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Abstract

Model generation and minimal model generation is useful for fault analysis, verification of systems
and validation of data models. Whereas for classical propositional and first-order logic several
model minimization approaches have been developed and studied, for non-classical logic the topic
has been much less studied. In this paper we introduce a minimal model generation calculus for
multi-modal logic K(m) and extensions of K(m) with the axioms T and B. The calculus provides
a method to generate all and only minimal modal Herbrand models, and each model is generated
exactly once. A novelty of the calculus is a non-standard complement splitting rule designed for
minimal model generation. Experiments show the rule has the added benefit of reducing the search
space.
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1 Introduction

Model generation and minimal model generation is useful for fault analysis,
verification of systems and validation of data models ([17,1]). For classical
propositional and first-order logic several approaches have been developed for
model minimization. These existing approaches can be classified as belonging
to three different categories: those aiming to minimize the domain of inter-
pretation (for example [8,10]), those aiming to minimize the interpretation
of certain predicates (for example [11,12]), and those aiming to minimize the
interpretation of all predicates (for example [3,13,5]).

For modal logics and related description logics minimal model generation
has not been studied much. Minimal model generation has received most
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attention for modal logics with non-monotonic operators and non-monotonic
semantics, where the aim is the minimization of certain predicates (for ex-
ample [6,7]). As the common modal logics can be translated into first-order
logic [14], classical approaches for minimal model generation can be used to
generate minimal models for modal logic formulae by using a translation ap-
proach. This approach is taken in [5], which is based on earlier work for
using hyperresolution to generate Herbrand models for modal problems [9,4]
and [3,13].

In this paper we focus on the generation of minimal Herbrand mod-
els. Though minimal Herbrand models are not domain minimal, in cer-
tain applications they tend to be more natural than domain minimal mod-
els. For example, a domain minimal model of the labelled modal for-
mula Bob : 〈has father〉doctor is {Bob : doctor, (Bob,Bob) : has father}.
This says that Bob is his own father. In contrast, the minimal Herbrand model
is {f〈has father〉doctor(Bob) : doctor, (Bob, f〈has father〉doctor(Bob)) : has father},
where Bob’s father is represented by the Skolem term f〈has father〉doctor(Bob)
respecting the more natural meaning of the has father relation.

We introduce a modal approach to minimal Herbrand model generation
for the multi-modal logic K(m) and its extensions with axioms T and B,
that are represented by reflexive and symmetric accessibility relations. While
being inspired by the PUHR approach [3] for first-order logic, our approach is
based on a standard semantic labelled tableau calculus that has been adapted
for generating minimal models. The calculus is designed so that the models
induced by any fully expanded, open tableau branch are minimal.

Our calculus is called the 3MG calculus, where 3MG is short for ‘minimal
modal model generation’. Rather than using an explicit analytic cut rule and
testing minimality by a second application of (a variation of) the calculus, as
is done for example in [13,12,5,6,7], the idea of the 3MG calculus is to use
complement splitting and model constraint propagation during backtracking
to generate minimal models. The calculus takes as input a set of tableau
clauses and returns in one run all minimal modal Herbrand models. Tableau
clauses are disjunctions of labelled modal formulae and labelled relations. All
models that are generated are minimal and no model is generated more than
once.

The paper is structured as follows. We define the syntax and semantics and
all important notions of our tableau language in Section 2, where we also give
the formal definition of (minimal) modal Herbrand model. The 3MG calculus
is defined in Section 3, where the generation of minimal models is illustrated
with two examples. The proof of minimal model soundness and completeness
is presented in Section 4. We conclude the paper with a discussion of related
work and practical benefits of our non-standard complement splitting rule
(Section 5), and a short summary and outlook (Section 6).
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Table 1
Modalities and their corresponding frame conditions

[Ri] Axiom Frame condition

K

KT [Ri]p→ p reflexivity

KB p→ [Ri]〈Ri〉p symmetry

KTB
[Ri]p→ p reflexivity

p→ [Ri]〈Ri〉p symmetry

2 Tableau Language

Our tableau calculus is designed for sets of modal formulae of proposi-
tional multi-modal logic in which the modal operators are K-modalities,
T-modalities, B-modalities and TB-modalities. Semantically these modal-
ities are characterized by no frame condition, reflexivity, symmetry and both
reflexivity and symmetry, as indicated in Table 1.

A modal formula is a formula of the form >, ⊥, pi, ¬φ, φ1 ∧ φ2, φ1 ∨ φ2,
〈Ri〉φ, [Ri]φ, where > and ⊥ are two nullary logical operators for, respec-
tively, true and false; pi is a propositional symbol; Ri denotes an accessibility
relation; ¬, ∧, ∨, 〈Ri〉 , [Ri] are, respectively, the logical operators negation,
conjunction, disjunction, diamond and box; and φi is a modal formula.

A subformula φ′ of a modal formula φ has positive polarity if φ′ is (implicitly
or explicitly) in the scope of an even number of negations. A subformula φ′ of
a modal formula φ has negative polarity if φ′ is (implicitly or explicitly) in the
scope of an odd number of negations. A modal formula ∼ φ is defined as φ1

if φ = ¬φ1, and ¬φ1 otherwise.

The tableau calculus operates on tableau clauses, which are disjunctions of
labelled modal formulae and labelled relations. A labelled (modal) formula is
a pair u : φ where u is a label, φ is a multi-modal formula and the components
of the pair are divided by the operator : . The operator : is assumed to have
priority over all other operators. The labels are terms built from a supply of
constants and unary function symbols. Intuitively, u : φ means that φ is true
in the world represented by the term u. A labelled relation Ri is either of the
form (u, v) : Ri or (u, v) : ¬Ri, where u and v are terms. Intuitively, (u, v) : Ri

means that there is a relation Ri between u and v, while (u, v) : ¬Ri means
that there is no relation Ri between u and v.

Formally, tableau clauses are defined by the following Backus-Naur Form
production rule:

TC ::= > | ⊥ | u : φ | (u, v) : Ri | (u, v) : ¬Ri | TC ∨ TC.

A positive tableau literal is a tableau clause of the form u : pi, u : 〈Ri〉φ or
a positive labelled relation (u, v) : Ri. A negative tableau literal is a tableau
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Table 2
Semantics of tableau formulae. Note: u,v ∈WU , φ and φi denote modal formulae, ∆i denotes

tableau clauses

I |= u : pi iff u : pi ∈ I I |= (u, v) : Ri iff (u, v) : Ri ∈ I

I 6|= ⊥ I |= >
I 6|= u : ⊥ I |= u : >
I |= u : ¬φ iff I 6|= u : φ I |= (u, v) : ¬Ri iff I 6|= (u, v) : Ri

I |= u : (φ1 ∨ φ2) iff I |= u : φ1 or I |= u : φ2 I |= ∆1 ∨ ∆2 iff I |= ∆1 or I |= ∆2

I |= u : [Ri]φ iff for every v if (u, v) : Ri ∈ I then I |= v : φ

I |= u : 〈Ri〉φ iff (u, f〈Ri〉φ(u)) : R ∈ I and I |= f〈Ri〉φ(u) : φ

clause of the form u : ¬pi, u : [Ri]φ or a negative labelled relation (u, v) : ¬Ri.
A tableau atom is a positive tableau literal of the form u : pi or (u, v) : Ri.
We use the symbol P for positive tableau literals, the symbol ∆ for tableau
clauses, and ∆+ for tableau clauses consisting only of positive tableau literals.

As our aim is to generate Herbrand models, we focus our attention on
defining the notions of modal Herbrand interpretation and modal Herbrand
model. It is however not difficult to extend the definition to the more general
case, and showing through a specialization of the Herbrand theorem that each
modal Herbrand interpretation is a standard interpretation.

Given a set of tableau clauses N , let WU be the set of all terms built
from a supply of unary function symbols of the form f〈Ri〉φi and f〈Ri〉∼φi , and
the terms appearing in N . The notation indicates that f〈Ri〉φi is uniquely
associated with subformulae 〈Ri〉φi of a labelled φ in N with positive polarity,
and f〈Ri〉∼φi is uniquely associated with subformulae [Ri]φi of a labelled φ in N
with negative polarity. The set WU is the modal Herbrand universe for N .

