a functionality assertion func(R) if RA

is a partial function, and a rule inclusion R ⊑ S if RA ⊆ SA.
The semantics of DL concepts C can alternatively be given by translation to openGC

formulas C∗(x) with one free variable x and two variables overall. For simplicity, we only
give the translation explicitly for DLs without inverse roles:

⊤∗(x) = ⊤ ⊥∗(x) = ⊥
A∗(x) = A(x) (¬C)∗(x) = ¬(C∗(x))

(C ⊓D)∗(x) = C∗(x) ∧D∗(x) (C ⊔D)∗(x) = C∗(x) ∨D∗(x)

(∃R.C)∗(x) = ∃y (R(x, y) ∧ C∗(y)) (∀R.C)∗(x) = ∀y (R(x, y)→ C∗(y))

(≥ n R C)∗(x) = ∃≥ny(R(x, y) ∧ C∗(y)) (≤ n R C)∗(x) = ∃≤ny(R(x, y) ∧ C∗(y))

A concept inclusion C ⊑ D then translates to the uGC2 sentence ∀x(C∗(x)→ D∗(x)) and
also with inverse roles and when adding role hierarchies and functionality assertions, we
remain within uGC2.
The depth of a concept is the maximal nesting depth of its quantifiers. The depth of an

ontology is the maximum depth of concepts that occur in it. Thus, every ALC ontology of
depth n is a uGF−

2 ontology of depth n. When translating into uGF2 instead of into uGF−
2 ,

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:13

the depth might decrease by one because one can exploit the outermost quantifier (which
does not contribute to the depth).

Example 2.5. The ALC concept inclusion ∃S.A ⊑ ∀R.∃S.B has depth 2, but it is equivalent
to the uGF2(1) sentence

∀x, y(R(x, y)→ ((∃S.A)∗(x)→ (∃S.B)∗(y))

In all of the DLs considered in this paper, any ontology O can straightforwardly be
converted in polynomial time into an ontology O∗ of depth 1 that is a conservative extension
of O. In fact, many DL algorithms for satisfiability and for query evaluation assume that
the ontology is of depth one and in a normalized form [10, 79].
We observe the following relationships between DLs and fragments of GC2. For a DL L

and fragment L′ of GC2 we say that an L ontology O can be written as an L′ ontology if
the translation given above translates O into an L′ ontology. Then the following hold:

(1) every ALCHI ontology can be written as a uGF2 ontology. If the ontology has depth 2,
then it can be written as a uGF−

2 (2) ontology.
(2) Every ALCHIF ontology can be written as a uGF−

2 (f) ontology.
(3) Every ALCHIQ ontology can be written as a uGC2 ontology. If the ontology has

depth 1, then it can be written as a uGC−
2 (1) ontology.

For any syntactic object O (such as an ontology or a query), we use |O| to denote the number
of symbols needed to write O, counting relation symbols, variable names, and so on as a
single symbol and assuming that numbers in counting quantifiers and their DL counterpart,
qualified number restrictions, are coded in unary. The latter assumption is relevant only for
the results obtained in Section 9.

2.3 Guarded Bisimulations

We define guarded bisimulations, a standard tool for proving that two interpretations satisfy
the same guarded formulas [45]. Our use of the fragment uGF(=) of GF allows us to slightly
modify the standard notion by considering, in the back and forth conditions, only guarded
sets that overlap the current guarded set. To cover uGC2(=) we introduce counting guarded
bisimulations.

Let A be an interpretation. It will be convenient to use the notation [⃗a] = {a1, . . . , an} to
denote the set of components of the tuple a⃗ = (a1, . . . , an) ∈ dom(A)n. A set G ⊆ dom(A)
is guarded in A if G is a singleton or there are R ∈ Σ and R(⃗a) ∈ A such that G = [⃗a]. By
S(A), we denote the set of all guarded sets in A. A tuple a⃗ ∈ dom(A)n is guarded in A if [⃗a]
is a subset of some guarded set in A.

For tuples a⃗ = (a1, . . . , an) in A and b⃗ = (b1, . . . , bn) in B we call a mapping p from [⃗a]

to [⃗b] with p(ai) = bi for 1 ≤ i ≤ n (written p : a⃗ 7→ b⃗) a partial isomorphism if p is an

isomorphism from A|[⃗a] to B||⃗b]. A set I of partial isomorphisms p : a⃗ 7→ b⃗ from guarded

tuples a⃗ in A to guarded tuples b⃗ in B is called a connected guarded bisimulation if the

following hold for all p : a⃗ 7→ b⃗ ∈ I:
• for every guarded tuple a⃗′ in A with [⃗a] ∩ [⃗a′] ̸= ∅ there exists a guarded tuple b⃗′ in B

and p′ : a⃗′ 7→ b⃗′ ∈ I such that p′ and p coincide on [⃗a] ∩ [⃗a′].

• for every guarded tuple b⃗′ in B with [⃗b] ∩ [⃗b′] ̸= ∅ there exists a guarded tuple a⃗′ in A

and p′ : a⃗′ 7→ b⃗′ ∈ I such that p′−1 and p−1 coincide on [⃗b] ∩ [⃗b′].

We say that (A, a⃗) and (B, b⃗) are connected guarded bisimilar if there exists a connected

guarded bisimulation between A and B containing p : a⃗ 7→ b⃗.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:14 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Lemma 2.6. Let A and B be interpretations.

(1) If (A, a⃗) and (B, b⃗) are connected guarded bisimilar and ϕ(x⃗) is a formula in openGF,

then A |= ϕ(⃗a) iff B |= ϕ(⃗b).

(2) If for every guarded a⃗ in dom(A) there exists a guarded b⃗ in dom(B) such that (A, a⃗)

and (B, b⃗) are connected guarded bisimilar and vice versa, then A and B satisfy the
same GF(=) sentences.1

For uGC2(=) and its fragments, we work with interpretations A such that RA = ∅ for
all R of arity ≥ 3 (and say that A interprets relation symbols of arity at most two). To
preserve counting guarded quantifiers we require the following modified version of guarded

bisimulations. A set I of partial isomorphisms p : a⃗ 7→ b⃗ between guarded tuples a⃗ = (a1, a2)

in A and b⃗ = (b1, b2) in B, respectively, is called a counting connected guarded bisimulation
if the following hold for all p : (a1, a2) 7→ (b1, b2) ∈ I:
• for every finite set X ⊆ dom(A) such that all (a1, a

′
2) with a

′
2 ∈ X are guarded tuples

in A there exists an injective mapping f from X to dom(B) such that p′ : (a1, a
′
2) 7→

(b1, f(a
′
2)) ∈ I for all a′2 ∈ X.

• for every finite set Y ⊆ dom(B) such that all (b1, b
′
2) with b

′
2 ∈ Y are guarded tuples in

B there exists an injective mapping f from Y to dom(A) such that p′ : (a1, f
−1(b′2)) 7→

(b1, b
′
2) ∈ I for all b′2 ∈ Y .

We say that (A, a⃗) and (B, b⃗) are counting connected guarded bisimilar if there exists a

counting connected guarded bisimulation between A and B that contains p : a⃗ 7→ b⃗.

Lemma 2.7. Let A and B interpret relation symbols of arity at most two.

(1) If (A, a⃗) and (B, b⃗) are counting connected guarded bisimilar and ϕ(x⃗) is a formula in

openGC2, then A |= ϕ(⃗a) iff B |= ϕ(⃗b).

(2) If for every guarded a⃗ in dom(A) there exists a guarded b⃗ in dom(B) such that (A, a⃗)

and (B, b⃗) are counting connected guarded bisimilar and vice versa, then A and B
satisfy the same GC2(=) sentences.

The proof of the above lemmas is entirely routine and thus omitted.

2.4 Guarded Tree Decompositions

We introduce guarded tree decompositions and rooted acyclic queries [45]. A guarded tree
decomposition of an interpretation A is a triple (T,E,bag) with (T,E) an acyclic undirected
graph and bag a function that assigns to every t ∈ T a guarded set bag(t) in A such that

(1) A =
⋃
t∈T A|bag(t);

(2) {t ∈ T | a ∈ bag(t)} is connected in (T,E), for every a ∈ dom(A).

We say that A is guarded tree decomposable if there exists a guarded tree decomposition
of A. We call (T,E,bag) a connected guarded tree decomposition (cg-tree decomposition) if,
in addition, (T,E) is connected (i.e., a tree) and bag(t) ∩ bag(t′) ̸= ∅ for all (t, t′) ∈ E. In
this case, we often assume that (T,E) has a designated root r, which allows us to view
(T,E) as a directed tree when convenient. We say that A is cg-tree decomposable if there
exists a cg-tree decomposition of A.

1Although we are going to use this result only for uGF(=) sentences, it actually holds for GF(=) sentences
as stated.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:15

A CQ q ← φ is a rooted acyclic query (rAQ) if there exists a cg-tree decomposition
(T,E,bag) of the instance Dq with root r such that bag(r) is the set of answer variables
of q. Note that, by definition, rAQs are non-Boolean queries.

Example 2.8. The CQ

q(x)← φ, φ = R(x, y) ∧R(y, z) ∧R(z, x)
is not an rAQ since Dq is not guarded tree decomposable. By adding the conjunct Q(x, y, z)
to φ one obtains an rAQ.

We define the unraveling of an interpretation A at a maximally guarded set G in A into a
cg-tree decomposable interpretation. The exact definition of unraveling depends on whether
we are working with uGF(=) or uGC2(=). We first consider the former. Let T (A, G) be
the set of nodes t = G0G1 · · ·Gn, where Gi, 0 ≤ i ≤ n, are maximally guarded sets in A,
G0 = G, and

(a) Gi ̸= Gi+1,
(b) Gi ∩Gi+1 ̸= ∅, and
(c) Gi−1 ̸= Gi+1.

We associate with each t ∈ T (A, G) an interpretation Bag(t) with domain bag(t). Then we
define AuG, the uGF-unraveling of A at G, as

⋃
t∈T (A,G) Bag(t) and note that (T (A, G), E, bag)

is a cg-tree decomposition of AuG, where (t, t′) ∈ E if t′ = tF for some F .
Take an infinite supply of copies of any a ∈ dom(A). We set a′↑ = a if a′ is a copy of a. We

define Bag(t) and its domain bag(t) by induction on the length of the sequence t. For t = G,
Bag(t) is an interpretation whose domain bag(t) contains a copy a′ of each a ∈ G such that
the mapping a′ 7→ a′↑ is an isomorphism from Bag(t) onto the subinterpretation A|G of A
induced by G. To define Bag(t) when t = G0 · · ·Gn and n > 0, take for any a ∈ Gn \Gn−1

a fresh copy a′ of a and define Bag(t) with domain bag(t) = {a′ | a ∈ Gn \Gn−1} ∪ {a′ ∈
bag(G0 · · ·Gn−1) | a′↑ ∈ Gn ∩ Gn−1} such that the mapping a′ 7→ a′↑ is an isomorphism
from Bag(t) onto A|Gn

. The following example illustrates the construction of AuG.

Example 2.9. (1) Consider the interpretation A depicted below with the maximally guarded
sets G1, G2, G3. Then the uGF-unraveling AuG1

of A at G1 is given by the chain depicted on
the right-hand side.

G1

G2

G3 G1 G2G3G2 G3

(2) Next consider the interpretation A depicted below which has the shape of a tree
of depth one with root a and has three maximally guarded sets G1, G2, G3. Then the
uGF-unraveling AuG1

of A at G1 consists of a tree of depth one of infinite outdegree.

G1

G2

G3

a

. . .

a

G1

G1

G2

G2

G3

G3

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:16 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

For any tuple b⃗ = (b1, . . . , bn) in AuG we set b⃗↑ = (b↑1, . . . , b
↑
n). A guarded tuple b⃗ in AuG is

called a copy of a tuple a⃗ in A if b⃗↑ = a⃗.

Lemma 2.10. Let G be a maximally guarded set in A, [⃗a] = G, and let a⃗′ be a copy of

a⃗ in bag(G). Then the set I of all partial isomorphisms p : b⃗ 7→ b⃗↑ with [⃗b] guarded in the

uGF-unraveling AuG is a connected guarded bisimulation between (AuG, a⃗
′) and (A, a⃗). The

mapping
⋃
p∈I p is a homomorphism from AuG onto A.

The proof of Lemma 2.10 is straightforward and omitted. Note that Condition (b) in the
construction of T (A, G) corresponds to the condition that we have a connected guarded
bisimulation. None of the Conditions (a)–(c) are required for the proof to go through. In fact,
they are not part of the standard definition of guarded unravelings [44, 45]. They eliminate,
however, redundancies in the standard guarded unraveling and, more importantly, ensure
the existence of automorphisms of AuG which will be crucial in the proof of Theorem 5.2
where we work with guarded unravelings of instances to prove dichotomy results.

We now turn to unravelings for uGC2, which come with stronger a guarantees: the
unraveled interpretation is counting connected guarded bisimilar to the original interpretation.
Example 2.9 (2) shows that this needs not be the case for uGF-unravelings as defined above
as they may introduce too many copies of guarded sets intersecting with a given guarded set.
To address this problem, assume that A only interprets relation symbols of arity at most
two and define the uGC2-unraveling AuG of A at a maximally guarded set G in the same way
as the uGF-unraveling except that the Condition (c) is replaced by the stronger condition

(c’) Gi ∩Gi−1 ̸= Gi ∩Gi+1.

It is straightforward to prove the following analogue of Lemma 2.10.

Lemma 2.11. Let A interpret relation symbols of arity at most two, let G be a maximally

guarded set in A, let [⃗a] = G, and let a⃗′ be a copy of a⃗ in bag(G). Then the set I of all partial

isomorphisms p : b⃗ 7→ b⃗↑ with [⃗b] guarded in the uGC2-unraveling AuG is a counting connected

guarded bisimulation between (AuG, a⃗
′) and (A, a⃗). The mapping

⋃
p∈I p is a homomorphism

from AuG onto A.

We give a basic application of unravelings which is frequently used throughout the paper.
Let D be an instance, BG an interpretation, and G a guarded set in both D and BG such
that dom(BG) ∩ dom(D) = G. Then the interpretation B = D ∪BG is obtained from D by
hooking BG to D at G. If BG, G ∈ G, is a family of cg-tree decomposable interpretations
satisfying the conditions above and dom(BG1

) ∩ dom(BG2
) = G1 ∩G2 for any two distinct

guarded sets G1 and G2 in G, then B = D ∪
⋃
G∈G BG is called a forest model of D defined

using G. If G is the set of all maximally guarded sets in D, then we call B simply a forest
model of D.

Lemma 2.12. Let O be a uGF(=) or uGC2(=) ontology, D a possibly infinite instance, and
A a model of D and O. Then there exists a forest model B of D and O and a homomorphism
h from B to A that preserves dom(D).

Proof. Assume first a uGF(=) ontology O, an instance D, and a model A of O and D
are given. Take for any maximally guarded set G in D the uGF-unraveling BG := AuG of A
at G and hook it to D at G by identifying the nodes in G with their copies in bag(G). It
can be shown using Lemma 2.6 and Lemma 2.10 that the union B of all BG is as required.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:17

Assume now that O is a uGC2(=) ontology, that D is an instance, and that A is a model
of O and D. We may assume that D and A only interpret relation symbols of arity at most
two.
To preserve counting guarded quantifiers the construction is slightly different. Let c ∈

dom(D) and consider the uGC2-unraveling AuG of A at G, for every maximally guarded G
in A with G ∩ dom(D) = {c}. To ensure that we do not add copies of successors of c in
D to the unraveling we take the modification BG of AuG in which the paths G0G1 · · ·Gn
with G0 = G satisfy G1 ∩ dom(D) = ∅. Now hook all these BG to D at c by identifying c
with its copy in BG (in particular dom(BG) ∩ dom(D) = {c}). Define B as the union of
A|dom(D) and all BG constructed for any c ∈ dom(D). It can be shown using Lemma 2.7
and Lemma 2.11 that B is as required. �

3 MATERIALIZABILITY

We introduce and study materializability of ontologies as a necessary condition for query
evaluation to be in PTime. In brief, an ontology O is materializable if for every instance D,
there is a model A of O and D such that for all queries, the answers on A agree with the
certain answers on D given O. We show that this sometimes, but not always, coincides with
the existence of universal models defined in terms of homomorphisms. We then prove that in
uGF(=) and in uGC2(=), non-materializability implies coNP-hardness of query evaluation.
We also observe that, in contrast, an analogous statement does not hold for GF. We then use
these results to establish that for ontologies formulated in uGF(=) or in uGC2(=), PTime
query evaluation, Datalog̸=-rewritability of query evaluation, and coNP-hardness of query
evaluation does not depend on the actual query language, that is, all these properties agree
for rAQs, CQs, and UCQs. Again, this is not the case for GF.

Definition 3.1 (Materializability). Let O be an FO(=)-ontology, Q a class of queries, and
M a class of instances. Then

• an interpretation B is a Q-materialization of O and an instance D if it is a model of
O and D and for all q(x⃗) ∈ Q and a⃗ in dom(D), B |= q(⃗a) iff O,D |= q(⃗a).
• O is Q-materializable forM if for every instance D ∈M that is consistent w.r.t. O,
there is a Q-materialization of O and D.

IfM is the class of all instances, we simply speak of Q-materializability of O.

We first observe that the materializability of ontologies does not depend on the query
language (although concrete materializations do).

Theorem 3.2. Let O be a uGF(=) or uGC2(=) ontology and M a class of instances.
Then the following conditions are equivalent:

(1) O is rAQ-materializable forM;
(2) O is CQ-materializable forM;
(3) O is UCQ-materializable forM.

Proof. The only non-trivial implication is (1)⇒ (2). Assume O is rAQ-materializable for
M and assume the instance D ∈M is consistent w.r.t. O. Let A be a rAQ-materialization
of O and D. Consider a forest model B of D and O such that there is a homomorphism from
B to A preserving dom(D) (Lemma 2.12). Recall that B is obtained from D by hooking
cg-tree decomposable BG to D at G, for any maximally guarded set G in D. We show that
B is a CQ-materialization of O and D. To this end it suffices to prove that for any finite
subinterpretation B′ of B and any model A′ of O and D there exists a homomorphism

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:18 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

h from B′ to A′ that preserves dom(D) ∩ dom(B′). Assume A′ and B′ are given. We
may assume that dom(D) ⊆ dom(B′) and that B′ ∩BG is connected for every maximally
guarded set G in D. Then we can regard every B′ ∩BG as an rAQ qG with answer variables

G. From B |= qG(⃗b) for a suitable b⃗ with [⃗b] = G, we obtain A′ |= qG(⃗b) since B is an

rAQ-materialization of D and O. Let hG be the homomorphism witnessing A′ |= qG(⃗b).
Then hG is a homomorphism from B′ ∩BG to A′ that preserves G. The union h of all hG,
G a maximally guarded set in D, is the desired homomorphism from B′ to A′ preserving
dom(D) ∩ dom(B′). �

Because of Theorem 3.2, from now on we speak of materializability without reference to a
query language and of materializations instead of UCQ-materializations (which are then
also CQ-materializations and rAQ-materializations).

A notion closely related to materializations are universal models defined in terms if
homomorphisms as used e.g. in data exchange [30, 34]. A model of an ontology O and
an instance D is hom-universal if there is a homomorphism preserving dom(D) into any
model of O and D. We say that an ontology O admits hom-universal models if there is
a hom-universal model for O and any instance D. It is well-known that hom-universal
models are closely related to what we call UCQ-materializations. In fact, we show that in
uGC2(=), materializability of an ontology O coincides with O admitting hom-universal
models (although for concrete models, being hom-universal is not the same as being a
materialization). In contrast, this is not the case for ontologies in uGF(2) (with three
variables). The proof also shows that admitting hom-universal models is not a necessary
condition for query evaluation to be in PTime, in contrast to materializability.

Lemma 3.3. A uGC2(=) ontology is materializable iff it admits hom-universal models.
This does not hold for uGF(2) ontologies. In fact, there exists an ontology O in uGF(2) not
admitting hom-universal models such that CQ-evaluation w.r.t. O is in PTime.

Proof. The direction ‘⇐’ is straightforward. Conversely, assume that O is materializable.
Let D be an instance that is consistent w.r.t. O. By Lemma 2.12 there exists a forest model
B of D and O that is a CQ-materialization of O and D. We may assume that B interprets
relation symbols of arity at most two. Using a straightforward selective filtration procedure
one can show that there exists B′ ⊆ B such that B′ is a model of O and D and for any
guarded set G the number of guarded sets G′ with G∩G′ ≠ ∅ is finite. We show that for any
model A of O and D there is a homomorphism from B′ into A that preserves dom(D). Let
A be a model of O and D. Again we may assume that A is a forest model such that for any
guarded set G the number of guarded sets G′ with G ∩G′ ̸= ∅ is finite. Now, since B′ is a
CQ-materialization of O and D, for any finite subset F of dom(B′) there is a homomorphism
hF from B′

|F to A preserving dom(D) ∩ F . Let Fm be the set of all d ∈ dom(B′) such

that there is a sequence of at most m+ 1 guarded sets G0, . . . , Gm with Gi ∩Gi+1 ≠ ∅ for
i < m, G0 ∩ dom(D) ̸= ∅, and d ∈ Gm. Then each Fm is finite and

⋃
m≥0 Fm = dom(B′).

Using a standard pigeonhole argument one can construct an infinite sequence of natural
numbers n0 < n1 < · · · such that hFn0

⊆ hFn1
⊆ · · · . Then h =

⋃
i≥0 hFni

is the required

homomorphism from B′ to A.

For the second part, we construct an ontology O in uGF(2) expressing that every constant
in a unary relation C(x) is the center of a ‘cartwheel’ represented by a ternary relation
W (x, y, z). The cartwheel can be generated using the third component of W (called ‘turning
left’) or its second component (called ‘turning right’). There does not exist a hom-universal

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:19

model of D0 = {C(a)} and O as no model of D0 and O can be homomorphically mapped
into the two resulting models but one can ensure that O is materializable. As a first attempt
to construct O take unary relation symbols L (turn left) and R (turn right) and state that
one can choose either L or R when generating the cartwheel with center C:

∀x
(
C(x)→ ((L(x) ∨R(x)) ∧ ∃y1, y2W (x, y1, y2))

)
.

The following sentences then generate the wheel accordingly:

∀x, y, z
(
W (x, y, z)→ (L(x)→ ∃z′W (x, z, z′))

)
∀x, y, z

(
W (x, y, z)→ (R(x)→ ∃y′W (x, y′, y))

)
The instanceD0 shows that this ontology does not admit hom-universal models. It is, however,
also not materializable since O,D0 |= L(a) ∨R(a) but neither O,D0 |= L(a) nor O,D0 |=
R(a). The first step to ensure materializability is to replace L(x) by ∃y(gen(x, y) ∧ ¬L(x))
and R(x) by ∃y(gen(x, y)∧¬R(x)) in the axioms above and also add ∀x∃y(gen(x, y)∧L(x))
and ∀x∃y(gen(x, y) ∧ R(x)) to O. Then a CQ ‘cannot detect’ whether one satisfies the
disjunct ∃y(gen(x, y) ∧ ¬R(x)) or the disjunct ∃y(gen(x, y) ∧ ¬L(x)) at a given a with
C(a) ∈ D. The resulting ontology is still not materializable: if W (a, b, c) ∈ D then CQs can
detect whether one introduces a constant c′ with W (a, c, c′) or a constant b′ with W (a, b′, b)
when building a model of O and D. To deal with this problem we ensure that a cartwheel
has to be generated from atoms W (a, b, c) only if b, c ̸∈ D. In detail, the construction of O
is as follows. Let A, L, and R be unary relation symbols and aux and gen be binary relation
symbols. First, O states that every node has aux-successors in A, and gen-successors in L
and R:

∀x∃y(aux(x, y) ∧A(y)), ∀x∃y(gen(x, y) ∧ L(y)), ∀x∃y(gen(x, y) ∧R(y))

Next introduce the disjunction that determines whether one generates the cartwheel by
turning left or right, as indicated above:

∀x
(
C(x)→ (∃y(gen(x, y) ∧ ¬L(x)) ∨ ∃y(gen(x, y) ∧ ¬R(x))

)
Now we use the following complex W ′ rather than W to represent the cartwheel:

W ′(x, y, z) :=W (x, y, z) ∧ ∀y′(aux(y, y′)→ A(y)) ∧ ∀z′(aux(z, z′)→ A(z))

Then for any instance D and b ∈ dom(D) one can construct a model A of D and our ontology
such that A ̸|=W ′(a, b, c) for any a, c by adding aux(b, d) to A for a fresh constant d with
A(d) ̸∈ A, and similarly for the third component of W ′. The following axiom starts the
generation of the cartwheel.

∀x
(
C(x)→ ∃y1, y2W ′(x, y1, y2)

)
Finally, we turn either left or right:

∀x, y, z
(
W ′(x, y, z)→ (∃y(gen(x, y) ∧ ¬L(y))→ ∃z′W ′(x, z, z′))

)
∀x, y, z

(
W ′(x, y, z)→ (∃y(gen(x, y) ∧ ¬R(y))→ ∃y′W ′(x, y′, y))

)
This finishes the definition of O. O is a uGF(2) ontology. One can now easily construct for
any instance D a materialization of D and O that shows that CQ evaluation w.r.t. O is in
PTime. On the other hand, for D0 = {C(a)} there does not exist a hom-universal model of
O and D0. �

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:20 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

We next aim to show that materializability of ontologies is a necessary condition for
query evaluation to be in PTime, unless PTime = NP. For proving this, as well as other
results later on, it is more convenient to work with a certain disjunction property instead of
directly using materializability. We now introduce this property and show the equivalence
of the two notions. Let Q be a class of CQs, O an ontology, and D an instance. For

q1(x⃗1), . . . , qn(x⃗n) ∈ Q and tuples d⃗1, . . . , d⃗n in D we write O,D |= q1(d⃗1) ∨ . . . ∨ qn(d⃗n) if
for every model A of O and D there exists 1 ≤ i ≤ n such that A |= qi(d⃗i). An ontology O
has the Q-disjunction property if for all instances D, queries q1(x⃗1), . . . , qn(x⃗n) ∈ Q and

d⃗1, . . . , d⃗n in D: if O,D |= q1(d⃗1) ∨ . . . ∨ qn(d⃗n), then there exists 1 ≤ i ≤ n such that

O,D |= qi(d⃗i).

Theorem 3.4. Let Q be a class of CQs and O an FO(=)-ontology. Then O is Q-
materializable iff O has the Q-disjunction property.

Proof. For the nontrivial ‘⇐’ direction, let D be an instance consistent w.r.t. O such
that there is no Q-materialization of O and D. Consider the set of FO(=) sentences Γ

containing all ¬∃y⃗φ(d⃗, y⃗) such that O,D ̸|= q(d⃗) and q(x⃗)← φ(x⃗, y⃗) ∈ Q. Then O∪D∪ Γ is
not satisfiable as any satisfying interpretation would be a Q-materialization of O and D. By
compactness of FO(=), there is a finite subset Γ′ ⊆ Γ such that O ∪D ∪ Γ′ is not satisfiable.