The modal Herbrand semantics of tableau clauses is given by a modal
Herbrand interpretation I. A modal Herbrand interpretation I for a tableau
clause ∆ is a possibly empty set of positive tableau atoms, with all terms
occurring in it belonging to WU . Truth in a modal Herbrand interpretation I
is inductively defined in Table 2.

If a set of tableau clauses N is true in a modal Herbrand interpretation I
then I is said to be a modal Herbrand model for N .

A property that follows directly from the definition is the following. For
any interpretation I,

I |= u : (φ1 ∨ φ2) iff I |= u : φ1 ∨ u : φ2. (1)

Herbrand interpretations as defined above can be conveniently ordered by
the subset relation. Let I and I ′ be two modal Herbrand interpretations.
If I ⊆ I ′, then we write I ≤ I ′. Given a set of tableau clauses N and a modal
Herbrand model I of N , I is a minimal modal Herbrand model of N iff for
every other modal Herbrand model I ′ of N , if I ′ ≤ I then I = I ′.

For example, the minimal modal Herbrand models for the tableau
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clause w : (p1 ∧ (〈R1〉p2 ∨ p3)) in a multi-modal logic K(m) frame are I1 =
{w : p1, w : p3} and I2 = {w : p1, f〈R1〉p2(w) : p2, (w, f〈R1〉p2(w)) : R1}. In
this case I3 = {w : p1, w : p3, f〈R1〉p2(w) : p2, (w, f〈R1〉p2(w)) : R1} is also a
modal Herbrand model of the tableau clause under consideration, but I3 is
not minimal, because it is a supermodel of at least one of the other models,
in fact, of both of them.

3 Minimal Modal Model Generation Calculus

The input of the 3MG calculus is a set of tableau clauses such that conjunction
appears in a modal formula only in the scope of a diamond operator.

Given a set of labelled modal formulae, to obtain the required input we
apply a clausal normal form transformation to the labelled modal formulae
in the usual way, with the addition of box miniscoping. Box miniscoping is
the exhaustive application of the rule [Ri](φ1 ∧ φ2) ⇒ [Ri]φ1 ∧ [Ri]φ2, that
is, the box operator is distributed as far as possible over conjunctions. This
ensures that in a modal formula a conjunction may appear only in the scope
of a diamond operator, not a box operator.

For example, consider the labelled formula w : (p2∨[R1](p1∨(p2∧〈R2〉(p1∨
(p2 ∧ p3))))). Its conjunctive normal form is (2), and the input to the calculus
is the set (3).

w : (p2 ∨ [R1](p1 ∨ p2)) ∧ (p2 ∨ [R1](p1 ∨ 〈R2〉((p1 ∨ p2) ∧ (p1 ∨ p3)))) (2)

{ w : (p2 ∨ [R1](p1 ∨ p2)),

w : (p2 ∨ [R1](p1 ∨ 〈R2〉((p1 ∨ p2) ∧ (p1 ∨ p3)))) }
(3)

The 3MG calculus consists of the six expansion rules and the model con-
straint propagation rule listed in Table 3.

The (T)i rule accommodates the T axiom in the calculus, that is, it ex-
presses the reflexivity property for relations that are known to be reflexive.
The rule is necessarily different from the rule commonly used in other tableau
calculi, because terms appearing in a clause generated by the model constraint
propagation rule or the negation of a diamond formula may not appear in any
other tableau literals. In this case the (T)i rule does not have to create any
relation on them, as shown in the second example at the end of this section.

The (B)i rule is the standard structural rule for accommodating the frame
condition for B.

The (3) rule is the union of the standard α rule for conjunctive formulae
and the diamond rule of standard multi-modal tableaux calculi. No sepa-
rate α rule is needed since formulae in the input set and derived formulae are
in a normal form where conjunctions can appear only immediately below a
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Table 3
The rules of the 3MG calculus. Note: P denotes any positive tableau literal, ∆ denotes any

tableau clause, ∆+ denotes any disjunction of positive tableau literals

Expansion rules

(T)i

(u, u) : Ri
(B)i

(u, v) : Ri

(v, u) : Ri

if Ri is reflexive and u ap-
pears in a tableau formula of the
form u : φ, (u, v) : Rj or (v, u) : Rj on
the current branch

if Ri is symmetric

(3)
u : 〈Ri〉(φ1 ∧ . . . ∧ φn)

(u, f〈Ri〉φ(u)) : Ri

f〈Ri〉φ(u) : φ1

...

f〈Ri〉φ(u) : φn

where φ = φ1 ∧ . . . ∧ φn and f〈Ri〉φ is
the function symbol uniquely associated
with 〈Ri〉φ

(∨)E
u : (φ1 ∨ . . . ∨ φn) ∨ ∆

u : φ1 ∨ . . . ∨ u : φn ∨ ∆

(CS)
P1 ∨ . . . ∨ Pn

P1 P2 ∨ . . . ∨ Pn
neg(Pi)

where neg(Pi) stands for neg(P2),. . . ,
neg(Pn)

(SBR)

u1 : p1 . . . un : pn

(v1, w1) : Rm1 . . . (vm, wm) : Rmm

(s1, t1) : Rj1 . . . (sj , tj) : Rjj
u1 : ¬p1 ∨ . . . ∨ un : ¬pn ∨ v1 : [Rm1 ]φ1 ∨ . . . ∨ vm : [Rmm ]φm

∨ (s1, t1) : ¬Rj1 ∨ . . . ∨ (sj , tj) : ¬Rjj ∨ ∆+

(w1 : φ1) ∨ . . . ∨ (wm : φm) ∨ ∆+

Model constraint propagation rule

If B is an open and fully expanded branch in a tableau derivation generated by the 3MG
calculus, and I = {u1 : p1, . . . , un : pn, (v1, w1) : R1, . . . , (vm, wm) : Rm} is the (minimal)
modal Herbrand model extracted from B, then the following model constraint clause

u1 : ¬p1 ∨ . . . ∨ un : ¬pn ∨ (v1, w1) : ¬R1 ∨ . . . ∨ (vm, wm) : ¬Rm

is added to all the branches to the right of B.

diamond operator. Another important difference to common definitions found
in the literature is that the diamond rule does not create a new constant, but
a new Skolem term of the form f〈Ri〉φ(u).

Since the other rules of the calculus are applicable only to disjunctions of
tableau literals, the (∨)E rule converts disjunctions of modal formulae under
a specific label to disjunctions of labelled literals. The (∨)E rule is the only
rule that does not contribute to the generated model, since it does not add
any positive or negative tableau literals to the branch. The rule is justified by
the property (1) in Section 2.

The (CS) rule is the complement splitting rule. Its premise is a disjunction
of positive tableau literals. An application of the (CS) rule results in the
creation of two branches. One of the positive tableau literals in the premise
and the negation of all the other literals are added to the left branch. The
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premise, with the positive tableau literal appearing on the left branch removed,
is added to the right branch. Here, the negation of literals is defined by a unary
function neg as follows.

neg(P) =


u : ¬pi if P = u : pi

(u, v) : ¬Ri if P = (u, v) : Ri

(u, f〈Ri〉φ(u)) : ¬Ri if P = u : 〈Ri〉φ.

That is, if a positive tableau literal has the form u : pi or (u, v) : Ri, then
its negation is simply u : ¬pi or (u, v) : ¬Ri, respectively. The negation of
positive tableau literals of the form u : 〈Ri〉φ needs special handling. It is
not possible to negate the diamond formula as might be expected, because
this could produce non-minimal models (in Section 5 we give an example).
Instead we define the negation of u : 〈Ri〉φ to be (u, f〈Ri〉φ(u)) : ¬Ri. The
intuition is that if there is a negation of a positive tableau literal, then we
want to avoid the presence and the expansion of that positive literal in this
branch. Following the modal Herbrand interpretation semantics, to block a
specific diamond formula we can use the relation that such a diamond formula
would create if expanded. For this to work it is important that the relation is
uniquely associated to that diamond formula via the terms, which is achieved
in our calculus through the use of Skolem functions in the way defined.

The (CS) rule is the only branching rule of the calculus, and its aim is
twofold. First, it avoids the creation of a model more than once, because each
branch differs from any other branch by at least one model element (tableau
atom). Second, the first model extracted from the left-most branch of the
tableau is minimal. These two properties are consequences of the soundness
and completeness result in Section 4.

The last expansion rule is what we refer to as the (SBR) rule. The name
reflects the close relationship to selection-based resolution for first-order clause
logic. The (SBR) rule is the most complex rule and is the only rule that
can close a branch. It may be thought of as the simultaneous application of
closure rules (for labelled formulae and labelled relations) and the box rule
in standard multi-modal tableau calculi. The aim of the (SBR) rule is to
expand a disjunction of tableau literals where some of the tableau literals
are negative iff it is necessary. This behaviour is based on our definition of
minimal modal Herbrand models, in fact, such models are composed only of
specific positive tableau literals. Thus, if the expansion of a tableau clause
results in a clause that contains at least one negative literal then such a clause
does not contribute to the model. As the box operator hides complex modal
formulae, the rule does not completely avoid the generation of clauses that
may contain negative tableau literals, but it tries to avoid them as much as
possible (cf. Section 5).
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The last rule in the calculus is the model constraint propagation rule. It
is different from the other rules in that it becomes applicable once a fully ex-
panded, open branch has been obtained. A branch is fully expanded if no more
rules are applicable. If the current branch B is open and fully expanded, then
the model constraint propagation rule extracts the Herbrand model defined by
the positive tableau atoms in B. This Herbrand model is used to construct the
model constraint clause as described in Table 3. The modal constraint clause
is added to all branches to the right of the current branch. The calculus is de-
fined in such a way—and derivations are constructed in such a way—that any
model extracted from a fully expanded, open branch is a minimal Herbrand
model. The minimal model constraints added during backtracking prevent
the generation of non-minimal models by immediately closing branches which
begin to construct super-models. If a super-model of an already extracted
model is constructed in a branch, then an application of the (SBR) rule with
the model constraint clause as main premise closes the branch.

We assume as usual that no rule is applied more than once to the same set
of premises.

The 3MG calculus is minimal model sound and complete, in the sense that
it terminates and generates all and only minimal modal Herbrand models for
a set of tableau clauses. These properties of the calculus are not only due
to its rules, but also due to the search strategy used during the derivation.
We assume that a depth-first left-to-right expansion strategy is used. A de-
parture from this strategy would compromise minimal model soundness and
completeness of the calculus.

The expansion rules may be applied in any order without compromising
minimal model soundness and completeness. A sensible order of application
is: (T)i, (B)i, (SBR), (∨)E, (3), and (CS), the idea being to close a branch
as soon as possible to avoid useless expansion, and to delay the application of
the branching rule to avoid repeated application of a rule in different branches.

For a given input set N of tableau clauses the 3MG calculus derives ei-
ther a closed tableau or a fully expanded, open tableau. If a closed tableau
is constructed, N is unsatisfiable. If a fully expanded, open tableau is con-
structed, N is satisfiable, and each open branch defines a minimal modal
Herbrand model. As the 3MG calculus uses a depth-first left-to-right strat-
egy, the process could be stopped after the first fully expanded, open branch
has been constructed, if we are interested in finding only one minimal model.

We conclude this section with two examples. First, the set {w :
[R1][R1]p1 , w : (〈R1〉¬p2 ∨ p1) , w : (p3 ∨ 〈R1〉¬p2)} is K(m)-satisfiable and
has two minimal Herbrand models. Figure 1 shows how these can be derived
using our tableau calculus. Each formula in the derivation is numbered, the
convention being that each number represents the application of a rule. The
number 0 identifies the input clauses. In this example at least one applica-
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6a. w : p3

6b. (w, f〈R1〉¬p2(w)) : ¬R1

7. ⊥

6c. w : 〈R1〉¬p2
8a. (w, f〈R1〉¬p2(w)) : R1

8b. f〈R1〉¬p2(w) : ¬p2
I1 = {(w, f〈R1〉¬p2(w)) : R1}

�������

XXXXXXX

3a. w : 〈R1〉¬p2
3b. w : ¬p1
4a. (w, f〈R1〉¬p2(w)) : R1

4b. f〈R1〉¬p2(w) : ¬p2
5. f〈R1〉¬p2(w) : [R1]p1

10a. w : p3

10b. (w, f〈R1〉¬p2(w)) : ¬R1

I2 = {w : p1, w : p3}

10c. w : 〈R1〉¬p2
11. w : ¬p1 ∨ w : ¬p3

12a. (w, f〈R1〉¬p2(w)) : R1

12b. f〈R1〉¬p2(w) : ¬p2
13. ⊥

�������

XXXXXXX

3c. w : p1

9. (w, f〈R1〉¬p2(w)) : ¬R1

((((((((((((

hhhhhhhhhhh

0a. w : [R1][R1]p1

0b. w : (〈R1〉¬p2 ∨ p1)

0c. w : (p3 ∨ 〈R1〉¬p2)

1. w : 〈R1〉¬p2 ∨ w : p1

2. w : p3 ∨ w : 〈R1〉¬p2

Fig. 1. Derivation for the set {w : [R1][R1]p1 , w : (〈R1〉¬p2∨p1) , w : (p3∨〈R1〉¬p2)} in the multi–
modal K(m) frame. The models returned are I1 = {(w, f〈R1〉¬p2(w)) : R1} and I2 = {w : p1, w : p3}

tion of each rule is shown, with the exception of the rules representing the T
and B axioms. The (∨)E rule is applied to 0b and 0c to derive 1 and 2, to
which the complement splitting rule is now applicable. The formulae num-
bered 3 are obtained by applying (CS) to 1. The (3) rule is applied to 3a, 6c
and 10c to respectively get 4, 8 and 12. As the example is simple, all (3) rule
applications are equivalent to applying the standard diamond rule modulo
Skolem terms being introduced, which is one of the features of the calculus.
The derivation shows different applications of the (CS) rule. It is possible to
observe the function neg in operation for a diamond formula in the formulae
numbered 6 and 10 that are the result of applying the (CS) rule to 2. In
this case we see the neg function blocks the expansion of the positive tableau
literal in the input. In particular, the branch finishing with 7 closes due to
the contradiction between 6b and the already expanded diamond (represented
by 4). The branch closes as a result of the application of the (SBR) rule
to 6b and 4a. During the explanation of the (SBR) rule, we pointed out that
an application of the (SBR) rule may lead to a tableau formula containing
negative tableau literals. An example of this is formula 5, which is the result
of applying the (SBR) rule to 0a and 4a. As the branch ending with 8 is open
and fully expanded, the minimal modal Herbrand model that is given is ex-
tracted. The model constraint generated from this model is added to the only
other branch as model constraint 9. In the right-most branch it is possible to
note how the model constraint avoids the creation of super-models. In fact,
the branch is closed by an application of the (SBR) rule to 9 and 12a.