Then the set of all q(d⃗) corresponding to Γ′ refutes the Q-disjunction property for O. �

The following theorem links materializability to computational complexity, thus providing
the main reason for our interest into this notion. The proof is by reduction of 2+2-SAT [78],
a variation of a related proof from [67]. For some results established later on, it is important
that we establish the following for unary rAQs.

Theorem 3.5. Let O be an FO(=)-ontology that is invariant under disjoint unions. If O
is not materializable, then the evaluation of unary rAQs w.r.t. O is coNP-hard.

sketch. It was proved in [67] that if an ALC ontology O is not ELIQ-materializable,
then ELIQ-evaluation w.r.t. O is coNP-hard, where an ELIQ is a unary rAQ q(x⃗) such that
the associated instance Dq(x⃗) viewed as an undirected graph is a tree (instead of cg-tree

decomposable) with a single answer variable at the root.2 The proof is by reduction from
2+2-SAT, the variant of propositional satisfiability where the input is a set of clauses of the
form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), each p1, p2, n1, n2 a propositional letter or a truth constant [78].
The proof of Theorem 3.5 can be obtained from the proof in [67] by minor modifications,
which we sketch in the following.

The proof crucially exploits that if O is not rAQ-materializable, then by Theorem 3.4 it
does not have the rAQ-disjunction property. In fact, we take an instance D, (not necessarily

unary) rAQs q1(x⃗1), . . . , qn(x⃗n) ∈ Q, and elements d⃗1, . . . , d⃗n of D that witness failure of
the disjunction property, copy them an appropriate number of times, and use the resulting
set of gadgets to choose a truth value for the variables in the input 2+2-SAT formula. The
fact that O is invariant under disjoint unions ensures that the choice of truth values for
different variables is independent. A main difference between ELIQs and rAQs is that rAQs
can have more than one answer variable. A straightforward way to handle this is to replace
certain binary relations from the reduction in [67] with relations of higher arity (these are
‘fresh’ relations introduced in the reduction, that is, they do not occur in O). To deal with a
rAQ of arity k, one would use a k + 1-ary relation. However, with a tiny bit of extra effort,

2In the context of ALC, relation symbols are at most binary and thus it should be clear what ‘tree’ means.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:21

one can replace these relations with k binary relations. As in the original construction in
[67], one finally ends up with a query that is unary. �

We remark that, in the proof of Theorem 3.5, we use instances and rAQs that involve
additional fresh relation symbols, that is, relation symbols that do not occur in O. It suffices
to use binary fresh symbols and thus we stay within the assumed signature restrictions
when working with uGF2 and uGC2. The ontology OMat/PTime from Example 2.3 shows
that Theorem 3.5 does not hold for GF ontologies, even if they are of depth 1 and use only
a single variable. In fact, OMat/PTime is not CQ-materializable, but CQ-evaluation is in
PTime (which are both easy to see).

The next theorem is the second main result of this section.

Theorem 3.6. For all uGF(=) and uGC2(=) ontologies O, the following are equivalent:

(1) rAQ-evaluation w.r.t. O is in PTime;
(2) CQ-evaluation w.r.t. O is in PTime;
(3) UCQ-evaluation w.r.t. O is in PTime.

This remains true when ‘in PTime’ is replaced with ‘Datalog ̸=-rewritable’ and with ‘coNP-
hard’ (and with ‘Datalog-rewritable’ if O is a uGF ontology). If O is formulated in uGC2(=),
then (1) to (3) are also equivalent to

(4) unary rAQ-evaluation w.r.t. O is in PTime (resp., Datalog ̸=-rewritable, coNP-hard).

Proof. We first deal with PTime membership. In this case, it suffices to prove the
implication of Point 3 by Point 1, and by Point 4 if O is formulated in uGC2(=). By
Theorem 3.5, we may assume that O is materializable. To prove that UCQ-evaluation
w.r.t. O is in PTime, we exploit materializability to reduce UCQ-evaluation w.r.t. O to
rAQ-evaluation w.r.t. O. The following claim formally states the properties of this reduction.

Claim 1. Let q(x⃗) be a UCQ. Then there exists a finite set D of pairs (φ(x⃗, y⃗),P), where
(1) φ(x⃗, y⃗) is a conjunction of atomic formulas (possibly equality atoms) that contains all

the variables from x⃗;
(2) P is a finite set of rAQs with free variables in x⃗ and y⃗;
(3) if O is an uGC2(=) ontology, then each rAQ that occurs in P is unary.

In addition, for each instance D and each tuple a⃗ in D, we have O,D |= q(⃗a) iff there exists
a pair (φ(x⃗, y⃗),P) in D and an assignment π of constants in dom(D) to the variables in φ
such that

(4) π(x⃗) = a⃗,
(5) D |= φ(π(x⃗y⃗)), and
(6) O,D |= q′(π(z⃗)) for each rAQ q′(z⃗) ∈ P.

Using Claim 1 it is easy to complete the proof of Point 3. To show that evaluating a UCQ
q(x⃗) w.r.t. O is in PTime, we first fix a set D as provided by the claim. On input of an
instance D and a tuple a⃗ in D, we then check if there exists a pair (φ(x⃗, y⃗),P) in D and
an assignment π of constants in dom(D) to the variables in φ such that Conditions 4–6 are
true, where for Condition 6 we exploit that Point 1 (resp., Point 4) is true.

We note that similar reductions of UCQs to certain forms of acyclic CQs have been used
in [8, 19], but the construction of the set D in the above claim is more subtle due to the
requirement that the queries that occur in the set P of a pair in D have to be rAQs. In
particular, each query that occurs in P has at least one answer variable. Before we prove
the claim, we introduce a tool that helps us to achieve the latter property.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:22 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

One of the key steps in the proof of Claim 1 is to express a Boolean CQ q()← ψ whose
body ψ is the body of a rAQ by another rAQ. The main issue is that a homomorphism that
maps the canonical database Dq of such a CQ into a model A of D and O is able to map
the atomic formulas of ψ to facts in A that are arbitrarily ‘far away’ from the facts in D,
making them inaccessible to any fixed rAQ. Here, the distance between facts in A is defined
as the distance between their corresponding guarded sets. Given two guarded sets G,G′ in
A, the distance between G and G′ in A, denoted by distA(G,G

′), is the length of a shortest
sequence G1, . . . , Gd of guarded sets in A such that G1 = G, Gd = G′, and Gi ∩Gi+1 ≠ ∅
for all i ∈ {1, . . . , d− 1}. For a sub-interpretation B of A, we define distA(B, G

′) as the
minimum of distA(G,G

′), where G ranges over all guarded sets in B. Now, the following
Claim 2 resolves the above problem by showing that if A |= q, then there is a homomorphism
from Dq to A that maps all atomic formulas in ψ to facts in A with bounded distance to
the facts in D.

Claim 2. For every rAQ q(x⃗) there exists an integer d0 ≥ 0 with the following properties. If
A is a rAQ-materialization of O and an instance D and if A |= ∃x⃗ q(x⃗), then there exists a
tuple a⃗ in A with A |= q(⃗a) and distA(D, [⃗a]) ≤ d0.

Proof. The proof uses a pumping argument, which is based on the following notion of
a type. To simplify the presentation, we view q as an openGF formula (if O is a uGF(=)
ontology) or as an openGC2 formula (if O is a uGC2(=) ontology). This is possible, because
there exists a cg-tree decomposition of Dq in which the root’s bag contains all the answer
variables of q. We define the closure of O and q as the smallest set cl(O, q) satisfying:
• O ∪ {q} ⊆ cl(O, q);
• for each relation symbol R that occurs in O or q we have that cl(O, q) contains an
atomic formula R(x⃗), where x⃗ is a tuple of distinct variables;
• cl(O, q) contains an atomic formula x = y, where x and y are distinct variables;
• cl(O, q) is closed under subformulas and single negation.

The type of a tuple a⃗ = (a1, . . . , an) in an interpretation A w.r.t. O and q is the set Φ(x⃗)
of all formulas φ(x⃗) such that A |= φ(⃗a) and φ is obtained from a formula in cl(O, q) by
substituting variables in x⃗. Here, x⃗ is an arbitrary tuple of distinct variables, called the free
variables of the type. A type w.r.t. O and q is the type of a tuple in some interpretation w.r.t.
O and q. In the following, we will not explicitly mention O and q if these are understood.
Types Φ(x⃗) and Ψ(y⃗) are equivalent, denoted by Φ(x⃗) ≡ Ψ(y⃗), if there is a bijective mapping
f on the variables in x⃗ such that Ψ(y⃗) can be obtained from Φ(x⃗) by consistently renaming
each free variable x to f(x). Since O and q are fixed, the set of all non-equivalent types with
a fixed number of free variables can be computed in constant time using any satisfiability
procedure for the guarded fragment [44] (if O is a uGF(=) ontology) or for the two-variable
guarded counting fragment [51, 75] (if O is a uGC2(=) ontology).

Let w be the maximum arity of a relation symbol that occurs in cl(O, q). Since cl(O, q) is
finite, the number of non-equivalent types with at most w free variables is finite. Let τ be
this number, and define d0 := τ2.

We are now ready to prove the claim. First assume that O is a uGF(=) ontology. Without
loss of generality, we may assume that A is a forest model of D and O obtained using
uGF-unravelings, as described in the proof of Lemma 2.12. Let d be the smallest integer
with Hd(A) ̸= ∅, where for each integer c ≥ 0 and each model B we let Hc(B) be the set of
all homomorphisms h from Dq to B with distB(D, [h(x⃗)]) ≤ c. For a contradiction, suppose
that d > d0.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:23

Consider any h ∈ Hd(A). Since A is a forest model ofD andO, it has the formD∪
⋃
G∈G AG,

where G is the set of all maximally guarded sets in D and the interpretations AG are cg-tree
decomposable. Since d > d0, there exists a unique G ∈ G such that [h(x⃗)] ⊆ dom(AG). Fix
such aG, and let (T,E,bag) be a cg-tree decomposition of AG with root r and bag(r) = G. Let
t1, t2, . . . , tm be the shortest path in (T,E) from t1 = r to a node tm with [h(x⃗)] ⊆ bag(tm).
It is straightforward to verify that there is a rAQ of the form

q̃(y⃗1)← R1(y⃗1) ∧R2(y⃗2) ∧ · · · ∧Rm(y⃗m) ∧ q(x⃗)

such that A |= q̃(⃗a) for some tuple a⃗ in D. Intuitively, q̃(⃗a) selects an atom Ri(⃗ai) with
[⃗ai] = bag(ti) from the bag of each node along the path t1, t2, . . . , tm and then checks if
q(h(x⃗)) is true. Note that, as a consequence of A |= q̃(⃗a), we have O,D |= q̃(⃗a). We now
use a pumping argument to construct a model of D and O in which q̃(⃗a) is not true, which
yields the desired contradiction.

For each i ∈ {1, 2, . . . ,m}, we let a⃗i be a guarded tuple in A with [⃗ai] = bag(ti). We also
define sub-interpretations Ai and A−i of A, where Ai is the sub-interpretation of A induced
by the bags of all nodes in the subtree rooted at ti in (T,E), and A−i := A \Ai. Let Φin

i (x⃗i)
and Φout

i (x⃗i) be the type of a⃗i in Ai and A−i∪Bag(ti), respectively. Since m ≥ d > d0, there
are nodes ti and tj with 1 ≤ i < j ≤ m such that Φin

i (x⃗i) ≡ Φin
j (x⃗j) and Φout

i (x⃗i) ≡ Φout
j (x⃗j).

We now construct a new interpretation A′ from A by replacing the sub-interpretation Aj by
an isomorphic copy of Ai. More precisely, let A′

i be an isomorphic copy of Ai obtained by
replacing each occurrence of a constant in a⃗i by the corresponding constant in a⃗j and each
remaining constant by a fresh constant not contained in dom(A−j). Then, A

′ = A−j ∪ A′
i.

Since Φin
i (x⃗i) ≡ Φin

j (x⃗j) and Φout
i (x⃗i) ≡ Φout

j (x⃗j), the new interpretation A′ is a model of D
and O. By construction, we also have |Hd(A

′)| < |Hd(A)|. Repeating this procedure for A′

and all subsequent models yields a model A′′ of D and O with Hd(A
′′) = ∅. In particular,

A′′ ̸|= q̃(⃗a), which is the desired contradiction.
If O is a uGC2(=) ontology, we can use the same proof except that we switch to forest

models constructed via uGC2-unravelings from the proof of Lemma 2.12. y

We are now ready to prove Claim 1.

Proof. Assume first that O is a uGF(=) ontology. Let n be the maximum number of
atomic formulas in any disjunct of q(x⃗), and let d0 be the integer from Claim 2. Define D to
be the set of all pairs (φ(x⃗, y⃗),P) that satisfy Conditions 1–3 in Claim 1 and the following
additional conditions:

(7) if O,D |= q̂(⃗a) for q̂(x⃗) = ∃y⃗
(
φ(x⃗, y⃗) ∧

∧
q′(z⃗)∈P q

′(z⃗)
)
, then O,D |= q(⃗a);

(8) the total number of atomic formulas in φ and the rAQs in P is at most (2 + d0)n.

We show that for each instance D and each tuple a⃗ in D, we have O,D |= q(⃗a) iff there
exists a pair (φ(x⃗, y⃗),P) in D and an assignment π of constants in dom(D) to the variables
in φ such that Conditions 4–6 in Claim 1 are satisfied. The ‘if’ direction is trivial due to
Condition 7 above. We now prove the ‘only if’ direction.
Recall that O is materializable. Consider any rAQ-materialization A of D and O. By

Lemma 2.12, there exists a forest model B of D and O and a homomorphism h from B to
A that preserves dom(D). Again, we may assume that B is obtained using uGF-unravelings,
as described in the proof of Lemma 2.12. Say, B = D ∪

⋃
G∈G BG is a forest model of D

defined using G, where G is the set of all maximal guarded subsets of D. Since O,D |= q(⃗a),
we have B |= q(⃗a), so there exists a disjunct q′(x⃗) of q(x⃗) and a homomorphism g from Dq′

to B with g(x⃗) = a⃗. We use q′(x⃗) and the homomorphisms h and g to define the desired

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:24 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

pair (φ(x⃗, y⃗),P) in D and assignment π. The idea is that atomic formulas in q′(x⃗) that are
mapped by g to the sub-interpretation D of B define the first component φ(x⃗, y⃗) of a pair
(φ(x⃗, y⃗),P) in D, while the remaining atomic formulas that are mapped by g to the cg-tree
decomposable components BG of B define the rAQs in P.
A set C ⊆ B is connected if for every two guarded sets G,G′ in C there is a sequence

G0, G1, . . . , Gm of guarded sets in C such that G0 = G, Gm = G′, and Gi ∩Gi+1 ̸= ∅ for
every i < m. Let us partition the image of Dq′ under g into a minimal collection of sets
Φ,Ψ1, . . . ,Ψk such that Φ ⊆ D and for each i ∈ {1, . . . , k} there exists a Gi ∈ G such that
Ψi is a connected subset of BGi

\D. Assume for the moment that each Ψi has a cg-tree
decomposition with root ri and ∅ ≠ dom(D)∩dom(Ψi) = bag(ri). Then we obtain the desired
pair (φ(x⃗, y⃗),P) in D as follows. First, we rename each constant a in dom(Φ∪Ψ1 ∪ · · · ∪Ψk)
to a variable xa with g(xa) = a. Then, we define

φ(x⃗, y⃗) =
∧

Φ ∧
∧
{x = x′ | x and x′ occur in x⃗ and g(x) = g(x′)}

and

qi(z⃗i)←
∧

Ψi for 1 ≤ i ≤ k

where y⃗ consists of the variables in Φ that do not occur in x⃗, and z⃗i consists of all variables that
correspond to the constants in bag(ri). The pair (φ(x⃗, y⃗),P) with P = {qi(z⃗i) | 1 ≤ i ≤ k}
satisfies Conditions 1–3 in Claim 1 and both Condition 7 and Condition 8 at the beginning
of the proof. For Condition 8, note that |Φ| + |Ψ1| + · · · + |Ψk| ≤ n. Moreover, if π is
the composition of the homomorphisms g and h, then it is straightforward to check that
Conditions 4–6 in Claim 1 hold (for Condition 6, note that B is a rAQ-materialization of D
and O, which it inherits from A). Altogether, this would complete the proof.
In general, the assumption that each of the sets Ψi has a cg-tree decomposition whose

root ri satisfies ∅ ≠ dom(D) ∩ dom(Ψi) = bag(ri) does not hold. To fix this, we augment Φ
and the sets Ψi as follows. First, it is easy to see that by adding to Ψi at most |Ψi| − 1 facts
from BGi

we obtain a superset Ψ′
i ⊆ BGi

of Ψi that has a cg-tree decomposition with root r′i
and dom(D)∩dom(Ψ′

i) ⊆ bag(r′i). If ∅ ≠ dom(D)∩dom(Ψ′
i) = bag(r′i), then we let Ψ′′

i := Ψ′
i

and r′′i := r′i. Otherwise, we proceed as follows to construct a superset Ψ′′
i ⊆ BGi of Ψ′

i that
has a cg-tree decomposition whose root r′′i satisfies ∅ ≠ dom(D) ∩ dom(Ψ′′

i) = bag(r′′i):

• Case 1: ∅ ̸= dom(D) ∩ dom(Ψ′
i) (bag(r′i). In this case, Ψ′′

i is obtained from Ψ′
i by

adding an arbitrary fact R(⃗a) from BGi
with [⃗a] = Gi. Note that in this case, Gi is

the bag of the root of a cg-tree decomposition for Ψ′′
i .

• Case 2: dom(D) ∩ dom(Ψ′
i) = ∅. We use Ψ′

i to define a rAQ q′i(z⃗
′
i) in the same way as

we used Ψi to define the rAQ qi(z⃗i). In particular, z⃗′i corresponds to the constants in
bag(r′i). By construction of Ψ′

i we have B |= ∃z⃗′i q′i(z⃗′i), so by Claim 2 there exists a
tuple a⃗ in B with B |= q′i(⃗a) and distB(D, [⃗a]) ≤ d0. We may therefore assume without
loss of generality that distB(D,bag(r′i)) ≤ d0. Let R1(⃗a1), . . . , Rm(⃗am) be a shortest
sequence of facts in B such that [⃗a1] ⊆ dom(D), [⃗am] = bag(r′i), and [⃗aj] ∩ [⃗aj+1] ̸= ∅
for 1 ≤ j < m. Then, m ≤ d0 and we define Ψ′′

i := Ψ′
i ∪ {Rj (⃗aj) | 1 ≤ j ≤ m}. Note

that [⃗a1] is the bag of the root of a cg-tree decomposition of Ψ′′
i .

Finally, let Φ′′ := Φ ∪ {Ri(⃗ai) | 1 ≤ i ≤ k}, where Ri(⃗ai) is a fact in D such that [⃗ai] = Gi.
Note that

|Φ′′|+
k∑
i=1

|Ψ′′
k | ≤ |Φ|+ k +

k∑
i=1

(2|Ψi| − 1 + d0) ≤ 2
(
|Φ|+

k∑
i=1

|Ψi|
)
+ d0k ≤ (2 + d0)n.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:25

We now construct the queries φ(x⃗, y⃗) and qi(z⃗i) as above, except that we substitute
Φ′′,Ψ′′

1 , . . . ,Ψ
′′
k for Φ,Ψ1, . . . ,Ψk. Then, the pair (φ(x⃗, y⃗),P) with P = {qi(z⃗i) | 1 ≤ i ≤ k}

satisfies Conditions 1–3 in Claim 1 and Condition 7 and 8 at the beginning of the proof,
and it is easy to see that there is an extension of the mapping π such that Conditions 4–6 in
Claim 1 hold.
As in Claim 1, if O is a uGC2(=) ontology, we can use the same proof except that we

switch to forest models constructed via uGC2-unravelings from the proof of Lemma 2.12. y

Datalog̸=-rewritability can be handled similarly. Again, it suffices to prove the implication
of Point 3 by Point 1 (resp., Point 4), and we may assume that O is materializable. We
construct a Datalog ̸=-program for evaluating q(x⃗) w.r.t. O as follows. Fix a set D as provided
by Claim 1, and let Q be the set of all rAQs that occur in a pair in D. For each q′ ∈ Q, let
Πq′ be a Datalog̸= program that evaluates q′ w.r.t. O. Without loss of generality we assume
that the intensional relational symbols used in different programs Πq′ and Πq′ are disjoint,
and that the goal predicate of Πq′ is goalq′ . Now let Π be the Datalog ̸= program containing
the rules of all programs Πq′ , for q

′ ∈ Q, and the following rule for each (φ(x⃗, y⃗),P) ∈ D:

goal(x⃗)← φ(x⃗, y⃗) ∧
∧

q′(z⃗)∈P

goalq′(z⃗).

Note that if each Πq′ is a Datalog program, then Π is a Datalog program. Then, for all
instances D and all tuples a⃗ in D, we have D |= Π(⃗a) iff O,D |= q(⃗a).

Finally, we deal with coNP-hardness. In this case, it suffices to prove the implication of
Point 4 by Point 3. If O is not materializable, then by Theorem 3.5 we have that unary
rAQ-evaluation w.r.t. O is coNP-hard and we are done. In the following, we may therefore
assume that O is materializable. Let q(x⃗) be a UCQ that witnesses coNP-hardness of
UCQ-evaluation w.r.t. O, and fix a set D as in Claim 1. Let Q be the set of all rAQs that
occur in some pair in D. Using Q we construct a unary rAQ q̃(x) such that evaluating q(x⃗)
w.r.t. O is polynomially reducible to evaluating q̃(x) w.r.t. O.

Let q′1(z⃗1), . . . , q
′
m(z⃗m) be an enumeration of the rAQs in Q, and let ki be the length

of z⃗i, for each i ∈ {1, . . . ,m}. Without loss of generality, we can assume that each Dq′i
is

consistent w.r.t. O. We use fresh relation symbols R, S, and Ti (1 ≤ i ≤ m), where R and S
are binary, and Ti is (ki + 1)-ary. Note that each of these relation symbols is at most binary
in the case that O is a uGC2(=) ontology. Now, given an instance D and a tuple a⃗ in D, we

construct a new instance D̃ as follows. We start with the disjoint union of D,Dq′1
, . . . ,Dq′m

.
Let c⃗i be the tuple of elements in the copy of Dq′i

that represents the tuple z⃗i. Next, we add

the following facts for each pair δ = (φ(x⃗, y⃗),P) in D and each assignment π of elements in
dom(D) to the variables in φ that satisfies π(x⃗) = a⃗ and D |= φ(π(x⃗y⃗)):

• R(a0, aδ);
• S(aδ, aδ,π);
• Ti(aδ,π, π(z⃗i)) for each i ∈ {1, . . . ,m} with q′i(z⃗i) ∈ P;
• Ti(aδ,π, c⃗i) for each i ∈ {1, . . . ,m} with q′i(z⃗i) /∈ P.

Here, the a0, aδ, and aδ,π are constants that do not occur in dom(D). Since D is of constant

size, we can compute D̃ in time polynomial in the size of D. It is now straightforward to
verify that O,D |= q(⃗a) holds iff O, D̃ |= q̃(a0), where q̃(x) is the rAQ

q̃(x)← R(x, y) ∧ S(y, z) ∧
m∧
i=1

(
Ti(z, u⃗i) ∧ q′i(u⃗i)

)
.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:26 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Note that the mapping D 7→ D̃ is a polynomial-time reduction from evaluating q(x⃗) w.r.t.
O to evaluating q̃(x) w.r.t. O. Since the former problem is coNP-hard, we conclude that
evaluating q̃(x) w.r.t. O is coNP-hard. �

The ontology OUCQ/CQ from Example 2.3 shows that Theorem 3.6 does not hold for GF
ontologies, even if they use only a single variable and are of depth 1 up to an outermost
universal quantifier with an equality guard.

Lemma 3.7. CQ-evaluation w.r.t. OUCQ/CQ is in PTime. In contrast, UCQ-evaluation
w.r.t. OUCQ/CQ is coNP-hard.

Sketch. The lower bound essentially follows the construction in the proof of Theorem 3.5.
For the upper bound, fix a CQ q(x⃗), and consider an input instance D and a tuple a⃗ in D.
If D |= q(⃗a), then clearly OUCQ/CQ,D |= q(⃗a). Otherwise, if D ̸|= q(⃗a), then one can show

that OUCQ/CQ,D ̸|= q(⃗a). There are three cases to consider. If ED is nonempty, then D

is a model of OUCQ/CQ that falsifies q(⃗a). If ED is empty, then for each of the two cases
– q contains an atomic formula of the form E(y) or not – we can build a model of D and
OUCQ/CQ that falsifies q(⃗a). �

4 UNRAVELING TOLERANCE

While materializability of an ontology is a necessary condition for PTime query evaluation
in uGF(=) and uGC2(=), we now identify a sufficient condition for Datalog ̸=-rewritability
(and thus also for PTime query evaluation) called unraveling tolerance. Unraveling tolerance
is defined using the disjoint union of all unravelings of an instance at its maximally guarded
sets, as defined in Section 2.4. We shall later establish strong dichotomy results by showing
that for the ontology languages in question, materializability implies unraveling tolerance.
We also identify a large class of unraveling tolerant ontologies by proving that ontologies
whose models are preserved under direct products are unraveling tolerant. It follows, in
particular, that every uGF(=) and uGC2(=) ontology that is expressible in Horn FO(=) is
unraveling tolerant.
Similarly to the unraveling of an interpretation at a maximally guarded set, the global

unraveling of an instance depends on whether we work with uGF(=) or its two variable
fragment with counting.

Definition 4.1 (Global Unraveling of Data Instance). Let D be an instance. The global
uGF-unraveling (resp. global uGC2-unraveling) Du of D is the disjoint union of all uGF-
unravelings (uGC2-unravelings) D

u
G of D at G, G a maximally guarded set in D (for the

uGC2-unraveling, we assume that D only interprets relation symbols of arity at most two).

We use the notation introduced for unravelings when talking about global unravelings. Thus,
for each maximally guarded set G in D we have a cg-tree decomposition (T (D, G), E, bag)
of Du

G where T (D, G) is the set of sequences G0 · · ·Gn of maximally guarded sets in D with
G0 = G and satisfying the Conditions (a)–(c) or (a)–(c’), respectively. T (D) denotes the
union of all T (D, G), G a maximally guarded set in D. We set tail(G0 · · ·Gn) = Gn and
call Gn the tail of G0 · · ·Gn ∈ T (D). For t ∈ T (D), every a ∈ bag(t) is a copy of a unique
a↑ ∈ tail(t).