The second example is shown in Figure 2. The input set is com-
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3a. w : 〈R1〉¬p1
3b. w : ¬p2
4a. (w, f〈R1〉¬p1(w)) : R1

4b. f〈R1〉¬p1(w) : ¬p1
5. (f〈R1〉¬p1(w), f〈R1〉¬p1(w)) : R1

I1 = {(w,w) : R1, (w, f〈R1〉¬p1(w)) : R1,

(f〈R1〉¬p1(w), f〈R1〉¬p1(w)) : R1}

3c. w : p2

6. (w,w) : ¬R1 ∨ (w, f〈R1〉¬p1(w)) : ¬R1

∨(f〈R1〉¬p1(w), f〈R1〉¬p1(w)) : ¬R1

I2 = {(w : p2), (w,w) : R1}

((((((((((

````````

0. w : (〈R1〉¬p1 ∨ p2)

1. (w,w) : R1

2. w : 〈R1〉¬p1 ∨ w : p2

Fig. 2. Derivation for the tableau clause w : (〈R1〉¬p1 ∨ p2) and R1 reflexive.

posed of the single tableau clause w : (〈R1〉¬p1 ∨ p2) and R1 is assumed
to be reflexive. Thanks to the side conditions of the (T)i rule, the rela-
tion (f〈R1〉¬p1(w), f〈R1〉¬p1(w)) : R1 does not appear in the right branch, be-
cause the term f〈R1〉¬p1(w) appears only in the model constraint clause (6).
A standard rule for the T axiom would add the relation to the right branch,
resulting in a non-minimal model.

4 Soundness and Completeness

Our proof of minimal model soundness and completeness is based on showing
the existence of a bisimulation between the 3MG calculus and the PUHR
approach ([3]). Even though there is some similarity between some of the
rules, the 3MG calculus and the PUHR approach do not correspond directly
to each other in the sense that a step in the modal calculus can be simulated
by one or more steps of the calculus of the PUHR approach, or the other way
around. We show that the two calculi are approximations of each other via a
new translation of the 3MG input to first-order clauses.

This section is divided as follows: first, we recall the PUHR approach pre-
sented in [3]; second, we present a new translation from the 3MG input into
first-order formulae; finally, we prove the existence of a bisimulation relation-
ship between the 3MG calculus and a modified version of the PUHR approach
on the 3MG input translated in an appropriate way.

4.1 The PUHR Approach

In this section we recall the definition of the PUHR approach [3], where it
is called the depth-first minimal model generation procedure, used to prove
minimal model soundness and completeness of the 3MG calculus in the next
two sections.

In reference to the PUHR approach and first-order formulae and clauses

10
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the notational convention is as follows. We denote first-order variables by x,
y; terms by t; constants by s, u, v, w; functions by f ; predicate symbols by
P , Q, R; atoms by A, B; literals by L; clauses by C, D; substitutions by θ,
σ; first-order formulae by F , E; each of these could appear with subscripts or
superscripts.

The notions of substitution, unifier, most general unifier, ground term,
ground literal and ground clause are defined as usual. A clause is called
positive if it contains only positive literals. By F [E/E ′] we denote that E is a
subformula of F and that each occurrence of E is simultaneously substituted
by E ′.

A Herbrand interpretation H of a set of first-order clauses is a set of positive
ground atoms. A ground atom A is true in a Herbrand interpretation H if
A ∈ H and it is false if A 6∈ H. A clause C is true in a Herbrand interpretation
H iff in all ground instantiations Cσ there is at least a ground literal which is
true in H. A set N of clauses is true in H iff all clauses in N are true in H. If
a set N of clauses is true in an interpretation H, then such an interpretation
is referred to as a Herbrand model of N . A Herbrand model H is said to be
a minimal Herbrand model of a set of clauses N iff for every other Herbrand
model H ′, if H ′ ⊆ H then H = H ′.

The PUHR approach is a depth-first left-to-right minimal model genera-
tion procedure. It operates on a set of range-restricted clauses having finitely
many finite Herbrand models. A clause is range-restricted if each variable
appearing in a positive literal appears also in at least one negative literal. As
a consequence, if there are no negative literals in a range-restricted clause, the
clause is ground. The underlying calculus of the PUHR approach is described
in Table 4.1. There are two expansion rules: the positive unit hyperresolu-
tion (PUHR) rule and the complement splitting rule. In addition to these
rules, the procedure involves the use of model constraint propagation during
backtracking.

Theorem 4.1 ([3]) Let N be a finite set of range-restricted clauses. If N has
finitely many finite Herbrand models, then the PUHR approach applied to N
terminates, it returns all and only minimal Herbrand models of N (that is, it
is complete and sound), and does not return any minimal model more than
once.

4.2 A Minimal Herbrand Model Preserving Translation

Our translation from the input set of the 3MG calculus into first-order clauses
is based on a variation of the standard relational translation ([14]) of modal
logic to first-order logic. An important requirement for our proof is that the
minimal modal Herbrand model of any input set corresponds to the minimal
Herbrand model of its translation.

11
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Table 4
The rules of the PUHR approach

Expansion rules

PUHR rule:
A1, . . . , An ¬A′

1 ∨ . . .¬A′
n ∨D

Dσ

where A1,. . . , An are positive ground atoms, D is a positive clause and σ is such that
A1 = A′

1σ,. . . , An = A′
nσ

Complement splitting:
A1 ∨ . . . ∨An
A1 A2 An

¬A2

... . .
.

... ¬An
¬An

where A1,. . . , An are positive ground atoms

Model constraint propagation rule

If B is a finite, open and fully expanded branch of a tableau generated by the PUHR
approach, and H = {A1, . . . , An} is the (minimal) Herbrand model extracted from B,
then the model constraint ¬A1 ∨ . . .∨¬An is added to all the branches to the right of B

The new translation of the tableau input into a set of first-order clauses is
defined using an auxiliary mapping St3. St3 is defined as follows:

St3(x,>) = > St3(x,⊥) = ⊥
St3(x, pi) = Pi(x) St3(x,¬φ) = ¬St3(x, φ)

St3(x, φ1 ∨ φ2) = St3(x, φ1) ∨ St3(x, φ2) St3(x, 〈Ri〉φ) = Ri(x, f〈Ri〉φ(x))

St3(x, [Ri]φ) = ¬Ri(x, y) ∨ St3(y, φ), where y is a fresh variable.

The mapping St3 is similar to the standard semantic translation St presented
in [14]. It takes two arguments: a first-order term x that represents the
world in which the modal formula is true, and the modal formula that has
to be translated. The difference with the standard semantic translation is
the translation of diamond formulae that in our case does not translate the
semantic of the modal operator completely, and it has to be extended through
other clauses.

Let us assume that the input set of the 3MG calculus contains m distinct
diamond formulae of the form 〈Ri〉φ′j = 〈Ri〉(φ′j1 ∧ . . . ∧ φ

′
jk

). The new trans-
lation of the input set is the set N3MG comprising of the following first-order
clauses.

Qφj(ui) for each ui : φj in the input set

¬Qφj(x) ∨ St3(x, φj) for each ui : φj in the input set

¬Ri(x, f〈Ri〉φ′j(x)) ∨ St3(f〈Ri〉φ′j(x), φ′k) for each 1 ≤ j ≤ m

and each j1 ≤ k ≤ jk
Ri(uj, vk) for each (uj, vk) : Ri in the input set

12
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In case of reflexive or symmetric relations, the N3MG set has to be extended
with the following clauses.

¬Qφk(x) ∨Ri(x, x) for each reflexive relation Ri

and each uj : φk in the input set

¬Ri(x, y) ∨Rj(x, x) for each reflexive relation Rj

¬Ri(x, y) ∨Rj(y, y) for each reflexive relation Rj

¬Ri(x, y) ∨Ri(y, x) for each symmetric relation Ri

The reflexivity property is usually encoded in first-order logic by the clause
Ri(x, x). This clause is not range-restricted and it is required by the PUHR
approach that the input set of clauses is composed of only range-restricted
clauses. Our alternative translation respects the range-restrictedness con-
straint and encodes the side conditions of the (T)i rule in the 3MG calculus.

We refer to N3MG as the minimal Herbrand model preserving translation
of the input set.

For example, given the input set

{w1 : p1, w1 : 〈R1〉(p2 ∧ ¬p1), w2 : ([R1]p2 ∨ 〈R1〉(p2 ∧ ¬p1))}

for K(m), the translation N3MG is the set of these clauses (where φ′ defines
〈R1〉p2 ∧ ¬p1 and φ′′ defines [R1]p2 ∨ 〈R1〉(p2 ∧ ¬p1)).

Qp1(w1) Qφ′(w1)

Qφ′′(w2) ¬Qp1(x) ∨ P1(x)

¬Qφ′(x) ∨R1(x, fφ′(x))

¬Qφ′′(w2) ∨ ¬R1(x, y) ∨ P2(y) ∨R1(x, fφ′(x))

¬R1(x, fφ′(x)) ∨ P2(fφ′(x)) ¬R1(x, fφ′(x)) ∨ ¬P1(fφ′(x))

The translation to N3MG can be seen to be the result of several modifi-
cations and transformations applied to the standard semantic translation of
modal formulae into first-order logic. The definition of the standard semantic
translation can be found in, e.g., [14] (where it is called the standard relational
translation). We suppose the standard semantic translation of a tableau in-
put is given by the semantic translation of each labelled formula u : φ by us-
ing St(u, φ), and of each labelled relation (u, v) : Ri by translating it in Ri(u, v)
(where St is defined as in [14]; see also [4,18,19]).

The first modification is the application of structural transformation on
top of the semantic translation of the formulae in input. As we use structural
transformation in a very restricted way, we omit its formal definition. Defini-

13



F. Papacchini and R. A. Schmidt

tions may be found in [16,4,18]. The reason of applying structural transforma-
tion, together with inner Skolemization, is to have the same Skolem functional
symbol assigned to different occurrences of the same diamond formula. For
example, given the following 3MG input

{ u : [R1](〈R1〉p ∨ q), v : 〈R1〉p, (u, v) : R1 }

the set of range-restricted clauses obtained by applying the semantic transla-
tion is as follows.

{¬R1(u, x) ∨R(x, f〈R1〉p(x)) ∨Q(x),

¬R1(u, x) ∨ P (f〈R1〉p(x)) ∨Q(x),

R1(v, c〈R1〉p), P (c〈R1〉p), R1(u, v)}

where the functional symbol f〈R1〉p and the constant symbol c〈R1〉p are the
result of Skolemizing the two occurrences of 〈R1〉p. Due to these distinct
Skolem symbols, an application of the PUHR approach to the set of clauses
returns the two minimal Herbrand models

H1 ={ Q(v), P (c〈R1〉p), R1(u, v), R1(v, c〈R1〉p) }
H2 ={ P (c〈R1〉p), P (f〈R1〉p(v)), R1(u, v), R1(v, c〈R1〉p), R1(v, f〈R1〉p(v)) }

which are not minimal for the original modal input set. In fact, the 3MG
calculus applied to the original set returns only the minimal modal Herbrand
model

{ f〈R1〉p(v) : p, (u, v) : R1, (v, f〈R1〉p(v)) : R1 }.
To ensure that all Skolem functions introduced for the quantifiers that

encode diamond formulae are unary (and not constants or have arity higher
than one), structural transformation is used to introduce new symbols Qφj

for the translation St(ui, φj) of all the labelled formulae in the input set of
the 3MG calculus. We denote this transformation by Ξ. Usually structural
transformation is used over a formula in which free variables occur ([18,4]).
In the case of St(u, φ) there are no free variables, but our use of the struc-
tural transformation can be justified by exploiting the equivalence St(u, φ) ≡
∀x(x ≈ u → St(u, φ)). In addition, inner Skolemization is used to minimize
the dependence in the Skolem terms on universally quantified variables. As a
result there is a unique association between functional symbols and diamond
subformulae. This also implies a one-to-one correspondence between the Her-
brand universe of the first-order translation and the modal Herbrand universe
of the original input.

Lemma 4.2 Let N be the input set of the 3MG calculus. Any set of tableau
atoms I |= N iff H |= Ξ(N), where H is a first-order Herbrand model repre-
sentation of I.

14
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Proof. In [14] it is proved that given a modal formula φ, for any modal model
M and world w in M we have that M, w |= φ iff M |= St(w, φ), where St
is the standard semantic translation. In our case such theorem does not hold
due to the different Skolem symbols assigned to different occurrences of the
same diamond formula.

The use of structural transformation on top of the semantic translation
solves the incongruity between the modal input and its translation into first-
order logic, but it also adds new unary predicates that do not appear in the
standard semantic translation. By construction the only possible ground in-
stances of those new unary predicates appear in all possible Herbrand models.
This implies that such predicates may be deleted from the model, resulting in
a first-order representation of modal Herbrand models. Therefore, the elimi-
nation of those new predicates from the Herbrand models makes the theorem
in [14] to hold for our definition of modal Herbrand model. 2

As can be noted by our first-order encoding of the reflexivity property, this
limited use of structural transformation allows us to reformulate the common
clause for reflexivity in a range-restricted way without applying the range-
restricted transformation described in [3], which would result in infinite Her-
brand models and consequently the PUHR approach could not be successfully
applied.

The second modification is a change to the translation of diamond formulae
in St. Instead of St we use a mapping St′ that is defined in the same way
as St except the translation for diamond formulae is defined as follows:

St′(x, 〈Ri〉φ) = ∃y(Ri(x, y) ∧ (¬Ri(x, y) ∨ St′(y, φ))).

This new translation exploits the equivalence:

∃y(Ri(x, y) ∧ (Ri(x, y)→ St′(y, φ))) ≡ ∃y(Ri(x, y) ∧ St(y, φ)).

This implies that the translation St′ preserves logical equivalence. Due to the
properties of the PUHR approach, using this modification of the translation
we force the calculus to derive Ri(t, f〈Ri〉(t)) before St′(f〈Ri〉(t), φ) for any
diamond formula 〈Ri〉φ.

Let N be the set of first-order clauses obtained by translating the input of
the 3MG calculus applying Ξ using the mapping St′ to each labelled formula,
and, if required, adding the clauses representing reflexivity and symmetry.

The next two lemmas justify the final most crucial modification of the
translation.

Lemma 4.3 Let B be a fully expanded, open branch in a tableau deriva-
tion generated by the PUHR approach applied to N . Suppose Ri(t, f〈Ri〉φ(t)),
where t is a ground term occurring in a clause, is in B. Then, the minimal

15



F. Papacchini and R. A. Schmidt

Herbrand model H associated with B is such that H |= St′(f〈Ri〉φ(t), φ).

Proof. From the translation, only inference with clauses associated either
with the translation of a diamond subformula, or with the symmetry clause can
produce positiveRi-literals of the formRi(t, f〈Ri〉φ(t)). However, the symmetry
clause infers Ri(t, f〈Ri〉φ(t)) iff Ri(t, f〈Ri〉φ(t)) is already in the branch. That
is, to infer Ri(t, f〈Ri〉φ(t)) the symmetric relation Ri(f〈Ri〉φ(t), t) must already
be in the branch, and Ri(f〈Ri〉φ(t), t) can be inferred only by the symmetric
clause if Ri(t, f〈Ri〉φ(t)) is in the branch. For this reason we procede the proof
as if only the translation of a diamond subformula involves positive Ri-literals
of the form Ri(t, f〈Ri〉φ(t)).

Suppose 〈Ri〉φ is an arbitrary occurrence of a diamond subformula of the
3MG input. Suppose the following are all the clauses in N associated with
that occurrence of 〈Ri〉φ:

C ∨ C ′ ∨Ri(x, f〈Ri〉φ(x))

C ∨ C ′ ∨ ¬Ri(x, f〈Ri〉φ(x)) ∨ T1(f〈Ri〉φ(x))
...

C ∨ C ′ ∨ ¬Ri(x, f〈Ri〉φ(x)) ∨ Tk(f〈Ri〉φ(x))

(4)

where f〈Ri〉φ is the Skolem term uniquely associated with 〈Ri〉φ, C = ¬A1 ∨
. . .¬An, C ′ = B1∨. . .∨Bm, T1(f〈Ri〉φ(x))∧. . .∧Tk(f〈Ri〉φ(x)) ≡ St′(f〈Ri〉φ(x), φ)
and n ≥ 0, m ≥ 0, k ≥ 0. Note C ′ is a positive clause, and the only other
place where positive literals can occur is in T1(f〈Ri〉φ(x)), . . . ,Tk(f〈Ri〉φ(x)).

This implies that Ri(t, f〈Ri〉φ(t)) is on the branch B only if it was de-
rived by applying the PUHR rule to the first clause in (4). This gives
(C ′ ∨ Ri(x, f〈Ri〉φ(x)))σ where σ is ground and instantiates x with t. Sup-
pose Ri(t, f〈Ri〉φ(t)) was derived in this way. We consider two cases.

Case m = 0, that is C ′ is empty. Then Ri(t, f〈Ri〉φ(t)) is produced by just
applying the PUHR rule to the first clause in (4). As the PUHR approach
is minimal model sound and complete, the model H extracted from B is a
minimal Herbrand model of N . We have that H 6|= Cσ, because Cσ is resolved
by the PUHR rule, which means that the side premises make it false in H.
H 6|= ¬Ri(t, f〈Ri〉φ(t)), because Ri(t, f〈Ri〉φ(t)) is in the branch. This implies
H |= T1(f〈Ri〉φ(t)), . . . , H |= Tk(f〈Ri〉φ(t)). Hence, H |= T1(f〈Ri〉φ(t)) ∧ . . . ∧
Tk(f〈Ri〉φ(t)). Therefore, H |= St′(f〈Ri〉φ(t), φ).

Case m > 0, that is, C ′ is not empty. Then Ri(t, f〈Ri〉φ(t)) is the conclu-
sion of applying the complement splitting rule. Suppose ¬Bi1σ, . . . , ¬Bilσ,