Definition 4.2 (Unraveling Tolerance). A uGF(=) (resp. uGC2(=)) ontology O is unrav-
eling tolerant if for every instance D, every rAQ q(x⃗), and every tuple a⃗ in D such that
G = [⃗a] is maximally guarded in D the following are equivalent:

(1) O,D |= q(⃗a);

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:27

(2) O,Du |= q(⃗b) where b⃗ is the copy of a⃗ in bag(G)

where Du is the global uGF-unraveling (resp. the global uGC2-unraveling) of D.

We first observe that the only relevant implication in Definition 4.2 is (1) ⇒ (2).

Lemma 4.3. The implication (2) ⇒ (1) in Definition 4.2 holds for every uGF(=) and
uGC2(=) ontology and every rAQ.

Proof. Observe that the mapping h : a 7→ a↑ is a homomorphism from Du to D
(Lemmas 2.10 and 2.11). Thus, if O does not use equality or counting quantifiers, then
the implication (2) ⇒ (1) follows from the fact that certain answers are preserved under
homomorphisms between instances, for any ontology given in FO without equality [15]
(Proposition 5.9). In general, this is not the case, and a different argument is required.
Assume A is a model of D and O such that A ̸|= q(⃗a), where q is an rAQ. We may assume
that A is a forest model (Lemma 2.12). We construct from A a model Au of Du and O such

that (Au, b⃗) and (A, a⃗) are connected guarded bisimilar. It then follows that Au ̸|= q(⃗b) since
q can be regarded as an openGF formula. To construct Au in the uGF(=) case, hook to Du

at every maximally guarded set G a copy of the cg-tree decomposable interpretation AG↑

hooked to D at G↑ = {a↑ | a ∈ G} in the construction of the forest model A by identifying
every a ∈ G with a↑ ∈ G↑. It is straightforward to construct the required connected guarded

bisimulation between (Au, b⃗) and (A, a⃗) by taking the union of the guarded bisimulation
between Du and D and the obvious isomorphisms between the copies of AG↑ hooked to G
and the original AG↑ . This connected guarded bisimulation also shows that Au is a model of
O (it is a model of Du by definition), see Lemma 2.6. The argument for uGC2 is similar
and left to the reader. �

Note that it is pointless to define unraveling tolerance using UCQs or CQs in place of
rAQs since the former query languages can trivially separate database instances from their
(global) unraveling. Conversely, it might seem that rAQs are not sufficiently powerful to
achieve the separation. We use the instance introduced in Example 2.9 to illustrate how
rAQs are used to refute unraveling tolerance.

Example 4.4. Consider the uGF ontology O that contains the sentences

∀x
(
A(x)→ (∃y(R(x, y) ∧A(y))→ E(x))

)
∀x

(
¬A(x)→ (∃y(R(x, y) ∧ ¬A(y))→ E(x))

)
∀x

(
E(x)→ ((R(x, y) ∨R(y, x))→ E(y))

)
.

Assume that D is an instance with A(b) ̸∈ D for any b. Then O,D |= E(a) iff there is a
R ∪ R−1-path from a to some c in an odd R-cycle in D. Thus, for the instance D from
Example 2.9 (1) we have O,D |= E(a) for every a ∈ dom(D), but O,Du ̸|= E(a) for any
a ∈ dom(Du).

We now show that unraveling tolerance implies that query evaluation is Datalog̸=-
rewritable.

Theorem 4.5. If O is an unraveling tolerant uGF(=) or uGC2(=) ontology, then rAQ-
evaluation w.r.t. O is Datalog̸=-rewritable (resp., Datalog-rewritable if O is formulated in
uGF).

Proof. Assume first that O is an unraveling tolerant uGF(=) ontology, and that q(x⃗) is
a rAQ. We discuss how we can decide O,D ̸|= q(⃗a) for a given instance D and tuple a⃗ in

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:28 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

D, and then construct the desired Datalog̸=-rewriting. Without loss of generality, we may
assume that [⃗a] = G is maximally guarded in D, so by unraveling tolerance it suffices to

decide O,Du ̸|= q(⃗b), where Du is the global uGF-unraveling of D and b⃗ is the copy of a⃗
in bag(G). We use the notion of a type from the proof of Theorem 3.6 (see the beginning
of the proof of Claim 2 on p. 22). The key is to determine if we can label each maximally
guarded tuple c⃗ in Du with the type Φc⃗(x⃗c⃗) of c⃗ in a model Ac⃗ of D

u
|[⃗c] and O such that

q(x⃗b⃗) /∈ Φb⃗(x⃗b⃗). Clearly, this is possible if there exists a model A of Du and O that falsifies

q(⃗b), since we can use A as the label of each maximally guarded tuple in Du. Conversely, by
imposing a certain consistency condition on the types of intersecting maximally guarded
tuples, we can ensure that the interpretation obtained from Du by hooking each model Ac⃗
to Du at [⃗c] is a model of Du and O that falsifies q(⃗b).
To decide the existence of a labeling with the above properties, we use the notion of

a type assignment, which is a mapping T that assigns to each maximally guarded tuple
c⃗ = (c1, . . . , cn) in D a non-empty set T (c⃗) of types Φ(x1, . . . , xn) such that:

(1) each type in T (c⃗) is the type of c⃗ in some model of D|[⃗c] and O;
(2) for each maximally guarded tuple c⃗′ in D with [⃗c] ∩ [⃗c′] ̸= ∅ there exists a type Φ′(x⃗′)

in T (c⃗′) such that Φ(c⃗) and Φ′(c⃗′) are consistent.

Here, given a type Φ(x1, . . . , xn) and constants c1, . . . , cn, we denote by Φ(c1, . . . , cn) the
set of all formulas that are obtained from a formula in Φ(x1, . . . , xn) by replacing each free
occurrence of xi by ci, for each i ∈ {1, . . . , n}, where we regard c1, . . . , cn as the free variables
of Φ(c1, . . . , cn). Moreover, types Φ(x⃗) and Ψ(y⃗) are consistent if they agree on all formulas
that contain only the variables in [x⃗] ∩ [y⃗]. It turns out that a type assignment T with the
property that q(x⃗) /∈ Φ(x⃗) for some type Φ(x⃗) ∈ T (⃗a) yields the desired labeling of the

maximally guarded tuples in Du, and thus leads to a decision procedure for O,Du ̸|= q(⃗b).

Claim 1. O,Du ̸|= q(⃗b) iff there exists a type assignment T and a type Φ(x⃗) ∈ T (⃗a) with
q(x⃗) /∈ Φ(x⃗).

Proof. For the ‘only if’ direction, assume O,Du ̸|= q(⃗b). It will be more convenient to work
with the equivalent assumption that O,D ̸|= q(⃗a), so let A be a model of D and O with
A ̸|= q(⃗a). For each maximally guarded tuple c⃗ = (c1, . . . , cn) of D, let Φc⃗(x1, . . . , xn) be the
type of c⃗ in A, and set T (c⃗) = {Φc⃗(x1, . . . , xn)}. Then, T is a type assignment. Furthermore,
q(x1, . . . , x|⃗a|) does not occur in the type Φa⃗(x1, . . . , x|⃗a|) assigned to a⃗.
For the ‘if’ direction, let T be a type assignment such that q(x⃗) /∈ Φ(x⃗) for some type

Φ(x⃗) ∈ T (⃗a). We construct a model A of Du and O with A ̸|= q(⃗b).
We first assign to each maximally guarded tuple c⃗ in Du a type in T (c⃗↑). It suffices to do

this for the maximally guarded tuples corresponding to the bags in the cg-tree decomposition
(T (D, G′), E, bag), for each maximally guarded set G′ in D. Fix a maximally guarded set G′

in D. For each node t in T (D, G′), let c⃗t be a tuple consisting of all constants in bag(t) such

that c⃗t = b⃗ if t is the root G = [⃗a] of (T (D, G), E, bag). We inductively assign to each node

t in T (D, G′) a type Φt(x⃗t) ∈ T (c⃗↑t). If t = G′, then we let Φt(x⃗t) be any type in T (c⃗↑t). If

in addition we have G′ = G, then c⃗↑t = a⃗ and we select Φt(x⃗t) so that q(x⃗t) /∈ Φt(x⃗t). For

the induction step, consider a node in T (D, G′) of the form t′ = tG′′. Since Φt(x⃗t) ∈ T (c⃗↑t)
and [⃗ct] ∩ [⃗ct′] ̸= ∅, there exists a type Φt′(x⃗t′) ∈ T (c⃗↑t′) such that Φt(c⃗t) and Φt′(c⃗t′) are
compatible. We assign this type to t′.
To obtain the desired model of Du and O, we proceed as follows. For each t ∈ T (D),

we pick a model At of D
u
|[⃗ct] and O such that Φt(x⃗t) is the type of c⃗t in At. Without loss

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:29

of generality, we may assume that At has a cg-tree decomposition such that the root’s
bag is exactly [⃗ct]. Furthermore, we may assume that dom(At) ∩ dom(Du) = [⃗ct] for each
node t and dom(At) ∩ dom(At′) = [⃗ct] ∩ [⃗ct′] for every two distinct nodes t, t′. Let A be the
interpretation obtained from Du by hooking At to Du for each node t:

A := Du ∪
⋃

t∈T (D)

At.

It can be shown that A is a model of Du and O with A ̸|= q(⃗b). To prove that A is a model of

O and that A ̸|= q(⃗b), we can use that for all openGF formulas φ(x⃗), for all guarded tuples
c⃗ of A, and for all t ∈ T (D) with [⃗c] ⊆ dom(At) we have A |= φ(c⃗) iff At |= φ(c⃗). The proof
is straightforward by induction on the structure of φ. y

To conclude the proof for the case of uGF(=) ontologies, let us show how the condition in
Claim 1 can be verified by a Datalog̸= program ΠO,q. The idea is to derive the desired type
assignment inductively, starting with a set of all possible types for each guarded tuple in D,
and removing a type Φ(x⃗) from the set of a guarded tuple c⃗ whenever there exists a guarded
tuple c⃗′ with [⃗c] ∩ [⃗c′] ̸= ∅ such that Φ(c⃗) is not consistent with Φ′(c⃗′) for any type Φ′(x⃗′)
in the set for c⃗′. In the Datalog ̸= program, we use relation symbols PT to assign sets T of
types to each guarded tuple in D. The program will assign many such sets to each guarded
tuple c⃗, but there will be an inclusion-minimal one, which we pick as the set assigned to c⃗ in
a type assignment.
For the formal description of the program, let w be the maximum arity of a relation

symbol in O or q, and let k be the number of answer variables of q(x⃗). Fix 2w variables
z1, . . . , z2w. In the description below, u⃗, v⃗ range over tuples consisting of at most w of these
variables, and w⃗ ranges over k-tuples of variables in {z1, . . . , z2w}. The rules of ΠO,q are as
follows:

(1) PT (zi) ← α, where α is an atomic formula that involves only the variable zi, i ∈
{1, . . . , 2w}, and T consists of all types with free variable zi that contain α;

(2) PT (u⃗) ← R(u⃗) ∧ α, where R ∈ sig(O ∪ {q}), α is an atomic formula (possibly an
equality) that involves only variables from u⃗, and T consists of all types with free
variables u⃗ that contain both R(u⃗) and α;

(3) PT U (u⃗)← PT (u⃗)∧PU (v⃗), where T and U are sets of types with free variables u⃗ and
v⃗, respectively, u⃗ and v⃗ share at least one variable, and T U denotes the set of all
types in T that are consistent with some type in U ;

(4) PT∩T ′(u⃗)← PT (u⃗) ∧ PT ′(u⃗), where T, T ′ are sets of types with free variables u⃗;
(5) goal(w⃗) ← PT (u⃗), where T is a set of types with free variables u⃗ such that q(w⃗) is

contained in all types in T ;
(6) goal(w⃗)← P∅(u⃗), where u⃗ and w⃗ do not share any variables.

If equality occurs at a non-guarded position in O (i.e., if O is not formulated in uGF), then
the program also contains the following rule:

(7) PT (u⃗) ← zi ̸= zj , where zi and zj are distinct variables in u⃗, and T consists of all
types with free variables u⃗ that contain ¬(zi = zj).

Note that the above program is technically not a Datalog̸= program, since the bodies of
some rules may contain equality atoms. However, it is not difficult to see that equality atoms
can be eliminated by introducing additional Datalog rules that define the equality predicate.

Using Claim 1, we can now show:

Claim 2. D |= ΠO,q (⃗a) iff O,Du |= q(⃗a).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:30 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Proof. By Claim 1, it suffices to show that D ̸|= ΠO,q (⃗a) iff there exists a type assignment
T and a type Φ(x⃗) ∈ T (⃗a) with q(x⃗) /∈ Φ(x⃗). First assume that D ̸|= ΠO,q (⃗a). Let A be the
unique minimal model of D and ΠO,q. For each guarded tuple c⃗ in D, let T (c⃗) be the unique
inclusion-minimal set of types with free variables z1, . . . , z|⃗c| such that PT (c⃗)(c⃗) ∈ A. Then,
T (c⃗) is non-empty. Since goal(⃗a) /∈ A, there exists a type in T (⃗a) that does not contain
q(z1, . . . , zk). It follows that T leads to the desired type assignment.
For the ‘if’ direction, let T be a type assignment such that q(x⃗) /∈ Φ(x⃗) for some type

Φ(x⃗) ∈ T (⃗a). Without loss of generality, we may assume that T is maximal in the sense that
for every type assignment T ′ we have T ′(c⃗) ⊆ T (c⃗). We rename each variable xi that occurs
free in a type assigned by T to zi, and extend T so that it assigns to each guarded tuple
c⃗ that is properly contained in a maximally guarded tuple c⃗′ the set of all types in T (c⃗′)
restricted to all formulas whose free variables correspond to the constants in c⃗. Now, rules
(1)–(4) and (7) of ΠO,q ensure that for each guarded tuple c⃗ in D the unique minimal model
A of D and ΠO,q contains the fact PT (c⃗)(c⃗). By the choice of T , it follows that goal(⃗a) /∈ A,
and consequently D ̸|= ΠO,q (⃗a). y

Altogether, this concludes the proof for the case that O is a uGF(=) ontology.

The case of ontologies O formulated in uGC2(=) is similar, but requires a bit more care.
In this case, we assume that all relation symbols are at most binary, and Du is the global
uGC2-unraveling of D. As in the case of uGF(=) ontologies, the key is to determine if we
can label the maximally guarded tuples c⃗ of Du with the type Φc⃗(x⃗) of c⃗ in a model of
Du

|[⃗c] and O such that q(x⃗b⃗) /∈ Φb⃗(x⃗b⃗). However, to ensure that we can hook appropriate

interpretations to Du in order to obtain a model of Du and O that falsifies q(⃗b) we need a
stronger consistency condition. The reason is that uGC2(=) allows us to count. In particular,
in uGC2(=) we can count the number of guarded tuples that intersect with a given guarded
tuple c⃗ and satisfy a certain property. It is therefore no longer sufficient to ensure consistency
between pairwise intersecting maximally guarded tuples, but for a given maximally guarded
tuple c⃗ we need to take into account all maximally guarded tuples that intersect with c⃗.

We generalize the definition of a type assignment as follows. A type assignment is a mapping
T that assigns to each maximally guarded tuple (c1, c2) in D a non-empty set T (c1, c2) of
types Φ(x1, x2) for which there exists a model A of O with the following properties:

• D|{c1,c2} ⊆ A and Φ(x1, x2) is the type of (c1, c2) in A;
• for each maximally guarded tuple (c′1, c

′
2) in D with {c1, c2} ∩ {c′1, c′2} ̸= ∅ we have

D|{c′1,c′2} ⊆ A and there exists a type Φ′(x1, x2) in T (c
′
1, c

′
2) such that Φ′(x1, x2) is the

type of (c′1, c
′
2) in A.

As in the case of uGF(=) ontologies, we can now show the following:

Claim 3. O,Du ̸|= q(⃗b) iff there exists a type assignment T and a type Φ(x⃗) ∈ T (⃗a) with
q(x⃗) /∈ Φ(x⃗).

Proof. The ‘only if’ direction is exactly as in Claim 1. For the ‘if’ direction, let T be a type
assignment such that q(x⃗) /∈ Φ(x⃗) for some type Φ(x⃗) ∈ T (⃗a). We are going to construct a

model A of Du and O with A ̸|= q(⃗b).
We start as in Claim 1 and assign to each maximally guarded tuple c⃗ in Du a type in T (c⃗↑).

This is slightly different from how it was done in Claim 1 due to the different consistency
criterion for types used in the definition of a type assignment. If G′ is a maximally guarded
set in D and t ∈ T (D, G′), let c⃗t is a tuple consisting of all constants in bag(t) such that

c⃗t = b⃗ if t is the root G = [⃗a] of (T (D, G), E, bag). Fix a maximally guarded set G′ in D. We

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:31

inductively assign to each node t in T (D, G′) a type Φt(x⃗t) ∈ T (c⃗↑t). If t = G′, then we let

Φt(x⃗t) be any type in T (c⃗↑t). If in addition we have G′ = G, then c⃗↑t = a⃗ and we select Φt(x⃗t)
so that q(x⃗t) /∈ Φt(x⃗t). For the induction step, consider a node t ∈ T (D, G′) and all successor

nodes ti = tGi, i ∈ {1, . . . , k}, of t in T (D, G′). Since Φt(x⃗t) ∈ T (c⃗↑t) and [⃗ct] ∩ [⃗cti] ̸= ∅ for
each i ∈ {1, . . . , k}, there exists a model A of O with the following properties:

• Du
|[⃗ct] ⊆ A and Φ(x⃗t) is the type of c⃗t in A;

• for each i ∈ {1, . . . , k} we have Du
|[⃗cti]

⊆ A and there is a type Φi(x⃗ti) in T (c⃗
↑
ti) such

that Φi(x⃗ti) is the type of c⃗ti in A.

We assign to each of the nodes ti, i ∈ {1, . . . , k} the type Φi(x⃗i). We also assign to t the
model At := A. In the following, we will assume that dom(Du)∩ dom(At) consists of exactly
the constants in [⃗ct] ∪ [⃗ct1] ∪ · · · ∪ [⃗ctk]. This concludes the induction step.

We are now ready to construct a model B of Du and O with B ̸|= q(⃗b). Let B0 be the
union of all interpretations At|dom(Du), for t ∈ T (D). By the choice of the types Φt(x⃗t) and
the interpretations At, the interpretation B0 contains Du and agrees with At on all facts
that involve only constants in dom(At) ∩ dom(Du). We now obtain B from B0 by hooking
appropriate interpretations Bc to each constant c ∈ dom(Du). To define Bc, fix any node
t ∈ T (D) with c ∈ bag(t). We will extract Bc from At as follows. Take a maximally guarded
set G′ of At with dom(G′)∩ dom(Du) = {c}, and construct an interpretation BG′ along the
lines of the proof of Lemma 2.12. To this end, start with the uGC2-unraveling of At at G

′,
but then keep only the portion of this unraveling that is defined by the nodes G0G1 · · ·Gn
in T (At, G

′) with dom(G1) ∩ dom(Du) = ∅. The interpretation Bc is obtained from the
disjoint union of all interpretations BG′ , where G′ is a maximally guarded set of At with
dom(G′) ∩ dom(Du) = {c}, by identifying the copy of c in the root bag of each BG′ with c.
It can now be shown that

B := B0 ∪
⋃

c∈dom(Du)

Bc

is a model of Du and O with B ̸|= q(⃗b). y

It remains to construct the Datalog ̸= program ΠO,q. We follow a similar strategy as in the
case of uGF(=) ontologies, namely that we derive the desired type assignment inductively,
starting with a set of all possible types for each guarded tuple in D, and removing a type
from the set of a guarded tuple c⃗ whenever it is not consistent with types from the sets
of the guarded tuples in D that intersect with c⃗. Since the number of guarded tuples in
D that intersect a given guarded tuple in D may be unbounded, a Datalog̸= program
cannot implement this strategy directly. We will exploit the fact that in order to establish
consistency of a type for c⃗ it suffices to inspect a bounded number of guarded tuples that
intersect with c⃗, where the bound depends only on O and q. More precisely, let τ be one
plus the number of non-equivalent types with at most two free variables, and let N be the
largest integer such that a formula of the form ∃≥Nxφ occurs in cl(O, q), or 1 if there is
no such formula in cl(O, q). Then the number of intersecting guarded tuples that have to
be considered in order to establish consistency is at most Nτ2τ . In what follows, we first
exploit this fact to construct the Datalog ̸= program ΠO,q, and then prove that ΠO,q has the
intended effect.

Fix variables z1, z2, z3, . . . , zm, wherem := Nτ2τ+2. In the description below, u⃗0, u⃗1, . . . , u⃗Nτ2τ

range over tuples consisting of at most two of these variables, and w⃗ ranges over k-
tuples of variables in {z1, . . . , zm}, where k ≤ 2 is the number of answer variables of
q. Given a type Φ0(x⃗0) and sets T1, . . . , Tℓ of types with free variables x⃗1, . . . , x⃗ℓ, we write

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:32 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Φ0(x⃗0) T1, . . . , Tℓ if there is a model A of O and an assignment π : [x⃗0]∪· · ·∪[x⃗ℓ]→ dom(A)
with the following properties:

• Φ(x⃗0) is the type of π(x⃗0) in A;
• for each i ∈ {1, . . . , ℓ} there is a type Φi(x⃗i) in Ti such that Φi(x⃗i) is the type of π(x⃗i)
in A.

The rules of ΠO,q are as follows:

(1) PT (zi) ← α, where α is an atomic formula that involves only the variable zi, i ∈
{1, . . . ,m}, and T consists of all types with free variable zi that contain α;

(2) PT (u⃗0) ← R(u⃗0) ∧ α, where R ∈ sig(O ∪ {q}), α is an atomic formula (possibly an
equality) that involves only variables from u⃗0, and T consists of all types with free
variables u⃗0 that contain both R(u⃗0) and α;

(3) PT (u⃗0)← zi ≠ zj , where zi and zj are distinct variables in u⃗0, and T consists of all
types with free variables u⃗0 that contain ¬(zi = zj);

(4) PV (u⃗0) ←
∧ℓ
i=0 PTi

(u⃗i), where ℓ ≤ Nτ2τ , Ti is a set of types with free variables u⃗i,
the tuples u⃗0 and u⃗i share a variable, for each i ≤ ℓ, and V is the set of all types
Φ0(u⃗0) in T0 such that Φ0(u⃗0) T1, . . . , Tℓ;

(5) PT∩T ′(u⃗0)← PT (u⃗0) ∧ PT ′(u⃗0), where T, T
′ are sets of types with free variables u⃗0;

(6) goal(w⃗)← PT (u⃗0), where T is a set of types with free variables u⃗0 such that q(w⃗) is
contained in all types in T ;

(7) goal(w⃗)← P∅(u⃗0), where u⃗0 and w⃗ do not share any variables.

We can now show:

Claim 4. D |= ΠO,q (⃗a) iff O,D |= q(⃗a).

Proof. By Claim 3, it suffices to show that D ̸|= ΠO,q (⃗a) iff there exists a type assignment
T and a type Φ(x⃗) ∈ T (⃗a) with q(x⃗) /∈ Φ(x⃗). The ‘if’ direction is exactly as in Claim 2, so
we focus on the ‘only if’ direction.

Assume that D ̸|= ΠO,q (⃗a). Let A be the unique minimal model of D and ΠO,q. For
each guarded tuple c⃗ in D, let T (c⃗) be the unique inclusion-minimal set of types with free
variables z1 or (z1, z2) such that PT (c⃗)(c⃗) ∈ A. Then, T (c⃗) is non-empty. We now show that
T is a type assignment.

Consider a maximally guarded tuple c⃗0 in D and a type Φc⃗0(x⃗c⃗0) in T (c⃗0). Let C be the
set of all maximally guarded tuples c⃗ ̸= c⃗0 in D that have a non-empty intersection with
c⃗0. For each pair c⃗, c⃗′ of tuples in C define c⃗ ∼ c⃗′ iff T (c⃗) = T (c⃗), and let C1, . . . , Cs be the
equivalence classes w.r.t. ∼. Then, s ≤ 2τ . For each i ∈ {1, . . . , s}, pick a subset C ′

i of Ci of
size min{|Ci|, Nτ}. Let c⃗1, . . . , c⃗ℓ be an enumeration of the tuples in C ′

1 ∪ · · · ∪ C ′
s. Then,

ℓ ≤ Nτ2τ . By construction of ΠO,q, we have Φc⃗0(x⃗c⃗0) T1(c⃗1), . . . , Tℓ(c⃗ℓ), which implies
that there exists a model B of O such that:

• Φc⃗0(x⃗c⃗0) is the type of c⃗0 in B;
• for each i ∈ {1, . . . , ℓ} there is a type Φc⃗i(x⃗c⃗i) in T (c⃗i) such that Φc⃗i(x⃗c⃗i) is the type
of c⃗i in B.

The first three rules of the program ensure that each Φc⃗i(x⃗c⃗i) contains information about
all atomic formulas and inequalities that are true about c⃗i in D|[⃗ci], so the fact that Φc⃗i(x⃗c⃗i)
is the type of c⃗i in B also implies D|[⃗ci] ⊆ B.

Finally, consider any tuple c⃗ ∈ Ci\C ′
i. Note that |C ′

i| = Nτ , so there is a type Φc⃗(x⃗c⃗) ∈ T (c⃗)
that is assigned to at least N of the tuples in C ′

i. Fix such a type for each tuple c⃗ ∈ Ci \ C ′
i

and each i ∈ {1, . . . , s}. By the choice of N , we can transform B into a model B′ such that:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:33

• D|[⃗c0] ⊆ B′ and Φc⃗0(x⃗c⃗0) is the type of c⃗0 in B′;
• for each c⃗ ∈ C we have D|[⃗c] ⊆ B′ and there is a type Φc⃗(x⃗c⃗) in T (c⃗) such that Φc⃗(x⃗c⃗)
is the type of c⃗ in B′.

This implies that the restriction of T to the maximally guarded tuples in D is a type
assignment. Moreover, since goal(⃗a) /∈ A, there exists a type in T (⃗a) that does not contain
q(z⃗). y

Altogether, this concludes the proof of the theorem. �

We next show that ontologies whose models are preserved under direct products are
unraveling tolerant. This covers all ontologies in uGF(=) and uGC2(=) that can be expressed
in Horn FO(=) [27] and all so-called Horn description logics, syntactically defined fragments
of expressive DLs that enjoy PTime query evaluation and that fall within Horn FO(=), see
for example [32, 48, 59].
The direct product A =

∏
i∈I Ai of a family Ai, i ∈ I, of interpretations is defined by

setting

dom(A) = {f : I →
⋃

dom(Ai) | ∀i ∈ I : f(i) ∈ dom(Ai)}
A = {R(f1, . . . , fk) | ∀i ∈ I : R(f1(i), . . . , fk(i)) ∈ Ai}

We regard the functions f ∈ dom(A) as constants and identify the constant function fa
mapping every i ∈ I to a ∈

⋂
i∈I dom(Ai) with the constant a. An ontology O is preserved

under direct products if
∏
i∈I Ai is a model of O whenever Ai, i ∈ I, is a family of models

of O. We show that if O is either a uGF(=) or uGC2(=) ontology preserved under direct
products, then O is unraveling tolerant. First we introduce a natural equivalence relation
and automorphisms on the global unraveling Du of an instance D.
Let D be an instance. Define equivalence relations ∼ on T (D) and ∼u on Du by setting

t ∼ t′ if tail(t) = tail(t′) and a ∼u b if a↑ = b↑, respectively. For any t, t′ ∈ T (D) with
t ∼ t′ the mapping ht,t′ that sends every a ∈ bag(t) to the unique b ∈ bag(t′) with a ∼u b
is an isomorphism from D|bag(t) to D|bag(t′), called the canonical isomorphism. Using the
Conditions (a)–(c) from the construction of (T (D), E) one can readily show that for any
t, t′ ∈ T (D) with t ∼ t′ there is an automorphism it,t′ of (T (D), E) such that it,t′(t) = t′

and it,t′(s) ∼ s for every s ∈ T (D). it,t′ is uniquely determined by t and t′ on the connected

component T (D, G) of t in T (D) and induces the mapping ĥt,t′ from Du into Du defined by

setting ĥt,t′ =
⋃
s∈T (D) hs,it,t′ (s).

Lemma 4.6. Let t, t′ ∈ T (D) such that t ∼ t′. Then ĥt,t′ is an automorphism of Du.

Call ĥt,t′ the canonical automorphism of Du induced by t, t′. Lemma 4.6 shall be a
fundamental tool for the constructions in Section 5. We apply it here to prove the announced
result that preservation under direct products implies unraveling tolerance.

Theorem 4.7. Let O be a uGF(=) or uGC2(=) ontology preserved under direct products.
Then O is unraveling tolerant.

Proof. Let D be an instance, G0 a maximally guarded set in D, and assume that [⃗a] = G0,

b⃗ is a copy of a⃗ in bag(G0), and that O,Du ̸|= q(⃗b) for an rAQ q(x⃗). We have to show that
O,D ̸|= q(⃗a). Let Ai, i ∈ I, be the family of at most countable forest models of O and D
(up to isomorphisms). Then A∗ =

∏
i∈I Ai is a model of O and D (recall that we identify

for every a ∈ dom(Du) the constant function fa mapping all i ∈ I to f(i) = a with a).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:34 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Moreover, A∗ ̸|= q(⃗b) since there exists i ∈ I such that Ai ̸|= q(⃗b) (and the projection is a
homomorphism from A∗ to Ai). Next observe that for any t, t′ ∈ T (D) such that t ∼ t′, the
automorphism ĥt,t′ of D

u from Lemma 4.6 can be lifted to an automorphism hIt,t′ of A
∗. In

particular, for any t, t′ with t ∼ t′ there is an isomorphism from the interpretation hooked
to Du at bag(t) in A∗ onto the interpretation hooked to Du at bag(t′) in A∗ mapping every
a ∈ bag(t) to the unique a′ with a ∼u a′ in bag(t′).
Assume first that O is a uGF(=) ontology. Define a model A of D by taking for every

maximally guarded G in D a maximally guarded G′ in Du with G′↑ = G and hooking to D
at G a copy of the interpretation A∗

G′ hooked to Du in A∗ at G′ by identifying every a ∈ G′

with a↑ ∈ G. Assume [e⃗] = G′. Using Lemma 2.10 and the automorphisms hIt,t′ of A
∗ one

can readily check that there is a connected guarded bisimulation between (A∗, e⃗) and (A, e⃗↑).
Thus, by Lemma 2.6, A is a model of O. Moreover, as we can regard every rAQ as a formula
in openGF, we also have A ̸|= q(⃗a).

Assume now O is a uGC2(=) ontology. Define a model A of D by hooking to D at every
c↑ ∈ dom(D) a copy of the interpretation Ac hooked to Du in A∗ at c by identifying c with

c↑. In addition, add {R(c↑1, c
↑
2) | R(c1, c2) ∈ A∗

|dom(Du)} to D. Using Lemma 2.11 and the

automorphisms hIt,t′ of A
∗ one can check that for every maximally guarded G′ in Du and e⃗

with [e⃗] = G′ there is a counting connected guarded bisimulation between (A∗, e⃗) and (A, e⃗↑).
Thus, by Lemma 2.7, A is a model of O. As we can regard q as a formula in openGF, we
also have A ̸|= q(⃗a). �

5 STRONG DICHOTOMIES

We prove dichotomies between Datalog ̸=-rewritability and coNP-hardness of query eval-
uation in the five ontology languages displayed in the bottommost row of Figure 1. This
also implies that, unless PTime = NP, Datalog̸=-rewritability coincides with PTime query
evaluation. The proof consists of showing that in the ontology languages under consideration,
materializability implies unraveling tolerance. It follows that PTime query evaluation also
coincides with unraveling tolerance and with materializability (again unless PTime = NP).
Let D be an instance. In what follows we make intense use of Lemma 4.6. In particular,

we use the following straightforward consequence.

Lemma 5.1. Let t, t′ ∈ T (D), t ∼ t′, and let O be an FO(=) ontology. Then the following
hold.

(1) If [⃗a] ⊆ bag(t), then O,Du |= q(⃗a) iff O,Du |= q(ht,t′ (⃗a)) holds for all rAQs q(x⃗);

(2) If A is a materialization of O and Du, then ĥt,t′ is an automorphism of A|dom(Du).

In fact, Point (1) of Lemma 5.1 is an immediate consequence of Lemma 4.6 and Point (2)
is a consequence of Point (1) by the definition of materializations and since every fact in
A|dom(Du) \Du can be viewed as an answer to a rAQ.

We now establish the main result of this section. In anticipation of the decidability results
to be proved in Section 9, we actually state it in a form that is slightly stronger than
announced: already when O is materializable for the class of (possibly infinite) cg-tree
decomposable instances with sig(D) ⊆ sig(O), it must be unraveling tolerant. It can be
established by an easy compactness argument that materializability implies materializability
for the mentioned class of instances, even within full FO(=), so we also obtain the result
announced originally.

Theorem 5.2. Let O be an ontology formulated in one of uGF(1), uGF−(1,=), uGF−
2 (2),

uGC−
2 (1,=), or an ALCHIF ontology of depth 2. If O is materializable for the class

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:35

of (possibly infinite) cg-tree decomposable instances D with sig(D) ⊆ sig(O), then O is
unraveling tolerant.

Proof. We first observe that if O is materializable for the class of cg-tree decomposable
instances D with sig(D) ⊆ sig(O), then it is materializable for the class of all cg-tree
decomposable instances without any signature restrictions. To show this, assume that the
former holds and let D be an arbitrary cg-tree decomposable instance consistent w.r.t. O. Let
red(Du) be the sig(O)-reduct of D. As O is invariant under disjoint unions and materializable
for the class of cg-tree decomposable instances D with sig(D) ⊆ sig(O) there exists a
materialization Bred of red(Du). Clearly {R | R(⃗a) ∈ Bred} ⊆ sig(O). Now let

B = Bred ∪ {R(⃗a) ∈ Du | R ̸∈ sig(O)}
One can show that B is a materialization of Du and O. This finishes the proof of the
observation.

We start the proof with ontologies in uGC−
2 (1,=) and uGF−(1,=). For these languages

the proof is easier than in the remaining cases. First let O be an ontology in uGC−
2 (1,=)

and let D be an instance interpreting relation symbols of arity at most two. Let Du be

the global uGC2-unraveling of D. Let G0 be a maximal guarded set in D, [⃗a] = G0, b⃗ the

copy of a⃗ in bag(G0), and q0 an rAQ. Assume that O,Du ̸|= q0(⃗b). We aim to show that
O,D ̸|= q0(⃗a).

By the observation above, there exists a materialization Bu of Du. We may assume that
Bu is a forest model. Take for any c ∈ dom(Du) the cg-tree decomposable interpretation
Bc hooked to Du at c. In particular, dom(Du) ∩ dom(Bc) = {c}. Fix for every equivalence
class {d | c ∼u d} in Du a c∗ ∼u c. We define a model B of D by

• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bc∗ hooked to

Du at c∗ in Bu (we assume dom(D) ∩ dom(Bc↑

c∗) = {c↑}) and
• adding the atoms {R(c↑1, c

↑
2) | R(c1, c2) ∈ Bu

|dom(Du)}.
We show that B is a model of O and D such that B ̸|= q0(⃗a), as required. For the proof
we uniformize Bu. Define B∗ by hooking to Du at c a copy Bc

c∗ of the interpretation Bc∗

hooked to Du at c∗ in Bu, for every c ∈ dom(Du), and adding B|dom(Du). We assume
dom(Du) ∩ dom(Bc

c∗) = {c}. We show that B∗ is also a materialization of O and Du. By
Lemma 5.1, B∗ |= q(⃗a) iff Bu |= q(⃗a) holds for all guarded a⃗ in Du and all rAQs q. It
remains to prove that B∗ is a model of O. For this to hold, the restriction to sentences in
uGC−

2 (1,=) is crucial. Let ϕ ∈ O. Then ϕ is of the form ∀x(x = x→ ψ(x)), where ψ(x) is a
formula of depth 1 in openGC2. Consider a ∈ dom(B∗). We have to show that B∗ |= ψ(a).
We distinguish two cases:

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). Let a′ be the element corresponding

to a in Bc∗ . As ψ has depth 1 and the interpretations Bu
|{c} and Bu

|{c∗} are isomorphic by

Lemma 5.1, we have the following equivalences:

B∗ |= ψ(a) ⇔ Bc
c∗ |= ψ(a) ⇔ Bc∗ |= ψ(a′) ⇔ Bu |= ψ(a′)

and the claim follows from the assumption that Bu is a model of O.
Case 2. a ∈ dom(Du). Let N(c) = {c} ∪ {d | R(c, d) ∈ Du or R(d, c) ∈ Du}, for any
c ∈ dom(Du). By Lemma 5.1, the interpretations Bu

|N(c) and Bu
|N(c∗) are isomorphic for

every c ∈ dom(Du). Thus, as ψ has depth 1:

B∗ |= ψ(a) ⇔ B∗
|N(a) ∪Ba

a∗ |= ψ(a) ⇔ Bu
|N(a∗) ∪Ba∗ |= ψ(a∗) ⇔ Bu |= ψ(a∗)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:36 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

and the claim follows from the assumption that Bu is a model of O.

We have shown that B∗ is a materialization of O and Du. Thus B∗ ̸|= q0(⃗b). Now let I be
the union of the set of partial isomorphisms between Du and D from Lemma 2.11 and the
partial isomorphisms between guarded sets induced by the obvious isomorphisms between

Bc
c∗ , c ∈ Du, and the copy of Bc↑

c∗ hooked to D at c↑ in B. I is a counting connected guarded

bisimulation between B∗ and B. Thus, by Lemma 2.11, B is a model of O. Also (B∗, b⃗) and

(B, a⃗) are connected guarded bisimilar and so B ̸|= q0(⃗a) since B∗ ̸|= q0(⃗b), by Lemma 2.11
and since q can be regarded as a formula in openGF2. We have shown that O,D ̸|= q0(⃗a), as
required.

Now assume that O is an ontology in uGF−(1,=). The proof is similar to the previous
proof and we only give a sketch. Let D be an instance and Du its global uGF-unraveling.
Let Bu be a materialization of O and Du. We may assume that Bu is a forest model. Define
a model B of D by

• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bu by identifying

c↑ and c∗ (we assume dom(D) ∩ dom(Bc↑

c∗) = {c↑}) and
• adding the atoms {R(c⃗↑) | R(c⃗) ∈ Bu

|dom(Du)}.
As in the previous case, it suffices to show that B is a model of O and D which is connected
guarded bisimilar (for the appropriate tuples) to a materialization B∗ of O and Du. Define
B∗ by hooking to Du at every c ∈ Du a copy Bc

c∗ of Bu by identifying c and c∗ and adding
Bu

|dom(Du). We assume dom(Du) ∩ dom(Bc
c∗) = {c}. We show that B∗ is a materialization

of O and Du . First, by Lemma 5.1, B∗ |= q(⃗a) iff Bu |= q(⃗a) for all a⃗ ∈ dom(Du) and
rAQs q(x⃗). It remains to show that B∗ is a model of O. Again it is crucial that O is an
ontology in uGF−(1,=). Let ϕ ∈ O. Then ϕ is of the form ∀x(x = x→ ψ(x)), where ψ(x) is
a formula of depth 1 in openGF. Consider a ∈ dom(B∗). We have to show that B∗ |= ψ(a).
We distinguish two cases:

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). This case is considered in exactly the

same way as Case 1 for ontologies in uGC−
2 (1,=).

Case 2. a ∈ dom(Du). Denote for c ∈ dom(Du) by N(c) the set of all d ∈ dom(Du) such
that there exists a guarded set G in Du with c, d ∈ G. By Lemma 5.1, the interpretations
Bu

|N(c) and Bu
|N(c∗) are isomorphic for every c ∈ dom(Du). Now the argument is exactly the

same as in Case 2 for ontologies in uGC−
2 (1,=).

We have shown that B∗ is a materialization of O and Du. The required connected guarded
bisimulation between B∗ and B is obtained by taking the set of partial isomorphisms
between Du and D from Lemma 2.10 and adding the induced partial isomorphisms between

guarded sets from the obvious isomorphisms between Bc
c∗ , c ∈ Du, and the Bc↑

c∗ hooked to
c↑ in B.

The proof given above does not work for the remaining fragments. The reason is that the
model B∗ defined above by hooking to Du at c certain cg-tree decomposable Bc∗ obtained
from Bu is not guaranteed to be a model of O, and so B is not guaranteed to be a model of
O either. The following examples illustrates the situation.

Example 5.3. Let O contain

∀x∃y(S(x, y)∧A(y)), ∀x, y(R(x, y)→ (ϕ(x)→ ϕ(y)), where ϕ(x) = ∃z(S(x, z) ∧ ¬A(z)).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:37

Thus, in every model A of O each node has an S-successor in A and having an S-successor
b with A(b) ̸∈ A is propagated along R. O is unraveling tolerant. Consider the instance D
from Example 2.9 (1) depicted here again with the maximally guarded sets G1, G2, G3.

G1

G2

G3

A A A A

¬A ¬A ¬A ¬A

G1

A A A A

¬A ¬A

G2

A A A A
G3

D

Bu

We have seen that the uGC2-unraveling Du
Gi

of D at Gi consists of a single chain. The
global unraveling Du of D thus consists of three chains. An example of a forest model Bu of
O and Du is given on the right hand side of the figure. When we now choose c∗ ∈ {b | c ∼u b}
arbitrarily when constructing B∗, then it is not guaranteed that we obtain a model in which
the propagation condition for the existence of S-successors b with A(b) ̸∈ B∗ holds.

For the remaining fragments we therefore

• expand Du to a new cg-tree decomposable instance Du+ by adding entailed rAQs to
Du; in the example above every a ∈ Du now has an S-successor b with A(b) ̸∈ Du+;
• take a materialization Bu+ of O and Du+ and define the model B of O and D by
hooking to D appropriate cg-tree decomposable interpretations hooked to Du in Bu+;
• prove that B is a model of O with B ̸|= q0(⃗a) by constructing an appropriate guarded
bisimulation from a uniformization Bu∗ of Bu+.

Thus, the main difference to the proof above is that we first expand Du to a new instance
Du+ and then work with a materialization of Du+ instead of Du. For this to work it is
crucial that any materialization of Du+ is a materialization of Du as well, and therefore
O,Du |= q(⃗a) iff O,Du+ |= q(⃗a) for all tuples a⃗ in Du and all rAQs q(x⃗). For uGF(1) and
uGF−

2 (2) this will follow directly from the observation that they are fragments of FO without
equality and thus answers to CQs are preserved under homomorphisms of instances [15].
For ALCHIF this preservation result does not hold and a more careful construction of Du+

is needed to ensure this property.
Let D be an instance and Du its global uGF unraveling. Let a⃗ be a tuple with [⃗a] = G0

maximally guarded in D and let b⃗ be the copy in bag(G0) of a⃗. Further let q0 be an rAQ such

that O,Du ̸|= q0(⃗b). We show that O,D ̸|= q0(⃗a). We first hook to Du at any bag(t) with
t ∈ T (D) a copy of any rAQ entailed by O and Du at bag(t). In detail, let Dt be the union
of all canonical instances Dq (⃗a), where q is an rAQ, [⃗a] ⊆ bag(t), O,Du |= q(⃗a), and where

we assume that dom(Dq (⃗a)) ∩ dom(Du) = [⃗a] and dom(Dq (⃗a)) ∩ dom(Dq′ (⃗a
′)) = [⃗a] ∩ [a⃗′]

for Dq (⃗a) ̸= Dq′ (⃗a
′). Then let Du+ = Du ∪

⋃
t∈T (D) Dt. The following properties of Du+

follow directly from the definition and Lemma 4.6.

(a) For any t, t′ ∈ T (D) with t ∼ t′ there is an isomorphism from Dt onto Dt′ that extends
the canonical isomorphism ht,t′ from bag(t) to bag(t′), and an automorphism h+t,t′ of

Du+ that extends the canonical automorphism ĥt,t′ of D
u.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:38 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(b) there is a homomorphism from Du+ to any materialization of O and Du preserving
dom(Du). Thus, if O is given in FO without equality then by, preservation of cer-
tain answers under homomorphisms between instances ([15], Proposition 5.9), any
materialization of Du+ is a materialization of Du and for every rAQ q(x⃗) and a⃗ in Du:

O,Du+ |= q(⃗a) ⇔ O,Du |= q(⃗a)

As Du+ is cg-tree decomposable, there is a materialization Bu+ of O and Du+ which is a
forest model of O and Du+. Thus, Bu+ is obtained from Du by hooking to Du at every
bag(t), t ∈ T (D), a cg-tree decomposable model Bu+

t of Dt. Observe that we obtain from
Point (a):

(c) For any t, t′ ∈ T (D) with t ∼ t′, the mapping h+t,t′ is an automorphism of Bu+
|Du+ and

its restriction to dom(Dt) is an isomorphism from Bu+
|dom(Dt)

onto Bu+
|dom(Dt′)

.

The following result states that every finite subinterpretation of Bu+
t exists already in

Bu+
|dom(Dt)

(up to renaming).

(d) Let t ∈ T (D). For any finite subinterpretation A of Bu+
t there exists an isomorphic

embedding of A into Bu+
|dom(Dt)

preserving bag(t).

To prove (d), we may assume that A is connected and dom(A) ∩ dom(Bu+
t) = bag(t). By

Point (b), there is an isomorphism between A and some Dq (⃗a) from the construction of
Dt preserving bag(t). Fix Dq (⃗a). It remains to be proved that there does not exist any

R(⃗b) with [⃗b] ⊆ dom(Dq (⃗a)) such that R(⃗b) ∈ Bu+ \Dq (⃗a). But using the fact that A is
a subinterpretation of the model Bu+ of O and Du+ isomorphic to Dq (⃗a) one can easily

construct a model of Du+ and O that contains no R(⃗b) ̸∈ Dq (⃗a) with [⃗b] ⊆ dom(Dq (⃗a)).

Thus, as Bu+ is a materialization of O and Du+, Bu+ contains no such R(⃗b). This finishes
the proof of (d). In what follows we require the following consequence of Points (c) and (d):

(e) For all t, t′ ∈ T (D) with t ∼ t′ and all guarded tuples a⃗ in Bu+
t there exists a guarded

tuple b⃗ in Bu+
|dom(Dt′)

and mapping p : a⃗ 7→ b⃗ which coincides with ht,t′ on bag(t) such

that p is an isomorphism from Bu+
|[⃗a] to Bu+

|[⃗b]
.

The next steps depend on whether we consider ontologies in uGF(1) or uGF−
2 (2). We start

with the former case. Fix for every equivalence class {t′ | t ∼ t′} a t∗ ∼ t. Define a model B
of D by hooking to D at every bag(t)↑ in D a copy of the interpretation Bu+

t∗ by identifying
every a ∈ bag(t∗) with a↑. To show that B is a model of O and B ̸|= q0(⃗a) we uniformize
Bu+ as before and then take an appropriate connected guarded bisimulation between the
uniformization and B. Define Bu∗ by hooking to Du at every bag(t), t ∈ T (D), a copy Bu∗

t

of the interpretation Bu+
t∗ by identifying every a ∈ bag(t) with the unique a′ ∈ bag(t∗) with

a ∼u a′. We show that Bu∗ is a materialization of D and O. Denote for a ∈ dom(Bu∗
t) by

a′ the corresponding element of Bu+
t∗ (thus, for a ∈ bag(t) we have a ∼u a′). We show that

Bu∗ is a model of O. Then Bu∗ is a materialization of O and Du since it is a model of Du

and since the construction of Bu∗ from Bu+ preserves answers to rAQs. Consider a sentence
ϕ ∈ O. Then ϕ = ∀y⃗(R(y⃗)→ ψ(y⃗)), where ψ(y⃗) is a formula in openGF of depth one. We
show that Bu∗ |= ϕ. Let Bu∗ |= R(⃗a) for some tuple a⃗ = (a1, . . . , ak) in dom(Bu∗). Then
[⃗a] ⊆ dom(Bu∗

t) for some t ∈ T (D). Bu∗ |= ϕ follows from Bu+ |= ϕ if we can show that
Bu∗ |= ψ(⃗a) iff Bu+ |= ψ(⃗a′) where a⃗′ = (a′1, . . . , a

′
k).

To show that Bu∗ |= ψ(⃗a) iff Bu+ |= ψ(⃗a′) it suffices to constructed a connected depth 1

guarded bisimulation between (Bu∗, a⃗) and (Bu+, a⃗′); i.e., to prove that for any guarded b⃗

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:39

in Bu∗ with [⃗b]∩ [⃗a] ̸= ∅ there exists a guarded c⃗ in Bu+ with [⃗c]∩ [⃗a′] ̸= ∅ such that there is

a partial isomorphism p : b⃗ 7→ c⃗ with p(a) = a′ for all a ∈ [⃗b] ∩ [⃗a] and vice versa. We prove

the first direction, the converse is similar. Consider a guarded b⃗ in Bu∗ with [⃗b] ∩ [⃗a] ̸= ∅.
We distinguish two cases cases.

Case 1. [⃗b] ∩ dom(Bu∗
t) \ bag(t)) ̸= ∅. Then [⃗b] ⊆ dom(Bu∗

t) and the claim follows directly

from the fact that Bu∗
t is a copy of Bu+

t∗ (c⃗ = b⃗′ is as required).

Case 2. [⃗b] ∩ dom(Bu∗
t) \ bag(t)) = ∅. There exists t′ ∈ T (D) (possibly t′ ̸= t) such that

[⃗b] ⊆ dom(Bu∗
t′). By (e), there is a guarded e⃗ in Bu+

|dom(Dt′)
and a mapping p : b⃗ 7→ e⃗ which

is the identity on bag(t′) ∩ [⃗b] such that p is an isomorphism from Bu∗
|[⃗b]

to Bu+
|[e⃗]. Then

c⃗ = h+t,t∗(e⃗) is as required.

We have shown that Bu∗ is a materialization of O and Du. One can now construct in the
same way as before a connected guarded bisimulation between B∗ and B showing that B is
a model of O and B ̸|= q0(⃗a).

Now let O be in uGF−
2 (2) and let Du be the global GC2-unraveling of D. Assume that

Du+ and Bu+ are defined as above. The construction of the model B of O and D is very
similar to the uGC−

2 (1,=) case except that we now use the model Bu+ instead of Bu to
construct B. Thus, we define B by

• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bc∗ hooked to
Du at c∗ in Bu+ and
• adding the atoms {R(c↑1, c

↑
2) | R(c1, c2) ∈ Bu+

|dom(Du)}.
To prove that B is a model of O and D such that B ̸|= q0(⃗a), we uniformize Bu+, as before:
define Bu∗ by hooking to Du at c a copy Bc

c∗ of the model Bc∗ hooked to Du at c∗ in
Bu+, for every c ∈ dom(Du) and adding B|dom(Du). It can be shown as before that Bu∗ is a
materialization of O and Du and can be used show that B is a model of D with B ̸|= q0(⃗a)
if we can show that Bu∗ is a model of O. So we focus on showing that B∗ is a model of O.
Let ϕ ∈ O. Then ϕ = ∀x(x = x → ψ(x)) for a formula ψ(x) of depth 2 in openGF2. Let
a ∈ dom(Bu∗). We have to show that Bu∗ |= ψ(a). To prove this let for any a ∈ dom(Du),
N(a) = {a} ∪ {b | R(a, b) ∈ Bu+ or R(b, a) ∈ Bu+}. Then (e) implies for all a ∈ dom(Du):

(e’) there is an isomorphism p from Bu+
|N(a) to Bu+

|N(a∗) mapping any b ∈ N(a) ∩ dom(Du)

to p(b) ∈ dom(Du) such that p(b) ∼u b.
We now distinguish two cases.

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). Let a′ be the element corresponding to

a in Bc∗ . As ψ has depth 2 and by (e’), Bu∗ |= ψ(a) iff Bu+ |= ψ(a′) and the claim follows
from the assumption that Bu+ is a model of O.
Case 2. a ∈ dom(Du). As ψ has depth 2 and by (e’), Bu∗ |= ψ(a) iff Bu+ |= ψ(a∗) and the
claim follows from the assumption that Bu+ is a model of O.
Finally, assume that O is a ALCHIF ontology of depth 2. The proof that follows is

similar to the construction for uGF−
2 (2), but one cannot hook to every bag(t) all entailed

rAQs as this can obviously lead to violations of the functionality axioms in O.
Let D be an instance with O,D ̸|= q0(⃗a) and let Du be its global GC2-unraveling. Let A

be a materialization of O and Du. We define for every c ∈ dom(Du) an instance Dc. Let
Dq be the instance corresponding to an rAQ q = q(x) ← φ with a single answer variable
x and a single additional variable y such that there is an injective homomorphism h from

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:40 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Dq to A mapping x to c and such that R(h(x), h(y)) ̸∈ A for any R functional in O and
R(h(y), h(x)) ̸∈ A for any R− functional in O. Then let the instance Dc contain a copy of
every such Dq obtained by identifying the variable x with c. Define Du+ by hooking to Du

at every c the instance Dc and adding A|dom(Du). The following properties of Du+ follow
directly from the definition.

(a) for all a, b ∈ dom(Du) with a ∼u b there is an isomorphism from Da onto Db mapping
a to b;

(b) for every rAQ q(x⃗) and tuple a⃗ in dom(Du):

O,Du+ |= q(⃗a) ⇔ O,Du |= q(⃗a)

Take a materialization Bu+ of O and Du+ obtained from Du+ by hooking to every c ∈
dom(Du) a cg-tree decomposable model Bc of Dc. Define a model B of D by

• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bc∗ hooked to
Du at c∗ in Bu+ and
• adding the atoms {R(c↑1, c

↑
2) | R(c1, c2) ∈ Bu+

|dom(Du)}.
One can now show in the same way as in the proof for GF−

2 (2) that B is a model of O such
that B ̸|= q0(⃗a).