where 1 ≤ l ≤ m, are the other ground literals in B produced by this appli-
cation of the complement splitting rule. We consider two subcases in which
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we focus on any of the clauses of the form:

C ∨ C ′ ∨ ¬Ri(x, f〈Ri〉φ(x)) ∨ Ti(f〈Ri〉φ(x)). (5)

(a) The PUHR rule is not applicable to (5). This means that Ti(f〈Ri〉φ(x))
contains at least a negative literal L and its complement is not in B. By
construction, H is such that H 6|= Cσ, H 6|= ¬Ri(t, f〈Ri〉φ(t)) but (5) is true
in H. This implies, H |= C ′σ ∨ Ti(f〈Ri〉φ(t)). Since the PUHR rule is not
applicable to (5), H |= Lσ. Therefore, H |= Ti(f〈Ri〉φ(t)).

(b) The PUHR is applicable to (5). This means that Ti(f〈Ri〉φ(x)) either
contains only positive literals (b1), or for all its negative literals there are
corresponding premises in the application of the PUHR rule (b2).

(b1) The clause derived by the application of the PUHR rule to (5) is
C ′′σ ∨ Ti(f〈Ri〉φ(t)), where C ′′ is the clause C ′ but all the literals Bij are
removed (1 ≤ j ≤ l). If one of the literals in C ′′σ is true in H then,
since Ri(t, f〈Ri〉φ(t)) is also true in H, H is not a minimal model, because
each of the clauses in (4) are true in H \ {Ri(t, f〈Ri〉φ(t))}. This is a con-
tradiction. Thus, one of the literals in Ti(f〈Ri〉φ(t)) is true in H. Therefore,
H |= Ti(f〈Ri〉φ(t)).

(b2) The clause derived by the application of the PUHR rule to (5) is
C ′′σ ∨T ′i (f〈Ri〉φ′(t)), where C ′′σ is as in (b1) and T ′i (f〈Ri〉φ′(t)) ⊆ Ti(f〈Ri〉φ′(t)).
Specifically, T ′i (f〈Ri〉φ′(t)) is as Ti(f〈Ri〉φ′(x))σ without all the negative literals
in Ti(f3φ′(x)). Suppose T ′i (f〈Ri〉φ′(t)) is empty. This means that H |= C ′′σ.
But this leads to the same contradiction of (b1). Since T ′i (f〈Ri〉φ′(t)) is empty,
H does not satisfy Ti(f〈Ri〉φ′(t)). So, H does not satisfy (5) and the branch
is closed. This is a contradiction because the branch is supposed to be open.
Suppose T ′i (f〈Ri〉φ′(t)) is not empty. For the same reasoning as for (b1), the
model H cannot satisfy C ′′σ. Thus, H |= T ′i (f〈Ri〉φ′(t)). Therefore, H |=
Ti(f〈Ri〉φ′(t)). 2

Lemma 4.4 Let N be a set of clauses as in Lemma 4.3. Then, each model H
extracted from a branch of a tableau generated by the PUHR approach applied
to N is such that

H |= St′(f〈Ri〉φ(t), φ) iff H |= Ri(t, f〈Ri〉φ(t)).

Proof. The new translation for diamond formulae in St′ ensures that a min-
imal Herbrand model H satisfies St′(f〈Ri〉φ(t), φ) only if Ri(t, f〈Ri〉φ(t)) is
in H. That is because the new translation is such that ¬Ri(x, f〈Ri〉φ(x))
appears in front of each Ti(f〈Ri〉φ(x)). Hence, Ti(f〈Ri〉φ(t)) is on the branch
only if Ri(t, f〈Ri〉φ(t)) already is. Lemma 4.3 asserts that if Ri(t, f〈Ri〉φ(t))
is in H then H |= St′(f〈Ri〉φ(t), φ). Therefore, a minimal model H is such
that H |= St′(f〈Ri〉φ(t), φ) iff H |= Ri(t, f〈Ri〉φ(t)). 2
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Lemmas 4.3 and 4.4 justify the most crucial step in the modification to
the translation. Let F0 be the result of applying Ξ using the mapping St′ to
an arbitrary labelled formula of the 3MG input. Suppose that the labelled
formula contains n distinct diamond subformulae 〈Ri〉φ1, . . . , 〈Rn〉φn. We
iteratively apply the following transformation for each 1 ≤ i ≤ n:

Fi = Fi−1[St
′(x, 〈Ri〉φi)/Ri(x, f〈Ri〉φi(x))]

∧ ∀x(¬Ri(x, f〈Ri〉φi(x)) ∨ St′(f〈Ri〉φi(x), φi)).

The resulting formula Fn obtained in this way is the diamond optimiza-
tion transformation of F0. Intuitively, diamond optimisation transformation is
similar to structural transformation but instead of introducing a new symbol
it reuses the literal Ri(x, f〈Ri〉φi(x)) for the translation of a diamond subfor-
mula. The formula ∀x(¬Ri(x, f〈Ri〉φi(x)) ∨ St′(f〈Ri〉φi(x), φi)) can be seen as
the (Skolemized) definition of Ri(x, f〈Ri〉φi(x)) and St′(x, 〈Ri〉φi).

The diamond optimization transformation is the last step of our specialized
translation. The N3MG set is the final result of applying our translation to
the input set of the 3MG calculus.

The last step before showing the bijection between the 3MG calculus and
the PUHR approach is to prove that the main requirement is respected: the
minimal modal Herbrand models of any input to the 3MG calculus corre-
spond to the minimal Herbrand models of the new translation of it. The
correspondence is such that every minimal modal Herbrand model may be
translated to a minimal Herbrand model and vice versa. The translation is
as usual: u : pi ⇒ Pi(u), (u, v) : Ri ⇒ Ri(u, v), and vice versa. This corre-
spondence exists iff all atoms Qφj(ui) have been filtered from the Herbrand
models.

Lemma 4.5 Suppose N is the input of the 3MG calculus, and N3MG is the
result of the minimal Herbrand model preserving translation. The set of mini-
mal modal Herbrand models of N corresponds to the set of minimal Herbrand
models of N3MG.

Proof. Lemma 4.2 establishes that to each Herbrand model of N3MG corre-
spond a modal Herbrand model of N , and the other way around. This holds
also after applying the other two steps of the transformation because both of
them preserve logical equivalence.

Let us assume that there exists a minimal Herbrand model H of N3MG that
does not represent a minimal modal Herbrand model I ofN . This implies, that
there is a minimal modal Herbrand model I ′ which is minimal with respect
to I. Then, by Lemma 4.2 there is an Herbrand model H ′ of N corresponding
to I ′. This leads to a contradiction becauseH ′ ⊂ H, andH cannot be minimal.
This implies, that to each minimal Herbrand model of N3MG corresponds a
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minimal modal Herbrand model of N .

Following an analogous reasoning, it is possible to prove that to each min-
imal modal Herbrand model of N corresponds a minimal Herbrand model
of N3MG. Therefore, the set of minimal modal Herbrand models of N corre-
sponds to the set of minimal Herbrand models of N3MG. 2

4.3 Minimal Model Soundness and Completeness

For the minimal model soundness and completeness of the 3MG calculus,
what remains to be shown is a correspondence between 3MG derivations and
PUHR derivations. We do this by defining a variation of the PUHR approach,
called the SBR approach, and showing: (i) there is a bisimulation relationship
preserving minimal Herbrand models between the PUHR approach and the
SBR approach, and (ii) there is a bisimulation relationship preserving minimal
Herbrand models between the SBR approach and the 3MG calculus.

By the SBR approach we mean the variation of the PUHR approach where
the PUHR rule is replaced by a selection-based resolution rule, namely:

SBR rule:
A1 . . . Aj ¬A′1 ∨ . . . ∨ ¬A′n ∨D

(¬A′j+1 ∨ . . . ∨ ¬A′n ∨D)σ

where (i) A1, . . . , Aj are positive ground unit clauses (atoms),
(ii) ¬A′1, . . . ,¬A′j in the main premise are selected by a selection func-
tion S (for 1 ≤ j ≤ n), (iii) D does not contain any negative literals, and
(iv) A1 = A′1σ, . . . , Aj = A′jσ. This means the selection function S always
selects at least one negative literal from each clause containing negative
literals.

Theorem 4.6 Let N be a finite set of range-restricted clauses. If N has
finitely many finite Herbrand models, then the SBR approach applied to N
terminates, it returns all and only minimal Herbrand models of N , and does
not return any minimal model more than once.

Proof. The PUHR rule is a hyperresolution rule and the SBR rule is a
selection-based resolution rule. It is well-known that the hyperresolution rule
can be simulated by a bounded number of selection-based resolution steps.
This implies that the PUHR approach is step-wise simulated by the SBR ap-
proach and is a specialization of it. All that needs to be proved is that the
minimal Herbrand models generated by the two approaches on the same input
are the same. Unless all negative literals are selected in a clause, applications
of the SBR rule lead to non-positive clauses that cannot be split to contribute
to the model. However, it is not difficult to prove that repeated applications
of the SBR rule lead to a positive ground clause C iff one application of the
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PUHR rule produces C. Therefore, the SBR rule can substitute the PUHR
rule and this substitution preserves the minimal model soundness and com-
pleteness. 2

The selection functions can be defined in an arbitrary way as long as it
selects only negative literals. For our purposes, we define S as follows:

S(C) =


{¬Qφj(x)} if C = ¬Qφj(x) ∨D
{¬Ri(x, y)} if C = ¬Ri(x, y) ∨D
{¬A1, . . . ,¬An} if C = ¬A1 ∨ . . . ∨ ¬An ∨D.

(6)

In the third case each ¬Ai denotes a ground unary literal or a binary literal
with at least one ground argument, and D is a clause which may contain both
positive and negative literals.

The selection of ¬Qφj(x) in clauses of the form ¬Qφj(x) ∨ D is used to
obtain clauses that correspond to the input of the 3MG calculus and to the
application of reflexivity to the terms that tag labelled formulae in the 3MG
input.

The selection of ¬Ri(x, y) in clauses of the form ¬Ri(x, y) ∨ D is a con-
sequence of the diamond optimization transformation, the representation of
reflexivity and the presence of symmetry clauses. It is used to simulate the
(3) rule, the (T)i rule and the (B)i rule.

The selection of ¬A1, . . . ,¬An in the remaining cases simulates the (SBR)
rule of the 3MG calculus. Its aim is to select the translation of all labelled
negative atoms. Their representation in first-order logic is as follows: u : ¬p
is represented by ¬P (u), u : 2φ is represented by ¬Ri(u, x) ∨ St3(x, φ), and
(u, v) : ¬R is represented by ¬Ri(u, v), where u and v are ground terms.

Because of the way the minimal Herbrand model preserving translation is
defined, the defined selection function S respects the prerequisite of the SBR
rule: S selects at least a negative literal from each clause containing negative
literals. This means that Theorem 4.6 holds for the SBR approach using the
selection function S. Subsequently, when we refer to the SBR approach we
mean the instance where S is as defined in (6) above.

Next, we show that there exists a bijection between the 3MG calculus
and the SBR approach applied to the minimal Herbrand model preserving
translation.

Lemma 4.7 Let N be the input to the 3MG calculus. Suppose N3MG is the
set of first-order clauses obtained by applying the minimal Herbrand model
preserving translation to N . Suppose the 3MG calculus is applied to N , and
the SBR approach is applied to N3MG. Then there exists a bijection between:

(i) an application of the (3) rule and a bounded number of repeated applica-
tions of the SBR rule with main premise ¬Ri(x, f〈Ri〉φi(x)) ∨D,
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(ii) an application of the (CS) rule and an application of the complement
splitting rule,

(iii) an application of the (SBR) rule and an application of the SBR rule with
main premise ¬A1 ∨ . . . ∨ ¬An ∨D,

(iv) an application of the (T)i rule, where the term belongs to a tableau for-
mula in N of the form u : φ, and application of the SBR rule with main
premise ¬Qφ(x) ∨D,

(v) an application of the (T)i rule, where the term belongs to a tableau for-
mula of the form (u, v) : Rj, and application of the SBR rule with main
premise ¬Rj(x, y) ∨D, and

(vi) an application of the (B)i rule and and application of the SBR rule with
main premise ¬Ri(x, y) ∨D, and

Proof. (Sketch): The simulation required the use of a mapping function from
the modal tableau to the first-order tableau, and a mapping for the reverse
direction. The mapping used for the simulations are based on a generalization
of the new translation from modal formulae into first-order sets of clauses and
its inverse.

(i) The (3) rule can be seen as the union of the standard diamond rule and
an α rule of the form u : α1∧ . . .∧αn/u : αi, for each 1 ≤ i ≤ n. The standard
diamond rule creates a labelled relation and a modal formula expandable
via an α rule. The labelled relation is the side premise necessary for the
application of the SBR rule in the SBR approach. Each application of an α rule
corresponds to an application of the SBR rule where S selects ¬R(x, f3φ(x))
and vice versa. Specifically, each application of an α rule adds u : αi which
represents exactly the result of the application of the SBR rule: St3(u, αi).
The reasoning is valid also for the other way around.

In the case of (ii), (iii), (iv), (v) and (vi) there exists a one-to-one corre-
spondence between 3MG steps and steps in the SBR approach. 2

Lemma 4.8 Let N be the input of the 3MG calculus. There exists a bisimu-
lation between the 3MG calculus applied to N and the SBR approach applied
to the minimal Herbrand model preserving translation of N .

Proof. By Lemma 4.7 there are several bijections between rules of the 3MG
calculus and the rules of the SBR approach. Two cases not considered in
Lemma 4.7 are the (∨)E rule and the SBR rule (of the SBR approach) where
the main premise is ¬Qφj(x) ∨ D and D is not an R-literal. The (∨)E has
no correspondent in the SBR approach. It just distributes the : operator
over disjunction based on a logical equivalence and does not contribute to the
model. This means the (∨)E rule preserves minimal model soundness and
completeness.

In the other case, Qφj(ui) encodes the labelled formulae that belongs to N
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and applying a resolution step to ¬Qφj(x) ∨D allows us to have a first-order
representation of the modal input. This means that the SBR rule where S
selects ¬Qφj(x) when D is not an R-literal does have a real correspondent in
the 3MG calculus.

These characteristic of the (∨)E rule and the SBR rule selecting ¬Qφj

when D is not an R-literal, and the result of Lemma 4.7 imply the existence of
a bisimulation between the 3MG calculus applied to N and the SBR approach
applied to the minimal Herbrand model preserving translation of N . 2

Theorem 4.9 (Minimal Model Soundness and Completeness) Let N
be a set of tableau clauses. The 3MG calculus applied to N terminates, gen-
erates all and only minimal modal Herbrand model of N , and each model is
generated no more than once.

Proof. By Lemma 4.8, the 3MG calculus is equivalent to the SBR approach.
By Theorem 4.6, the SBR approach and the PUHR approach have the same
behaviour on the same input and produce the same minimal Herbrand models.
Hence, by Lemma 4.5 and Theorem 4.6, the 3MG calculus is minimal model
sound and complete.

Complement splitting ensures that a model is generated only once. This
can be inferred by the correspondence between models generated by the 3MG
calculus and the SBR approach, for which this characteristic has been proved.

For termination we need to show that in any branch there cannot be an
infinite sequence of steps. This can be done by defining a measure on tableau
clauses and showing that the measure strictly decreases with every inference
step. This can be done similar to [4] (Theorem 7.7 on p. 281), where termi-
nation is proved for a specific resolution calculus applied to an appropriate
translation of formulae belonging to a logic in between K and K(m)(∩,∪,^)
into first-order clauses. 2

5 Discussion

The presented 3MG calculus generates all and only minimal modal Herbrand
models working directly with modal formulae. To our knowledge there are no
other methods having the same aim and working directly with modal formulae.

The closest approach that aims to generate all and only minimal Herbrand
models for modal logic is described in [5]. The approach in [5] covers the GF−

fragment of first-order logic that is wider than the multi-modal logic K(m) and
extensions with axioms T and B. However, the approach does not operate
on modal formulae but on their translation into first-order logic. Its results
differ slightly from the results obtained using the 3MG calculus. Specifically,
the set of models generated by our calculus is a subset of the set of models
obtained using the method of [5]. This is due to the particular structural
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transformation used during the translation from modal formulae into first-
order formulae. For instance, with the 3MG calculus the only minimal modal
Herbrand model of the tableau clause ∆ = w : (p1 ∨ [R1]p2) is the empty
set. If we translate ∆ into a first-order formula introducing a new symbol
corresponding to [R1]p2, then in the resulting set of clauses there is a positive
clause of the form P1(w)∨Q[R1]p2(w), which may produce a model not produced
by the 3MG calculus. This implies it is possible to create models that are not
minimal, at least not under our definition of minimal modal Herbrand model,