�

We can now prove the announced strong dichotomy result.

Theorem 5.4. Let O be an ontology formulated in one of uGF(1), uGF−(1,=), uGF−
2 (2),

uGC−
2 (1,=), or an ALCHIF ontology of depth 2. Then the following conditions are equiva-

lent (unless PTime = NP):

(1) O is materializable;
(2) O is materializable for the class of cg-tree decomposable instances D with sig(D) ⊆

sig(O);
(3) O is unraveling tolerant;
(4) query evaluation w.r.t. O is Datalog ̸=-rewritable (and Datalog-rewritable if O is for-

mulated in uGF);
(5) query evaluation w.r.t. O is in PTime.

Otherwise, query evaluation w.r.t. O is coNP-hard.

Proof. (1) ⇒ (2) is by a compactness argument. (2) ⇒ (3) is Theorem 5.2. (3) ⇒ (4) is
Theorem 4.5. (4) ⇒ (5) is folklore. (5) ⇒ (1) is Theorem 3.5 (assuming PTime ̸= NP). �

The qualification ‘with sig(D) ⊆ sig(O)’ in Point 2 of Theorem 5.4 can be dropped without
compromising the correctness of the theorem, and the same is true for Theorem 5.2. It will
be useful, though, in the decision procedures developed in Section 9.

6 CONNECTION TO CSP AND MMSNP

We establish the four CSP-hardness results displayed in the middle two rows of Figure 1 as
well as the dichotomy result stated in the second lowest row. In contrast to the dichotomies
proved in the previous section, this dichotomy is not ‘strong’ in the sense explained in the
introduction, that is, it is established using a reduction to the dichotomy of CSPs (via a
detour through the logical generalization MMSNP of CSP) rather than elementary proofs
and it does not establish that PTime query evaluation coincides with Datalog ̸= rewritability.
In fact, we use results on CSPs to show that the latter two notions do not coincide for the
ontology languages considered here.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:41

Let A be an instance. The constraint satisfaction problem CSP(A) is to decide, given an
instance D with sig(D) ⊆ sig(A), whether there is a homomorphism from D to A, which we
denote with D→ A. In this context, A is called the template of CSP(A). The complement of
CSP(A) is denoted coCSP(A). We will generally assume that A interprets relation symbols of
arity at most two and that the template A admits precoloring, that is, for each a ∈ dom(A),
there is a unary relation symbol Pa such that Pa(b) ∈ A iff b = a [29]. It is known that
for every template A, there is a template A′ of this form such that CSP(A) has the same
complexity as CSP(A′) up to polynomial time reductions [5, 29]. Moreover, coCSP(A) is
Datalog definable iff coCSP(A′) is Datalog definability [62].

Definition 6.1. Let L be an ontology language and Q a class of queries. Then Q-evaluation
w.r.t. L is CSP-hard if for every template A that admits precoloring and interprets relation
symbols of arity at most two, there exists an L ontology O such that

(1) there is a Boolean q0 ∈ Q such that for every instance D with sig(D) ⊆ sig(A): D ̸→ A
iff O,D |= q0.

(2) for every q ∈ Q, evaluating the OMQ (O, q) reduces in polynomial time to coCSP(A).

Observe that it follows from Point 1 that coCSP(A) reduces in polynomial time to
evaluating the OMQ (O, q0).
The following theorem summarizes our results on CSP-hardness.

Theorem 6.2. For any of the following ontology languages, CQ-evaluation w.r.t. L is
CSP-hard: uGF2(1,=), uGF2(2), uGF2(1, f), and the class of ALCFℓ ontologies of depth 2.

Proof. We give the proof for uGF2(1,=) and then indicate the modifications needed for
uGF2(1, f) and ALCFℓ ontologies of depth 2. For uGF2(2), the result follows from a proof
of the corresponding result in [67] for ALC ontologies of depth 3.
Let A be a template admitting precoloring and interpreting relation symbols of arity at

most two. Let Ra be a binary relation symbol for each a ∈ dom(A), and set

ϕ ̸=
a (x) = ∃y(Ra(x, y) ∧ ¬(x = y))

ϕ=
a (x) = ∃y(Ra(x, y) ∧ (x = y))

Then O contains

∀x(
∧
a ̸=a′
¬(ϕ ̸=

a (x) ∧ ϕ
̸=
a′(x)) ∧

∨
a

ϕ̸=
a (x))

∀x(A(x)→ ¬ϕ̸=
a (x)) when A(a) ̸∈ A

∀x, y(R(x, y)→ ¬(ϕ ̸=
a (x) ∧ ϕ

̸=
a′(y))) when R(a, a′) ̸∈ A

∀xϕ=
a (x) for all a ∈ dom(A)

where A and R range over symbols in sig(A) of the respective arity. A formula ϕ̸=
a (x)

being true at a constant c in an instance D means that c is mapped to a ∈ dom(A) by a
homomorphism from D to A. The first sentence in O thus ensures that every node in D is
mapped to exactly one node in A and the second and third set of sentences ensure that we
indeed obtain a homomorphism. The last set of sentences enforces that ϕ=

a (x) is true at
every constant c. This makes the disjunction in the first sentence ‘invisible’ to the query (in
which inequality is not available), thus avoiding that O is coNP-hard for trivial reasons.
We show that O satisfies Conditions 1 and 2 from Definition 6.1, where the query q0 used in
Condition 1 is q0 ← N(x) with N a fresh unary relation symbol.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:42 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

For Condition 1, assume D with sig(D) ⊆ sig(A) is given. We show that D → A iff
O,D ̸|= q0. First let h be a homomorphism from D to A. Define a model B of D and O by
adding to D for any d ∈ dom(D) with h(d) = a an infinite chain

Ra(d0,d, d1,d), Ra(d1,d, d2,d), . . .

with d0,d = d and fresh constants di,d for all i > 0. Also add Ra(d, d) to D for all a ∈ dom(A),
d ∈ dom(D), and all constants used in the chains. Using the definition of O it is not difficult
to show that B is a model of O and D. There is no b with N(b) ∈ B and thus O,D ̸|= q0,
as required. Now assume that O,D ̸|= q0. Then there is a model B of O and D such that
B ̸|= q0. Define a mapping h from D to A by setting h(d) = a iff there exists d′ with d′ ̸= d
and Ra(d, d

′) ∈ B. Using the definition of O it is not difficult to show that h is well defined
and a homomorphism. This finishes the proof of Condition 1.

For Condition 2, let q be a CQ. We show that the query evaluation problem for (O, q) can
be reduced in polynomial time to coCSP(A). We first show that there is a polynomial time
reduction of the problem whether an instance D is consistent w.r.t. O to CSP(A). Assume D
is given. Let D• be the sig(A)-reduct of D extended with Pa(d) for any d with Ra(d, d

′) ∈ D
for some d′ ̸= d. Using the definition of O one can show that D is consistent w.r.t. O iff
D• → A. This provides the polynomial time reduction of consistency to CSP(A). Now let

D′ = D ∪ {Ra(d, d) | a ∈ dom(A), d ∈ dom(D)}. Clearly, the evaluation problem D′ |= q(d⃗)
is in PTime. Observe that if an instance D is consistent w.r.t. O, then one can construct
a CQ-materialization B of O and D such that there is a homomorphism from B to D′

preserving dom(D) and vice versa. It follows that O,D |= q(d⃗) iff D is not consistent w.r.t. O
or D′ |= q(d⃗) and we have obtained the polynomial time reduction of query evaluation for
(O, q) to coCSP(A).

For uGF2(1, f), we modify the ontology O defined above as follows. First, we state that a
binary relation symbol F is a partial function satisfying ∀xF (x, x). Now replace in O the
formulas ϕ̸=

a (x) by ∃y(Ra(x, y)∧¬F (x, y)) and ϕ=
a (x) by ∃y(Ra(x, y)∧F (x, y)), respectively.

The resulting ontology is in uGF2(1, f) and one can prove in exactly the same way as above
that it is as required.

To construct an ALCFℓ ontology of depth 2 with the required properties, replace in O
the formulas ϕ̸=

a (x) by ∃≥2yRa(x, y) and ϕ
=
a (x) by ∃yRa(x, y), respectively. The resulting

ontology is equivalent to an ALCFℓ ontology of depth 2 and one can prove in almost the
same way as above that it is as required. �

It is known that there exist templates A such that CSP(A) is in PTime while coCSP(A)
is not Datalog definable [35]. By the reductions provided in [5, 62], there also exists such a
template A that additionally admits precoloring and interprets only relation symbols of arity
at most two. As a consequence of the results in [36], coCSP(A) is not Datalog ̸= definable
either. It now follows directly from the definition that if a language L is CSP-hard, then
there exists an ontology O in L such that CQ-evaluation w.r.t. O is in PTime but not
Datalog ̸=-rewritable.

Theorem 6.3. In any of the following ontology languages L there exist ontologies that en-
joy PTime CQ-evaluation but are not Datalog̸=-rewritable: uGF2(1,=), uGF2(2), uGF2(1, f),
and the class of ALCFℓ ontologies of depth 2.

The ontology languages in Theorem 4.5 thus behave differently from the languages for
which we proved a dichotomy in Section 5.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:43

We next establish a dichotomy between PTime and coNP-hardness for query evaluation
in uGF2. Our proof proceeds via reduction to the logical generalization MMSNP of CSP
introduced by Feder and Vardi [35], see also [16, 68, 69]. While MMSNP has higher expressive
power than CSP, it has the same complexity: for every MMSNP sentence ϕ, there is a
template A such that evaluating ϕ has the same complexity as CSP(A), up to polynomial
time reductions [35, 60]. In particular, the dichotomy between PTime and NP of CSPs is
thus inherited by MMSNP. It is well-known that MMSNP has the same expressive power as
the complement of Boolean monadic disjunctive Datalog [15]. Here, we prefer to work with
the latter.

Monadic disjunctive Datalog (MDDLog) is a variation of Datalog (without inequality) in
which all intensional relation symbols are monadic and where rule heads might be disjunctive.
Thus, a monadic disjunctive Datalog (MDDLog) rule ρ has the form

S1(x1) ∨ · · · ∨ Sm(xm)← R1(y⃗1) ∧ · · · ∧Rn(y⃗n)
with n > 0 and m ≥ 0 and where S1, . . . , Sm are monadic relation symbols and R1, . . . , Rn
are relation symbols of unrestricted arity. As expected, we refer to S1(x⃗1) ∨ · · · ∨ Sm(x⃗m) as
the head of ρ, and to R1(y⃗1) ∧ · · · ∧Rn(y⃗n) as the body. As in Datalog, every variable that
occurs in the head of ρ is required to also occur in the body of ρ.

A monadic disjunctive Datalog (MDDLog) program Π is a finite set of monadic disjunctive
Datalog rules with a selected relation symbol goal that does not occur in rule bodies and
appears only in non-disjunctive rules of the form goal(x⃗)← R1(x⃗1)∧ · · · ∧Rn(x⃗n). The arity
of programs and intensional and extensional relation symbols are defined as for Datalog, and
so is the semantics. When all extensional relation symbols in Π are from the signature Σ, we
say that Π is over extensional signature Σ and assume that no other relation symbols occur
in instances over which Π is evaluated. We refer to [1, 31] for more information on disjunctive
Datalog. We will sometimes use body atoms of the form true(x) that are vacuously true for
all elements of the active domain. This is just syntactic sugar since any rule with body atom
true(x) can equivalently be replaced by a set of rules obtained by replacing true(x) in all
possible ways with an atom R(x1, . . . , xn) where R is a relation symbol from the extensional
signature Σ and where xi = x for some i and all other xi are fresh variables.
The problem to evaluate Π is to decide, given a Σ-instance D and a1, . . . , an ∈ dom(D),

whether D |= Π(a1, . . . , an). This problem is in coNP for every MDDLog program Π. We
note the following dichotomy.

Theorem 6.4. Let Π be an MDDLog program. Then evaluating Π is in PTime or
coNP-complete.

As explained above, for Boolean programs Theorem 6.4 is a consequence of the dichotomy
between PTime and NP for CSPs [18, 83] and the fact that Boolean MDDLog has the same
expressive power as the complement of MMSNP. Moreover, it was observed in [37] that a
dichotomy for Boolean MDDLog programs implies a dichotomy for MDDLog programs of
unrestricted arity.

Our aim in this section is to establish the following result.

Theorem 6.5. Let O be a uGF2 ontology. Then query evaluation w.r.t. O is in PTime
or coNP-complete.

Due to Theorem 3.6, Theorem 6.5 can be established by proving a dichotomy for the
class of all OMQs (O, q) with O from uGF2 and q a unary rAQ. This is what we do in the
following. Note, however, that Theorem 6.6 below even applies to GF2 ontologies instead of

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:44 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

only to uGF2 ontologies. While this is stronger than what we need to establish Theorem 6.5,
it remains open whether the strong result in Theorem 6.6 also holds for CQs and UCQs
rather than only for rAQs.

Theorem 6.6. For every OMQ (O, q) with O a GF2 ontology and q a unary rAQ,
evaluation is in PTime or coNP-complete.

Let (O, q) be an OMQ with O a GF2 ontology and q a rAQ with one answer variable. To
show that evaluating (O, q) is in PTime or coNP-hard, we construct an MDDLog program
Π that is equivalent to the OMQ (O, q) in the sense that for all instances D, the certain
answers to (O, q) coincide with the answers to Π. Together with Theorem 6.4, this yields
Theorem 6.6.

Let Σ be the set of relation symbols that occur in O and q. Clearly, it suffices to consider
evaluation of (O, q) on instances that only contain symbols from Σ. From now on, we fix
two variables x and y and assume that x is the answer variable of q. We denote by cl(O, q)
the smallest set of formulas with at most x as their free variable that satisfies the following
conditions: it contains all subformulas of O with all free variables replaced with x and all
subformulas of q which have exactly one free variable, renamed to x, and it is closed under
applying single negation. Note that cl(O, q) contains q and all sentences from O. A type for O
and q is a maximal satisfiable subset t ⊆ cl(O, q). We use tp(O, q) to denote the set of all types
for O and q. For an interpretation A and an a ∈ dom(A), we use tA(a) to denote the type
realized at a in A, that is, tA(a) = {ϕ(x) ∈ cl(O, q) | A |= ϕ(a)}∪{ϕ() ∈ cl(O, q) | A |= ϕ()}.
Note that the types defined here are similar but not identical to those used in the proof of
Theorem 3.6.

A link is a (potentially empty) set of atomic formulas of the form R(x, y) and R(y, x).
Let A be an interpretation. Then all a, b ∈ dom(D) give rise to a link

RD(a, b) := {R(x, y) | R(a, b) ∈ D} ∪ {R(y, x) | R(b, a) ∈ D}.

A typed link is a triple t1,R, t2 with t1, t2 types and R a link. We say that t1,R, t2 is
realizable if there is a model A of O and (not necessarily distinct) a, b ∈ dom(A) with
tA(a) = t1, RA(a, b) ⊇ R, and tA(b) = t2.

We now construct the desired MDDLog program Π. Introduce a fresh unary relation
symbol Pt for every type t, to be used as intensional relation symbols in Π. The program
comprises the following rules:∨

t∈tp(O,q)

Pt(x)← true(x)

goal(x)← Pt(x) whenever q ∈ t
⊥ ← Pt1(x) ∧R(x, y) ∧ Pt2(y) for all typed links t1,R, t2

that are not realizable

where R(x, y) denotes the conjunction over all atoms in the link R.
Informally, these rules ‘guess’ of a model A of O and D that is partial in the sense that we

only explicitly represent the restriction of A to the constants in dom(D) while all relevant
information about other constants in dom(A) is summarized in the types that we assign to
the constants in dom(D). The type t guessed via Pt in the first line determines which formulas
from cl(O, q) are made true at a constant in dom(D). The second line ensures that whenever
the query is true at a constant a in the guessed model, then a is returned as an answer. And
the third line guarantees that the guessed types ‘fit together’; as an example note that, when

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:45

we have guessed Pt1(a) with A(x) ∈ t1, R(b, a) ∈ D, and cl(O, q) ∋ ϑ := ∃y R(x, y) ∧A(y),
then we must guess a type t2 for b with ϑ ∈ t2. It remains to show the following.

Lemma 6.7. For all Σ-instances D and a ∈ dom(D), O,D |= q(a) iff D |= Π(a).

Proof. First assume that O,D ̸|= q(a). Then there is a model A of O and D such that
A ̸|= q(a). Let B be the extension of D obtained by adding, for all b ∈ dom(D), PtA(b)(b);
moreover if A |= q(b), then also add goal(b). It can be verified that B satisfies all rules
in Π. In particular, realizability of all relevant typed links is witnessed by A. Since clearly
goal(a) /∈ B, we obtain D ̸|= Π(a), as required.

Assume conversely that D ̸|= Π(a). Then there is an extension B of D to the intensional
relation symbols of Π such that all rules in Π are satisfied and goal(a) /∈ B. Assume w.l.o.g.
that B is a minimal such extension of D (w.r.t. set inclusion). Then clearly there is a unique
fact Pt(b) in B, for every b ∈ dom(D). We use tb to denote t. Note that there must be a
model Ab of O and tb in the sense that Ab |= O, b ∈ dom(Ab), and tAb(b) = tb. If there
is no such model, then the link tb, ∅, tb would not be realizable, in contrast to the third
type of rule being satisfied in B. Also note that for all distinct b1, b2 ∈ dom(D), there is
a model Ab1,b2 of O and the typed link tb1 ,RD(b1, b2), tb2 in the sense that Ab1,b2 |= O,
b1, b2 ∈ dom(Ab1,b2), t

Ab1,b2 (bi) = tbi for i ∈ {1, 2}, and RAb1,b2 (b1, b2) ⊇ RD(b1, b2). We
may assume w.l.o.g. that Ab1,b2 = Ab2,b1 . All models Ab and Ab1,b2 must satisfy the same
sentences since, due to the rules in Π of the third kind, when Pt1 and Pt2 are non-empty
in B, then t1 and t2 must contain the same sentences. We use Γ to denote the set of these
sentences. Clearly, O ⊆ Γ.

We assemble an interpretation A as follows:

(1) Start with A being the result of hooking Ab to D for each b ∈ dom(D).
(2) For all distinct b1, b2 ∈ dom(D), extend A constructed with all facts of the form

R(b1, b2) or R(b2, b1) from Ab1,b2 .

By construction, A is a model of D. We next observe the following.

Claim 1.

(1) A |= ϕ() iff ϕ ∈ Γ() for all sentences ϕ() ∈ cl(O, q)
(2) A |= ϕ(b) iff ϕ(x) ∈ tb for all ϕ(x) ∈ cl(O, q) and b ∈ dom(D);
(3) A |= ϕ(b′) iff Ab |= ϕ(b′) for all ϕ(x) ∈ cl(O, q) and b′ ∈ dom(Ab), b ∈ dom(D).
(4) A |= ϕ(b1, b2) iff Ab1,b2 |= ϕ(b1, b2) for all subformulas ϕ(x, y) of O and distinct

b1, b2 ∈ dom(D);
(5) A |= ϕ(b1, b2) iff Ab |= ϕ(b1, b2) for all subformulas ϕ(x, y) of O and distinct b1, b2 ∈

dom(Ab), b ∈ dom(D).

All five points can be proved by a mutual induction on the structure of the sentences ϕ()
and formulas ϕ(x). Details are rather straightforward and omitted.

It remains to remark that O ⊆ Γ implies A |= O by Point (1) and goal(a) /∈ B together
with the rules in Π of the second kind implies that q(x) /∈ ta and thus A ̸|= q(a) by
Point (4). �

7 UNDECIDABILITY

We show that ontology languages which admit both sentences of depth 2 and relation symbols
interpreted as partial functions tend to be computationally problematic. In particular, the
languages considered here do neither enjoy a dichotomy between PTime and coNP nor
decidability of meta problems such as whether query evaluation w.r.t. a given ontology O is

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:46 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

in PTime, Datalog ̸=-rewritable, or coNP-hard, and whether O is materializable. In this
section, we establish the undecidability results. The technique introduced here is used in the
subsequent section to prove non-dichotomy results.

Theorem 7.1. For the ontology languages uGF−
2 (2, f) and ALCIFℓ of depth 2, it is

undecidable whether for a given ontology O,
(1) query evaluation w.r.t. O is in PTime, Datalog̸=-rewritable, or coNP-hard (unless

PTime = NP);
(2) O is materializable.

The proof is by reduction of the undecidable rectangle tiling problem, defined as follows.
An instance P = (T, H, V) of the rectangle tiling problem is given by a finite non-empty set
T of tile types including an initial tile type Tinit to be placed only on the lower left corner
and a final tile type Tfinal to be placed only on the upper right corner, a horizontal matching
relation H ⊆ T× T and a vertical matching relation V ⊆ T× T. A tiling for (T, H, V) is a
map f : {0, . . . , n} × {0, . . . ,m} → T such that n,m ≥ 0, f(0, 0) = Tinit, f(n,m) = Tfinal,
f(i, j) ∈ T \ {Tinit, Tfinal} for all (i, j) ̸∈ {(0, 0), (n,m)}, (f(i, j), f(i+1, j)) ∈ H for all i < n
and j ≤ m, and (f(i, j), f(i, j + 1)) ∈ V for all i ≤ n and j < m. We say that P admits a
tiling if there exists a map f that is a tiling for P. It is undecidable whether an instance of
the finite rectangle tiling problem admits a tiling [81].
To establish Theorem 7.1, it suffices to construct, for any such tiling problem P, an

ontology OP such that if P admits a tiling, then OP is not materializable (and thus query
evaluation w.r.t. OP is coNP-hard), and if P admits no tiling, then OP is materializable
and query evaluation w.r.t. OP is Datalog ̸=-rewritable.

The rectangle to be tiled is represented in input instances using the binary relation symbols
X and Y , and OP declares these relation symbols and their inverses to be functional. The
basic idea in the construction of OP is to verify the existence of a properly tiled grid in the
input instance by propagating markers from the top right corner to the lower left corner.
During the propagation, one makes sure that grid cells close (that is, the XY-successor
coincides with the YX-successor) and that there is a tiling that satisfies the constraints in P.
Once the existence of a properly tiled grid is completed, a disjunction is derived by OP

to achieve non-materializability and coNP-hardness. The challenge is to implement this
construction such that when P has no solution (and thus the verification of a properly tiled
grid can never complete), OP is Datalog̸=-rewritable. A central issue is how to implement
the markers as formulas with one free variable that are propagated through the grid during
the verification. The markers must be designed in a way so that they cannot be ‘preset’
in the input instance as this would make it possible to prevent the verification of parts of
the input. In ALCIFℓ, we use formulas of the form ∃=1yP (x, y) while additionally stating
in OP that ∀x∃yP (x, y). Thus, the choice is only between whether a constant has exactly
one P -successor (which means that the marker is set) or more than one P -successor (which
means that the marker is not set). Clearly, this difference is invisible to queries and we cannot
preset a marker as being true at some constant in the input instance. We can, however,
easily make the marker false at a constant c by adding two P -successors to c in the input
instance. It seems that this effect, which gives rise to various technical problems we have to
address in the construction below, cannot be avoided. On uGF−

2 (2, f), we work with the
marker ¬∃y(P (x, y) ∧ ¬F (x, y)), where F is a functional relation symbol for which we state
∀xF (x, x). Also here, we can preset the marker negatively but not positively.
We now provide the detailed construction of OP, in two steps: we first construct an

ontology Ocell that marks the lower left corner of cells and then we construct an ontology

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:47

OP that marks the lower left corner of grids that represent a solution to a rectangle tiling
problem P. The ontologies are formulated in ALCIFℓ. Thus, in addition to ALCI concepts
we use concepts of the form (≤ 1R), (= 1R), and (≥ 2R). As formulas can be written more
succinctly in DL notation compared to FO notation, we use the former.

Marking the lower left corner of grid cells. Let X and Y be binary relation symbols
and X−, Y − their inverses in ALCI. Using the sentences

⊤ ⊑ (≤ 1Z)

for all Z ∈ {X,Y,X−, Y −} we ensure that in any instance D consistent w.r.t. our ontology
the relation symbols X and Y as well as their inverses X− and Y − are functional in D in the
sense that R(d, d′), R(d, d′′) ∈ D implies d′ = d′′ for all R ∈ {X,Y,X−, Y −}. For an instance
D and d ∈ dom(D) we write D |= cell(d) if there exist d1, d2, d3 with X(d, d1), Y (d1, d3),
Y (d, d2), X(d2, d3) ∈ D. Since X and Y are functional in D, D |= cell(d) implies d3 = d4
if X(d, d1), Y (d1, d3), X(d, d2), Y (d2, d4) ∈ D. As a marker for all d such that D |= cell(d)
we use the concept (= 1P) for a binary relation symbol P . For P and all binary relation
symbols R introduced below we add the inclusion ⊤ ⊑ ∃R.⊤ to our ontology so that when
building models one can only choose between having exactly one R-successor or at least two
R-successors. To set the marker (= 1P) we use concepts (= 1R1) and (= 1R2) with binary
relation symbols R1, R2 as ‘second-order variables’, ensure that all nodes in D are contained
in (= 1R1) ⊔ (= 1R2), and then state (as a first attempt) that⊔

i=1,2

∃X.∃Y.(= 1Ri) ⊓ ∃Y.∃X.(= 1Ri) ⊑ (= 1P)

Clearly, if D |= cell(d) then O,D |= (= 1P)(d) for the resulting ontology O. Conversely,
the idea is that if D ̸|= cell(d) and X(d, d1), Y (d, d2), Y (d1, d3), X(d2, d4) ∈ D but d3 ̸= d4,
then one can extend D by adding a single R1-successor and two R2-successors to d3, a single
R2-successor and two R1-successors to d4, and two P -successors to d and thus obtain a
model B of O and D in which d ̸∈ (= 1P)B, see Figure 2. In general, however, this inclusion

d

d1

d2

d3

d4

X

Y

Y

X

D

 d

d1

d2

d3

d4

X

Y

Y

X

P

P

R2 R2

R1

R2

R1R1

Fig. 2. D ̸|= cell(d) ⇒ O,D ̸|= (= 1P)(d)

does not work yet. First, the inclusion has depth 3 and we are aiming at an inclusion of
depth 2. This issue is easily resolved by introducing auxiliary binary relation symbols RXi ,
RYi , R

XY
i and RY Xi , i = 1, 2, and replacing concepts such as ∃X.∃Y.(= 1Ri) by (= 1RXYi)

and the sentences

(= 1RXYi) ≡ ∃X.(= 1RYi) and (= 1RYi) ≡ ∃Y.(= 1Ri)

Details are given below. More importantly, the implication ‘D ̸|= cell(d)⇒ O,D ̸|= (= 1P)(d)’
does not hold. There are two reasons for this. First, we might have X(d, d1), Y (d1, d3),

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:48 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

X(d, d2), Y (d2, d4) ∈ D with d3 ̸= d4 but both d3 and d4 have already two R2-successors in
D. Then the marker (= 1P) is entailed without the cell being closed at d. Second, d3, d4
might be on an odd cycle of mutually distinct e0, e1, . . . , en ∈ D such that each ei reaches
e(i+1) mod n+1 via a Y −X−Y X-path in D, for i = 0, 1, . . . , n. Figure 3 illustrates this for
n = 2. Then, since in at least two neighboring ei, e(i+1) mod n+1 the same concept (= 1Ri)
is enforced, the marker (= 1P) is enforced at some node d from which ei and e(i+1) mod 3

are reachable along XY and Y X-paths, respectively, without satisfying cell(d). The first
problem is easily dealt with by demanding the implication to be true only if D is consistent
w.r.t. our ontology. The second problem is resolved by adding appropriate axioms enforcing
that also in this case D is not consistent w.r.t. our ontology.

e0
e1
e2

X

Y

Y

X
X

Y
Y

X

Y X

X Y

Fig. 3. D |= (= 1P)(d) ̸⇒ D |= cell(d)

In detail, the ontology Ocell uses in addition to X,Y,X−, Y − the set AUXcell of binary
relations P,Ri, R

W
i , where i ∈ {1, 2} and W ranges over a set of words over the alphabet

{X,Y,X−, Y −} we define below. The RWi serve as auxiliary symbols to avoid sentences of
depth larger than two. No unary relation symbols are used. To ensure that CQ-evaluation is
Datalog̸=-rewritable w.r.t. Ocell we include in Ocell the concept inclusions

⊤ ⊑ ∃Q.⊤
for all binary relation symbols Q ∈ AUXcell. If an instance D is consistent w.r.t. Ocell, then
its materialization adds a certain number of Q-successors to any d ∈ dom(D) to satisfy
⊤ ⊑ ∃Q.⊤ for Q ∈ AUXcell. The remaining sentences in Ocell only influence the number of
Q-successors that have to be added and thus do not influence the certain answers to CQs.
In fact, we will have the following equivalence

Ocell,D |= q(d⃗) iff {⊤ ⊑ ∃Q.⊤ | Q ∈ AUXcell},D |= q(d⃗) (3)

for any CQ q and D that is consistent w.r.t. Ocell. Define for any non-empty word W
over {X,Y,X−, Y −} the set ∃W (= 1Ri) of sentences inductively by setting for Z ∈
{X,Y,X−, Y −}:

∃Z(= 1Ri) := {(= 1RZi) ≡ ∃Z.(= 1Ri)}
∃ZW (= 1Ri) := {(= 1RZWi) ≡ ∃Z.(= 1RWi)} ∪ ∃W (= 1Ri)

Thus, ∃W (= 1Ri) states that the unique d
′ reachable from d along a W -path has exactly one

Ri-successor iff d has exactly one RWi -successor. Now Ocell contains the following axioms in
addition to ⊤ ⊑ ∃Q.⊤ for Q ∈ AUXcell:

(1) Functionality of X,Y,X− and Y − is stated using

⊤ ⊑ (≤ 1Z)

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:49

for Z ∈ {X,Y,X−, Y −}.
(2) All nodes have exactly one R1-successor or exactly one R2-successor:

⊤ ⊑ (= 1R1) ⊔ (= 1R2)

(3) If all nodes reachable along an XY -path and a Y X-path have exactly one R1 and
exactly one R2-successor, then the marker (= 1P) is set:

l

i=1,2

(= 1RXYi) ⊓ (= 1RY Xi) ⊑ (= 1P)

(4) For i = 1, 2, the concept (= 1Ri) is true at least at every third node on the cycles in
D introduced above:

(= 1RCCj) ⊑ (= 1Ri) ⊔ (= 1RCi) ⊔ (= 1RCCi)

for {i, j} = {1, 2} and C = X−Y −XY
(5) If (= 1R1) and (= 1R2) are both true in a node in D then they are both true in all

neighboring nodes on the cycles in D introduced above:

(= 1RX
−Y −XY

1) ⊓ (= 1RX
−Y −XY

2) ⊑ (= 1R1) ⊓ (= 1R2)

(= 1RY
−X−Y X

1) ⊓ (= 1RY
−X−Y X

2) ⊑ (= 1R1) ⊓ (= 1R2)

(6) The auxiliary sentences ∃W (= 1Ri) for all relation symbols RWi used above.

Lemma 7.2. The ontology Ocell has the following properties for all instances D:

(1) for all d ∈ dom(D): Ocell,D |= (= 1P)(d) iff D is not consistent w.r.t. Ocell or
D |= cell(d); moreover, if D is consistent w.r.t. Ocell, then there exists a materialization
B of D and Ocell such that d ∈ (= 1P)B iff d ∈ dom(B) and D |= cell(d);

(2) If all binary relation symbols are functional in D, then D is consistent w.r.t. Ocell;
(3) CQ-evaluation w.r.t Ocell is Datalog̸=-rewritable.

Proof. We first derive a necessary and sufficient condition for consistency of instances
D w.r.t. Ocell. Lemma 7.2 then follows in a straightforward way. It is easy to see that if any
of the following conditions is not satisfied, then D is not consistent w.r.t. Ocell:

(c1) all X,Y,X−, Y − are functional in D;
(c2) D is consistent w.r.t. the sentences ∃W (= 1Ri) in Ocell;
(c3) if D |= cell(d), then d has at most one P -successor in D.

We thus assume in what follows that all three conditions are satisfied. Clearly, they can be
encoded in Datalog ̸=. By (c2) we may assume that D is saturated for the sentences ∃W (= 1R)
in the sense that if (= 1RZW) ≡ ∃Z.(= 1RW) ∈ Ocell then for any Z(d, d′) ∈ D the following
holds: d has at least two RZW -successors in D iff d′ has at least two RW -successors in D.
Now let e1 ≤ e2 iff there are X(d, d1), Y (d1, e1), Y (d, d2), X(d2, e2) ∈ D. Let e1 ∼ e2 iff
e1 ≤ e2 or e2 ≤ e1 and let ∼∗ be the smallest equivalence relation containing ∼. For any
equivalence class E w.r.t. ∼∗ either

• E is of the form e0 ≤ · · · ≤ en with ei ̸= ej for all i ̸= j, or
• E is a cycle e0 ≤ · · · ≤ en with ei = ej iff {i, j} = {0, n} for all i ̸= j.

We say that sets E1, E2 ⊆ E partition E if E1 ∪ E2 = E and E1 ∩ E2 = ∅. If E is not a
singleton {e} with e ≤ e, then clearly there is a partition E1, E2 of E such that

(†) if e ≤ e′ ≤ e′′, then {e, e′, e′′} ̸⊆ Ei, for i = 1, 2.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:50 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Now set for any equivalence class E and {i, j} = {1, 2},

E=1
j = {d ∈ E | D |= (≥ 2Ri)(d)}

Claim 1. Assume D satisfies Conditions (c1), (c2), and (c3). Then D is consistent
w.r.t. Ocell iff the following conditions hold for all equivalence classes E:

(cell+) if E = {e} with e ≤ e, then e ̸∈ E=1
1 ∪ E=1

2 ;
(cell−) if |E| ≥ 2, then there exists a partition E1, E2 of E with Ei ⊇ E=1

i satisfying (†).
Moreover, if (cell+) and (cell−) hold, then a materialization B satisfying the conditions of
Lemma 7.2 (1) exists.

(⇒) Let D be consistent w.r.t. Ocell. First assume that Condition (cell+) does not hold for
some E = {e} with e ≤ e. Then D is not consistent w.r.t. Ocell by the axioms given under
(2) and (4) since it is not possible to satisfy (= 1Ri) in e if e ∈ E=1

j (i ̸= j). Now assume

that (cell−) does not hold. So there exists E with |E| ≥ 2 such that there exists no partition
E1, E2 of E with Ei ⊇ E=1

i satisfying (†). Then the axioms under (2) and (4) cannot be
satisfied without having at least one node in E that is in both (= 1R1) and (= 1R2). But
then, by the axioms under (5), all nodes in E are in (= 1R1) and in (= 1R2) which implies
that E=1

1 = E=1
2 = ∅. But this contradicts our assumption that there is no partition E1, E2

of E with Ei ⊇ E=1
i satisfying (†).

(⇐) Assume (cell+) and (cell−) hold for every equivalence class E. For E = {e} with
e ≤ e we can thus construct the relevant part of a model B of D and Ocell such that e has
exactly one Ri-successor for i = 1, 2 and such that the d ∈ dom(D) for which there exist
X(d, d1), Y (d1, e), Y (d, d2), X(d2, e) ∈ D has exactly one P -successor. For any equivalence
class E with |E| ≥ 2 we can construct the relevant part of B such that each e ∈ Ei has
exactly one Ri-successor and each e ∈ E \ Ei has at least two Ri-successors. As E1 and
E2 are mutually disjoint, the axioms under (5) are satisfied. As (†) is satisfied, the axioms
under (4) are satisfied. As E1 ∪ E2 contains E, the axiom (2) is satisfied. Thus, we can
satisfy (≥ 2P) in every d ∈ dom(D) such that D ̸|= cell(d) without violating axiom (3).

The construction under (⇐) shows that we can construct a materialization B satisfying
Point (1) of Lemma 7.2. Point (2) of Lemma 7.2 is straightforward. For Point (3), observe
that Conditions (cell+) and (cell−) of Claim 1 can be encoded in a Datalog̸= program in
a straightforward way and thus there is a Datalog̸= program checking consistency of an
instance D w.r.t. Ocell. Datalog̸=-rewritability of CQ-evaluation w.r.t. Ocell now follows
from the observation that the equivalence (3) holds for any CQ q, instance D consistent

w.r.t. Ocell, and any d⃗ in D. �

This finishes the construction and analysis of Ocell.

Marking the lower left corner of grids. We now encode the rectangle tiling problem.
Let P = (T, H, V) with T = {T1, . . . , Tp}. We regard the tile types in T as unary relation
symbols and take the binary relation symbols X,Y,X−, Y − from above and an additional
set AUXgrid of binary relation symbols F, FX , FY , U,R, L,B, and A. The ontology OP is
defined by adding to Ocell the sentences

⊤ ⊑ ∃Q.⊤,

for all Q ∈ AUXgrid, and all sentences in Figure 4, where (Ti, Tj , Tℓ) range over all triples
from T such that (Ti, Tj) ∈ H and (Ti, Tℓ) ∈ V :

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:51

Tfinal ⊑ (= 1F) ⊓ (= 1U) ⊓ (= 1R)

∃X.((= 1U) ⊓ (= 1F) ⊓ Tj) ⊓ Ti ⊑ (= 1U) ⊓ (= 1F)

∃Y.((= 1R) ⊓ (= 1F) ⊓ Tℓ) ⊓ Ti ⊑ (= 1R) ⊓ (= 1F)

∃Y.(= 1F) ⊑ (= 1FY)

∃X.(= 1F) ⊑ (= 1FX)

∃X.(Tj ⊓ (= 1F) ⊓ (= 1FY))⊓
∃Y.(Tℓ ⊓ (= 1F) ⊓ (= 1FX)) ⊓ (= 1P) ⊓ Ti ⊑ (= 1F)

(= 1F) ⊓ Tinit ⊑ (= 1A) ⊓ (= 1B) ⊓ (= 1L)

⊔
1≤s<t≤p

Ts ⊓ Tt ⊑ ⊥

(= 1U) ⊑ ∀Y.⊥ (= 1R) ⊑ ∀X.⊥ (= 1U) ⊑ ∀X.(= 1U) (= 1R) ⊑ ∀Y.(= 1R)

(= 1B) ⊑ ∀Y −.⊥ (= 1L) ⊑ ∀X−.⊥ (= 1B) ⊑ ∀X.(= 1B) (= 1L) ⊑ ∀Y.(= 1L)

Fig. 4. Additional Axioms of OP

We discuss the intuition behind the sentences of OP. The relation symbols X and Y are
used to represent horizontal and vertical adjacency of points in a rectangle. The concepts
(= 1Z) of OP serve the following purpose:

• (= 1U), (= 1R), (= 1L), and (= 1B) mark the upper, right, left, and bottom border
of the rectangle.
• The concept (= 1F) is propagated through the grid from the upper right corner where
Tfinal holds to the lower left one where Tinit holds, ensuring that every position of the
grid is labeled with at least one tile type, that the horizontal and vertical matching
conditions are satisfied, and that the grid cells are closed (indicated by (= 1P) from
the ontology Ocell).
• The relation symbols FX and FY are used to avoid depth 3 sentences in the same way
as the relation symbols RWi are used to avoid such sentences in the construction of
Ocell.
• Finally, when the lower left corner of the grid is reached, the concept (= 1A) is set as
a marker.

We write D |= grid(d) if there is a tiling f for P with domain {0, . . . , n} × {0, . . . ,m} and a
mapping ρ : {0, . . . , n} × {0, . . . ,m} → dom(D) with ρ(0, 0) = d such that

• for all j ≤ n, k ≤ m, and all tile types T : T (ρ(j, k)) ∈ D iff T = f(j, k);
• for all b1, b2 ∈ dom(D): X(b1, b2) ∈ D iff there are j < n, k ≤ m such that (b1, b2) =
(ρ(j, k), ρ(j + 1, k));
• for all b1, b2 ∈ dom(D): Y (b1, b2) ∈ D iff there are j ≤ n, k < m such that (b1, b2) =
(ρ(j, k), ρ(j, k + 1));
• the range of ρ is a maximally connected component in the graph (dom(D), X∪X−∪Y ∪
Y −): if d ∈ ran(ρ)) and Z(d, d′) ∈ D for some Z ∈ {X,Y,X−, Y −}, then d′ ∈ ran(ρ).

We then call d the root of the n×m-grid with witness function ρ for P. The following result
can now be proved using Lemma 7.2.

Lemma 7.3. The ontology OP has the following properties for all instances D:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:52 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(1) for all d ∈ dom(D): OP,D |= (= 1A)(d) iff D is not consistent w.r.t. OP or D |=
grid(d); moreover, if D is consistent w.r.t. OP, then there exists a materialization B
of D and OP such that d ∈ (= 1A)B iff d ∈ dom(B) and D |= grid(d);

(2) If D |= grid(d) with witness ρ such that dom(D) = ran(ρ), and all relation symbols are
functional in D then D is consistent w.r.t. OP;

(3) CQ-evaluation w.r.t OP is Datalog̸=-rewritable.

We use Lemma 7.3 to prove the undecidability result. Let O = OP ∪ {(= 1A) ⊑ E1 ⊔E2},
where E1 and E2 are unary relation symbols.

Lemma 7.4. (1) If P admits a tiling, then O is not materializable and CQ-evaluation
w.r.t. O is coNP-hard.
(2) If P does not admit a tiling, then O is materializable and CQ-evaluation w.r.t. O is

Datalog̸=-rewritable.

Proof. (1) Consider a tiling f for P with domain {0, . . . , n} × {0, . . . ,m}. Regard the
pairs in {0, . . . , n} × {0, . . . ,m} as constants. Let D contain X((i, j), (i+ 1, j)), for all i < n
and j ≤ m, Y ((i, j), (i, j + 1)), for all i ≤ n and j < m, and, for every tile type T , T (i, j) if
f(i, j) = T , for all i ≤ n and j ≤ m. Then D is consistent w.r.t. O and O,D |= (= 1A)(0, 0),
by Lemma 7.3. Thus O,D |= E1(0, 0) ∨ E2(0, 0) but O,D ̸|= E1(0, 0) and O,D ̸|= E2(0, 0).
Thus O is not materializable and CQ-evaluation is coNP-hard.

(2) Assume P does not admit a tiling. Clearly, any instance D is consistent w.r.t. O iff it
is consistent w.r.t. OP. Thus, by Lemma 7.3, if O,D |= (= 1A)(d) for some d ∈ dom(D),

then D is not consistent w.r.t. OP. It follows that O,D |= q(d⃗) iff OP,D |= q(d⃗) for every

CQ q and d⃗ in dom(D). Thus, by Points 1 and 3 of Lemma 7.3, O is materializable and
CQ-evaluation w.r.t. O is Datalog ̸=-rewritable, as required. �

Lemma 7.4 entails Theorem 7.1 for ALCIFℓ ontologies of depth 2. For uGF−
2 (2, f) we

modify the construction of Ocell and OP as follows:

• The relation symbols X,Y,X−, Y − are defined as functions and it is stated that X−

and Y − are the inverse relations of X and Y , respectively.
• For any relation symbol R in OP distinct from X,Y,X−, Y − we introduce a function
F , state ∀xF (x, x), and replace the axiom ⊤ ⊑ ∃R.⊤ by ∀x∃y(R(x, y) ∧ F (x, y)).
• We replace all occurrences of (= 1R) for R ̸∈ {X,Y,X−, Y −} in OP by

¬∃y(R(x, y) ∧ ¬F (x, y))
Now Lemma 7.2 and Lemma 7.3 still hold for the resulting ontologies Ocell and OP if
(= 1P) and (= 1A) are replaced by ¬∃y(P (x, y) ∧ ¬F (x, y)) and ¬∃y(A(x, y) ∧ ¬F (x, y)),
respectively.

8 NON-DICHOTOMY

We prove the two non-dichotomy results shown in the topmost section of Figure 1, reusing
some of the techniques from the previous section. Ideally, we would like to use the existence
of NP-intermediate word problems of Turing machines as asserted by Ladner’s theorem [61]
to establish our results. However, this does not appear to be easily possible. In fact, in
Section 7 it was important to use CSPs that admit precoloring rather than standard CSPs
and, very informally spoken, in this section we need a version of Ladner’s theorem that in
a similar sense admits precoloring. We find it in the form of the run fitting problem for
Turing machines which ask whether a given partially described run of a Turing machine

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:53

(that corresponds to a precoloring) can be extended to a full run which is accepting. We use
an adaptation of the proof of Ladner’s theorem to show that there are NP-intermediate run
fitting problems.

Theorem 8.1. For the ontology languages uGF−
2 (2, f) and ALCIFℓ of depth 2, there is

no dichotomy between PTime and coNP (unless PTime = coNP).

We consider non-deterministic Turing machines (TMs, for short) with a single one-sided
infinite tape. A TM M is represented by a tuple (Q,Σ,∆, q0, qa), where Q is a finite set
of states, Σ is a finite alphabet, ∆ ⊆ Q × Σ × Q × Σ × {L,R} is the transition relation,
and q0, qa ∈ Q are the start state and accepting state, respectively. A configuration of M
is represented by a string vqw, where q is the state, v is the inscription of the tape to the
left of the tape head, and w is the inscription of the tape to the right of the tape head in
the configuration (as usual, we omit all but possibly a finite number of trailing blanks).
The configuration is accepting if q = qa. A run of M is represented by a finite sequence
γ0, . . . , γn of configurations of M with |γ0| = · · · = |γn| such that γ0 = q0w for some string
w that may contain blanks. Note that, since w may contain blanks, γ0 does not necessarily
correspond to the initial configuration of M for a given input string. A run is accepting if its
last configuration is accepting. We assume that the accepting state has no successor states.

Definition 8.2. Let M = (Q,Σ,Γ,∆, q0, qa) be a TM.

• A partial configuration of M is a string γ̃ over Q ∪ Σ ∪ {⋆} such that there is at most
one i ∈ {1, . . . , n} with γ̃[i] ∈ Q. Here, γ[i] denotes the symbol that occurs at the i-th
position of γ. A configuration γ matches γ̃ if |γ| = |γ̃| and for each i ∈ {1, . . . , n} with
γ̃[i] ̸= ⋆ we have γ[i] = γ̃[i].
• A partial run of M is a sequence γ̃ = (γ̃0, γ̃1, . . . , γ̃m) of partial configurations γ̃i of
M such that |γ̃0| = · · · = |γ̃m|. A run γ0, γ1, . . . , γn of M matches γ̃ if m = n and γi
matches γ̃i, for each i ∈ {0, 1, . . . ,m}.

Definition 8.3. The run fitting problem for a TM M is defined as follows: Given a partial
run γ̃ of M , decide whether there is an accepting run of M that matches γ̃.

It is easy to see that the run fitting problem for a TM M is in NP. We prove the following
result in Appendix A by a careful adaptation of the proof of Ladner’s theorem given in [3].

Theorem 8.4. There is a TM whose run fitting problem is neither in PTime nor NP-hard,
unless PTime = NP.

Now Theorem 8.1 is a consequence of the following lemma.

Lemma 8.5. For every Turing machine M , there is a uGF−
2 (2, f) ontology O and an

ALCIFℓ ontology O of depth 2 such that the following hold, where N is a distinguished
unary relation symbol:

(1) there is a polynomial time reduction of the run fitting problem for M to the complement
of evaluating the OMQ (O, q ← N(x));

(2) for every CQ q, evaluating the OMQ (O, q) is reducible in polynomial time to the
complement of the run fitting problem for M .

Proof. We use a grid construction and marker formulas as in the proof of Theorem 7.1,
with the grid providing the space in which the run of the TM is simulated and markers
represent TM states and tape symbols. In fact, we re-use the ontology OP from the proof of
Theorem 7.1, for a trivial rectangle tiling problem. When the existence of the grid has been

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:54 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

verified, instead of triggering a disjunction as before, we now start a simulation of M on the
grid. For both ALCIFℓ and uGF−

2 (2, f), we represent states q and tape symbols G using
the same formulas as in the CSP encoding. Thus, for ALCIFℓ we use formulas ∃≥2yq(x, y)
and ∃≥2yG(x, y), respectively, using q and G as binary relation symbols. Note that here
the encoding ∃=1yq(x, y) from the tiling problem does not work because states and tape
symbols can be positively preset in the input instance rather than negatively, which is in
correspondence with the run fitting problem.

We give the detailed proof for ALCIFℓ ontologies of depth 2. The proof for uGF−
2 (2, f) is

obtained by modifying the ALCIFℓ ontology in the same way as in the proof of Theorem 7.1
by replacing, for example, (≥ 2R) by ∃y(R(x, y) ∧ ¬F (x, y)).
Assume M = (Q,Γ,∆, q0, qa) is given. The instances D we use to represent partial runs

and that provide the space for simulating matching runs are n ×m X,Y -grids with Tinit
written in the lower left corner, Tfinal written in the upper right corner, and E written
everywhere else. To re-use the notation and results from the proof of Theorem 7.1 we regard
such a structure as a tiling with tile types T = {E, Tfinal, Tinit}. Then the ontology OP for
P = (T, H, V) and

H = {(E,E), (E, Tfinal), (Tinitial, E)}
V = {(E,E), (E, Tfinal), (Tinitial, E)}

checks whether an instance represents a grid structure. We now construct the set OM of
sentences that encode runs of M that match a partial run. For any D, the simulation of
a run is triggered at a constant d exactly if OP,D |= (= 1A)(d). OM uses in addition to
the binary relation symbols in OP binary relation symbols q ∈ Q and G ∈ Γ that occur in
concepts (≥ 2q) and (≥ 2G) and indicate that M is in state q and that G is written on the
tape, respectively. The sentences of OM are now as follows:

(a) The grid in which the lower left corner is marked with (= 1A) is completely colored
with (= 1A):

(= 1A) ⊑ ∀X.(= 1A) ⊓ ∀Y.(= 1A),

The remaining sentences are all relativized to (= 1A) and so apply to constants in a
grid only.

(b) q0 is the first symbol of the first configuration and no q ∈ Q occurs later in the first
configuration:

(= 1A) ⊓ Tinit ⊑ (≥ 2q0), (= 1A) ⊓ (= 1B) ⊓ (≥ 2q) ⊑ (= 1L)

(c) Every grid point is colored with exactly one (≥ 2H) for H ∈ Γ ∪Q:

(= 1A) ⊑
⊔

H∈Γ∪Q

(
(≥ 2H) ⊓

l

H′∈(Γ∪Q)\{H′}

(= 1H ′)
)

(d) To avoid sentences of depth larger than two we introduce for W ∈ {X,X−} and
S ∈ Q ∪ Γ fresh binary relation symbols SW and the sentences

(= 1A) ⊓ (≥ 2SW) ≡ (= 1A) ⊓ ∃W.(≥ 2S)

(e) For any triple G0qG1 ∈ Γ×Q×Γ let S(G0qG1) denote the set of all possible successor
triples S1S2S3 ∈ (Q× Γ× Γ) ∪ (Γ× Γ×Q) according to the transition relation ∆ of
M . Then add the following sentence to OM

(= 1A) ⊓ ∃X−.(≥ 2G0) ⊓ (≥ 2q) ⊓ ∃X.(≥ 2G1) ⊑

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:55⊔
S1S2S3∈S(G0qG1)

∃Y.((≥ 2SX
−

1) ⊓ (≥ 2S2) ⊓ (≥ 2SX3))

(f) Symbols written on cells with distance at least two from the position of the head are
not changed. For all G,G1, G2 ∈ Γ:

(= 1A) ⊓ ∀X.(≥ 2G1) ⊓ ∀X−.(≥ 2G2) ⊓ (≥ 2G) ⊑ ∀Y.(≥ 2G)

(g) The final state cannot be distinct from the accepting state qa. For all q ∈ Q \ {qa}:
(= 1A) ⊓ (≥ 2q) ⊑ ∃Y.⊤

(h) Finally, for AUXM the set of fresh binary relation symbols used above OM contains:

{⊤ ⊑ ∃Q.⊤ | Q ∈ AUXM}
This finishes the definition of OM . Let O = OP ∪ OM . We show that O is as required.

(1) Let N be a fresh unary relation symbol. Then an instance D is consistent w.r.t. O
if O,D ̸|= q for the Boolean query q ← N(x). It therefore suffices to provide a polynomial
time reduction of the run fitting problem for M to the problem whether an instance D is
consistent w.r.t. O.

Assume that a partial run γ̃ = (γ̃0, γ̃1, . . . , γ̃m) of partial configurations γ̃i of M such that
γ̃0 starts with q0 and |γ̃0| = · · · = |γ̃m| = n + 1 is given. We define an instance D with
D |= grid(0, 0) which encodes the partial run. Thus we regard (i, j) with 0 ≤ i ≤ n and
0 ≤ j ≤ m as constants and D contains the assertions

X((i, j), (i+ 1, j)), Y ((i, j), (i, j + 1)), Tinit(0, 0), Tfinal(n,m)

and E(i, j) for (i, j) ̸∈ {(0, 0), (n,m)}. In addition, we include in D the atoms

S((i, j), d1i,j), S((i, j), d2i,j)

for distinct fresh constants d1i,j and d
2
i,j for all i, j such that γ̃j [i] = S and S ≠ ⋆. It is now

straightforward to show that D is consistent w.r.t. O iff there is an accepting run of M that
matches γ̃.