for the original modal formula, but are minimal for the first-order clauses.

Even though there is some similarity between some of the rules, the 3MG
calculus and the PUHR calculus [3] do not correspond directly to each other
in the sense that a step in the modal calculus can be simulated by one or more
steps of the calculus of the PUHR approach, or the other way around. As said
in Section 4, and explained in detail in [15], we prove minimal model sound-
ness and completeness of the 3MG calculus by showing that the two calculi
are approximations of each other via a non-trivial new translation of modal
formulae to first-order clause form. Our new translation has the additional
benefit that it leads to the reduction of the search space in the application of
the PUHR approach to clauses obtained by the standard translation.

The use of the (SBR) rule in the 3MG calculus represents another impor-
tant difference to the PUHR approach. It is possible to use a modal version of
the PUHR rule where the box formulae are expanded away into disjunctions
of tableau literals instead of the (SBR) rule. The benefits would be fewer
inference steps and no intermediary clauses would be produced. It is not clear
whether this would improve efficiency significantly though. A successful appli-
cation of a multiple premise rule like the PUHR rule requires combinatorially
many matching attempts to find the right premises for performing an inference
step. Thus, we do not expect there to be significant degrading in performance
through the use of the (SBR) rule. As the (SBR) rule can be viewed as the
composition of the standard closure rule and expansion rules for multi-modal
tableaux calculi, it has the advantage that it is more ‘modal’, and thus more
natural, than a modal tableau version of the PUHR rule, which would require
the introduction of more notation non-standard for modal tableau calculi.

In [7] the authors present a tableau calculus for circumscriptive reasoning
for the description logic ALCO. Circumscription aims to minimize a specific
set of predicates. This means that our calculus can be thought as the par-
ticular circumscription case in which all predicates are minimized. However,
the calculus presented in [7] differs from the 3MG calculus in aim, the logic
considered, and the methodology used. First, the calculus in [7] does not ac-
tually generate minimal models (because R predicates cannot be minimised).
Its task is to check if a formula is entailed by an interpretation respecting a
circumscriptive pattern. Second, their tableau calculus is for the description
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Fig. 3. Comparison of CPU runtimes in seconds of using the neg function

logic ALCO which has different expressive power compared to multi-modal
logic K(m) extended with reflexivity and symmetry. Finally, their method
involves the use of intermediate tests during the tableau derivation, a tech-
nique also used in [12] that presents a tableau calculus for circumscription in
function-free first-order clauses. The 3MG calculus does not require any sepa-
rate test, because minimality is ensured by the (CS) rule and model constraint
propagation.

The complement splitting rule (CS) in the 3MG calculus is based on
the neg function rather than standard negation, because standard negation
of diamond formulae can lead to non-minimal models. For example, given a
positive clause w : p1 ∨w : 〈R1〉¬p2, the negation of w : 〈R1〉¬p2 is w : [R1]p2.
The expansion of the box formula could result in a non-minimal model. The
problem is that a model created on this branch might include positive lit-
erals originating from below the box operator. This could cause a minimal
model to be missed. For this reason the neg function defines the negation of
a labelled diamond formula as the negation of the relation that this diamond
would create.

With the view of using this technique for other related logics, it is impor-
tant to note that it is not possible to use the neg function if the negated
labelled relation resulting from it can be generated by rules other than
the (3) rule.

The use of a complement splitting rule in tableau calculi is not new, though
typically the rule would be used in the form u : φ1∨φ2/u : φ1 | u : φ2, u : ¬φ1.
This ensures that branches are disjoint and avoids repeated inference steps,
but can lead to significant degrading of performance due to the additional
expansion of u : ¬φ1. To test whether our form of complement splitting
based on the neg function can be an effective way of achieving a reduction in
search space without degrading the performance, we have implemented a sim-
ple tableau prover for K(m). The main optimization in the implementation is
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the use of backjumping, a clever form of backtracking. The different diamond
negation is obtained by setting a flag. We decided to implement complement
splitting only for diamond formulae to avoid inferences due to the negation of
other complex formulae like box formulae or conjunctions. Tests were run with
a timeout of 200 seconds on a Dell machine with Intel Core2 Duo Processor
E6300 (2M Cache, 1.86 GHz), and 1GB of main memory. Figure 3 shows the
CPU time comparisons with and without our optimized diamond negation over
the ALC test suite from http://www.csc.liv.ac.uk/~ullrich/ALC1996/

(collection of problems in alc-3-1-x-3-2 and alc-3-1-x-3-5), and the LWB test
suite from http://iamwww.unibe.ch/~lwb/benchmarks/benchmarks.html.
That there are more points above the diagonal of both graphs indicates supe-
rior performance for complement splitting with optimized diamond negation
for both test suites. For the LWB test suite the advantage is however less
prominent. This is perhaps not surprising because the problems in the ALC
test suite are known to contain more redundancies. It is interesting to note
that almost all the cases in which the standard negation works better in the
LWB test suite are for the class k grz n, while for all other classes the result
is either in favour of our optimized negation or there is no evident difference.

6 Conclusion

We introduced the notion of (minimal) modal Herbrand model and defined
a multi-modal tableau calculus which generates all and only minimal modal
Herbrand models. We proved minimal model soundness and completeness by
devising a new translation from modal formulae into first-order clause sets,
and showing that there exists a correspondence between the 3MG calculus
and a variation of the PUHR approach based on selection-based resolution. A
positive side-effect of the function neg for the negation of diamond formulae
is a reduction of the search space for the 3MG approach as the experiments
have shown (we believe these can be carried over to the PUHR approach, as
we intend to show in a future work).

A possible extension of our approach includes lazy clausification per-
formed by appropriate extension rules. This would not improve the theoretical
worst-case complexity of the calculus but will be of practical benefit in a fu-
ture implementation. The calculus presented in this paper does not use lazy
clausification because it makes it easier to prove its soundness and complete-
ness via the connection with the PUHR approach, which is a purely clausal
approach.

This work is just a starting point of developing more general tableau calculi
for minimal model generation. Extensions in several directions are possible.
In this paper we focused only on minimal model generation of multi-modal
logic K(m) and its extension with axioms T and B. An interesting extension is
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the addition of other well-known axioms such as D, 4 and 5 that correspond
to seriality, transitivity and euclideanness of the accessibility relations. The
main challenge is to understand how to deal with the introduction of a block-
ing technique, which would avoid the possibility of generating infinite models
without compromising soundness and completeness of the calculus. The min-
imal model generation for dynamic modal logics [19] and description logics,
such as ALCO and ALCOIQ (for which circumscription has been studied
in [2,7]), is another possible direction for future work.
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