(2) We have to provide for every CQ q(x⃗) a polynomial time reduction of the query
evaluation problem for (O, q) to the complement of the run fitting problem for M . To this
end observe that the following two conditions are equivalent for any CQ q(x⃗), instance D,
and tuple a⃗:

(1) O,D |= q(⃗a);
(2) D is not consistent w.r.t. O or {⊤ ⊑ ∃Q.⊤ | Q ∈ AUX},D |= q(⃗a), where AUX =

AUXcell ∪AUXgrid ∪AUXM .

As the second problem in Point (2) is in PTime it suffices to provide a polynomial time
reduction of the consistency problem for instances D w.r.t. O to the run fitting problem for
M . Assume D is given. First decide in polynomial time whether D is consistent w.r.t. OP

(Lemma 7.3). If not, we are done. If yes, let

I = {d ∈ dom(D) | D |= grid(d)}.
For each d ∈ I we find natural numbers nd,md such that d is the root of an nd ×md-grid
with witness function ρd for the tiling problem P. By Lemma 7.3, there is a materialization
B of D and OP such that d ∈ I iff d ∈ (= 1A)B.

Next we check in polynomial time that D is consistent w.r.t. OP and the axioms from (a)
and (d). To check consistency w.r.t. OP and the axiom from (a), it suffices to check that no e
in the range of some ρd has two or more A-successors. To check that D is consistent w.r.t. OP

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:56 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

and the sentences (= 1A)⊓ (≥ 2SW) ≡ (= 1A)⊓ ∃W.(≥ 2S) with W ∈ {X,X−} from (d) it
suffices to check that every e in the range of some ρd with at least two SW -successors in D has
aW -successor in D. This can be done in polynomial time. If the answer is yes, we may assume
that D is saturated in the sense that if, for example, (= 1A)⊓(≥ 2SX) ≡ (= 1A)⊓∃X.(≥ 2S)
is in OM then for any e in the range of some ρd and X(d, d′) ∈ D the following holds: d has
at least two SX -successors in D iff d′ has at least two S-successors in D.

Now, if D is not consistent w.r.t. OP and the axioms from (a) and (d), then we are done.
Moreover, if there exist d ∈ I and natural numbers j, r with 0 ≤ r ≤ nd and 0 ≤ j ≤ md

such that there are distinct S, S′ ∈ Γ ∪Q such that ρd(j, r) has at least two S-successors
and at least two S′-successors in D, then D is not consistent w.r.t. O (as this condition
contradicts the axioms in (c)) and we are done as this can clearly be checked in polynomial
time). Otherwise, define for every d ∈ I the sequences of strings

γ̃d = (γ̃d0 , . . . , γ̃
d
md

)

by setting for 0 ≤ r ≤ nd and S ∈ Γ ∪Q,

γ̃dr [j] = S iff ρd(j, r) has at least two S-successors in D

By construction, the sequences γ̃d, d ∈ I, are well-defined partial runs of M . It is now
straightforward to show that D is consistent w.r.t. O iff for each d ∈ I there exists an
accepting run of M that matches γ̃d. This provides a polynomial time reduction of the
consistency problem for instances D w.r.t. O to the run fitting problem for M . �

9 DECIDABILITY RESULTS

In Section 7, we have shown that it is undecidable whether a given ontology admits PTime
query evaluation when the ontologies are formulated in uGF−

2 (2, f) or are ALCIF ontologies
of depth 2. The aim of this section is to identify cases where this problem is decidable. In
fact, we show decidability and ExpTime-completeness for ALCHIQ ontologies of depth 1
and a NExpTime upper bound for uGC−

2 (1,=) ontologies. In both languages, PTime query
evaluation coincides with rewritability into Datalog̸= and thus our results can also be viewed
as establishing decidability of Datalog̸= rewritability. As discussed in the introduction, we
have carried out experiments which show that a large majority of real world ontologies are
ALCHIQ ontologies of depth 1 or can be transformed into such ontologies in a complexity
preserving way, which demonstrates the practical relevance of the obtained results.

Theorem 9.1. For uGC−
2 (1,=) ontologies, it is in NExpTime to decide whether query

evaluation is in PTime (equivalently: rewritable into Datalog ̸=). For ALCHIQ ontologies
of depth 1, this problem is ExpTime-complete and the lower bound already holds for ALC
TBoxes of depth 1.

We remark that the satisfiability problem for ALCHIQ ontologies is also ExpTime-
complete, both for ontologies of depth 1 and for ontologies of unrestricted depth. Thus, the
ExpTime upper bound in Theorem 9.1 is the best one can hope for. Also note that because
of [28] (Corollary 6.9) and [18], it is decidable and NP-complete whether a given CSP has
PTime complexity. This, however, does not imply any of the results in Theorem 9.1 in an
obvious way because a CSP corresponds to an ontology with a fixed query while we quantify
over all possible queries.

The proof of Theorem 9.1 proceeds through a series of lemmas that are of independent
interest. Since the ontology languages considered here admit at most binary relation symbols,
an interpretation B is cg-tree decomposable if and only if the undirected graph GB =

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:57

{{a, b} | R(a, b) ∈ B, a ̸= b} is a tree. For simplicity, we thus speak of tree interpretations
rather than of cg-tree decomposable interpretations. Tree instances are defined likewise.
A tree interpretation is irreflexive if there exists no fact of the form R(b, b) in B. The
outdegree of B is the outdegree of GB. The main insight underlying the proof of Theorem 9.1
is that for ontologies formulated in the mentioned languages, materializability (which by
Theorem 5.4 coincides with PTime query evaluation) already follows from the existence of
materializations for tree instances of depth 1. We make this precise in the following lemma.
Given a tree interpretation B and a ∈ dom(B), define the 1-neighborhood B≤1

a of a in B
as B|X , where X is the union of all guarded sets in B that contain a. We say that B is a

bouquet with root a if B≤1
a = B.

Lemma 9.2. Let O be a uGC−
2 (1,=) ontology (resp. an ALCHIQ ontology of depth 1).

Then O is materializable iff O is materializable for instances D that are bouquets (resp.
irreflexive bouquets) of outdegree ≤ |O| and satisfy sig(D) ⊆ sig(O).

Proof. We start by introducing the basic notions used in the proof. An interpretation D
is O-saturated if {R(⃗a) | O,D |= R(⃗a), a⃗ tuple in dom(D)} ⊆ D. For every O and instance
D there exists a unique minimal (w.r.t. set-inclusion) O-saturated instance D• ⊇ D called
the O-saturation of D. Observe that dom(D•) = dom(D). We list the basic properties of
O-saturated instances. Let D ⊆ D′ be instances with D′

|dom(D) = D and let O be a uGC2(=)

ontology. Assume D′ is consistent w.r.t. O. Then the following hold:

(a) There exists a materialization of O and D iff there exists a materialization of O and
the O-saturation of D; moreover, the materializations are the same.

(b) If B is a materialization of O and D and D is O-saturated, then B|dom(D) = D.
(c) If D′ is O-saturated, then D is O-saturated.

We first give the proof of Lemma 9.2 for uGC−
2 (1,=) ontologies, starting without the

condition on the outdegree. Let Σ0 = sig(O) and assume that O is materializable for the
class of all Σ0-bouquets. By Theorem 5.4 it suffices to prove that O is materializable for
the class of Σ0-tree instances. Fix a Σ0-tree instance D consistent w.r.t. O. By Point (a),
we may assume that D is O-saturated. Note that a forest model materialization B of O
and any O-saturated instance F can be obtained by taking the union of F and the tree
interpretations Ba, a ∈ dom(F), hooked to F at a in B. Take for any a ∈ dom(D) the
bouquet D≤1

a with root a and hook to D at a the interpretation Ba hooked to D≤1
a at a in a

forest model materialization B(a) of O and D≤1
a (such a forest model materialization exists

since D≤1
a is materializable). Let A = D∪

⋃
a∈dom(D) Ba be the resulting interpretation. We

show that A is a materialization of O and D. Clearly A is a model of D. It is a model of
O since the axioms in O have depth at most one and since D≤1

a = B(a)|dom(D
≤1
a)

for every

a ∈ dom(D), by Points (b) and (c). The condition O,D |= q(⃗a) iff A |= q(⃗a), for every CQ
q(x⃗) and a⃗ in dom(D), follows directly from the condition that the interpretations B(a) are
materializations of O and D≤1

a .
We now prove the restriction on the outdegree. Assume O is given. Let D be a bouquet

with root a of minimal outdegree such that there is no materialization of O and D. We show
that the outdegree of D does not exceed |O|. Assume the outdegree of D is at least three
(otherwise we are done). By Point (a), we may assume that D is O-saturated. O consists of
sentences of the form ∀x(x = x→ ψ(x)), where ψ(x) is a formula in openGC2 of depth 1.
Take for any subformula χ = ∃≥nz(α(z, x) ∧ ϕ(z, x)) occurring in such a ψ from O the set

Zχ = {b ̸= a | D |= α(b, a) ∧ ϕ(b, a)}

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:58 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Let Z ′
χ = Zχ if |Zχ| ≤ n + 1; otherwise let Z ′

χ be a subset of Zχ of cardinality n + 1.
Let D′ be the restriction D|Z of D to the union Z of all Z ′

χ and {a}. We show that there
exists no materialization of O and D′. Assume for a proof by contradiction that there is
a materialization B of O and D′. Let B′ be the union of D ∪B and the interpretations
Bb, b ∈ dom(D) \ (Z ∪ {a}), hooked to D|{a,b} at b in a forest model materialization of O
and D|{a,b} (here we use the condition that for tree instances with at most two constants
materializations exist). We show that B′ is a materialization of D and O (and thus derive a
contradiction). Using the condition that D is O-saturated and Points (b) and (c), one can
show that the restriction B′

|dom(D) of B
′ to dom(D) coincides with D. Using the condition

that O has depth 1 it is now easy to show that B′ is a model of O. It is a materialization of
D and O since it is composed of materializations of subinstances of D and O. This finishes
the proof for uGC−

2 (1,=).
The proof for ALCHIQ ontologies of depth 1 is similar. To show, however, that it suffices

to consider irreflexive bouquets one has to replace the notion of unraveling introduced above
by irreflexive counterparts (which are well known from previous work on ALCHIQ [40]). For
every interpretation A (interpreting at most binary relation symbols) and a ∈ dom(A) one
can construct the irreflexive unraveling Aua of A at a into an irreflexive tree interpretation
satisfying the same ALCHIQ concept inclusions as A and also satisfying in a the same
ALCHIQ concepts as A. Irreflexive unraveling can then be used to define the irreflexive
global unraveling of a data instance which behaves, when restricted to ALCHIQ ontologies,
in exactly the same way as the global unraveling defined above. In what follows we use the
following easily proved variations of Lemma 2.12 and Theorem 5.4. Let O be an ALCHIQ
ontology of depth 1. Then the following hold:

(d) Let A be a model of O and an irreflexive tree instance D. Then there exists an irreflexive
tree model B of O and D such that there exists a homomorphism h from B to A
preserving dom(D).

(e) O is materializable iff O is materializable for the class of all irreflexive tree instances
D with dom(D) ⊆ sig(O).

To prove the claim for ALCHIQ and irreflexive bouquets in Lemma 9.2, one can now use
Point (e) and modify in a straightforward way the proof given for uGC−

2 (1,=). �

We now develop algorithms that decide PTime query evaluation by checking materializ-
ability of instances that are bouquets as stated in Lemma 9.2. Let D be an instance that is
a bouquet with root a. An interpretation B ⊇ D is a 1-materialization of O and D with
root a if it is a bouquet and

(1) there exists a model A of O and D such that B = A≤1
a ;

(2) for any model A of O and D there exists a homomorphism from B to A that preserves
dom(D).

For brevity, we say that D is O-relevant if it is consistent w.r.t. O, of outdegree at most |O|,
and satisfies sig(D) ⊆ sig(O).

We show that when checking materializability of ALCHIQ ontologies of depth 1, not only
is it sufficient to consider irreflexive O-relevant bouquets instead of unrestricted instances,
but additionally one can concentrate on 1-materializations of such bouquets.

Lemma 9.3. Let O be an ALCHIQ ontology of depth 1. Then O is materializable iff for
all irreflexive O-relevant bouquets D there is a 1-materialization of O and D.

Proof. Let D be an irreflexive O-relevant bouquet with root a. Assume that for all
irreflexive O-relevant bouquets F with root b there exists a 1-materialization B of O and

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:59

F with root b (we then call the triple (F, b,B) a 1-materializability witness). It suffices to
prove that there exists a materialization of O and D. Note that it follows from Point (d)
in the proof of Lemma 9.2 that any B in any 1-materializability witness (F, b,B) is an
irreflexive tree interpretation. We construct the desired materialization step-by-step using
these 1-materializability witnesses and also memorizing sets of frontier elements that have
to be expanded in the next step. We start with a 1-materializability witness (D, a,B0) and
set F0 = dom(B0) \ {a}. Then we construct a sequence of irreflexive tree interpretations
B0 ⊆ B1 ⊆ . . . and frontier sets Fi+1 ⊆ dom(Bi+1) \ dom(Bi) inductively as follows: given
Bi and Fi, take for any b ∈ Fi its predecessor b′ in Bi and a 1-materializability witness
(Bi

|{b′,b}, b,Bb) and set

Bi+1 := Bi ∪
⋃
b∈Fi

Bb Fi+1 :=
⋃
b∈Fi

dom(Bb) \ {b}

Let B∗ :=
⋃
i≥0 B

i. We show that B∗ is a materialization of O and D. B∗ is a model of O by
construction since O is an ALCHIQ ontology of depth 1. We show that B∗ is hom-universal.
Consider a model A of O and D. It suffices to construct a homomorphism h from B∗ to A
preserving dom(D). By Point (d) in the proof of Lemma 9.2, we may assume that A is an
irreflexive tree interpretation. We construct h as the limit of a sequence h0 ⊆ h1 ⊆ . . . of
homomorphisms hi from Bi to A. By definition, there exists a homomorphism h0 from B0

to A≤1
a preserving dom(D). Now, inductively, assume that hi is a homomorphism from Bi

to A. Assume c has been added to Bi in the construction of Bi+1. Then there exists b ∈ Fi
and its predecessor b′ in Bi such that c ∈ dom(Bb) \ {b}, where Bb is the irreflexive tree
interpretation that has been added to Bi as the last component of the 1-materializability
witness (Bi

|{b′,b}, b,Bb). But then, as Bb is a 1-materialization of Bi
|{b′,b} and hi is injective

on Bi
|{b′,b} (since A is irreflexive), we can expand the homomorphism hi to a homomorphism

from domain dom(Bi)∪ {c} into A. Thus, we can expand hi to a homomorphism from Bi+1

to A. �

Lemma 9.3 implies that anALCHIQ ontologyO of depth 1 enjoys PTime query evaluation
if and only if for all irreflexive O-relevant bouquets D there exists a 1-materialization of O
and D. The latter condition can be checked in deterministic exponential time, as follows.
We enumerate all irreflexive O-relevant bouquets D. There are only single exponentially

many candidates for D and for each of them we can check in ExpTime whether it is indeed
O-relevant. Note that this involves checking whether D is consistent w.r.t. O and that
consistency of instances w.r.t. an ontology can be decided in ExpTime in ALCHIQ [6].

For each O-relevant bouquet D, we have to check the existence of a 1-materialization. Using
a straightforward selective filtration argument one can show that if an interpretation A is an
irreflexive tree model of O and D, then there exists a subinterpretation A′ of A of outdegree
at most 2|O| that satisfies O and D. It follows that we can concentrate on 1-materializations
B of outdegree at most 2|O|. We can also assume that sig(B) ⊆ sig(O). Thus, there are
only single exponentially many candidates for B. We enumerate all of them and have to
verify Conditions (1) and (2) of 1-materializations. For Condition (1), we have to check
whether there is a model A of O and D such that B = A≤1

a . This can be done in ExpTime
by a straightforward polynomial time reduction to the consistency of an instance w.r.t. an
ALCHIQ ontology. For Condition (2), it suffices to check whether for every bouquet A ⊇ D
with root a and outdegree ≤ 2|O| and with sig(A) ⊆ sig(O) such that there exists a model
C of O with C≤1

a = A there exists a homomorphism from B to A preserving D. This can
again be achieved by combining enumeration with consistency checks.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:60 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

We have thus established the ExpTime upper bound in Theorem 9.1. A matching lower
bound (even for ALC ontologies of depth 1) can be proved by a straightforward reduction of
the (un)satisfiability problem for ontologies: an ALC ontology O is unsatisfiable if and only
if O ∪ {⊤ ⊑ B1 ⊔B2} is materializable, where B1, B2 are fresh unary relation symbols.
The proof of Lemma 9.3 makes intense use of irreflexive tree interpretations to define

appropriate unravelings for ALCHIQ ontologies. This does not work for uGC−
2 (1,=). In

fact, the following example shows that there, the existence of 1-materializations does not
guarantee the materializability of bouquets.

Example 9.4. Let S, S′, R,R′ be binary relation symbols and consider the ontology O that
consists of the sentences

∀x
(
(S(x, x) ∧R(x, x))→ ∃y (R(x, y) ∧ (x ̸= y)) ∨ ∃y (S(x, y) ∧ (x ̸= y))

)
∀x

(
∃y (W (y, x) ∧ (y ̸= x))→ ∃yW ′(x, y)

)
where (W,W ′) ranges over {(R,R′), (S, S′)}. Note that O is equivalent to an uGF−

2 (1,=)
ontology. O is not materializable since for D = {S(a, a), R(a, a)}, every model of O and D
contains an atom of the form R′(c, c′) or S′(c, c′), but not necessarily both. It is, however,
not too difficult to verify that for every bouquet D there exists a 1-materialization of O
and D.

In uGC−
2 (1,=), we thus have to check unrestricted materializability of O-relevant bouquets,

instead of 1-materializability. To achieve this, we use a mosaic approach. In each mosaic
piece, we record a 1-neighborhood of the materialization of the bouquet, a 1-neighborhood
of a tree-model of the bouquet and the ontology, and a homomorphism from the former to
the latter. We then identify certain conditions that characterize when a set of mosaics can
be assembled into a materialization in a way that is similar to the model construction in the
proof of Lemma 9.3. We actually introduce two different kinds of mosaic pieces, one kind
of piece explicitly addressing reflexive loops which, as illustrated by Example 9.4, are the
reason why we cannot work with 1-materializations. The decision procedure then consists of
guessing a set of mosaics and verifying that the required conditions are satisfied.

A bounded 1-materializability witness for O is a tuple (F, a,B) such that

• F is an O-relevant bouquet with root a;
• B is a 1-materialization of O and F with root a and of outdegree ≤ 2|O|.

A pair (a,B) with B a bouquet with root a is called a 1-model for O if sig(B) ⊆ sig(O),
the outdegree of B is ≤ 2|O|, and there exists a model A of O with a ∈ dom(A) such that
A≤1
a = B. We require the following two types of mosaic pieces. First, an injective hom-pair

takes the form (F, a,B)→i
h (a′,B′) such that

• (F, a,B) is a bounded 1-materializability witness for O
• (a′,B′) is a 1-model of O;
• h is a homomorphism from B to B′ mapping a to a′ which is injective on F.

In an injective hom-pair, the 1-materializability witness is a piece of the materialization
we wish to construct and the 1-model is a piece of the model into which we wish to
homomorphically embed the materialization. Injective hom-pairs cover the case in which
the homomorphism one wants to extend (i.e., the restriction of h to dom(F)) is injective.
To deal with non-injective homomorphisms (as indicated by Example 9.4) we also consider
contracting hom-pairs which take the form (F, a,B)→c

h (a′,B′) where

• (F, a,B) is a bounded 1-materializability witness for O with dom(F) = {a, b} for some
constant b;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:61

• (a′,B′) is a 1-model of O;
• h is a homomorphism from B to B′ with h(a) = h(b) = a′.

The following lemma now provides a NexpTime decision procedure for materializability of
uGC−

2 (1,=) ontologies.

Lemma 9.5. Let O be a uGC−
2 (1,=) ontology. Then O is materializable iff there exist

(1) a set M of bounded 1-materializability witnesses containing exactly one bounded 1-
materializability witness (F, a,B) for every O-relevant bouquet F with root a and

(2) sets H of injective hom-pairs and E of contracting hom-pairs whose first components
are all in M

such that the following conditions hold:

(a) if (F, a,B) ∈M , (a′,B′) is a 1-model of O, and h0 an injective homomorphism from F
to B′ with h0(a) = a′, then there is an extension h of h0 with (F, a,B)→i

h (a′,B′) ∈ H;
(b) if (F, a,B) →i

h (a′,B′) ∈ H or (F, a,B) →c
h (a′,B′) ∈ E with b ∈ dom(B) \ dom(F)

and h(a) = h(b) = a′, then there are h′ and B′′ with (B|{a,b}, b,B
′′)→c

h′ (a′,B′) ∈ E.

Proof. Using Lemma 3.3 and selective filtrations as in the ExpTime proof above, one
can easily show that sets M , H, and E satisfying the Conditions (a) and (b) exist if O is
materializable. Conversely, let the sets M , H, and E satisfy the Conditions (a) and (b).
Assume an O-relevant bouquet D with root a is given. It suffices to prove that there exists a
materialization of D and O. Take the bounded 1-materializability witness (D, a,B) ∈M . As
in the proof of Lemma 9.3 we construct a sequence of interpretations B0 ⊆ B1 ⊆ . . . and sets
Fi ⊆ dom(Bi) of frontier elements (but now using only bounded 1-materializability witnesses
inM): setB0 := B and F0 = dom(B)\{a}. IfBi and Fi have been constructed, then take for
any b ∈ Fi its predecessor b′ and a bounded 1-materializability witness (Bi

|{b′,b}, b,Bb) ∈M
and set Bi+1 := Bi ∪

⋃
b∈Fi

Bb and Fi+1 :=
⋃
b∈Fi

dom(Bb) \ {b}. Let B∗ :=
⋃
i≥0 B

i. We
show that B∗ is a materialization of O and D. B∗ is a model of O by construction since
O is a uGC−

2 (1,=) ontology. We show that B∗ is hom-universal. Consider a model A of O
and D. We construct a homomorphism h from B∗ to A preserving dom(D) as the limit of a
sequence h0 ⊆ h1 ⊆ . . . of homomorphisms from Bi to A. As argued above, we may assume
that the outdegree of A is ≤ 2|O|. By definition, there exists a homomorphism h0 from B0

to A≤1
a preserving D. Now, inductively, we ensure in each step that the homomorphisms hi

satisfy the following conditions for all Bi and Fi, all b ∈ Fi and the predecessor b′ of b in
Bi−1:

(1) if hi(b
′) ̸= hi(b), then for the bounded 1-materializability witness (B∗

|{b′,b}, b,Bb) ∈M
there exists a homomorphism hb which coincides with hi on {b, b′} such that

(B∗
|{b′,b}, b,Bb)→i

hb
(hi(b),A

≤1
hi(b)

) ∈ H

(2) if hi(b
′) = hi(b), then for the bounded 1-materializability witness (B∗

|{b′,b}, b,Bb) ∈M
there exists a homomorphism hb which coincides with hi on {b, b′} such that

(B∗
|{b′,b}, b,Bb)→c

hb
(hi(b),A

≤1
hi(b)

) ∈ E

Assume hi with the properties (1) and (2) has been constructed. Then we take for all b ∈ Fi
and the predecessor b′ of b the homomorphism hb given by Condition (1) and, respectively,
(2) and set hi+1 := hi ∪

⋃
b∈Fi

hb. Using the Conditions (a) and (b) for M , H, and E it is

straightforward to show that hi+1 again satisfies Condition (1) and (2). �

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:62 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

As, up to isomorphism, the sets M , H, and E are of size at most single exponential in O
and since the conditions of Lemma 9.5 can be checked in polynomial time, we obtain a
NExpTime procedure for deciding materializability.

Theorem 9.1 only covers ontology languages of depth 1. It would be desirable to establish
decidability also for ontology languages of depth 2 that enjoy a dichotomy between PTime
and coNP-completeness of query evaluation, such as uGF−

2 (2). The following example
shows that this requires more sophisticated techniques than those used above. In particular,
materializability of bouquets does not imply materializability.

Example 9.6. We give a family of ALC-ontologies (On)n≥0 of depth 2 such that each On
is materializable for tree instances of depth at most 2n − 1 while it is not materializable.
The idea is that any instance D that witnesses non-materializability of On must contain an
R-chain of length 2n, R a binary relation symbol. The presence of this chain is verified by
propagating a marker upwards along the chain. To ensure that O is materializable for tree
instances of depth smaller than 2n − 1, we represent this marker by a universally quantified
formula and also hide some other unary relation symbols in the same way. For each unary
relation symbol P , let HP (x) denote the formula ∀y(S(x, y)→ P (y)) and include in On the
sentence ∀x∃y(S(x, y) ∧ P (y)). The remaining sentences in On are:

X1(x) ∧ · · · ∧Xn(x)→ HV (x)

Xi(x) ∧ ∃R.(Xi(y) ∧Xj(y))→ Hoki
(x)

Xi(x) ∧ ∃R.(Xi(y) ∧Xj(y))→ Hoki
(x)

Xi(x) ∧ ∃R.(Xi(y) ∧X1(y) ∧ · · · ∧Xi−1(y))→ Hoki
(x)

Xi(x) ∧ ∃R.(Xi(y) ∧X1(y) ∧ · · · ∧Xi−1(y))→ Hoki
(x)

Hok1
(x) ∧ · · · ∧Hokn

(x) ∧ ∃R.HV (y)→ HV (x)

∃R.Xi(y) ∧ ∃R.Xi(y)→ ⊥
X1(x) ∧ · · · ∧Xn(x) ∧HV (x)→ B1(x) ∨B2(x)

where x is universally quantified, ∃R.ϕ(y) is an abbreviation for ∃y(R(x, y)∧ϕ(y)), i ranges
over 1..n, and j over 1..i − 1. Note that X1, . . . , Xn and X1, . . . , Xn represent a binary
counter and that lines two to five implement incrementation of this counter. The second last
formula is necessary to avoid that multiple successors of a node interact in undesired ways.
On instances that contain no R-chain of length 2n, a materialization can be constructed by
a straightforward chase procedure.

10 CONCLUSION

Perhaps the most surprising result of our analysis is that it is possible to escape Ladner’s The-
orem and prove a strong dichotomy between Datalog̸=-rewritability and coNP-completeness
of query evaluation for rather large subsets of the guarded fragment that cover almost all
practically relevant DL ontologies. Ontology languages covered by this positive result further
enjoy the property that Datalog̸=-rewritability, materializability, unraveling tolerance, and
PTime query evaluation are all equivalent notions, and in several cases we even observe
decidability of meta problems such as deciding whether a given ontology admits PTime
query evaluation. Our study also shows that increasing the expressive power in seemingly
harmless ways often results in CSP-hardness and in Datalog̸=-rewritability diverging from
PTime query evaluation, and in several cases even in a provable loss of the PTime/coNP
dichotomy. The proof of the latter comes with a variation of Ladner’s theorem we believe

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:63

to be potentially useful also in other contexts where some form of precoloring of the input
is unavoidable, such as in consistent query answering for which the topic of precoloring is
discussed in [66].
There are a number of interesting future research questions. The main open questions

regarding dichotomies are whether the PTime/coNP dichotomy can be generalized from
uGF2 to uGF(=) and whether the CSP-hardness results established in this paper that do
not come with a dichotomy (third row of Figure 1) can be shown to admit a dichotomy or
to provably not enjoy a dichotomy. Also of interest is the decidability and complexity of
the problem to decide PTime query evaluation for uGF(1), uGF−

2 (2), and for ALCHIF
ontologies of depth 2. It would further be interesting to study fragments of GF in which
invariance under disjoint union is not guaranteed (as we have observed, the complexities
of CQ and UCQ evaluation might then diverge), and to add the ability to declare in an
ontology that a binary relation symbol is transitive.

ACKNOWLEDGMENTS

André Hernich, Fabio Papacchini, and Frank Wolter were supported by EPSRC UK
grant EP/M012646/1. Carsten Lutz was supported by ERC CoG 647289 CODA.

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
[2] Hajnal Andréka, István Németi, and Johan van Benthem. 1998. Modal Languages and Bounded

Fragments of Predicate Logic. J. Philosophical Logic 27, 3 (1998), 217–274.

[3] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge
University Press.

[4] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. 2009. The

DL-Lite Family and Relations. J. of Artifical Intelligence Research 36 (2009), 1–69.
[5] Albert Atserias. 2008. On digraph coloring problems and treewidth duality. Eur. J. Comb. 29, 4 (2008),

796–820.

[6] Franz Baader, Deborah, Diego Calvanese, Deborah L. McGuiness, Daniele Nardi, and Peter F. Patel-
Schneider (Eds.). 2003. The Description Logic Handbook. Cambridge University Press.

[7] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction to Description

Logic. Cambridge University Press.
[8] Vince Bárány, Georg Gottlob, and Martin Otto. 2014. Querying the Guarded Fragment. Logical Methods

in Computer Science 10, 2 (2014).
[9] Vince Bárány, Balder ten Cate, and Luc Segoufin. 2015. Guarded Negation. J. ACM 62, 3 (2015),

22:1–22:26.

[10] Andrew Bate, Boris Motik, Bernardo Cuenca Grau, Frantisek Simancik, and Ian Horrocks. 2016.
Extending Consequence-Based Reasoning to SRIQ. In Proc. of KR. 187–196.

[11] Catriel Beeri and Philip A. Bernstein. 1979. Computational Problems Related to the Design of Normal

Form Relational Schemas. ACM Trans. Database Syst. 4, 1 (1979), 30–59.
[12] Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data Dependencies. J. ACM 31, 4

(1984), 718–741.

[13] Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. 2016. Effective Interpolation and
Preservation in Guarded Logics. ACM Trans. Comput. Log. 17, 2 (2016), 8:1–8:46.

[14] Meghyn Bienvenu and Magdalena Ortiz. 2015. Ontology-Mediated Query Answering with Data-Tractable
Description Logics. In Proc. of Reasoning Web. 218–307.

[15] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-Based Data

Access: A Study through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39, 4
(2014), 33:1–33:44.

[16] Manuel Bodirsky, Hubie Chen, and Tomás Feder. 2012. On the Complexity of MMSNP. SIAM J.
Discrete Math. 26, 1 (2012), 404–414.

[17] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. 2016. Guarded-Based Disjunctive
Tuple-Generating Dependencies. ACM Trans. Database Syst. 41, 4 (2016), 27:1–27:45.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:64 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

[18] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In Proc. of FOCS. 319–330.
[19] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering

under Expressive Relational Constraints. J. Artif. Intell. Res. (JAIR) 48 (2013), 115–174.

[20] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive ontology languages:
The query answering problem. Artif. Intell. 193 (2012), 87–128.

[21] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.

2013. Data complexity of query answering in description logics. Artificial Intelligence 195 (2013),
335–360.

[22] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 1998. On the Decidability of Query

Containment under Constraints. In Proc. of PODS. 149–158.
[23] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.

2007. Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family.
J. Autom. Reasoning 39, 3 (2007), 385–429.

[24] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000. View-Based

Query Processing and Constraint Satisfaction. In Proc. of LICS. 361–371.

[25] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2003. View-Based
query containment. In Proc. of PODS. 56–67.

[26] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted to Know About
Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng. 1, 1 (1989), 146–166.

[27] C. C. Chang and H. Jerome Keisler. 1990. Model Theory. Studies in Logic and the Foundations of

Mathematics, Vol. 73. Elsevier.

[28] Hubie Chen and Benoit Larose. 2016. Asking the metaquestions in constraint tractability. CoRR
abs/1604.00932 (2016).

[29] David Cohen and Peter Jeavons. 2006. The complexity of constraint languages. In Handbook of
Constraint Programming. Elsevier, Chapter 8.

[30] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The chase revisited. In Proc. of PODS. ACM,

149–158.
[31] Thomas Eiter, Georg Gottlob, and Heikki Mannila. 1997. Disjunctive Datalog. ACM Trans. Database

Syst. 22, 3 (1997), 364–418.

[32] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao. 2012. Query
Rewriting for Horn-SHIQ Plus Rules. In Proc. of AAAI.

[33] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. 2015. Dichotomies in the Complexity of

Preferred Repairs. In Proc. of PODS. 3–15.
[34] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data exchange: semantics

and query answering. Theor. Comput. Sci. 336, 1 (2005), 89–124.
[35] Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and

Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28, 1 (1998),

57–104.
[36] Tomás Feder and Moshe Y. Vardi. 2003. Homomorphism Closed vs. Existential Positive. In Proc. of

LICS. 311–320.

[37] Cristina Feier, Antti Kuusisto, and Carsten Lutz. 2018. Rewritability in Monadic Disjunctive Datalog,
MMSNP, and Expressive Description Logics. ACM Transactions of Database Systems (2018).

[38] Gaëlle Fontaine. 2015. Why Is It Hard to Obtain a Dichotomy for Consistent Query Answering? ACM

Trans. Comput. Log. 16, 1 (2015), 7:1–7:24.
[39] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015. The Complexity of

Resilience and Responsibility for Self-Join-Free Conjunctive Queries. PVLDB 9, 3 (2015), 180–191.

[40] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. 2008. Conjunctive Query Answering for
the Description Logic SHIQ. J. Artif. Intell. Res. (JAIR) 31 (2008), 157–204.

[41] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, Thomas Schwentick, and
Michael Zakharyaschev. 2014. The price of query rewriting in ontology-based data access. Artif. Intell.

213 (2014), 42–59.

[42] Georg Gottlob, Marco Manna, and Andreas Pieris. 2015. Polynomial Rewritings for Linear Existential
Rules. In Proc. of IJCAI. 2992–2998.

[43] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and Optimization for Ontological

Databases. ACM Trans. Database Syst. 39, 3 (2014), 25:1–25:46.
[44] Erich Grädel. 1999. On The Restraining Power of Guards. J. Symb. Log. 64, 4 (1999), 1719–1742.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:65

[45] Erich Grädel and Martin Otto. 2014. The Freedoms of (Guarded) Bisimulation. In Johan van Benthem
on Logic and Information Dynamics. 3–31.

[46] Pavol Hell and Jaroslav Nesetril. 1990. On the complexity of H -coloring. J. Comb. Theory, Ser. B 48,

1 (1990), 92–110.

[47] André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter. 2017. Dichotomies in Ontology-
Mediated Querying with the Guarded Fragment. In Proc. of PODS. 185–199.

[48] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2005. Data Complexity of Reasoning in Very Expressive
Description Logics. In Proc. of IJCAI. 466–471.

[49] Peter Jeavons, David A. Cohen, and Marc Gyssens. 1997. Closure properties of constraints. J. ACM

44, 4 (1997), 527–548.
[50] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. 2016. Datalog rewritability of Disjunctive

Datalog programs and non-Horn ontologies. Artif. Intell. 236 (2016), 90–118.

[51] Yevgeny Kazakov. 2004. A Polynomial Translation from the Two-Variable Guarded Fragment with
Number Restrictions to the Guarded Fragment. In Proc. of JELIA. 372–384.

[52] Benny Kimelfeld. 2012. A dichotomy in the complexity of deletion propagation with functional
dependencies. In Proc. of PODS. ACM, 191–202.

[53] Roman Kontchakov and Michael Zakharyaschev. 2014. An Introduction to Description Logics and

Query Rewriting. In Proc. of Reasoning Web. 195–244.

[54] Paraschos Koutris and Dan Suciu. 2014. A Dichotomy on the Complexity of Consistent Query Answering
for Atoms with Simple Keys. In Proc. of ICDT. OpenProceedings.org, 165–176.

[55] Paraschos Koutris and Jef Wijsen. 2015. The Data Complexity of Consistent Query Answering for
Self-Join-Free Conjunctive Queries Under Primary Key Constraints. In Proc. of PODS. 17–29.

[56] Adila Krisnadhi and Carsten Lutz. 2007. Data Complexity in the EL family of DLs. In Proc. of DL.

[57] Andrei A. Krokhin and Stanislav Zivny (Eds.). 2017. The Constraint Satisfaction Problem: Complexity
and Approximability. Dagstuhl Follow-Ups, Vol. 7. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[58] Markus Krötzsch. 2012. OWL 2 Profiles: An Introduction to Lightweight Ontology Languages. In Proc.

of Reasoning Web. 112–183.
[59] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. 2013. Complexities of Horn Description

Logics. ACM Trans. Comput. Log. 14, 1 (2013), 2:1–2:36.

[60] Gábor Kun. 2007. Constraints, MMSNP, and Expander Structures. (2007). Available at
http://arxiv.org/abs/0706.1701v1.

[61] Richard E. Ladner. 1975. On the Structure of Polynomial Time Reducibility. J. ACM 22, 1 (1975),

155–171.
[62] Benoit Larose and Pascal Tesson. 2009. Universal algebra and hardness results for constraint satisfaction

problems. Theor. Comput. Sci. 410, 18 (2009), 1629–1647.
[63] Alon Y. Levy and Marie-Christine Rousset. 1998. Combining Horn Rules and Description Logics in

CARIN. Artif. Intell. 104, 1-2 (1998), 165–209.

[64] Carsten Lutz, Inanç Seylan, and Frank Wolter. 2013. Ontology-Based Data Access with Closed Predicates
is Inherently Intractable(Sometimes). In Proc. of IJCAI. 1024–1030.

[65] Carsten Lutz and Frank Wolter. 2012. Non-Uniform Data Complexity of Query Answering in Description

Logics. In Proc. of KR.
[66] Carsten Lutz and Frank Wolter. 2015. On the Relationship between Consistent Query Answering and

Constraint Satisfaction Problems. In Proc. of ICDT. 363–379.

[67] Carsten Lutz and Frank Wolter. 2017. The Data Complexity of Description Logic Ontologies. Logical
Methods in Computer Science Volume 13, Issue 4 (Nov. 2017).

[68] Florent R. Madelaine. 2009. Universal Structures and the Logic of Forbidden Patterns. Logical Methods

in Computer Science 5, 2 (2009).
[69] Florent R. Madelaine and Iain A. Stewart. 2007. Constraint Satisfaction, Logic and Forbidden Patterns.

SIAM J. Comput. 37, 1 (2007), 132–163.
[70] Jack Minker (Ed.). 1988. Foundations of Deductive Databases and Logic Programming. Elsevier.
[71] Marie-Laure Mugnier and Michaël Thomazo. 2014. An Introduction to Ontology-Based Query Answering

with Existential Rules. In Proc. of Reasoning Web. 245–278.
[72] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. 2008. Data Complexity of Query Answering in

Expressive Description Logics via Tableaux. Journal of Automated Reasoning 41, 1 (2008), 61–98.

[73] Martin Otto. 2012. Highly acyclic groups, hypergraph covers, and the guarded fragment. J. ACM 59, 1
(2012), 5:1–5:40.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:66 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

[74] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. 2008. Linking Data to Ontologies. J. Data Semantics 10 (2008), 133–173.

[75] Ian Pratt-Hartmann. 2007. Complexity of the Guarded Two-variable Fragment with Counting Quantifiers.

J. Log. Comput. 17, 1 (2007), 133–155.

[76] Ian Pratt-Hartmann. 2009. Data-complexity of the two-variable fragment with counting quantifiers. Inf.
Comput. 207, 8 (2009), 867–888.

[77] Thomas J. Schaefer. 1978. The Complexity of Satisfiability Problems. In Proc. of STOC. ACM, 216–226.
[78] Andrea Schaerf. 1993. On the Complexity of the Instance Checking Problem in Concept Languages

with Existential Quantification. J. of Intel. Inf. Systems 2 (1993), 265–278.

[79] Frantisek Simancik, Yevgeny Kazakov, and Ian Horrocks. 2011. Consequence-Based Reasoning beyond
Horn Ontologies. In Proc. of IJCAI. 1093–1098.

[80] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan
& Claypool Publishers.

[81] P. van Emde Boas. 1997. The convenience of tilings. In Complexity, Logic, and Recursion Theory.

331–363.

[82] Patricia L Whetzel, Natalya F Noy, Nigam H Shah, Paul R Alexander, Csongor Nyulas, Tania Tudorache,
and Mark A Musen. 2011. BioPortal: enhanced functionality via new Web services from the National

Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic acids
research 39, suppl 2 (2011), W541–W545.

[83] Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In Proc. of FOCS. 331–342.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:67

A PROOF OF THEOREM 8.4

This section presents a detailed proof of Theorem 8.4. We use the terminology and notation
from the main body of the paper. In particular, see Section 8 for definitions and assumptions
relevant to non-deterministic Turing machines (TMs) and to the run fitting problem.
Given a TM M , we denote by L(M) the set of strings accepted by M , and by RF(M)

the run fitting problem for M . As observed in Section 8, RF(M) is in NP for every TM M .
We will now prove the following theorem by a careful adaptation of the proof of Ladner’s
theorem given in [3].

Theorem 8.4 (restated) There is a TM whose whose run fitting problem is neither in
PTime nor NP-hard, unless PTime = NP.

The proof is a modification of the construction used in Impagliazzo’s version of the proof
of Ladner’s Theorem [61], as presented in [3, Theorem 3.3].

We start by fixing a polynomial-time TMMSAT for SAT. For a monotone polynomial-time
computable function H : N→ N to be specified later, let MH be a polynomial-time TM that
works as follows on a given input string v:

(1) Check if there exists an integer n ≥ 0 such that v is the unary representation of nH(n)

(i.e., v = 1n
H(n)

). If such an n does not exist, then reject v.
(2) Guess an input w of length n for MSAT.
(3) Generate the initial configuration γ of MSAT on input w.
(4) Start MSAT in configuration γ, and accept v iff MSAT accepts w.

We refer to the first three steps as the initialization phase.
We now define the function H : N→ N. Fix a polynomial time computable enumeration

M0,M1,M2, . . . of deterministic TMs such that all runs ofMi on inputs of length n terminate
after at most i · ni steps, and for each problem A in PTime there are infinitely many indices
i such that L(Mi) = A.3 Then, H(n) is defined as

H(n) := min {i < log log n | for all z of length ≤ log n, Mi accepts z iff z ∈ RF(MH)} ∪ {log log n}.

It is not hard to see that H is well-defined, and that there is a deterministic polynomial-time
Turing machine that, given a positive integer n in unary, outputs H(n). For details, we refer
to [3].
This finishes the construction of MH . Lemma A.2 below shows that RF(MH) has the

desired properties, namely that RF(MH) is neither in PTime nor NP-complete, unless
PTime = NP. It uses the following auxiliary lemma.

Lemma A.1.

• If RF(MH) is in PTime, then H(n) = O(1).
• If RF(MH) is not in PTime, then limn→∞H(n) =∞.

Proof. The proof is as in [3], but we here provide a proof for the sake of completeness.
Assume first that RF(MH) is in PTime. Then, there is an index i such that L(Mi) =

RF(MH). Now, for all n > 22
i

, we have i < log log n, which impliesH(n) ≤ i by the definition

of H. It follows that H(n) ≤ max{H(m) | m ≤ 22
i

+ 1}, and therefore H(n) = O(1).

3It is easy to construct a deterministic polynomial-time Turing machine that, given an integer i ≥ 0, outputs

a deterministic Turing machine Mi such that the sequence (Mi)i≥0 has the desired properties. For instance,
let M ′

i be the i-th deterministic Turing machine in lexicographic order under some string encoding of Turing

machines, and add a clock to M ′
i that stops the computation of M ′

i after at most i · ni steps (and rejects if

M ′
i did not accept yet).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:68 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Next assume thatRF(MH) is not inPTime. For a contradiction, suppose that limn→∞H(n) ̸=
∞. Since H is monotone, this means that there are integers n0, i ≥ 0 such that H(n) = i
for all integers n ≥ n0. Let n ≥ n0. By the definition of H, we have that Mi agrees with
RF(MH) on all strings of length at most log n. Since this holds for all n ≥ n0, we conclude
that L(Mi) = RF(MH). But then, RF(MH) is in PTime, which contradicts our initial
assumption that RF(MH) is not in PTime. �

We now prove the main lemma, which concludes the proof of Theorem 8.4.

Lemma A.2. If PTime ̸= NP, then RF(MH) is neither in PTime nor NP-complete.

Proof. ‘RF(MH) is not in PTime’: For a contradiction, suppose that RF(MH) is in
PTime. By Lemma A.1, there is a constant c ≥ 0 such that for all integers n ≥ 0 we have
H(n) ≤ c. Suppose that on inputs of length n, MSAT makes at most p(n) := nk + k steps.
Then, the following is a polynomial-time (many-one) reduction from SAT to RF(MH),
which implies PTime = NP and leads to the desired contradiction.

Given an input x of length n for MSAT:

(1) Compute h := H(n) and w := 1n
h

.
(2) Output the partial run γ̃0, . . . , γ̃i+p(n) of MH such that:
• γ̃0, . . . , γ̃i corresponds to the initialization phase of MH on input w that generates
the start configuration of MSAT on input x. In particular, γ̃0, . . . , γ̃i are complete
configurations of MH , and γ̃0 = q0w and γ̃i = q′0x, where q0 and q′0 are the start
states of MH and MSAT, respectively;
• γ̃i+1, . . . , γ̃i+p(n) are completely unspecified (i.e., they consist of wildcards only).

Note that the partial run γ̃0, . . . , γ̃i+p(n) can be computed by simulating the initialization
phase MH on input w, where in step 2 of the initialization phase we ‘guess’ the input string
x given as input to the reduction. Then, we pad the sequence of configurations corresponding
to the initialization phase by p(n) partial configurations, each consisting of exactly p(n)
wildcard symbols.

‘RF(MH) is not NP-complete’: Suppose, to the contrary, that RF(MH) is NP-complete.
Then there is a polynomial-time (many-one) reduction f from SAT to RF(MH). Using f ,
we construct a polynomial-time many-one reduction g from SAT to SAT such that for all
sufficiently large strings x we have |g(x)| < |x|. This implies that SAT can be solved in
polynomial time, and contradicts PTime ̸= NP.
Consider an input x for SAT. Since f is a many-one reduction from SAT to RF(MH),

we have

f(x) = γ̃0#γ̃1# · · ·#γ̃m (4)

for some partial run

γ̃ := (γ̃0, γ̃1, . . . , γ̃m)

of MH . Moreover, x ∈ SAT iff there is an accepting run of MH that matches γ̃. By the
construction of MH , an accepting run of MH on an input y can only exist if there is an

integer n ≥ 0 such that y = 1n
H(n)

. Note also that the length of y has to be bounded by |γ̃0|.
Define

N := {n ∈ N | nH(n) ≤ |γ̃0|}.
Then, as argued above, the following are equivalent:

(1) x ∈ SAT;

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:69

(2) γ̃0#γ̃1# · · ·#γ̃m ∈ RF(MH);

(3) there is an n ∈ N such that there is an accepting run of MH on input 1n
H(n)

that
matches γ̃.

In what follows, we show how to compute in polynomial time, for each n ∈ N , a
propositional formula φn such that:

• φn is satisfiable if and only if there is an accepting run of MH on input 1n
H(n)

that
matches γ̃;

• |φn| ≤ |x|
|N | − 2 for all n ∈ N (if x is large enough).

Then, the following function g is a polynomial-time many-one reduction from SAT to SAT:

g(x) :=
∨
n∈N

φn.

Assuming a suitable encoding of propositional formulas, the size of g(x) is bounded by |x|−1
for large enough x. Thus, g is the desired length-reducing polynomial-time self-reduction of
SAT. It remains to construct φn, for all n ∈ N .

Construction of φn. Fix n ∈ N . By the construction of MH , any accepting run of MH

on input 1n
H(n)

has to start with the initialization phase. The first step of the initialization

phase is deterministic, and checks whether the input has the form 1n
H(n)

. Thus, we can
complete γ̃ in polynomial time to a partial run ofMH where the first step of the initialization
phase is completely specified. If this is not possible due to constraints imposed by γ̃, then we
know that the desired accepting run does not exist, and we can output a trivial unsatisfiable
formula φn. Otherwise, let

˜̃γ = (˜̃γ0, ˜̃γ1, . . . , ˜̃γm)

be the resulting partial run of MH . It remains to construct a formula φn that is satisfiable
iff there is an accepting run of MH that matches ˜̃γ.
Let us take a closer look at ˜̃γ. Let i ≥ 0 be such that ˜̃γ0, . . . , ˜̃γi corresponds to the first

step of the initialization phase ofMH on input 1n
H(n)

. In particular, for each j ∈ {0, 1, . . . , i},
˜̃γj is a completely specified configuration. It is possible to specify MH in such a way that

the second and third step of the initialization phase of MH on input 1n
H(n)

take exactly n
computation steps combined, and that any configuration after the initialization phase uses
space at most n. Thus, without loss of generality we can assume:

(1) |˜̃γj | ≤ n for all j ∈ {i+ 1, . . . ,m};
(2) m− i− n is bounded by the running time of MSAT on inputs of length n.

Let h be a polynomial-time computable function that, given ˜̃γi+1# · · ·#˜̃γm, outputs a
propositional formula that is satisfiable iff there is an accepting run of MH that starts in
the second step of the initialization phase of MH in a configuration matching ˜̃γi+1, and that
matches ˜̃γi+1, . . . , ˜̃γm. Let

φn := h(˜̃γi+1# · · ·#˜̃γm).

This finishes the construction of φn.
It is immediate from the construction of φn that φn is satisfiable if and only if there is an

accepting run of MH on input 1n
H(n)

that matches γ̃. It remains to prove that the length of
φn is bounded by |x|/|N | − 2.

Bounding the size of φn. Let p be a polynomial such that for all strings z, MSAT

makes at most p(|z|) steps on input z, and both |f(z)| and |h(z)| are bounded by p(|z|).

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

1:70 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Since, as mentioned above, m− i− n is bounded by the running time of MSAT on inputs of
length n, we have

m− i ≤ p(n) + n.

Since moreover |˜̃γj | ≤ n for all j ∈ {i+ 1, . . . ,m}, we have

|φn| ≤ |h(˜̃γi+1# · · ·#˜̃γm)| ≤ p(|˜̃γi+1# · · ·#˜̃γm|) ≤ p((m− i) · (n+ 1)) ≤ p((p(n) + n) · (n+ 1)).

Hence,

|φn| ≤ q(n)

for some polynomial q depending only on MSAT, f , and h. It remains to show that for all
n ∈ N we have q(n) ≤ |x|/|N | − 2 if x is sufficiently large.

Claim. There is a polynomial r(ℓ) > 0 depending only on MH such that for sufficiently large

x we have |x|
|N | ≥ r(|x|).

Proof. Recall that N consists of all integers n ≥ 0 such that nH(n) ≤ |γ̃0|. Since γ̃0 is part of
f(x), whose overall length is bounded by p(|x|), we have nH(n) ≤ p(|x|).
Now, for all integers ℓ ≥ 0, define

N(ℓ) := {n ∈ N | nH(n) ≤ p(ℓ)}.

Then, N ⊆ N(|x|). We show that for all constants c ∈ (0, 1) there is an integer λc ≥ 0 such
that for all integers ℓ ≥ λc we have |N(ℓ)| ≤ ℓc. This implies the claim.4

Fix a constant c ∈ (0, 1) and L := {ℓ ∈ N | |N(ℓ)| > ℓc}. For each ℓ ∈ L, there is an
nℓ ∈ N(ℓ) with nℓ ≥ ℓc. Thus, by the definition of N(ℓ) and the monotonicity of H, for each
ℓ ∈ L we have

ℓc·H(ℓc) ≤ n
H(nℓ)
ℓ ≤ p(ℓ). (5)

Now, since limℓ→∞H(ℓ) =∞ (by Lemma A.1), we have limℓ→∞ cH(ℓc) =∞. Hence, there
is an integer λc ≥ 0 such that for all ℓ ≥ λc we have ℓc·H(ℓc) > p(ℓ). This implies that for all
ℓ ≥ λc we have |N(ℓ)| ≤ ℓc (otherwise, we would violate (5)). y

Assume that q(n) = nk + k. Let r be a polynomial as guaranteed by the claim. In what
follows, we will assume that x is large enough so that:

(1) |x|
|N | ≥ r(|x|); this can be satisfied by the previous claim.

(2) (r(|x|)− 2− k)H
(
(r(|x|)−2−k)

1
k

)
/k
> p(|x|); this is possible since limℓ→∞H(ℓ) =∞ by

Lemma A.1.

Suppose that there is an n ∈ N such that q(n) > |x|/|N | − 2. Then,

n >

(
|x|
|N |
− 2− k

) 1
k

.

4Set r(ℓ) := ℓ1−c for some c ∈ (0, 1) (e.g., r(ℓ) =
√
ℓ). Then,

|x|
|N| ≥ |x|

|N(|x|)| ≥ r(|x|) if |x| ≥ λc.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

Dichotomies in Ontology-Mediated Querying with the Guarded Fragment 1:71

This implies

nH(n) ≥
(
|x|
|N |
− 2− k

)H(n)
k

≥
(
|x|
|N |
− 2− k

)H

(
(|x|

|N| −2−k)
1
k

)
k

≥ (r(|x|)− 2− k)
H

(
(r(|x|)−2−k)

1
k

)
k

> p(|x|),
where the last two inequalities follow from the monotonicity of H. Consequently,

|˜̃γi+1# · · ·#˜̃γm| ≤ |˜̃γ0# · · ·#˜̃γm| − |˜̃γ0# · · ·#˜̃γi| ≤ p(|x|)− nH(n) < p(|x|)− p(|x|),
which is the desired contradiction. �

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: May 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics of Ontology-Mediated Querying
	2.2 Ontology Languages
	2.3 Guarded Bisimulations
	2.4 Guarded Tree Decompositions

	3 Materializability
	4 Unraveling Tolerance
	5 Strong Dichotomies
	6 Connection to CSP and MMSNP
	7 Undecidability
	8 Non-Dichotomy
	9 Decidability Results
	10 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 8.4

